754 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationWhile boundary representations, such as nonuniform rational B-spline (NURBS) surfaces, have traditionally well served the needs of the modeling community, they have not seen widespread adoption among the wider engineering discipline. There is a common perception that NURBS are slow to evaluate and complex to implement. Whereas computer-aided design commonly deals with surfaces, the engineering community must deal with materials that have thickness. Traditional visualization techniques have avoided NURBS, and there has been little cross-talk between the rich spline approximation community and the larger engineering field. Recently there has been a strong desire to marry the modeling and analysis phases of the iterative design cycle, be it in car design, turbulent flow simulation around an airfoil, or lighting design. Research has demonstrated that employing a single representation throughout the cycle has key advantages. Furthermore, novel manufacturing techniques employing heterogeneous materials require the introduction of volumetric modeling representations. There is little question that fields such as scientific visualization and mechanical engineering could benefit from the powerful approximation properties of splines. In this dissertation, we remove several hurdles to the application of NURBS to problems in engineering and demonstrate how their unique properties can be leveraged to solve problems of interest

    A Survey of Ocean Simulation and Rendering Techniques in Computer Graphics

    Get PDF
    This paper presents a survey of ocean simulation and rendering methods in computer graphics. To model and animate the ocean's surface, these methods mainly rely on two main approaches: on the one hand, those which approximate ocean dynamics with parametric, spectral or hybrid models and use empirical laws from oceanographic research. We will see that this type of methods essentially allows the simulation of ocean scenes in the deep water domain, without breaking waves. On the other hand, physically-based methods use Navier-Stokes Equations (NSE) to represent breaking waves and more generally ocean surface near the shore. We also describe ocean rendering methods in computer graphics, with a special interest in the simulation of phenomena such as foam and spray, and light's interaction with the ocean surface

    Efficient and High-Quality Rendering of Higher-Order Geometric Data Representations

    Get PDF
    Computer-Aided Design (CAD) bezeichnet den Entwurf industrieller Produkte mit Hilfe von virtuellen 3D Modellen. Ein CAD-Modell besteht aus parametrischen Kurven und Flächen, in den meisten Fällen non-uniform rational B-Splines (NURBS). Diese mathematische Beschreibung wird ebenfalls zur Analyse, Optimierung und Präsentation des Modells verwendet. In jeder dieser Entwicklungsphasen wird eine unterschiedliche visuelle Darstellung benötigt, um den entsprechenden Nutzern ein geeignetes Feedback zu geben. Designer bevorzugen beispielsweise illustrative oder realistische Darstellungen, Ingenieure benötigen eine verständliche Visualisierung der Simulationsergebnisse, während eine immersive 3D Darstellung bei einer Benutzbarkeitsanalyse oder der Designauswahl hilfreich sein kann. Die interaktive Darstellung von NURBS-Modellen und -Simulationsdaten ist jedoch aufgrund des hohen Rechenaufwandes und der eingeschränkten Hardwareunterstützung eine große Herausforderung. Diese Arbeit stellt vier neuartige Verfahren vor, welche sich mit der interaktiven Darstellung von NURBS-Modellen und Simulationensdaten befassen. Die vorgestellten Algorithmen nutzen neue Fähigkeiten aktueller Grafikkarten aus, um den Stand der Technik bezüglich Qualität, Effizienz und Darstellungsgeschwindigkeit zu verbessern. Zwei dieser Verfahren befassen sich mit der direkten Darstellung der parametrischen Beschreibung ohne Approximationen oder zeitaufwändige Vorberechnungen. Die dabei vorgestellten Datenstrukturen und Algorithmen ermöglichen die effiziente Unterteilung, Klassifizierung, Tessellierung und Darstellung getrimmter NURBS-Flächen und einen interaktiven Ray-Casting-Algorithmus für die Isoflächenvisualisierung von NURBSbasierten isogeometrischen Analysen. Die weiteren zwei Verfahren beschreiben zum einen das vielseitige Konzept der programmierbaren Transparenz für illustrative und verständliche Visualisierungen tiefenkomplexer CAD-Modelle und zum anderen eine neue hybride Methode zur Reprojektion halbtransparenter und undurchsichtiger Bildinformation für die Beschleunigung der Erzeugung von stereoskopischen Bildpaaren. Die beiden letztgenannten Ansätze basieren auf rasterisierter Geometrie und sind somit ebenfalls für normale Dreiecksmodelle anwendbar, wodurch die Arbeiten auch einen wichtigen Beitrag in den Bereichen der Computergrafik und der virtuellen Realität darstellen. Die Auswertung der Arbeit wurde mit großen, realen NURBS-Datensätzen durchgeführt. Die Resultate zeigen, dass die direkte Darstellung auf Grundlage der parametrischen Beschreibung mit interaktiven Bildwiederholraten und in subpixelgenauer Qualität möglich ist. Die Einführung programmierbarer Transparenz ermöglicht zudem die Umsetzung kollaborativer 3D Interaktionstechniken für die Exploration der Modelle in virtuellenUmgebungen sowie illustrative und verständliche Visualisierungen tiefenkomplexer CAD-Modelle. Die Erzeugung stereoskopischer Bildpaare für die interaktive Visualisierung auf 3D Displays konnte beschleunigt werden. Diese messbare Verbesserung wurde zudem im Rahmen einer Nutzerstudie als wahrnehmbar und vorteilhaft befunden.In computer-aided design (CAD), industrial products are designed using a virtual 3D model. A CAD model typically consists of curves and surfaces in a parametric representation, in most cases, non-uniform rational B-splines (NURBS). The same representation is also used for the analysis, optimization and presentation of the model. In each phase of this process, different visualizations are required to provide an appropriate user feedback. Designers work with illustrative and realistic renderings, engineers need a comprehensible visualization of the simulation results, and usability studies or product presentations benefit from using a 3D display. However, the interactive visualization of NURBS models and corresponding physical simulations is a challenging task because of the computational complexity and the limited graphics hardware support. This thesis proposes four novel rendering approaches that improve the interactive visualization of CAD models and their analysis. The presented algorithms exploit latest graphics hardware capabilities to advance the state-of-the-art in terms of quality, efficiency and performance. In particular, two approaches describe the direct rendering of the parametric representation without precomputed approximations and timeconsuming pre-processing steps. New data structures and algorithms are presented for the efficient partition, classification, tessellation, and rendering of trimmed NURBS surfaces as well as the first direct isosurface ray-casting approach for NURBS-based isogeometric analysis. The other two approaches introduce the versatile concept of programmable order-independent semi-transparency for the illustrative and comprehensible visualization of depth-complex CAD models, and a novel method for the hybrid reprojection of opaque and semi-transparent image information to accelerate stereoscopic rendering. Both approaches are also applicable to standard polygonal geometry which contributes to the computer graphics and virtual reality research communities. The evaluation is based on real-world NURBS-based models and simulation data. The results show that rendering can be performed directly on the underlying parametric representation with interactive frame rates and subpixel-precise image results. The computational costs of additional visualization effects, such as semi-transparency and stereoscopic rendering, are reduced to maintain interactive frame rates. The benefit of this performance gain was confirmed by quantitative measurements and a pilot user study

    Interactive volume ray tracing

    Get PDF
    Die Visualisierung von volumetrischen Daten ist eine der interessantesten, aber sicherlich auch schwierigsten Anwendungsgebiete innerhalb der wissenschaftlichen Visualisierung. Im Gegensatz zu Oberflächenmodellen, repräsentieren solche Daten ein semi-transparentes Medium in einem 3D-Feld. Anwendungen reichen von medizinischen Untersuchungen, Simulation physikalischer Prozesse bis hin zur visuellen Kunst. Viele dieser Anwendungen verlangen Interaktivität hinsichtlich Darstellungs- und Visualisierungsparameter. Der Ray-Tracing- (Stahlverfolgungs-) Algorithmus wurde dabei, obwohl er inhärent die Interaktion mit einem solchen Medium simulieren kann, immer als zu langsam angesehen. Die meisten Forscher konzentrierten sich vielmehr auf Rasterisierungsansätze, da diese besser für Grafikkarten geeignet sind. Dabei leiden diese Ansätze entweder unter einer ungenügenden Qualität respektive Flexibilität. Die andere Alternative besteht darin, den Ray-Tracing-Algorithmus so zu beschleunigen, dass er sinnvoll für Visualisierungsanwendungen benutzt werden kann. Seit der Verfügbarkeit moderner Grafikkarten hat die Forschung auf diesem Gebiet nachgelassen, obwohl selbst moderne GPUs immer noch Limitierungen, wie beispielsweise der begrenzte Grafikkartenspeicher oder das umständliche Programmiermodell, enthalten. Die beiden in dieser Arbeit vorgestellten Methoden sind deshalb vollständig softwarebasiert, da es sinnvoller erscheint, möglichst viele Optimierungen in Software zu realisieren, bevor eine Portierung auf Hardware erfolgt. Die erste Methode wird impliziter Kd-Baum genannt, eine hierarchische und räumliche Beschleunigungstruktur, die ursprünglich für die Generierung von Isoflächen reguläre Gitterdatensätze entwickelt wurde. In der Zwischenzeit unterstützt sie auch die semi-transparente Darstellung, die Darstellung von zeitabhängigen Datensätzen und wurde erfolgreich für andere Anwendungen eingesetzt. Der zweite Algorithmus benutzt so genannte Plücker-Koordinaten, welche die Implementierung eines schnellen inkrementellen Traversierers für Datensätze erlauben, deren Primitive Tetraeder beziehungsweise Hexaeder sind. Beide Algorithmen wurden wesentlich optimiert, um eine interaktive Bildgenerierung volumetrischer Daten zu ermöglichen und stellen deshalb einen wichtigen Beitrag hin zu einem flexiblen und interaktiven Volumen-Ray-Tracing-System dar.Volume rendering is one of the most demanding and interesting topics among scientific visualization. Applications include medical examinations, simulation of physical processes, and visual art. Most of these applications demand interactivity with respect to the viewing and visualization parameters. The ray tracing algorithm, although inherently simulating light interaction with participating media, was always considered too slow. Instead, most researchers followed object-order algorithms better suited for graphics adapters, although such approaches often suffer either from low quality or lack of flexibility. Another alternative is to speed up the ray tracing algorithm to make it competitive for volumetric visualization tasks. Since the advent of modern graphic adapters, research in this area had somehow ceased, although some limitations of GPUs, e.g. limited graphics board memory and tedious programming model, are still a problem. The two methods discussed in this thesis are therefore purely software-based since it is believed that software implementations allow for a far better optimization process before porting algorithms to hardware. The first method is called implicit kd-tree, which is a hierarchical spatial acceleration structure originally developed for iso-surface rendering of regular data sets that now supports semi-transparent rendering, time-dependent data visualization, and is even used in non volume-rendering applications. The second algorithm uses so-called Plücker coordinates, providing a fast incremental traversal for data sets consisting of tetrahedral or hexahedral primitives. Both algorithms are highly optimized to support interactive rendering of volumetric data sets and are therefore major contributions towards a flexible and interactive volume ray tracing framework

    Towards Predictive Rendering in Virtual Reality

    Get PDF
    The strive for generating predictive images, i.e., images representing radiometrically correct renditions of reality, has been a longstanding problem in computer graphics. The exactness of such images is extremely important for Virtual Reality applications like Virtual Prototyping, where users need to make decisions impacting large investments based on the simulated images. Unfortunately, generation of predictive imagery is still an unsolved problem due to manifold reasons, especially if real-time restrictions apply. First, existing scenes used for rendering are not modeled accurately enough to create predictive images. Second, even with huge computational efforts existing rendering algorithms are not able to produce radiometrically correct images. Third, current display devices need to convert rendered images into some low-dimensional color space, which prohibits display of radiometrically correct images. Overcoming these limitations is the focus of current state-of-the-art research. This thesis also contributes to this task. First, it briefly introduces the necessary background and identifies the steps required for real-time predictive image generation. Then, existing techniques targeting these steps are presented and their limitations are pointed out. To solve some of the remaining problems, novel techniques are proposed. They cover various steps in the predictive image generation process, ranging from accurate scene modeling over efficient data representation to high-quality, real-time rendering. A special focus of this thesis lays on real-time generation of predictive images using bidirectional texture functions (BTFs), i.e., very accurate representations for spatially varying surface materials. The techniques proposed by this thesis enable efficient handling of BTFs by compressing the huge amount of data contained in this material representation, applying them to geometric surfaces using texture and BTF synthesis techniques, and rendering BTF covered objects in real-time. Further approaches proposed in this thesis target inclusion of real-time global illumination effects or more efficient rendering using novel level-of-detail representations for geometric objects. Finally, this thesis assesses the rendering quality achievable with BTF materials, indicating a significant increase in realism but also confirming the remainder of problems to be solved to achieve truly predictive image generation

    Digital 3D documentation of cultural heritage sites based on terrestrial laser scanning

    Get PDF

    A computational basis for elastodynamic cavity identification in a semi-infinite solid

    No full text
    The focus of this paper is a computational platform for the non-intrusive, active seismic imaging of subterranean openings by means of an elastodynamic boundary integral equation (BIE) method. On simulating the ground response to steady-state seismic excitation as that of a uniform, semi-infinite elastic solid, solution to the 3D inverse scattering problem is contrived as a task of minimizing the misfit between experimental observations and BIE predictions of the surface ground motion. The forward elastodynamic solution revolves around the use of the half-space Greenrsquos functions, which analytically incorporate the traction-free boundary condition at the ground surface and thus allow the discretization and imaging effort to be focused on the surface of a hidden cavity. For a rigorous approach to the gradient-based minimization employed to resolve the cavity, sensitivities of the trial boundary element model with respect to (geometric) void parameters are evaluated using an adjoint field approach. Details of the computational treatment, including the regularized (i.e. Cauchy principal value-free) boundary integral equations for the primary and adjoint problem, the necessary evaluation of surface displacement gradients and their implementation into a parallel code, are highlighted. Through a suite of numerical examples involving the identification of an ellipsoidal cavity, a parametric study is presented which illustrates the importance of several key parameters on the imaging procedure including the prior information, ldquomeasurementrdquo noise, and the amount of experimental input
    • …
    corecore