Bauhaus-Universitat Weimar

Fakultat Medien

Efficient and High-Quality Rendering of
Higher-Order Geometric Data Representations

Dissertation zur Erlangung des akademischen Grades
Doctor rerum naturalium (Dr. rer. nat.)
eingereicht an der

Fakultat Medien,
Bauhaus-Universitat Weimar

von

Dipl. Mediensystemwiss. Andre Schollmeyer
geboren am 11. August 1982 in Nordhausen

1. Gutachter: Prof. Dr. Bernd Frohlich
Bauhaus-Universitat Weimar

2. Gutachter: Prof. Dr. Michael Guthe
Universitdt Bayreuth

Tag der miindlichen Priifung: 2. November 2018

Weimar, 5. November 2018

CONTENTS

Related Publications
1 Motivation

2 Background

2.1 Higher-Order Geometric Data Representations
2.1.1 Rational Bézier Curves
2.1.2 Non-Uniform Rational B-Splines
2.1.3 Trimmed NURBS Surfaces and Geometric Limitations

2.1.4 Efficient Evaluation Schemes for Rational Bézier Representations on
Modern GPUS
2.2 Modern Graphics Pipeline Design
2.2.1 Programmability
2.2.2 Deferred Shading and Geometric Buffers (G-buffer)
2.2.3 A-buffer andits Advanced Usage

3 Direct Rendering of Trimmed NURBS Models
31 Abstract
3.2 Introduction
3.3 Background
3.31 RayCasting
3.3.2 Tessellation
333 Trimming
34 System OVerview
3.5 Efficient and Sub-Pixel Precise Trimming
3.5.1 Piecewise Monotonic Curve Sets
3.5.2 Curve Set Optimization and Kd-tree Generation
3.5.3 In-search Trim Classification
3.54 Curve Coverage Estimation

xi

~ O O U1 G

4 CONTENTS

3.6 Adaptive Tessellation
3.6.1 EstimationPass
3.6.2 Tessellation Pass
3.6.3 CompositingPass

3.7 Resultsand Discussion e
3.71 Limitations

3.8 Conclusion and Future Work

4 Visualization of NURBS-based Isogeometric Analysis
41 ADstract
4.2 NURBS-Based Isogeometric Analysis
43 Related Work
44 PreproCessingo
4.5 Point Evaluation
4.6 RaycastingBézierCells
4.6.1 Generate Ray-Interval Lists
4.6.2 Sort Ray-Interval Lists
4.6.3 Ray-FaceIntersection
4.6.4 Ray-Segment Classification
4.6.5 Isosurface Intersection
47 Efficient Per-Pixel Lists
4.8 Resultsand Discussion
49 Conclusion and Future Work

5 Programmable Order-Independent Transparency
51 Abstract
52 Introduction
5.3 Background
5.3.1 Partial Coverage and Blending
5.3.2 Deferred Shading
5.3.3 Transparency Effects in Real-time Rendering
54 System OVerview
5.5 System Design and Pass Descriptions
5.51 GeometryPass
5.5.2 A-buffer Generation
5.5.3 Light-CullingPass
5.54 Shade-Compositing Pass
5.5.5 Post-processing Pass
5.6 Resultsand Discussion
5.7 Conclusion and Future Work L.

6 Hybrid Image Warping for Stereoscopic Rendering
6.1 Abstract

39
39
41
43
45
46
47
48
50
50
53
53
55
57
65

67
67
68
69
69
69
70
71
73
73
75
77
78
79
79
83

85

CONTENTS 5

6.2 Introduction 86
6.3 Related Work 87
6.3.1 Warping of opaqueobjects 87
6.3.2 HoleFilling 33
6.3.3 Warping of semi-transparent objects 89

6.4 System OVEIVIEW e 90
6.5 Warp Preprocessing 90
6.5.1 Adaptive Grid Generation 90
6.5.2 Min-Max Quadtree Generation 94

6.6 Re-rendering 95
6.6.1 Grid Warping 95
6.6.2 Hole Filling Using Depth-Based Low-Pass Filter 97
6.6.3 Ray Casting Transparencies in the A-Buffer 97

6.7 Evaluation 98
671 Results 99
672 Userstudy 103
6.7.3 Discussion and Limitations 106

6.8 Conclusion and Future Work 107
7 Conclusion and Future Work 109
71 Contributions 109
72 Foresightand Future Work 111

Bibliography 113

ZUSAMMENFASSUNG

Computer-Aided Design (CAD) bezeichnet den Entwurf industrieller Produkte mit Hilfe
von virtuellen 3D Modellen. Ein CAD-Modell besteht aus parametrischen Kurven und
Flachen, in den meisten Fallen non-uniform rational B-Splines (NURBS). Diese mathe-
matische Beschreibung wird ebenfalls zur Analyse, Optimierung und Prasentation des
Modells verwendet. In jeder dieser Entwicklungsphasen wird eine unterschiedliche vi-
suelle Darstellung bendétigt, um den entsprechenden Nutzern ein geeignetes Feedback
zu geben. Designer bevorzugen beispielsweise illustrative oder realistische Darstellun-
gen, Ingenieure benotigen eine verstandliche Visualisierung der Simulationsergebnis-
se, wahrend eine immersive 3D Darstellung bei einer Benutzbarkeitsanalyse oder der
Designauswahl hilfreich sein kann. Die interaktive Darstellung von NURBS-Modellen
und -Simulationsdaten ist jedoch aufgrund des hohen Rechenaufwandes und der ein-
geschrankten Hardwareunterstiitzung eine grofle Herausforderung.

Diese Arbeit stellt vier neuartige Verfahren vor, welche sich mit der interaktiven
Darstellung von NURBS-Modellen und -Simulationensdaten befassen. Die vorgestellten
Algorithmen nutzen neue Fahigkeiten aktueller Grafikkarten aus, um den Stand der
Technik bezliglich Qualitét, Effizienz und Darstellungsgeschwindigkeit zu verbessern.
Zwei dieser Verfahren befassen sich mit der direkten Darstellung der parametrischen
Beschreibung ohne Approximationen oder zeitaufwandige Vorberechnungen. Die da-
bei vorgestellten Datenstrukturen und Algorithmen erméoglichen die effiziente Untertei-
lung, Klassifizierung, Tessellierung und Darstellung getrimmter NURBS-Flachen und ei-
nen interaktiven Ray-Casting-Algorithmus fiir die Isofldchenvisualisierung von NURBS-
basierten isogeometrischen Analysen. Die weiteren zwei Verfahren beschreiben zum ei-
nen das vielseitige Konzept der programmierbaren Transparenz fur illustrative und ver-
standliche Visualisierungen tiefenkomplexer CAD-Modelle und zum anderen eine neue
hybride Methode zur Reprojektion halbtransparenter und undurchsichtiger Bildinfor-
mation fiir die Beschleunigung der Erzeugung von stereoskopischen Bildpaaren. Die bei-
den letztgenannten Ansétze basieren auf rasterisierter Geometrie und sind somit eben-
falls fir normale Dreiecksmodelle anwendbar, wodurch die Arbeiten auch einen wichti-
gen Beitrag in den Bereichen der Computergrafik und der virtuellen Realitat darstellen.

11 CONTENTS

Die Auswertung der Arbeit wurde mit groflen, realen NURBS-Datensitzen durchge-
fuhrt. Die Resultate zeigen, dass die direkte Darstellung auf Grundlage der parametri-
schen Beschreibung mit interaktiven Bildwiederholraten und in subpixelgenauer Qua-
litdt moglich ist. Die Einfithrung programmierbarer Transparenz erméoglicht zudem die
Umsetzung kollaborativer 3D Interaktionstechniken flir die Exploration der Modelle in
virtuellen Umgebungen sowie illustrative und verstandliche Visualisierungen tiefenkom-
plexer CAD-Modelle. Die Erzeugung stereoskopischer Bildpaare flir die interaktive Visua-
lisierung auf 3D Displays konnte beschleunigt werden. Diese messbhare Verbesserung
wurde zudem im Rahmen einer Nutzerstudie als wahrnehmbar und vorteilhaft befun-
den.

II1

ABSTRACT

In computer-aided design (CAD), industrial products are designed using a virtual 3D
model. A CAD model typically consists of curves and surfaces in a parametric repre-
sentation, in most cases, non-uniform rational B-splines (NURBS). The same representa-
tion is also used for the analysis, optimization and presentation of the model. In each
phase of this process, different visualizations are required to provide an appropriate user
feedback. Designers work with illustrative and realistic renderings, engineers need a
comprehensible visualization of the simulation results, and usability studies or product
presentations benefit from using a 3D display. However, the interactive visualization of
NURBS models and corresponding physical simulations is a challenging task because of
the computational complexity and the limited graphics hardware support.

This thesis proposes four novel rendering approaches that improve the interactive
visualization of CAD models and their analysis. The presented algorithms exploit lat-
est graphics hardware capabilities to advance the state-of-the-art in terms of quality,
efficiency and performance. In particular, two approaches describe the direct render-
ing of the parametric representation without precomputed approximations and time-
consuming pre-processing steps. New data structures and algorithms are presented for
the efficient partition, classification, tessellation, and rendering of trimmed NURBS sur-
faces as well as the first direct isosurface ray-casting approach for NURBS-based iso-
geometric analysis. The other two approaches introduce the versatile concept of pro-
grammable order-independent semi-transparency for the illustrative and comprehensi-
ble visualization of depth-complex CAD models, and a novel method for the hybrid re-
projection of opaque and semi-transparent image information to accelerate stereoscopic
rendering. Both approaches are also applicable to standard polygonal geometry which
contributes to the computer graphics and virtual reality research communities.

The evaluation is based on real-world NURBS-based models and simulation data. The
results show that rendering can be performed directly on the underlying parametric rep-
resentation with interactive frame rates and subpixel-precise image results. The compu-
tational costs of additional visualization effects, such as semi-transparency and stereo-
scopic rendering, are reduced to maintain interactive frame rates. The benefit of this
performance gain was confirmed by quantitative measurements and a pilot user study.

ACKNOWLEDGEMENTS

This work was supported by the German Federal Ministry of Education and Research
(BMBF) under grant 03IPT704X (project Big Data Analytics), by the Thuringian Ministry
of Education and Cultural Affairs (TKM) under grant B514-090521 and by the European
Commission under the FP7-project 3D-Pitoti.

Furthermore, I would like to thank Professor Bernd Frohlich for introducing me to
scientific research, for giving me the opportunity to work in many interesting projects
including this thesis, for many inspirational discussions and his scientific advice. I
would also like to thank Professor Michael Guthe for agreeing to be the second reviewer.

I thank my girlfriend and son for their daily support, love and inspiration.

In the long course of this thesis, I always appreciated the familiar working atmosphere
and discussions with my dear colleagues Chris, Steppo, Andreas, Basti, Henning,
Patrick, André, Alex, Adrian, Carl, Tim, Dora, Bernhard, Banafsheh, Luca, Nadin and
Christin. Thanks!

I supervised many students in their lectures, projects and theses. A special thanks
for their efforts goes to the two exceptional students Simon Schneegans and Andrey
Babanin.

Last and most important, I would like to thank my parents for their education, love and
support in all of my ventures.

VII

ERKLARUNG UBER DIE EIGENSTANDIGKEIT
DER DISSERTATION

Ich erklare hiermit ehrenwortlich, dassich die vorliegende Arbeit ohne unzuldssige Hilfe
Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe.
Die aus anderen Quellen direkt oder indirekt ibernommenen Daten und Konzepte sind
unter Angabe der Quelle gekennzeichnet. Teile der Arbeit die bereits Gegenstand von
Priifungsarbeiten waren, sind unmissverstandlich gekennzeichnet. Bei der Auswahl und
Auswertung folgenden Materials haben mir die nachstehend aufgefiithrten Personen in
der jeweils beschriebenen Weise unentgeltlich geholfen:

+ Prof. Dr. Bernd Frohlich: Wissenschaftliche Betreuung der Arbeit.

- Andrey Babanin: Softwareentwicklung von A-Buffer Implementierungen und Inte-
gration in guacamole [119] (Kapitel 5). Die Masterarbeit erfolgte unter meiner wis-
senschaftlichen Betreuung, wodurch sich die Abbildungen 5.2, 5.8 und 5.9 sowie
Textfragmente in der entsprechenden schriftlichen Ausarbeitung [5] wiederfinden.

- Simon Schneegans: Softwareentwicklung und gemeinsame Konzeption der Tie-
fenbildtransformation (Kapitel 6). Die Masterarbeit erfolgte unter meiner wissen-
schaftlichen Betreuung, wodurch sich die Abbildungen 6.4, 6.5b, 6.6, 6.7, 6.8, 6.10,
6.11, 6.13 und 6.15 sowie Textfragmente in der entsprechenden schriftlichen Ausar-
beitung [118] wiederfinden.

- Stephan Beck: Diskussionen und formale Korrekturen von Kapitel 6.

- Prof. Anthony Steed: Wissenschaftliche und formale Korrektur von Kapitel 6.

Weitere Personen waren an der inhaltlich-materiellen Erstellung der vorliegenden Ar-
beit nicht beteiligt. Niemand hat von mir unmittelbar oder mittelbar geldwerte Leistun-
gen fur Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dis-
sertation stehen. Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder
ahnlicher Form einer anderen Prifungsbehorde vorgelegt.

Ich versichere, dass ich nach bestem Wissen die reine Wahrheit gesagt und nichts ver-
schwiegen habe.

Weimar, 5. November 2018 Andre Schollmeyer

IX

DECLARATION OF AUTHORSHIP

I hereby declare that this dissertation is entirely my own work except where otherwise
indicated. I used no other sources or tools than the ones listed, and that I have marked
any citations accordingly.

The following people supported my PhD research and the writing of this thesis with
specific contributions as described:

« Prof. Dr. Bernd Frohlich: Scientific supervision.

- Andrey Babanin: Software development of different A-Buffer implementations and
their integration into the rendering system guacamole [119] (Chapter 5). His work
was under my scientific supervision. The figures 5.2, 5.8 and 5.9 as well as text
fragments may also appear in his written master’s thesis [5].

- Simon Schneegans: Joint concept and software development of adaptive depth-
image warping technologies for efficient stereoscopic rendering (Chapter 6). His
work was under my scientific supervision. The figures 6.4, 6.5b, 6.6, 6.7, 6.8, 6.10,
6.11, 6.13 and 6.15 as well as text fragments may also appear in his written master’s
thesis [118].

- Stephan Beck: Scientific discussions and formal corrections of Chapter 6.

- Prof. Anthony Steed: Scientific and formal corrections of Chapter 6.

This thesis has never been submitted in the same or substantially similar version to
any other examination office.

Weimar, 5. November 2018 Andre Schollmeyer

XI

RELATED PUBLICATIONS

Schollmeyer, A., Frohlich, B.

Efficient and Anti-aliased Trimming for Rendering Large NURBS Models,

In IEEE Transactions on Visualization and Computer Graphics (early access), March 2018.
© 2018 IEEE. Reprinted, with permission, in Chapter 3.

Schollmeyer, A., Frohlich, B.

Direct Isosurface Ray Casting of NURBS-based Isogeometric Analysis,

In IEEE Transactions on Visualization and Computer Graphics 20(9), pp. 1227 - 1240, June
2014. © 2014 IEEE. Reprinted, with permission, in Chapter 4.

Schollmeyer, A., Babanin, A., Frohlich, B.

Order-Independent Transparency for Programmable Deferred Shading Pipelines,

In Computer Graphics Forum 34(7), pp. 67-76, October 2015. © The Eurographics Associ-
ation and John Wiley & Sons Ltd., 2015. Reprinted, with permission, in Chapter 5.

Schollmeyer, A., Schneegans, S., Beck, S., Steed, A., Frohlich, B.

Efficient Hybrid Image Warping for High Frame-Rate Stereoscopic Rendering,

In IEEE Transactions on Visualization and Computer Graphics 23(4), pp. 1332 - 1341,
January 2017.© 2017 IEEE. Reprinted, with permission, in Chapter 6.

CHAPTER]_

MOTIVATION

Most architectural buildings and industrial products, e.g. cars, machinery or aircraft, are
designed, constructed and developed using professional computer-aided design (CAD)
and engineering (CAE) software. In CAD systems, a digital 3D model is created and mod-
ified using a set of modeling operations. Additional CAE software tools allow engineers
to evaluate and optimize the design of the model using physical simulations such as
structural analysis. The interactive design, analysis and final presentation of a product
integrate into a mechanical engineering process [19]. In this iterative process, different
designs are evaluated in terms of established metrics, e.g. stability or costs. A model that
fails an evaluation has to be revised and the process returns to an earlier phase or it is
discarded. Each stage requires an interactive visualization of the model or its analysis,
as shown in Figure 1.1. The corresponding mechanical engineering process is outlined
in Figure 1.2.

A CAD model typically consists of higher-order geometric data representations. A com-
mon representation used for modeling, export, visualization, and manufacturing are
Non-Uniform Rational B-Splines (NURBS) surfaces. A NURBS surface is defined by a

L |
Y

(a) (b) () (d

Figure 1.1: (a) The CAD model of a wind turbine. (b) A close-up view of the turbine. Both images were rendered
with the rendering system for trimmed NURBS models presented in Chapter 3. (c) The system was
extended with programmable transparency (see Chapter 5) which allows for a variety of visualiza-
tion effects. (d) This image shows an isosurface (green) of the simulated air velocity around one of
the rotors for a single time step. The underlying direct isosurface ray-casting system for isogeomet-
ric analysis is described in Chapter 4. () The model of the wind turbine is explored in virtual reality
based on the depth-image warping approach for stereoscopic displays presented in Chapter 6.

2 CHAPTER 1 : MOTIVATION

Identification Definition Synthesis An_alysis & Evaluation Presentation
of need of problem Optimization

Figure 1.2: The phases in the mechanical engineering design process by Shigley [19]. The final design is the
result of multiple iterations between the different phases. In computer-aided design and engineer-
ing, the phases of synthesis, analysis & optimization, evaluation and presentation (all green) are
performed on a virtual 3D model which consists of higher-order geometric data representations.

grid of control points and a set of basis functions. The analysis and optimization of the
model using a CAE tools, however, often requires a volumetric representation.

The modern concept of isogeometric analysis [60] uses a volumetric expansion of
NURBS surfaces for stress and flow analysis. The simulation parameters are associated
with the NURBS volumes using a shared 3D (trivariate) domain space. The outer bound-
aries of the NURBS-based isogeometric analysis are equivalent with the original CAD
model. This consistent NURBS representation for both, model and simulation, greatly
simplifies the iterative design process. In particular, the results of an optimization can be
applied directly to the corresponding surfaces and simulation results can be evaluated
in a combined visualization of model and analysis.

A combined visualization of the CAD model and the corresponding analysis would be
beneficial for design decisions, the parametrization of the model and the choice of suit-
able materials. However, an accurate real-time visualization of higher-order geometric
data representations is intricate. Even latest graphics hardware only supports direct ren-
dering of basic geometric primitives, such as points, lines and triangles. For decades,
there has been much research in the fleld of real-time rendering techniques for para-
metric surfaces. Most works focus on ray tracing techniques and efficient rendering
algorithms for NURBS surfaces (for details see Chapter 3). In addition, virtual reality
technology advanced to become industry standard in CAD and has been used for im-
proving depth perception [44], modeling [148] and assembly planning [20]. Nevertheless,
a high-quality visualization of NURBS models and their isogeometric analysis still poses
the following major challenges:

- There is a lack of rendering methods for NURBS-based isogeometric analysis. Ex-
isting visualization approaches for higher-order volume data are limited to finite
element grids of low polynomial degree. A conversion requires time-consuming
approximations and would be a potential bottleneck for an interactive analysis.

- In most stages of the design process, the visualization of semi-transparent surfaces
is highly desirable. In particular, for design and presentation purposes, translu-
cent materials should appear realistic. Furthermore, see-through capabilities are

CONTENTS 3

required for collaborative interaction [4], illustrative visualizations and the eval-
uation of structural analysis. In general, semi-transparent surfaces need to be
blended in correct order along with the simulation results. However, standard
depth-sorting techniques are not applicable due to the geometric complexity of
trimmed NURBS surfaces.

- A CAD model typically contains surfaces of high polynomial degree and many fine
details, e.g. screw threads or cooling fins. This increases the rendering costs signifi-
cantly. In addition, most mechanical objects also have a high depth complexity due
to a large number of inner components. In contrast to 3D models used in the video
gaming industry, CAD models and their visualization need to be geometrically pre-
cise. In general, they cannot be simplified to optimize rendering performance. In-
stead, an output-sensitive rendering approach for trimmed NURBS surfaces is re-
quired. However, existing approaches are limited by at least one of the following
properties: quality, polynomial degree, trimming capabilities or performance.

- An integration into a virtual reality environment requires high frame-rate render-
ing of stereoscopic image pairs. In general, this doubles the rendering costs. Even
with an output-sensitive rendering system, the required frame rates are hardly
achievable using conventional stereoscopic rendering. The main reasons are per-
formance and bandwidth bottlenecks — especially in the presence of costly sorting
and blending operations for semi-transparent surfaces.

Recent advancements in programmable graphics hardware enable the development of
novel rendering algorithms solving the aforementioned challenges. The introduction of
data scatter capabilities by means of atomic operations [74] and random write access [75]
allows for the implementation of dynamic data structures. In particular, the concept of
an accumulation buffer, also referred to as A-buffer [22], can be realized very efficiently.

This thesis describes the development, design, implementation and evaluation of
novel rendering algorithms for the efficient, high-quality real-time visualization of
NURBS models (see Chapter 3) and their isogeometric analysis (see Chapter 4). The de-
veloped systems support programmable semi-transparency for advanced visualization
effects (see Chapter 5) and allow for an efficient generation of stereoscopic image-pairs
(see Chapter 6) by means of depth-image warping without the necessity of rendering
the CAD model twice. Moreover, the algorithms for rendering semi-transparent NURBS
surfaces and depth-image warping are applied after the rasterization and are inherently
applicable to any surface representation, including regular triangle meshes. Therefore,
both approaches are described in a generalized form to reach a wider audience. Their ap-
plicability to triangular geometry also represents a significant contribution in the virtual-
reality and computer graphics community.

CHAPTER 2
BACKGROUND

The description of the developed rendering algorithms and data structures, given in
Chapters 3to 6 of this thesis, requires a basic understanding of real-time computer graph-
ics, higher-order geometric data representations and modern rendering pipeline design.
This chapter gives an introduction to some of these topics and includes some underlying
algorithmic details that had to be omitted in the corresponding publications for brevity
reasons.

2.1 Higher-Order Geometric Data Representations

In various fields of computer graphics, visualization, computer-aided design (CAD), engi-
neering (CAE) and manufacturing (CAM), mathematical descriptions are used to define
the shape of geometric objects. In most cases, an object is composed of curves and sur-
faces given in a parametric representation.

A parametric representation refers to a set of quantities defined by functions with one
or more independent parameters. For example, the functions

x(t) = cos(t) (2.0
y(t) = sin(t) (2.2)

define a unit circle using the parameter t = [0, 27]. If at least one of the functions is
non-linear, e.g. a trigonometric function or polynomial of quadratic degree or higher,
the parametric representation is generally referred to as higher-order.

In general, a parametric representation is non-injective. The same geometric shape
can be defined using different representations. The specific type of parametric represen-
tation depends on the requirements and the field of application. For example, in 2D com-
puter graphics, the outlines of freetype fonts [140] and scalable vector graphics [61] are de-
fined using lines, elliptical curves and Bézier curves. In contrast, most 2D and 3D shapes
in CAD applications are commonly represented by non-uniform rational B-splines.

6 CHAPTER 2 : BACKGROUND

2.1.1 Rational Bézier Curves

The mathematical concept of Bézier curves is commonly used in vector graphics, font
design and animation. Based on a set of polynomial basis functions, the shape of a Bézier
curve is defined by control points which can be intuitively modified by designers and
animators. Rational Bézier curves additionally allow to set a weight for each control
point which increases the geometric flexibility, e.g. for conical or spherical shapes. A
rational Bézier curve C(¢) with the control points b;, their scalar weights w; is defined by

Dieo wibi B} (t)

C(t) = =5 — (2.3)
© im0 wiB} (1)
with the n-th degree Bernstein polynomials
n . .
BIt) = (i)ti(l)" t€[0,1] (2.4)

In general, the control points and the corresponding curves can be of arbitrary di-
mensionality. In most graphics applications, the usage of 2D or 3D points is standard.
However, Chapter 4 also deals with data sets including representations in higher dimen-
sionality, for example, physical parameters such as stress or strain.

Furthermore, the concept can be extended for the definition of tensor-product Bézier
surfaces, trivariate Bézier solids (see Chapter 4) or Bézier triangles. For further informa-
tion, please refer to the works of Piegl & Tiller [101] or Gerald Farin [42].

2.1.2 Non-Uniform Rational B-Splines

The mathematical model of non-uniform rational B-splines (NURBS) is a generalization
of the rational Bézier representation. NURBS offer more flexibility and control for the ge-
ometric representation of curves and surfaces. In particular, they introduce additional
degrees of freedom to control continuity, smoothness and local refinements — all of
which are important properties in modeling and design applications. Therefore, NURBS
are common standard in the CAD, CAM and CAE industry.

A NURBS curve N(t) is defined by

_ 2o NV (wib;
YN (tw;

where p is the curve’s polynomial order, b; are the control points and w; are the corre-
sponding weights. The B-spline basis functions N7 (¢) are defined by

N(t) (2.5)

1 ifk; <t<k dk; <k;
NO(t) = 4~ DTSSR andi s fi 2.6)
0 otherwise
NI(t) = =k NIt + i =t NIZH®) (2.7)
kivj — ki kitjt1 —kipa

2.1 HIGHER-ORDER GEOMETRIC DATA REPRESENTATIONS 7

—

e

(a) (b)

Figure 2.1: (a) Boolean modeling operations involving surface-surface intersections typically result in 2D trim
curves in the domain of the NURBS surfaces. In this case, the surface is bound by a single outer
trim loop and ten inner trim loops. The even-odd-rule defines which parts of the domain belong to
the surface (grey region). The corresponding trimmed NURBS surface is located on the left side of
the model shown in (b).

and the given sequence of non-decreasing values K = {kq, k1, ..., km }, also referred to
as knot vector. Consequently, a NURBS surface of degree (p, q) is defined by

> ico ZT:O sz(u)NJq (v)wi,;bi.;
Dm0 2o NP ()N} (v)wi

where b; ; are the control points, topologically ordered in a 2D grid. For further infor-
mation, please refer to Piegl & Tiller [101].

In this work, NURBS are converted into an equivalent rational Bézier representation to
render them either by adaptive tessellation (see Chapter 3) or ray casting (see Chapter 4).

N(u,v) = (2.8)

2.1.3 Trimmed NURBS Surfaces and Geometric Limitations

Many important CAD modeling capabilities involve Boolean operations based on the in-
tersection of surfaces, e.g. clip or trim operations. Surface-surface intersections result in
3D curves which can be mapped into the domains of the corresponding surfaces. In do-
main space, the intersection curves form closed loops that separate trimmed regions by
applying the even-odd-rule [45]. These surfaces are also referred to as trimmed NURBS
surfaces. Figure 2.1 shows an example of a trimmed NURBS surface and the correspond-
ing domain.

In practice, the computation of exact intersection curves is quite intricate or even not
feasible at all [136]. Therefore, most CAD systems retain a topological representation of
the intersection itself. For export, visualization or manufacturing, however, an explicit
representation is required. The intersection is then typically approximated within a pre-

8 CHAPTER 2 : BACKGROUND

defined error threshold using 2D NURBS curves in domain space. This approximation
is different in both domains of the intersected surfaces and the resulting geometry may
not be watertight. Self-contained solutions to this underlying CAD challenge have been
proposed [128] [55], but require non-standard data representations.

However, all data sets used for the evaluation of this work are generally not watertight.
In the rendering systems, described in Chapter 3 and 4, some visual artifacts that are
caused by these geometric limitations, e.g. pinholes and cracks, can only be amended
for.

2.1.4 Efficient Evaluation Schemes for Rational Bézier Representations
on Modern GPUs

In the scope of this work, all NURBS representations are converted into a geometrically
equivalent rational Bézier representation using knot insertion [101]. The rendering algo-
rithms for trimmed NURBS surfaces (Chapter 3) and isogeometric analysis (chapter 4)
directly perform on a rational Bézier representation which is stored in graphics memory.
Thus both systems require frequent evaluations of the underlying parametric representa-
tion on the graphics processor. The choice of evaluation method and its implementation
is quite significant for the overall performance of the rendering system. The following
considerations need to made:

- Memory costs: The major costs for an evaluation are caused by the number of
memory accesses. For tensor-product surfaces or solids, an evaluation may involve
more than hundred control points which are stored in texture memory. The mem-
ory layout and access should be cache-coherent and the number of requests mini-
mized.

- Register usage: The number of available registers is quite limited!. If the size
of temporary storage for intermediate results depends on the polynomial degree,
the register limit is easily exceeded. In consequence, the code is executed with a
smaller block size (less parallelism) or local memory is used instead which both
results in slower performance.

- Partial derivatives: For some algorithms, the evaluation method is required to de-
liver the partial derivatives for the corresponding domain point (e.g., for iterative
root-finding or surface normal computation).

- Computational costs: Evaluation algorithms differ in their computational complex-
ity which scales with the polynomial degree and the number of control points.

All common evaluation methods, for example, De Casteljau’s algorithm [42] and the
explicit computation of the Bernstein polynomials (see equation 2.4) based on binomial

10n latest graphics hardware, registers are limited up to 65,536 bytes per block. For a maximum block
size of, for example, 1024 threads, only 64 bytes of fast register memory would be available in each thread.

2.1 HIGHER-ORDER GEOMETRIC DATA REPRESENTATIONS 9

coefficients or power basis, do not to meet one or more of these requirements. In par-
ticular, the evaluation of a Bézier curve of polynomial degree p using De Casteljau’s algo-
rithm requires O(p) registers. For tensor-product Bézier surfaces and trivariate Bézier
solids, the register usage of O(p?) and O(p?), respectively, exceeds hardware limita-
tions. On the other hand, an explicit evaluation of the Bernstein polynomials (using
binomial coefficients or power basis) does not provide the partial derivatives. An evalu-
ation of additional Bézier representations for the partial derivatives, also referred to as
hodographs [113], is conceivable, but would increase computational costs and memory
bandwidth requirements.

Instead, Horner’s method in Bernstein basis [98, 127] was adopted for the evaluation
of rational Bézier curves, surfaces and solids with constant register-usage and minimal
texture memory access.

2.1.4.1 Horner’s Method in Bernstein Basis

In mathematics, Horner’s method (also known as Horner’s rule or Horner scheme) is
known as the transformation of the monomial form of a polynomial into a nested form
which can be computed more efficiently. For a Bézier curve, Horner’s method can be
applied to both the evaluation in power basis and in Bernstein basis. In this work, the
Bernstein basis is preferred as it allows to adopt the algorithm to provide the derivatives,
as described in Section 2.1.4.2.

Horner’s method in Bernstein basis exploits the recurrence relation of the binomial

coefficients
(7):”‘?“(‘”) (29)
7 7 1—1

to derive a nested equation [127]. Figure 2.2 shows the corresponding sample source
code. This implementation avoids the repeated calculation of binomial coefficients, ¢"
and (1 — ¢)™, but instead updates these terms accordingly each iteration.

Figure 2.3 shows a geometric comparison between De Casteljau’s algorithm and
Horner’s method. The illustration of De Casteljau’s algorithm shows its geometrical el-
egance and the auxiliary points (red) resulting from linear interpolations. The last two
auxiliary points can be used to compute a derivative. However, the temporary storage of
the points represents a performance bottleneck on modern GPUs because of limited reg-
isters. In contrast, the intermediate results of Horner’s method (green) are overwritten
in each iteration which manifests in constant and low register usage.

The computational complexity of Horner’s method scales linearly with the number
of control points. Theoretically, De Casteljau’s algorithm has a quadratic complexity,
but can be parallelized to also run linearly. In practice, however, the performance of
Horner’s method is faster, because shader programs are already executed in a parallel

10 CHAPTER 2 : BACKGROUND

vec3 evaluate (vec3* b, //
int p, //
float t) //

{
float u = 1.0 - t; //
float tn = 1.0; //
float bc = 1.0; //
vec3d ¢ = u * b[0]; //
for (int i = 1; i <= p -
tn *= t;
bc *= (p - i + 1) / i
c = (c + tn * bc * b[i]
}
c =c+ tn *xt *x blpl; //
c =c / cl2]; //
return c;

}

control points in homogeneous space [wx,wy,w]
polynomial degree p
parameter t

factored out (1-t)~n
factored out (t)~n
factored out binomial coefficient

first point with binomial coefficient = 1
1; ++i) {
) *x u;

last point with binomial coefficient = 1

project to euclidian space

Figure 2.2: Horner’s method in Bernstein basis for a 2D rational Bézier curve. The control points are assumed
to be pre-transformed into homogeneous coordinates b; = [w;z;, wiy;, w;].

] b=b,,

251

b= “’n‘ 0

L L L L L
1

0 1 2 3

4 5 0 1 2 3 4 5

(a) De Casteljau’s algorithm (b) Horner’s method in Bernstein basis

Figure 2.3: (a) De Casteljau’s algorithm is based on linear interpolations between successive control points b;
and the resulting auxiliary points b; ;. The intermediate storage of these points becomes a perfor-
mance bottleneck for curves with high polynomial degree, surfaces or solids. (b) In contrast, the
auxiliary point ¢; of Horner’s method is overwritten each iteration.

and an additional parallelization of De Casteljau’s algorithm is hardly feasible!. In this
work, Horner’s method is used in the rendering system for trimmed NURBS, described
in Chapter 3, for all trim curve evaluations and some surface evaluations.

Some rendering algorithms also require the computation of a (partial) derivative, e.g.
for surface normal computation or iterative root-finding. This requires the following

adaptation of Horner’s meth

od.

INvidia’s parallel computing platform CUDA offers dynamic parallelism, which would allow a further
level of parallelization. In most cases, however, CUDA is unsuitable for rendering higher-oder geometry due

to the lack of hardware tessellation

and rasterization.

2.1 HIGHER-ORDER GEOMETRIC DATA REPRESENTATIONS 11

0 1 2 3 4 5

Figure 2.4: This figure illustrates the adaptation of Horner’s method with partial derivatives for a Bézier curve
of degree 3. The control point subsets [bg...b2] and [by...b3] are evaluated using an interleaved
implementation of Horner’s method. The result are the last auxiliary points bg 2 and by 2 of De
Casteljau’s algorithm that are used to compute the curve evaluation C(¢) and its derivative C’(t).

2.1.4.2 Adaptation of Horner’s Method with Derivatives

Interactive ray casting of higher-order surfaces and isosurfaces (see Chapter 4) as well as
surface normal computations (see Chapter 3 and 4) require the computation of partial
derivatives. In general, the (partial) derivative of a rational Bézier representation can be
computed either from a separate set of control points, also referred to as hodograph [113],
or the auxiliary points of De Casteljau’s algorithm. However, an additional evaluation of
the corresponding hodograph would significantly increase computational costs and De
Casteljau’s algorithm is considered inefficient on modern GPUs.

Instead, Horner’s method is employed for a direct computation of the last auxiliary
points by ,(¢) and by ,(¢) of De Casteljau’s algorithm (cf. Figure 2.4). These points and
their corresponding weights wy ,—1(¢) and wy p—1(t) are used to compute the final point
and its weight wy ,(t) by linear interpolation. Then its (partial) derivative(s) C’(t) are
computed as described by Floater [43]:

o'ty = portWwon W gy g0y (210)
wO,p(t)

For a rational Bézier curve of degree p with the control points [by...b,], these auxiliary
points are equivalent with an evaluation of the (p — 1)-degree curves given by the subsets
of control points [by...b,_1] and [by...b,], respectively. If the polynomial degree is higher
than linear, both subsets share all inner control points. This allows for an efficient in-
terleaved evaluation scheme, as shown in the corresponding sample code in Figure 2.5.
Theoretically, most control points are accessed twice, but the interleaved implementa-
tion benefits highly from caching effects.

For rational Bézier surfaces, a similar interleaved scheme can be applied. The surface’s

12 CHAPTER 2 : BACKGROUND

void evaluate (vec3* b, // control points in homogeneous space [wx,wy,w]
int p, // polynomial degree p
float t, // parameter t
vec3& ¢, // output point
vec3& dt) // output derivative

{
float u = 1.0 - t; // factored out (1-t)~n
float tn = 1.0; // factored out (t)~n
float bc = 1.0; // factored out binomial coefficient
vec3 b0 = u * b[0]; // left auxiliary point
vec3 bl = u * b[1]; // right auxiliary point

for (int i = 1; i <= p - 2; ++i) {
bc *= (p - i + 1) / i;

b0 = (b0 + tn * bc * b[i]) * u;
= (bl + tn * bc * b[i+1]) * u;

PO = b0 + tn * t * b[p-1];

bl bl + tn * t * b[pl;

c =u * bO + t * bl; // last linear interpolation
float w = cl[2]; // weight of evaluated point
float w0 = bO[2]; // weight of auxiliary point cO
float wl = b1[2]; // weight of auxiliary point cl

dt = p * ((wO * wi1l]) / (w * w)) * (bl/wl - b0O/w0); // see Floater ’92
c =c / w; // project point to euclidian space

}

Figure 2.5: Horner’s method in Bernstein basis with derivatives.

tensor-product structure maps to a nested loop. In the outer loop, each row or column,
respectively, of the control point grid is evaluated for the corresponding parameter using
the original Horner’s method (see Section 2.1.4.1). The resultis then directly used as input
for the adaptation of Horner’s method in the inner loop. Each partial derivative, however,
requires a separate evaluation (by switching inner and outer loop) because the necessary
auxiliary points are different for both parameters.

2.2 Modern Graphics Pipeline Design

Modern graphics hardware is composed of many stream processors. For rendering, the
geometry is prepared as input stream and processed by a graphics pipeline. In the
last two decades, advancements of graphics hardware and graphics APIs incrementally
changed the former fixed-function pipeline [133] into a highly programmable graphics
pipeline. The programmability of most pipeline stages and new capabilities (e.g., to scat-
ter data) are the basis for the design of modern graphics engines and the proposed ren-
dering algorithms.

2.2 MODERN GRAPHICS PIPELINE DESIGN 13

i Tessellation stages

Input Vertex | Tessellation | Tessellator | Tessellation | Geometry Rasterizer Fragment Output
assembly stage | control stage evaluation | stage stage stage merger stage

Stream output

Graphics memory (buffer, texture, atomic buffer, etc.)

Figure 2.6: This illustration shows the programmable rendering pipeline of modern graphics APIs. All green

stages are fully programmable — the blue stages are only configurable.

2.2.1 Programmability

The modern graphics pipeline consists of a sequence of pipeline stages. Some of these
stages are fully programmable — others are only configurable. A detailed illustration of
the current graphics pipeline is shown in Figure 2.6.

The following overview gives a brief description of the stages and their particular im-
portance for this work (for more detailed information, please refer to [3] or [79]):

Vertex stage: Performs vertex transformations (all chapters).

- Tessellation control stage: Computation of tessellation factors that control the sub-

sequent tessellation of a surface patch (Chapter 3).

Tessellator stage: Generates the corresponding tessellation.

- Tessellation evaluation stage: The tessellator stage outputs vertices in domain

space that are evaluated and transformed in this stage (Chapter 3).

- Geometry stage: This stage is used to discard, transform or emit primitives, par-

ticularly, for the two-pass tessellation (Chapter 3) and the adaptive grid generation
(Chapter 6).

Stream output stage: Intermediate storage of the geometry. The stream output is
employed for the adaptive grid generation (Chapter 6) and the adaptive multi-pass
tessellation (Chapter 3).

Rasterizer stage: All primitives are discretized in correspondence to the screen
raster. The resulting pixel candidates are called fragments. The configuration of
the rasterization stage is important for the light-set generation (Chapter 5) and the
anti-aliased trimming (Chapter 3).

Fragment stage: All per-fragment operations. This stage is particularly used for
trimming (Chapter 3), ray casting of surfaces and isosurfaces (Chapter 4), ray cast-
ing of semi-transparent objects (Chapter 6), generation of per-pixel linked fragment
lists for deferred computations (all chapters), and shading (all chapters).

Output merger stage: Depth-stencil and blending operations.

14 CHAPTER 2 : BACKGROUND

(a) Final image (b) Surface normal (c) Depth (d) Diffuse color

Figure 2.7: In the concept of deferred shading, the final image (a) is computed from image information stored
in the G-buffer. In this example, the G-buffer contains a per-pixel surface normal, depth and color.

2.2.2 Deferred Shading and Geometric Buffers (G-buffer)

The described graphics pipeline provides the general structure for a single rendering
pass. In practice, however, most graphics engines split the rendering process into multi-
ple passes for the two following reasons: First, modern shading models (e.g., physically
based rendering [100]) are computationally expensive. Only visible surfaces should be
shaded, which suggests a decoupling of rendering and shading'. Second, many standard
algorithms for the approximation of global illumination (e.g., ambient occlusion [106] or
reflections [149]) or anti-aliasing (e.g., FXAA [78]) require depth and/or color information
of the current view. This information is typically gathered in a first rendering pass.

The separation of rendering and shading computations was introduced by Saito and
Takahashi [112]. Today, it is generally referred to as deferred shading. A common im-
plementation uses two passes and a set of off-screen render targets which contain all
information relevant for shading (e.g., depth, color, position, normal, etc). The actual
rendering is performed in the first pass which generates the off-screen textures, also
referred to as geometric buffer or G-buffer. The second pass performs the shading com-
putations based on the information in the G-buffer. Figure 2.7 shows the rendering of a
CAD model and a corresponding G-buffer. The concept can be extended for the efficient
handling of many light sources, also referred to as deferred lighting, for details refer to
Chaper 5.

A former disadvantage of deferred shading was the lack of support for semi-
transparent objects. This issue was overcome by the use of multiple layers [76] or per-
pixel linked lists [151]. The concept of deferred shading was adapted in all of the pre-
sented rendering algorithms. In addition, some chapters even advance the state-of-the-
art. In particular, Chapter 5 contributes an adaptation of deferred lighting to accelerate
the shading of many semi-transparent surfaces. Chapter 6 provides novel algorithms to
efficiently transform off-screen render targets for opaque and semi-transparent objects
into a new perspective.

IThe depth test during rasterization allows to remove hidden surfaces before shading if the primitives are
rendered in front-to-back order. An efficient pre-sorting of primitives is, however, practically inapplicable.

2.2 MODERN GRAPHICS PIPELINE DESIGN 15

2.2.3 A-buffer and its Advanced Usage

The application of per-pixel linked lists has been described early by Catmull [24]. Carpen-
ter [22] generalized the mechanism for the anti-aliasing, area-averaging and accumula-
tion of surfaces using a single buffer — the so-called A-buffer. For a long time, its use
was limited to offline-rendering because of hardware and bandwidth limitations. How-
ever, the introduction of atomic operations [74] and random write access [75] on modern
graphics hardware enabled to scatter data in all programmable pipeline stages. This al-
lows for an efficient generation of dynamic data structures including per-pixel linked
lists. For implementation details, please refer to Chapter 5. All of the presented render-
ing algorithms exploit this capability for specific purposes and extend the application of
the A-buffer in the following ways:

- Programmable transparency: In many cases, transparency is a constant material
property. In Chapter 5, however, the efficient concept of programmable order-
independent transparency is described. The transparency of a surface remains a
programmable property until the fragment stage. Depending on the value, the frag-
ments are either routed into the A-buffer or stored in the G-buffer. This scheme has
three major advantages. First, the transparency is not bound to a specific object or
material, but can be applied independently. Second, the overhead scales directly
with the number of semi-transparent fragments. Third, the parallel usage of the
G-buffer for opaque fragments provides a conservative depth value for the early
discard of hidden fragments.

- Dynamic light sets: Semi-transparent fragments need to be shaded before they can
beblended. In general, for each fragment it is necessary to traverse all light sources
to accumulate the local illumination. This can become a significant overhead for a
large number of light sources. Chapter 5 describes a filter mechanism for relevant
lights based on a fixed-size, bitwise A-buffer implementation.

- Depth-interval lists: Chapter 4 exploits the A-buffer to reduce the costs of isosur-
face ray casting. In this case, the rendering, discard and storage of proxy geometry
is used to determine intervals along a ray that need to be analyzed for isosurface
intersections.

- Forward warping: Depth-image warping is an image-based rendering technique
that synthesizes views based on a reference image and the corresponding depth
information. The method inherently works for images only and does not scale well
with data structures like the A-buffer. Chapter 6 proposes a method to warp the
A-buffer into another perspective using an accelerated ray casting scheme.

- Crack filling: In Chapter 3, the A-buffer is used for the intermediate storage of anti-
aliased edges of trimmed NURBS surfaces. In this context, however, the A-buffer
provides additional information to detect and fill cracks between adjacent surfaces
and thereby to amend visual artifacts.

17

CHAPTER 3
DIRECT RENDERING OF TRIMMED NURBS MODELS

The content of this chapter was published as

Efficient and Anti-aliased Trimming for Rendering Large NURBS Models

by Andre Schollmeyer and Bernd Froehlich

In IEEE Transactions on Visualization and Computer Graphics (early access), March 2018.
© 2018 IEEE. Reprinted, with permission, from Schollmeyer and Froehlich [122].

(a) VW New Beetle (b) Ducati 1100cc

Figure 3.1: These screenshots show the models used for evaluation. Table 3.1 gives an overview of the contained
surfaces. An overview of the trim curves is shown in Table 3.2.

3.1 Abstract

In Computer-Aided Design (CAD), Non-Uniform Rational B-Splines (NURBS) are a com-
mon model representation for export, simulation and visualization. In this paper, we
present a direct rendering method for trimmed NURBS models based on their parametric
description. Our approach builds on a novel trimming method and a three-pass pipeline
which both allow for a sub-pixel precise visualization. The rendering pipeline bypasses
tessellation limitations of current hardware using a feedback mechanism. In contrast to
existing work, our trimming method scales well with a large number of trim curves and
estimates the trimmed edge’s footprint in screen-space which allows for an anti-aliasing
with minimal performance overhead. Fragments of trimmed edges are routed into a

18 CHAPTER 3 : DIRECT RENDERING OF TRIMMED NURBS MODELS

designated off-screen buffer for subsequent blending with background faces. The eval-
uation of the presented algorithms shows that our rendering system can handle CAD
models with ten thousands of trimmed NURBS surfaces. The suggested two-level data
structure used for trimming outperforms state-of-the-art methods while being more pre-
cise and memory efficient. Our curve coverage estimation used for anti-aliasing provides
an efficient trade-off between quality and performance compared to multisampling or
screen-space anti-aliasing approaches.

3.2 Introduction

In Computer-Aided Design (CAD), software applications are used to design industrial
products, e.g. cars or aircraft. The models are created using a set of tools and modeling
operations which result in a proprietary internal data representation. The boundary rep-
resentation is a popular and well-established data representation used for the exchange,
visualization, simulation and manufacturing export of these models. A model typically
consists of a set of faces. Each face is defined by a base surface and a set of trim curves,
in CAD applications both commonly represented using Non-Uniform Rational B-Splines
(NURBS). The final shape of the face is determined by applying the set of trim curves in
the parametric domain of the base surface.

For mechanical engineers and designers, it would be desirable to display an artifact-
free, sub-pixel precise visualization of the model in real-time. However, most CAD ap-
plications accomplish interactive rendering by computing a triangular approximation
of the trimmed NURBS model based on a given object-space error tolerance. The result-
ing triangle meshes may become very large, but close-up views may still reveal cracks or
other visual artifacts caused by geometric approximations. Some research suggests im-
proved model representations such as T-Splines [128] or trim surfaces [55] to avoid these
artifacts already in the model representation. On the other hand, modern graphics hard-
ware supports the on-the-fly tessellation of parametric surfaces and recent work shows
that cracks in the boundary representation can be efficiently repaired in most cases [30].

In this paper, we present a high-quality rendering algorithm for large trimmed NURBS
models based on adaptive tessellation. The main focus of our work is an efficient and sub-
pixel precise trimming algorithm. It was motivated by the fact that many trim curves
originate from surface-surface intersections that are very hard to compute [136]. In prac-
tice, these trim curves need to be approximated which may result in cracks between the
intersected surfaces. In order to control this error CAD applications often use a piecewise
sequence of many short trim curves. For existing trimming algorithms, a large number
of trim curves either results in a memory overhead for partitioning the domain [123, 31]
or represents a bottleneck for updating view-dependent data structures [150, 52]. In con-
trast, the storage requirements of our partitioning scheme rather depend on the features
of the trim loops instead of the number of trim curves which also results in a more ef-
ficient run-time performance. The sub-pixel precise, direct trimming method is inte-

3.3 BACKGROUND 19

grated into an adaptive rendering system for trimmed NURBS with the following main
contributions:

- A three-pass rendering pipeline that allows for a highly accurate visualization
- A memory-efficient and cache-coherent domain-space partitioning algorithm
- A direct trimming approach based on a fast in-search point classification

- A coverage estimation of trimmed edges for anti-aliasing

- Blending of trimmed edges and order-independent transparency using A-Buffer
routing

Our results show that the proposed trimming method works up to 25% faster than
our former approach, while requiring only about 50% of the memory. In addition, the
coverage estimation of trimmed edges offers a more accurate anti-aliasing solution than
screen-space techniques and performs better than multi-sampling. Our system is not lim-
ited by hardware tessellation limits, inherently supports rendering of order-independent
transparency and can handle complex real-world models at high resolutions.

3.3 Background

Over the last decades, many rendering methods for trimmed NURBS have been proposed.
In general, rendering can be divided into two major tasks: mapping the base surface
onto the screen and the trimming, which needs to be applied to the surface either before
or after the mapping. Since there is no hardware support for the direct rasterization of
parametric surfaces, most approaches are either based on ray casting or the generation
of a triangular approximation (tessellation).

3.3.1 Ray Casting

Most early works are based on ray casting, e.g. [15][72][65]. Finding intersections between
a ray and a NURBS surface requires a numerical method. In most cases, subdivision or
an iterative approach is used.

A popular subdivision method is Bézier Clipping [93] which recursively subdivides the
parameter domain until the closest intersection is found. If degenerate cases are handled
correctly [38], Bézier Clipping is a robust and numerically stable algorithm. However, it
is computationally expensive and even latest works [137] do not achieve interactive frame
rates for non-trivial CAD models.

In contrast, most interactive ray casting approaches employ iterative root-finding, e.g.
Newton’s method, to find ray-surface intersections. The robustness of Newton’s method
may be improved by providing close starting points based on tight proxy geometry [41],
by splitting highly-curved surfaces [83, 1] or interval arithmetic [139], but convergence
to the closest intersection cannot be guaranteed.

20 CHAPTER 3 : DIRECT RENDERING OF TRIMMED NURBS MODELS

Furthermore, ray casting has also been used for the interactive rendering of sub-
division surfaces using lazy tessellation caching [13], however, the conversion from a
trimmed NURBS representation into subdivision surfaces [131] is quite intricate and in-
volves additional approximations.

3.3.2 Tessellation

Most CAD applications use a tessellation of the model for interactive rendering. In gen-
eral, the generation of a high-quality full-model tessellation is a time-consuming offline
process. First, the trim curves need to be converted into a piecewise linear approxima-
tion [107] in order to partition the parametric domain into a set of triangles. Each of the
triangles is required to approximate the corresponding part of the model within a prede-
fined object-space error tolerance. In most cases, the resulting mesh is either too fine or
too coarse for the current view which results in increased storage requirements or visual
artifacts.

Therefore, Balasz et al.[6] suggest to compute a level-of-detail tessellation based on a
maximal screen-space approximation error. This error tolerance may result in cracks
between adjacent patches which they fill using additional geometry. While in their ap-
proach the CPU-based re-tessellation is limited to a fixed time budget for each frame,
GPU-based adaptive on-the-fly tessellation methods have been shown for untrimmed bi-
cubic Bézier surfaces using CUDA [125] or latest graphics hardware tessellation capabil-
ities [153][150]. Furthermore, Yeo et al. [153] suggest to use a view-space error metric
based on piecewise-linear enclosures.

Our system follows the idea of adaptive tessellation based on a different metric and a
pre-tessellation stage to overcome hardware limitations. The rasterized patches are then
trimmed during fragment processing using a novel sub-pixel precise trimming method.

3.3.3 Trimming

In general, the trimming of the base surfaces can either be applied directly while gen-
erating the corresponding tessellation [107] or for each pixel of the surface’s projec-
tion [52][41][123][150]. The generation of a trimmed tessellation involves a linear approx-
imation of the trim curves in accordance to a predefined object-space error threshold
and the treatment of many degenerate cases [107]. In most CAD applications, the chosen
error threshold allows for an interactive rendering of the resulting mesh. Crack artifacts
can be amended by drawing fat borders [6] or using other filling methods [30], but close-
up views on curved boundaries still reveal piecewise linear edges. Instead, most recent
approaches apply the trimming during fragment processing which is more efficient as it
scales with the rendering resolution and is mainly fill-rate limited.

In general, per-fragment trimming approaches have to provide an efficient 2D point
classification scheme. For each pixel, the domain coordinates of the projected base sur-

3.4 SYSTEM OVERVIEW 21

face need to be classified with respect to the trim curves. Trimmed fragments are dis-
carded.

For a fixed resolution, using precomputed textures is probably the fastest method.
However, insufficient texture resolutions result in jagged edges which can be improved
using signed-distance fields [49], but the storage requirements remain very high. Adap-
tive texture-based approaches [52] are more memory efficient, but updating the textures
during run-time remains a potential performance bottleneck.

In contrast, most recent trimming approaches use the point-in-polygon algorithm for a
direct classification based on the curved boundary [41]. The slim parametric description
of the trim curves is precise and generally also has a much smaller memory footprint.
The number of ray-curve intersections can be minimized using a domain partitioning
scheme, e.g. horizontal slabs [123] or quad trees [31]. Furthermore, the costs for ray-curve
intersections can be reduced by using quadratic curve approximations [31], precomputed
intersection tables [150] or a binary search on bi-monotonic curve segments [123]. In par-
ticular, Wu et al. [150] generate samples along the trim curves in correspondence to the
estimated tessellation level and insert them into trim tables. In contrast to precomputed
textures, the tables are quite slim. However, view changes require the update of many
trim tables which is quite expensive for large CAD models containing hundreds of thou-
sands trim curves.

In comparison to existing work, our system also performs the trimming per fragment,
but does neither rely on view-dependent updates of auxiliary data structures nor on fur-
ther curve approximations. Instead, we organize the trim curves by domain partitioning
with small memory overhead. In addition to the point classification, we estimate the
trim curve’s pixel coverage to allow for anti-aliasing of trimmed edges.

3.4 System Overview

Initially the trimmed NURBS model is converted into an equivalent rational Bézier repre-
sentation using knot insertion [101]. In most cases, the trim curves are already in this rep-
resentation because most CAD kernels approximate surface-surface intersections using
piecewise Bézier curves. In our system, the conversion is a pre-process, but partial up-
dates during run-time are conceivable, if interactive modeling capabilities are required.
Since each Bézier surface (patch) corresponds to a single knot span of the NURBS repre-
sentation, they can be rendered with individual tessellation levels or trimmed entirely
before rendering.

Our rendering pipeline is based on an adaptive tessellation of the surfaces. After the
rasterization, the trimming is applied during fragment processing. For an efficient and
sub-pixel precise trimming, a domain partitioning is generated for each patch. The par-
titioning scheme, its usage and the corresponding coverage estimation of trimmed patch
edges are described in Section 3.5.

After pre-processing, the parametric description of the surfaces, the domain partition-

22 CHAPTER 3 : DIRECT RENDERING OF TRIMMED NURBS MODELS

Trimmed NURBS model
S,

'l
£
A 4
reprocess GPU

v

Estimation Pass

Tessellation Pass

Compositing Pass

Figure 3.2: This illustration gives an overview of our system.

iR %%EN «

ing and the trim curves are passed to the GPU for rendering. Our rendering pipeline
consists of three passes: the estimation pass, the tessellation pass and the compositing
pass. Figure 3.2 gives an overview of our system.

In the estimation pass, each patch is prepared for the actual rendering which includes
frustum culling and the estimation of appropriate tessellation parameters. If the deter-
mined tessellation level exceeds hardware limits, the patches are pre-tessellated such
that the tessellation pass can perform the desired level. The output of this pass are inter-
mediate patches that are not rasterized, but stored in a feedback buffer and then passed
to the actual tessellation pass.

In the tessellation pass, the intermediate patches are tessellated in correspondence
to the determined tessellation factors. After the rasterization, the domain coordinates of
each fragment are classified with respect to the trim curves using the proposed trimming
algorithm (see Section 3.5). In contrast to other trimming methods, we avoid aliasing ar-
tifacts by estimating the pixel coverage of the trimmed patch. For each pixel, there are
three possibilities: a patch covers it (a) entirely, (b) partially or (c) not at all. In depen-
dence of this classification, fully covered fragments are stored in a fullscreen render
target (G-Buffer) while partially covered fragments are routed into per-pixel linked lists
(A-Buffer) in order to allow for correct blending. The blending is performed in the sub-
sequent compositing pass.

In the compositing pass, for each pixel, partially and covered fragments are blended

3.5 EFFICIENT AND SUB-PIXEL PRECISE TRIMMING 23

together. However, tiny cracks cannot be avoided due to the approximations typically
performed during the generation of the boundary representation [136]. Therefore, a
crack-filling algorithm is applied to the G-buffer before compositing. After this step, the
fragments stored in the A-Buffer and G-Buffer are composited in front-to-back order.

A detailed description of these rendering passes is given in Section 3.6. The evaluation
of our algorithm, its limitations and a discussion is given in Section 3.7.

3.5 Efficient and Sub-Pixel Precise Trimming

Our trimming method follows the general idea of a direct classification based on the para-
metric description. Therefore, the domain coordinates of a surface point are classified
with respect to the trim curves by using a ray-based point-in-polygon test and the even-
odd rule. Nevertheless, two observations can be made that we think are not sufficiently
considered by other approaches:

+ The domain needs to be partitioned in order to minimize the number of ray-curve
intersections. Per definition, the trim curves form closed, non-overlapping regions
(trim loops). In practice, trim loops are often a result of an intricate approximation
of surface-surface intersections [136] resulting in a sequence of many rather short
trim curves. Figure 3.3 shows an example of a typical domain and the contained
trim curves. In latest state-of-the-art work [123][31], the number of subdivisions
in the partitioning directly depends on the number of trim curves which results
in increased storage requirements, incoherent memory access and a performance
overhead (see Figure 3.3).

- If the trimming is performed during fragment processing, each fragment corre-
sponds to an area of the projected surface’s domain. A part of this area may be
trimmed, the other not. A binary classification based on the center of the frag-
ment will result in aliasing. While most existing trim approaches could be modi-
fied evaluating multiple samples, our approach estimates the partial coverage with
minimal overhead.

These observations led to the following design. Instead of partitioning the domain
based on the trim curves, our approach builds a domain partitioning based on the fea-
tures of the trim loops. In most cases, this results in a much smaller data structure. Each
trim loop is split into piecewise monotonic curve sets (see Section 3.5.1). Each set con-
tains connected trim curves with the same monotonicity which allows for an efficient
in-search classification during run-time (see Section 3.5.3). The sets are organized in a
kd-tree which is built around their bounding boxes. A surface area heuristic [114] is used
to minimize the traversal costs of the kd-tree as described in Section 3.5.2. This two-level
data structure allows for an efficient classification of most fragments without any trim
curve evaluation. For fragments close to the trim curves, a pixel coverage is estimated
(see Section 3.5.4) to allow for the rendering of anti-aliased edges.

24 CHAPTER 3 : DIRECT RENDERING OF TRIMMED NURBS MODELS

0 =
:—37 %
_—1

(a) (b)

Figure 3.3: (a) This example shows the domain of a trimmed surface. There are two trim loops. In practice,
trim loops often consist of many piecewise connected trim curves (indicated by their red boxes). (b)
In previous work, the vertical partitioning (blue) at curve end points led to many subdivisions and
a memory overhead.

3.5.1 Piecewise Monotonic Curve Sets

The main idea to generate a partitioning based on the features of the trim loops builds on
the idea that the actual ray-curve intersection is not required for an even-odd-test [123].
Each trim curve can be evaluated similar to a binary search. If the curve is monotonic,
the implicit bounds of the remaining parts can be used for an early classification. The
same idea can be adapted to the traversal of the trim curves, if the same preconditions
apply, i.e. that the sequence of trim curves is monotonic in both parametric directions
(u,v).

For each trim loop, the trim curves are split at their extrema in w and v-direction such
that the loop can be divided into piecewise monotonic curve sets. Each curve set is a
piecewise connected list of trim curves with the same monotonicity properties. Sorting
and storing the contained trim curves in increasing v-order allows for an in-search clas-
sification (for details see Section 3.5.3).

The curve sets represent the inner level of our two-level trimming hierarchy. The outer
level of this hierarchy is a kd-tree. The axis-aligned bounding boxes of the curve sets
serve as a starting point for the generation of a kd-tree.

3.5.2 Curve Set Optimization and Kd-tree Generation

The domain is partitioned using a kd-tree to find the curve sets efficiently. Each child
node of the kd-tree contains only the relevant curve sets.

The bounding boxes of the curve sets may overlap, as shown in Figure 3.4a. Processing
multiple curve sets causes incoherent memory access and should be avoided if possible.
Therefore, overlaps are minimized based on the following cost estimation:

C(SZ) - de + Pbin : Cbin + Peval . Ceval + Z PSi/\S]‘ : C(S]) (31)
J#i

3.5 EFFICIENT AND SUB-PIXEL PRECISE TRIMMING 25

(a) (b)

Figure 3.4: Domain partitioning using curve sets. (a) This example shows the trim loops from Figure 3.3 split
into eight curve sets which are monotonic in both parametric directions. The bounds of an outer
curve set overlap the inner curve sets entirely. In some regions (dark grey), there are two or more
overlapping curve sets. In most cases, these overlaps can be resolved by our optimization before the
kd-tree is generated. (b) This is a kd-tree generated after the optimization. The spatial partitioning
is indicated by blue lines for the u-direction and orange lines for v-direction, respectively. In com-
parison to Figure 3.4a, two curve sets have been split. In this case, all leaf nodes are either empty
or contain only a single curve set.

For a curve set S;, the total costs C include the traversal of the kd-tree Cy4, the binary
search inside curve set Cy,;,,, curve evaluations C,,,; and additional costs for other over-
lapping curve sets S;. The probabilities Pyin, Pevar and Ps, a5, are computed using the
sizes of the corresponding areas and their ratios.

The costs Cia, Cpin, and C.,,q; are estimated by the number of memory accesses since
computational costs can be neglected. In particular, inside the bounding box of a trim
curve, a mean of two evaluations is necessary for classification according to Schollmeyer
and Frohlich [123].

Given a set of curve sets T' = {Sy ... S,, }, the goal is to minimize the total costs

argming Z C(S;). (3.2)
S;eT

This optimization problem is solved with a greedy strategy that eliminates or decreases
the area of overlaps and the corresponding probability Ps, xs; by iteratively splitting the
contained curve sets.

For each curve set, the costs are computed and inserted into a priority queue. The
segment with the highest costs of overlapping curve sets is chosen for a split operation.
As split candidates, we consider the bounds of the contained trim curves and the bounds
of overlapping curve sets. For each candidate, the curve set is split and the total costs for
the resulting parts are accumulated.

If the costs can be reduced, we split at the position with the minimal costs and re-
insert the resulting subsets into the priority queue. If the costs cannot be reduced, we
continue with the next curve set in the priority queue. This process continues until no
further split is possible or necessary.

26 CHAPTER 3 : DIRECT RENDERING OF TRIMMED NURBS MODELS

Subsequently, a kd-tree is built to organize the resulting curve sets, as shown in Fig-
ure 3.4b. A surface area heuristic [114] is used to build the kd-tree. In the resulting hier-
archy, child nodes representing large areas have a lower depth than smaller areas which
minimizes traversal costs. If the child node does not contain any curve set, the trim clas-
sification for the corresponding area is precomputed and stored in the node. Finally, the
trim curves, the curve sets and a depth-first serialization of the kd-tree are uploaded to
the GPU for rendering.

3.5.3 In-search Trim Classification

At run-time, a hierarchical search is used to classify a fragment’s domain coordinates
P = (up,vp). This hierarchical search consists of three searches: the traversal of the
kd-tree, a binary search on the contained curve sets and a binary search on trim curves.

First, the kd-tree is traversed to find the corresponding child node. If the child node
does not contain any curve set, the precomputed classification is used. In all other child
nodes, the classification is based on the even-odd rule which requires an analysis of the
contained curve sets. The number of intersections is determined for a horizontal ray in
positive u-direction. However, our trim classification does not compute ray-curve inter-
sections. Instead, it terminates immediately if a binary search implies an intersection or
non-intersection, respectively.

For each curve set, the bounds b = {umin, Umaz, Umin, Vmaz } Of the contained trim
curves are stored linearly in increasing v-direction. In addition, we store its increase in
u-direction A,,. This compact memory layout enables to perform a binary search on the
curve bounds. Binary searching the list of curve bounds allows for an implicit in-search
classification, as outlined in Algorithm 3.1.

Figure 3.5 illustrates the binary search of a curve set. Each iteration, the curve bounds
of the center element are used to compute the bounding boxes of the remaining subsets.
If the domain coordinates p are in the bounding box of one of the subsets, the binary
search continues with the respective subset. If the domain coordinates are inside the
bounding box of the center curve, it is analyzed with a binary search that is based on
curve evaluations, as described in our previous work [123]. At the same time, large parts
of the domain can be classified without further analysis. If p is on the left side of a subset
or the center element, an implicit ray intersection with one of the contained curves exists.
Respectively, there is no intersection if the point is on the right side. In both cases, p is
classified and the search terminates.

At the time p is classified by one of the two binary searches, the closest known point
on the trim boundary and the remaining bounding box are passed to the curve coverage
estimation.

3.5 EFFICIENT AND SUB-PIXEL PRECISE TRIMMING 27

Algorithm 3.1 In-Search Trim Classification

1
2
3
4
5:
6:
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

procedure BINSEARCHCURVESET
imin < getStartIndex()
imawz tmin T getNumberOfCurves()
while true do

7;cente'r < (/Lmzn + Zmuz)/z

[u‘"Li’VL; Umin, Umazx, U'maw] — getCUI’VGBOUUdS(’icetheT-)
if (Umin < Up < Umaz) A (Vmin < Up < Umas) then

return BINSEARCHCURVE (icenter)
end if
if (A, > 0) then
if (up > Umin) A (Vp < Umaz) then
return false
end if
if (up < Umaz) A (Vp > Umin) then
return true
end if
else
if (UP < Umaz) A (Up < 'Umam) then
return true
end if
if (’LLp > Umin) A (Up > Umin) then
return false
end if
end if
if (vp < Umin) then
imaz = icentar -1
else
imin = Z'cente'r + 1

end if

end while

31: end procedure

> See [123]

3.5.4 Curve Coverage Estimation

The point classification is always correct for the domain coordinates of the fragment’s
center. However, it does not necessarily apply to the entire area of the pixel’s projection,
especially close to trim curves. In practice, the display of the corresponding surface
edges could result in aliasing. Enabling hardware multisampling would require to clas-
sify each of the resulting samples, which imposes a considerable overhead, as discussed
in Section 3.7.1. Instead, we approximate the trim curve’s projection into pixel coordi-
nates and estimate the surface’s pixel coverage. Figure 3.6 illustrates this process for
three adjacent pixels.

The partial derivatives of the domain coordinates ép/dx and dp/dy, readily available on

modern graphics hardware, are used to create the Jacobian J, which is used to transform
domain coordinates, as shown in Fig. 3.6b, into pixel coordinates, see Fig. 3.6a.

28 CHAPTER 3 : DIRECT RENDERING OF TRIMMED NURBS MODELS

v i=5

i=3

LV

p° b =2
Vinin

i=0

»
>

U imin Mmax u

Figure 3.5: This Figure illustrates the analysis of the lower left curve set from Figure 3.4b. A binary search is
performed for a list of six trim curves which allows for an implicit classification of as trimmed (red)
or untrimmed (green) regions. For the corresponding fragments, the search terminates early. An
additional binary search based on curve evaluations is necessary if p is inside the bounds b of the
trim curve (yellow). In the remaining regions (grey), the search continues.

op op

J=(5o @) (3.3)

Next, we compute a linear approximation of the trim curve based on the information
available at the time of classification: the closest known point ¢ on the trim boundary and
the remaining bounding box of the binary search. The normalized vector § between the
start and end point of the bounding box serves as approximation of the curve’s derivative.
We do not compute the exact derivative as it would require a more expensive evaluation
algorithm compared to the utilized Horner scheme in Bernstein basis [98]. Note that ¢
and § are a byproduct of the in-search classification described in 3.5.3. Both are trans-
formed into pixel coordinates ¢’ and §'.

d=J"'¢
§=J"s

In pixel coordinates, the line defined by ¢’ and 8’ serves as linear approximation of the
curve. It delimits the half-space between covered and uncovered pixel space. Using the
classification result, we compute the signed distance d from the pixel center to the line
and the corresponding angle a. They are obtained by dropping the perpendicular from
p to the line. Instead of computing the corresponding pixel coverage on-the-fly, we use
a weighted filter kernel to precompute the coverage for a set of values, as described by
McNamara et al. [88], and store them in a 2D texture, as shown in Figure 3.6¢c. Mapping
the signed distance d and the angle « to normalized texture coordinates allows to retrieve
the corresponding coverage with a single texture look-up.

3.6 ADAPTIVE TESSELLATION 29

-0
1 d
_— B ’s o0,
o °p > pi’z
gj) po/// RN
& ox
(b) (©

Figure 3.6: (b) The footprint of three adjacent pixels in domain space. In this case, the corresponding domain
coordinates p,, p; and p, are classified using a binary search on the same curve B(t). In the first
iteration, the mid curve points ¢ = B(0.5) and the remaining bounds § are identical for all three
pixels and allow for a classification. The partial derivatives and domain coordinates are used to
transform all points into the corresponding pixel coordinates. (a) In pixel coordinates, ¢/ and §; de-
fine a linear approximation of the curve. The signed distances d; from the curve and corresponding
angles a; are mapped to normalized texture coordinates to obtain prefiltered pixel coverages from
a precomputed 2D texture, shown in (c).

3.6 Adaptive Tessellation

The proposed trimming approach is embedded in the fragment processing stage of the
second pass of our rendering system: the tessellation pass. The trimming assumes a
pixel-precise projection of the base surfaces and the corresponding domain coordinates,
which we ensure in the first pass, the estimation pass.

3.6.1 Estimation Pass

An adaptive tessellation requires the estimation of the base surfaces’ footprint in screen
space to apply the necessary tessellation factors. In our system, the projection of the
object-oriented bounding box serves as a conservative estimate. Using the fast bounding
box area computation by Schmalstieg and Tobler [117], we are able to compute the size
in screen-space on-the-fly, even for models with a large number of patches. A further
refinement using piecewise enclosing geometry, e.g. [153], is conceivable, but is forgone
for performance reasons.

30 CHAPTER 3 : DIRECT RENDERING OF TRIMMED NURBS MODELS

X
X

A Y, T SSENESN——

(a) (b) © ()

Figure 3.7: If the inner and outer tessellation factors are set to the same level, the output consists of four types
of right-angled triangles (a). During geometry processing, two types are discarded (b). For the
other two types, we emit an additional corner point (c) which extends each triangle to a rectangular
patch (d) that is used as transform feedback and input for the tessellation pass.

In this pass, however, surface patches are only tessellated if the required tessellation
factor exceeds hardware limitations. The output patches are stored intermediately along
with the estimated size of their projection A, as transform feedback which is used as in-
put to the actual tessellation pass. In order to minimize a potential geometry overhead,
we continue with rectangular patches. Nevertheless, current graphics hardware is lim-
ited to triangular tessellation output. Therefore, we need to set the same inner and outer
(pre-)tessellation factors such that the resulting right-angled triangles can be filtered and
extended to rectangular patches during geometry processing, as shown in Figure 3.7.

Note that frustum culling can also be performed at this stage. However, we found that
if the model composition allows for an object-wise culling beforehand, an additional
frustum culling for each patch may even cause a performance overhead.

3.6.2 Tessellation Pass

In this pass, the intermediate patches from the estimation pass are tessellated. In con-
trast to Yeo et al. [153], we use a non-uniform tessellation to account better for elongated
patches. Therefore, we pre-compute the ratio between the maximal control polygon
lengths for both parametric directions. Using the control points b; ; of a Bézier patch
of degree n x m, the maximal lengths e, and e, are given by

n—1

ey = max > lIbij —biy | (3.6)
=0
m—1

¢y = Imax ZO [bij = bijall- (37)
iz

The tessellation factors 7, and 7, are then adapted in correspondence to the approxi-

3.7 RESULTS AND DISCUSSION 31

mate aspect ratio of the patch size:

Ag - ey Ag - ey
S L B e B) (3.8)
€y €y

After the rasterization, fragments are classified using the proposed trimming algo-
rithm (see Section 3.5). The resulting pixel coverage yields in three different types of
fragments: untrimmed, trimmed or partially trimmed.

Trimmed fragments are discarded. Partially trimmed fragments may belong to an
edge, however, they may also be part of a closed surface formed by two or more adjacent
patches. In general, adjacency information is neither available for a trimmed NURBS
model nor easy to compute since the patches cannot be assumed to be watertight. In-
stead, we postpone the decision whether a fragment needs to be blended or spliced with
a neighbor.

Therefore, partially covered fragments are routed into per-pixel linked lists (A-Buffer)
using a non-blocking implementation [73]. Untrimmed fragments are stored in a stan-
dard off-screen render target (G-Buffer) for deferred shading. Both buffers serve as input
for the subsequent compositing pass.

3.6.3 Compositing Pass

In this full-screen pass, the information stored in the G-Buffer and A-Buffer is used to
fill cracks, shade and blend the contained fragments. First, a 2.5D crack detection [30]
is performed based on the depth values stored in G-Buffer. Claux et al. propose two
different crack filling methods. We utilize their image-space crack-filling method with
a 3x3-filter kernel because their ray-casting based approach would require to render the
model twice — a significant overhead for large models.

After crack-filling, the partially covered fragments from the A-Buffer are also shaded
and blended in front-to-back order. For pixels with a detected crack and a corresponding
fill, the fragments from the A-Buffer may represent the same geometry, e.g. for adjacent
trimmed patches. Therefore, the depth of the crack-fill is moved closer to the viewer
by the object-space tolerance of the trimmed NURBS model which prevents a potential
overdraw.

3.7 Results and Discussion

All tests were performed on a 3.5 GHz Intel Core i7 workstation with 128GiB RAM
equipped with a single NVIDIA GeForce GTX 1080 GPU with 8GiB video memory. The
system is implemented in C++, OpenGL and GLSL. The performance timings were mea-
sured for a rendering resolution of 3840x2160. For evaluation, we used the models shown
in Figure 3.1. The Tables 3.1 and 3.2 give an overview of the geometric complexity of

32 CHAPTER 3 : DIRECT RENDERING OF TRIMMED NURBS MODELS

2 3 4 5 6-15 Total
Beetle 4,570 5,646 1,685 19,104 8,255 39,260
Ducati 79,855 553 489 65,946 0 146,843

Table 3.1: The number of surfaces sorted by their maximal polynomial degree.

1 2 3 4-5 Total
Beetle 108,692 172 369,823 0 478,687
Ducati 322,387 258 885,921 28,919 1,237,485

Table 3.2: The number of trim curves sorted by polynomial degree.

Partitioning Size Draw Time
SF2009 [123] 100% 100%
Curve lists 39.9% 108.6%
Our approach 50.5% 75.4%

Table 3.3: This table shows a comparison between different trimming methods for the VW Beetle model. In
order to avoid view dependencies, the performance was measured by sequentially trimming all do-
mains of the model mapped to full-screen quads. Our partitioning requires only about 50% of the
memory compared to the baseline algorithm [123] and is also about 25% faster.

both models. The transform feedback and A-Buffer were both configured with a budget
of 1GB.

First, we evaluated the performance and memory requirements of our trimming
method. For comparison, we used our earlier implementation [123]. In addition, we
also organized the trim loops in simple curve lists to investigate the effect of such a naive
approach. These curve lists have no spatial partitioning and need to be processed se-
quentially. We compared these techniques using the trim data of the VW Beetle model,
shown in Figure 3.1a. For the performance comparison, we tried to avoid view dependen-
cies by trimming full-screen quads for each domain of the model. The relative memory
requirements and performance results are given in Table 3.3. Our two-level data struc-
ture requires only about 50% of the memory while being about 25% faster due to the
tighter data structure and increased cache coherence. The minimal memory footprint
of the curve lists amounted to about 40%. The total performance overhead of about 9%
seems surprisingly low, but the detailed timings indicate that it is significantly slower for
patches with many trim curves.

We also compared the image quality of our coverage estimation algorithm to other
anti-aliasing techniques: Fast Approximate Anti-Aliasing (FXAA) [78] and Multi-Sample
Anti-Aliasing (MSAA). MSAA was implemented by performing and combining the trim

3.7 RESULTS AND DISCUSSION 33

& 1111

a) Trunk anti- c) FXAA d) MSAA 2x2 e) Our approach (f) Ground truth
ahasmg

Figure 3.8: (a) A view on the trunk of the car model. The close-up view of the highlighted region is used to
compare different anti-aliasing methods. (b) Point classification schemes without anti-aliasing,
e.g. [31][123], reveal aliasing at trimmed edges. In comparison with FXAA (c) and shader-based
multi-sampling (d), our approach (e) is faster and even closer to ground truth (f). The correspond-
ing quantitative evaluation is shown in Table 3.4.

RSME PSNR SSIM fps
No AA 0.033067 29.6119 0.98919 232 Hz
No AA + FXAA 0.018565 34.6260 0.99551 228 Hz
MSAA 2x2 0.014288 36.9000 0.99800 143 Hz
MSAA 3x3 0.007781 42.1784 0.99942 108 Hz
MSAA 4x4 0.005645 44.9656 0.99968 81 Hz
Our approach 0.012581 38.0057 0.99821 182 Hz

Table 3.4: This table shows a quantitative image comparison of the close-up views shown in Figure 3.8. As
image quality measures, the Root-Mean-Square Error (RSME), Peak-Signal-to-Noise Ration (PSNR)
and the Structural Similarity [145] (SSIM) were used. All measures show that the image quality of
our approach is slightly better than FXAA and MSAA 2x2, while being significantly faster than multi-
sampling.

classification for multiple samples. The image results of this test are shown in Figure 3.8.
As ground truth we assume the result using a 8x8 multi-sampling kernel.

The quantitative results of the comparison are shown in Table 3.4. In most cases,
our approach produces much smoother results than 2x2 MSAA while being significantly
faster. The corresponding draw times indicate that our approach outperforms multi-
sampling. Furthermore, the result is also closer to ground truth than FXAA. Therefore,
our approach offers an efficient anti-aliasing solution if higher quality than FXAA is
needed.

Furthermore, we evaluated our three-pass pipeline in combination with the proposed
tessellation heuristics. The introduction of a pre-tessellation in the estimation pass al-
lows to bypass hardware tessellation limits, which other approaches [30, 150] are affected
by. Figure 3.9 shows an example in which we disabled the pre-tessellation for a close-up
view of the VW emblem. In order to detect deviations in parameters space, we mapped
the uv-coordinates to the red and green color channel. The difference image 3.9c shows
that there are pixel errors at the silhouette and also slight parameter deviations. In addi-

34 CHAPTER 3 : DIRECT RENDERING OF TRIMMED NURBS MODELS

(a) Single pass (b) Our system (c) Difference image

Figure 3.9: (a) A close-up view of the VW emblem (116 patches) rendered with a single-pass tessellation. Current
hardware limitations prevent a sufficient tessellation. (b) Our pipeline bypasses these limitations
using a pre-tessellation in the estimation pass. (c) The difference image is shown for the highlighted
region in Figure (b).

tion, a major advantage of the proposed three-pass pipeline is the automatic support for
order-independent transparency (OIT), as shown in Figure 3.1b.

Adirect comparison to the approach of Claux et al. [31] is limited to a theoretical discus-
sion because the source code is no longer available and an equivalent re-implementation
seems unfeasible due the lack of implementation details and error thresholds. In terms
of image quality, Claux et al. show that their trimming method produces more visual
artifacts (within a given error threshold) than our previous approach [123] which is pixel-
accurate. In this paper, we improved the quality, efficiency and performance of our pre-
vious trimming method. Therefore, we can assume that our approach results in a better
image quality. The performance gain reported by Claux et al. must be the result of using
tessellation instead of ray casting, because the absolute costs for trimming are very low.
For example, the rendering of the engine model (see Figure 3.1b) takes about 180ms of
which less than 3ms are spent for trimming. In terms of rendering performance, our
three-pass pipeline allows for much higher tessellation levels and image quality, but the
necessary transform feedback between estimation and tessellation represents an over-
head of about 10-15% compared to single-pass rendering systems [31].

At last, we evaluated the overall performance of our system. While regular sized mod-
els easily perform at interactive frame rates, we deliberately used high resolution and
complex real-world models for this evaluation to identify limitations and remaining chal-
lenges. The VW Beetle (see Figure 3.1a) is rendered at about 8-10fps. The view of the
Ducati Engine shown in Figure 3.1b performs at about 6Hz. At first glance, these timings
may appear slow, although we found they are much faster than using a state-of-the-art
CAD application. Figure 3.11 shows the correspondence between resolution and draw
times for both models. The graph indicates that the performance benefits only slightly
from lower resolutions even though less triangles are rendered. We think that the ma-
jor reasons are bandwidth limitations and a too conservative computation of tessellation
factors. Many tiny details are rendered even if they are occluded, mostly trimmed (see

3.7 RESULTS AND DISCUSSION 35

Figure 3.10: The symbol on the engine (a) consists of many circular base surfaces which can be seen in the
untrimmed model (b). Most parts of these surfaces are trimmed.

200

180

140
VW Beetle

Draw time in ms

120 Ducati

100

80
960x540 1280x720 1920x1080 3840x2160

Resolution

Figure 3.11: This graph shows the relation between rendering resolution and draw times for the VW Beetle and
Ducati engine model.

Figure 3.10) or result in a few pixels. For example, the rims of the VW Beetle contain
many surfaces in millimeter scale which are of polynomial degree 13 and more. A single
evaluation of these surfaces may require more than hundred texture look-ups. The devel-
opment of level-of-detail methods and occlusion culling techniques for trimmed NURBS
models would be desirable, but remains future work.

3.7.1 Limitations

Our system has still some limitations. As already mentioned, tiny patches require costly
polynomial evaluation even if they are barely or not visible at all. While this represents
no problem for small and medium-sized models, it is a potential bottleneck with increas-
ing model complexity.

36 CHAPTER 3 : DIRECT RENDERING OF TRIMMED NURBS MODELS

Furthermore, the computation of the tessellation factors does not include trimming
information. For base surfaces which are largely trimmed, this may represent a perfor-
mance overhead. Figure 3.10 shows such an example.

The coverage estimation can only be used for the anti-aliasing of trimmed surface
edges. For the silhouettes of a model, hardware-supported coverage-sampling anti-
aliasing (CSAA) is required. If CSAA is enabled, the rasterization provides a binary cov-
erage mask for each fragment that indicates which samples are covered by a triangle.
For each of these samples, our algorithm can perform a binary trim classification to
adjust the coverage mask accordingly. Nevertheless, the classification of many samples
increases processing costs, as shown in Table 3.4, and it remains unclear how to perform
a robust crack detection on a multisample framebuffer.

The traversal of the kd-tree uses the domain coordinates only and does not consider the
pixel’s footprint in domain space. The quality of the coverage estimation will decrease
if the pixel overlaps multiple nodes of the kd-tree. Our method works best in close and
medium distance. For large object distances, filtered trim textures or quadtree-based
level-of-detail [31] representations may achieve higher image quality.

In few cases, there remain pixel artifacts caused by cracks which could be fixed by gen-
erating a more precise boundary representation or a more advanced crack-filling tech-
nique [30].

3.8 Conclusion and Future Work

In this paper, we presented a novel adaptive rendering system for large trimmed NURBS
models. The system builds on the following contributions: (1) a memory- and cost-
optimized trim data structure, (2) an in-search point classification algorithm for trim-
ming, (3) a pixel coverage estimation that allows for anti-aliasing of trimmed edges, and
(4) athree-pass rendering pipeline that bypasses hardware limitations and thereby allows
for finer tessellation levels. The system also integrates the proposed coverage-estimation
based anti-aliasing and order-independent transparency. The evaluation of our imple-
mentation shows that the proposed two-level data structure used for trimming requires
only 50% of the memory compared to our previous approach and is about 25% faster. Our
coverage-estimation based anti-aliasing for trimmed edges can produce more accurate
results than FXAA and multi-sampling with only little overhead.

Nevertheless, a performance evaluation of our system using complex real-world mod-
els shows that frame rates may drop to the borderline of interactivity. The main reasons
for this are high depth complexities and very high bandwidth requirements. In partic-
ular, most industrial models contain very fine details at millimeter scale. These details
require costly computations even if they are occluded or barely visible. This is a common
issue often referred to as teapot-in-a-stadium problem. Therefore, we are convinced that
occlusion culling techniques and level-of-detail (LOD) methods for NURBS representa-
tions deserve further research. Existing approaches, e.g. [53], are mostly based on the

3.8 CONCLUSION AND FUTURE WORK 37

pre-computation of discrete meshes. A seamless, parametric level-of-detail representa-
tion would help to minimize bandwidth requirements. The development of potentially
visible sets for trimmed NURBS models would be limited to static CAD models, but could
highly accelerate the rendering of depth-complex models.

39

CHAPTER 4

VISUALIZATION OF NURBS-BASED ISOGEOMETRIC
ANALYSIS

The content of this chapter was published as

Direct Isosurface Ray Casting of NURBS-based Isogeometric Analysis

by Andre Schollmeyer and Bernd Froehlich

In IEEE Transactions on Visualization and Computer Graphics 20(9), pp. 1227 - 1240, June 2014.
© 2014 IEEE. Reprinted, with permission, from Schollmeyer and Froehlich [121].

(@) (b) ©

Figure 4.1: The images show the pixel-accurate isosurface visualization of the strain of this bridge model. For
these views, the frame rates range from 18Hz for the total view (a) to 9Hz for the close-up on the
pier (c). Users can interactively explore the model by adjusting the desired isovalue or navigating
to different points of interest.

4.1 Abstract

In NURBS-based isogeometric analysis, the basis functions of a 3D model’s geometric de-
scription also form the basis for the solution space of variational formulations of partial
differential equations. In order to visualize the results of a NURBS-based isogeometric
analysis, we developed a novel GPU-based multi-pass isosurface visualization technique
which performs directly on an equivalent rational Bézier representation without the need
for discretization or approximation. Our approach utilizes rasterization to generate a list
of intervals along the ray that each potentially contain boundary or isosurface intersec-
tions. Depth-sorting this list for each ray allows us to proceed in front-to-back order
and enables early ray termination. We detect multiple intersections of a ray with the

40 CHAPTER 4 : VISUALIZATION OF NURBS-BASED ISOGEOMETRIC ANALYSIS

higher-order surface of the model using a sampling-based root-isolation method. The
model’s surfaces and the isosurfaces always appear smooth, independent of the zoom
level due to our pixel-precise processing scheme. Our adaptive sampling strategy min-
imizes costs for point evaluations and intersection computations. The implementation
shows that the proposed approach interactively visualizes volume meshes containing
hundreds of thousands of Bézier elements on current graphics hardware. A comparison
to a GPU-based ray casting implementation using spatial data structures indicates that
our approach generally performs significantly faster while being more accurate. The
concept of isogeometric analysis (IGA) is a promising attempt to close the gap between
computer aided design (CAD) and finite element analysis (FEA). This gap exists because
the model representation used for design is generally not suitable for finite element anal-
ysis and a polygonal or piecewise polynomial approximation of the actual geometry is
used instead. The generation of such an approximation is time-consuming and the sub-
sequent iteration between two different model representations is heavily involved and
error prone.

As a solution, NURBS-based isogeometric analysis employs a trivariate NURBS (Non-
uniform rational B-splines) representation which is based on the exact CAD geometry.
The geometric flexibility and the inherent higher-order continuity of the NURBS basis
are both significant advantages to standard finite element technology. In particular, they
allow for an exact representation of a much larger class of objects, such as conic shapes,
and prove beneficial for problems in which smoothness of the simulated properties is
of great importance (e.g. in fluid mechanics). In the analysis, the solution space of the
dependent variables is represented in terms of the same basis functions used for the
geometric representation.

While modeling and simulation in isogeometric analysis are based on exactly the same
geometric representations, there are no interactive visualization methods that perform
directly on the trivariate NURBS volume mesh. To complete this isogeometric pipeline,
we developed a GPU-based ray casting approach for the direct isosurface visualization
of NURBS-based isogeometric analysis. In a preprocessing stage, we convert the NURBS
representation into an equivalent rational Bézier representation in order to generate lo-
cal bounds of the simulated variables. At runtime, these bounds are used to focus the
search for isosurfaces on the relevant parts of the volume. Our multi-pass approach
exploits current graphics hardware capabilities for efficient generation and sorting of
Bézier cell intersection intervals along all rays which need further computation. This
ray-interval generation scheme inherently allows for front-to-back processing of the vol-
ume elements and early ray termination. For each interval, ray entry and exit points for
the associated Bézier cells are computed. Once these points are identified, we search the
corresponding part in a cell for isosurface intersections by sampling along the ray. The
computational costs of this expensive operation are significantly reduced through the
use of an adaptive sampling strategy and an equally adaptive error metric.

Due to the historical dominance of finite element methods and the novelty of the isoge-
ometric approach, there has been little attention paid to developing direct visualization

4.2 NURBS-BASED ISOGEOMETRIC ANALYSIS 41

algorithms for such higher-order NURBS-based volume representations. However, the
recent advancements of direct rendering methods for bivariate NURBS surfaces, which
also employ ray casting [83][41][123], motivated our approach. Our idea was to extend this
practice to the task of interactive visualization of trivariate NURBS volumes and perform
ray casting on the GPU using the parametric representation. Ray casting higher-order
volume representations generally requires finding the intersection between the ray and
the curved boundary of the volume. In contrast to other approaches, our system does
not sidestep the issue of multiple ray-face intersections, but instead provides a practical
and robust solution using a sampling-based root isolation approach.

We present a novel GPU-based algorithm for direct isosurface rendering of a NURBS-
based isogeometric analysis. The central properties of our algorithm are: minimal pre-
processing costs, compact storage and pixel-accurate visualization as a result of the di-
rect use of the parametric description. All rays are processed in front-to-back order,
which allows for early ray termination. Our main contributions are:

- A novel ray-generation scheme that creates only ray segments which potentially
contribute to the final image

- Arobust approach for finding all intersections between a ray and the curved bound-
ary of the model making use of the smooth trivariate tensor-product nature of our
models

- An effective solution for the memory-allocation bottleneck, which is a typical issue
when constructing per-pixel lists on the GPU

Our algorithm outperforms current state-of-the-art isosurface rendering approaches
for higher-order volume representations due to its output-sensitive processing scheme.
Our highly optimized GPU-based implementation maintains interactive frame rates for
models containing hundreds of thousands high-order volume elements. We compared
our approach to conventional GPU-based ray casting implementations using spatial data
structures. The results show that our algorithm typically performs significantly faster
due to a lower number of generated rays, better cache coherence, avoiding segmentation
issues and processing only the relevant cells of the model.

4.2 NURBS-Based Isogeometric Analysis

The methodology of isogeometric analysis as proposed by Hughes et al. [60] is a com-
putational technique which generalizes standard finite element methods. The concept
refrains from generating a separate finite element mesh for analysis purposes, but in-
stead makes use of the exact NURBS geometry — the standard representation in most
CAD systems. NURBS offer a compact representation and are well suited as an accurate
description for smooth geometries. The inherent property of higher-order continuity is
advantageous over C%-continuous finite elements and is highly desired in the field of
fluid mechanics [11] and structural analysis [32].

42 CHAPTER 4 : VISUALIZATION OF NURBS-BASED ISOGEOMETRIC ANALYSIS

(@)

Figure 4.2: This Figure shows the mapping (d) of attribute values (c), which are color coded, onto a single
NURBS solid (b). Both descriptions are based on the same domain (a).

A NURBS-based isogeometric analysis operates on solid geometry. Thus, CAD model-
ing needs to deliver solids or the surface geometry has to be used to generate NURBS
solids in a post-process. This process is obviously a non-trivial task and is not addressed
in this paper.

The isogeometric analysis performs on an unstructured or partially structured mesh
of NURBS solids. A single trivariate NURBS solid V of degree (I,m,n) is defined by

o P q
20 ZO 2 Ni(@)Njm (0) Nigsn (W) Wi kP, 1
V(u,v,w) = =]O_ i_oq (4.1)
> 2 > Nia(W)Njm (V) N (w)wi e
=0 75=0 k=0

where N, ;, N; ,,, and Ny, ,, are the B-Spline basis functions and P, j . are points of a con-
trol net with the dimensions (o+1) x (p+1) x (¢+1) and the corresponding weights w; ; .
The B-Spline basis functions are given by a set of knot vectors, which also define the do-
main Q C R3 of the NURBS volume. The coordinates in the domain are denoted by
u = (u,v,w)T, u € Q. For simplicity, all estimates given in this work use an identical
polynomial degree n.

The simulation parameters of the analysis depend on the subject the method is applied
to. The output of a fluid simulation may be pressure and flow, while structural compu-
tations typically involve stress, strain and displacement. In this work, we generalize and
denote by an attribute any parameter that has been subject to the analysis.

In general, the solution of a simulation is a function ¥ : Q — x that maps from the
domain Q of the geometric description to an arbitrary attribute space k, as illustrated in
Figure 4.2. The solution in our data sets is also given in a NURBS representation. The con-
trol points a; j 1 € « for each attribute are attached to the control points of the geometric
description and are likewise evaluated.

At this point, we would like to clarify the terminology which is used in this paper to de-
note the components of such a volumetric representation. In this work, the term model
refers to the entire mesh of trivariate NURBS solids, including the solution of the isoge-
ometric analysis. This model can be decomposed into an equivalent representation that

4.3 RELATED WORK 43

consists of rational Bézier solids, which we refer to as Bézier cells or just cells. The so-
lution attached to each cell maps from the domain of the cell to attribute space and is
therefore referred to as an attribute function. The boundaries of a Bézier cell are tensor
product Bézier surfaces, which we refer to as faces. In particular, an inner boundary
or transition denotes a face which is shared by two adjacent Bézier cells, while an outer
boundary is part of the surface of the entire model.

4.3 Related Work

While there are numerous isosurface visualization techniques for grid-based vol-
umes [77], irregular volumes [29] as well as higher-order finite elements [144] [67] [141],
few rendering schemes for NURBS-based volume representations exist. A major reason,
aside from the obviously high costs, is that most CAD applications do not enforce volume
modeling [64] and thus little emphasis has been placed on the development of appropri-
ate rendering techniques. However, the seminal work of Hughes et al. [60] introduced
NURBS solids for the purpose of isogeometric analysis resulting in an increasing need
for algorithms addressing this problem.

Common isosurface visualization approaches generate a polygonal approximation of
the actual isosurface which is then employed for direct rendering. There are a variety of
isosurface extraction algorithms such as marching cubes [77] for regular grid structures
or the isosurface extraction algorithm for irregular volume data proposed by Cignoni et
al. [29] [28]. While the method of extraction may vary by algorithm, the goal of each is to
find a piecewise linear approximation which is sufficiently accurate for rendering. This
task is a time-consuming preprocessing step and for volumes containing curved isosur-
faces, the resulting mesh is likely to be inaccurate in some areas which causes visual
artifacts. Furthermore, an isosurface extraction for a NURBS-based volume description
would necessitate a resampling of the volume - a costly task with enormous storage re-
quirements.

There are also a variety of rendering approaches for tetrahedral volume meshes. Most
of them use either point-based methods [156], cell projection [109] or ray casting [146].
Visualization techniques for higher-order volumes build on similar techniques, but focus
on finite element representations. A comprehensive summary of these methods was
produced by Sadlo et al. [111].

In particular, Nelson et al. [91] presented a ray-tracing system for isosurface visualiza-
tion of higher-order finite elements. The progression of the simulation data along the ray
is approximated by a polynomial. Their approach allows for pixel-exact images based on
an error budget, but the algorithm including recent GPU adaptations [92] did not reach
interactive frame rates. Bock et al. [16] also use ray approximations in parameter space
for their interactive visualization. They exploit curve similarities to cluster and compress
the resulting set of curves — an approximate and time-consuming preprocessing step (up
to several hours) we would like to avoid.

44 CHAPTER 4 : VISUALIZATION OF NURBS-BASED ISOGEOMETRIC ANALYSIS

Furthermore, Meyer et al. [89] presented an approach in which isosurfaces of higher-
order finite elements are visualized using a particle system. A set of particles is iteratively
projected onto the isosurface and evenly distributed. The partial derivatives of each par-
ticle are used to determine its orientation in order to apply basic splatting algorithms
for interactive rendering. The amount of particles necessary to sufficiently approximate
the isosurface is view-dependent. An increasing number of particles will improve vi-
sual quality. However, splat-based methods are inefficient in generating pixel-accurate
results as they are achieved through ray casting techniques.

Uffinger et al. [141] presented a rendering system which employs GPU-based ray cast-
ing for the visualization of curvilinear finite element cells with varying polynomial de-
gree. A three-dimensional grid is used to intersect cells which are then sampled using a
frequency-based sampling strategy. A disadvantage of their approach is that the grid cells
might enclose a large amount of empty space. An alternative is to sort the higher-order
elements into a min/max octree hierarchy similar to the approach presented by Knoll et
al. [69]. However, in the evaluation of our algorithm we found that grid-based data struc-
tures do not allow us to focus on just those cells which contain a given isovalue or a set
of isovalues. Instead of traversing a spatial data structure during runtime, our approach
exploits current graphics hardware capabilities and generates and sorts the relevant cell
intervals on-the-fly without the need of further preprocessing.

As previously mentioned, few rendering methods exist for the visualization of NURBS
volumes. Chang et al. [26] were the first who presented a direct rendering approach. Sim-
ilar to the particle-based approach for higher-order finite elements by Meyer et al. [89], vi-
sualization is accomplished by evaluating adaptively distributed point samples and splat-
ting. The limitations of such splat-based approaches have already been pointed out. Ra-
viv and Elber [105] precompute the effect of each scalar attached to the control points on
the final image. The resulting mapping function allows for interactive rendering and vol-
ume manipulation, but the approach is limited to a fixed view direction. The rendering
technique presented by Samuelcik [115] utilizes a polygonal approximation of isopara-
metric curves and isoparametric surfaces for volume visualization, but does not support
isosurfaces.

Martin et al. [82] presented a robust isosurface visualization technique for various
higher-order representations which can also handle NURBS primitives. In their ap-
proach, the volume representation is recursively subdivided until all intersections for
the remaining subpatches can be determined using the Newton-Raphson method. While
subdivision is a proven approach for robust identification of all ray-isosurface intersec-
tions, recursive algorithms are quite limited on current GPUs. This system is CPU-based
and it is not clear how to adapt this to the GPU and how it would scale on a GPU.

4.4 PREPROCESSING 45

4.4 Preprocessing

Let us briefly consider the challenges of ray casting a typical model. In general, a para-
metric function p = ®(u) maps from domain coordinates u = (u,v,w)T to positions
in world coordinates p = (,y, z)”. Given the solution of an isogeometric analysis, for
each point p € R? in a cell we can find the corresponding coordinates a in attribute
space by evaluating a = ¥(®~1(p)). Thus, for any point p in world coordinates the
inverse of the mapping function u = ®~!(p) is needed to evaluate the corresponding
attribute value. In general, the inverse mapping function is not available in an analyti-
cal form and requires a numerical solution. The inversion results in an overdetermined
system of non-linear equations. In this work, we assume a bijective mapping function,
which has a unique solution for all points that belong to a cell. For all practical purposes,
most NURBS volumes comply with this limitation. Furthermore, it generally applies to
volume models that are subject to an isogeometric analysis because multiple solutions
would imply a self-overlap.

In our algorithm, isosurface intersections are found by evaluating the attribute func-
tion along the ray. However, the ray in world space does not map to a line segment in
the domain. Instead, it is a curve of very high polynomial degree or not even parameter-
izable by a polynomial description, as indicated in Figure 4.2a. As a consequence, the
evaluation along the ray requires to find either an approximation of this curve or to re-
peatedly find a solution for the inverse mapping function. In this work, we choose the
latter option and proceed in world coordinates. We repeatedly solve the inverse map-
ping function using an iterative method as described in Section 4.5 which works quite
well due to the inherent smoothness of NURBS.

The central task that needs to be accomplished during rendering is to find intersec-
tions between the ray and implicitly defined isosurfaces in the model. As there is no
analytical solution to this problem iterative sampling techniques are used to determine
the actual intersection points. However, sampling requires the frequent evaluation of
the trivariate data representation and is thus an expensive operation. Therefore, the
main objective of our preprocessing stage is to simplify this task and thereby reduce the
sampling costs at runtime.

During the first step, the NURBS representation is converted into a rational Bézier
representation. The conversion is applied to the geometry as well as to the attached
attributes. The standard technique of knot insertion [17] is used to perform this task.
The adjacency information is kept to provide for an easy transition between neighboring
Bézier cells during ray traversal. In addition, we extract the face representation of each
element. The boundary of a trivariate Bézier cell consists of the set of isoparametric sur-
faces given by the limits of its domain (u,v,w € {0,1}). Thus, its faces are defined by
the corresponding slices of the cell’s control point net. The resulting rational Bézier rep-
resentation is equivalent to the NURBS-based representation, but as we will show, some
of its properties simplify the ray casting algorithm with respect to the following aspects:

- The recurrent task of evaluation can be performed more efficiently on a Bézier rep-

46 CHAPTER 4 : VISUALIZATION OF NURBS-BASED ISOGEOMETRIC ANALYSIS

resentation than on a NURBS representation. Sederberg [126] proposed a scheme
based on the Horner algorithm in Bernstein basis which allows for the evaluation
of a rational tensor product Bézier surface of degree n in O(n?). The method is
well suited to be used on the GPU due to its fixed register usage. We adapted this
scheme for the trivariate case of degree n which results in a complexity of O(n?).

- The conversion of the model results in a set of Bézier cells for each of which we
determine the respective range in attribute space. At runtime, an isosurface in-
tersection test is performed only if the given isovalue is in the attribute range of
the respective cell. Thus, instead of sampling through the entire model, we only
sample through the subset of cells which potentially contain an isosurface.

- A common technique in GPU-based ray casting is to render a conservative proxy
geometry and use the resulting pixel candidates for ray generation [23]. We follow
this approach and employ the convex hulls of the cells’ faces, which are each gener-
ated from their Bézier control points using the QuickHull algorithm [7]. In general,
this set of convex hulls is tighter to the actual boundary than a single convex hull of
the NURBS representation. Thus, its projection covers fewer pixels which in turn
means that fewer rays process the cell unnecessarily.

After preprocessing the parametric description of the cells, the corresponding at-
tribute bounds, the adjacency information and the proxy geometry are then uploaded
to the GPU for rendering.

4.5 Point Evaluation

Given a Bézier cell C(u), we find any isosurface inside it by sampling along the ray. For
this, we need the ability to evaluate the attribute function for any point p in world co-
ordinates — a task we refer to as point evaluation. Each point evaluation consists of the
following subtasks:

1. Find the corresponding coordinate u = (u,v,w)” in the domain by solving the
inverse mapping function u = ®~*(p)

2. Evaluate the attribute function ¥(u)

At first, we transform the subtask of solving the inverse mapping function for p into a
root-finding problem. Any given point p on the ray r can be expressed as an intersection
of three orthogonal planes Eg, E; and E; in Hessian normal form

E]' : ﬁj . d]' =0 (42)

The point p is equivalent to a point C(u) in the cell. We iteratively find the domain
coordinates u; & u using Newton’s method. Each step of the iteration is defined by

;41 = u; — J_lf (43)

4.6 RAY CASTING BEZIER CELLS 47

with the remaining distance f to the point, given by

C(u;) - ng + do,
f=|c(u) f +di, (4.4)

C(uz) . ﬁ2 + dg

(4.5)

and the Jacobian:
J=1%.4, 2.5 X g (4.6)
(4.7)

This iteration continues until C(u;) reaches a desired proximity |/f|| <= ¢, to the actual
sample point p on the ray.

4.6 Ray casting Bézier Cells

Isosurface ray casting of a set of Bézier cells consists of two major tasks. First, the in-
tersections between a ray and the cells’ curved faces need to be found to determine the
intervals inside the cell. Once these intervals are determined, potential isosurface inter-
sections are searched by sampling along the ray.

Ray casting is a highly parallel technique which seems well-suited to GPU computation;
however, both face intersection and sampling remain very expensive operations. Uffin-
ger et al. [141] reduce these costs by employing a regular grid containing parallelepipeds
as bounding volumes for the respective faces. For comparison purposes, we imple-
mented their approach as well as an octree-based acceleration data structure. We found
that such acceleration data structures perform slower than the approach suggested in
this paper. The reasons for this are discussed in Section 4.8.

Our considerations led us to the design of a GPU-based three-pass algorithm which
can be summarized as follows. In the first phase of our algorithm, we generate a list of
intervals for each ray. Each interval limits the range of potential intersections between
the ray and the cell’s face. A detailed description of this stage is given in Section 4.6.1. In
the next step, the lists are sorted in ascending depth order to enable early ray termina-
tion. Once the lists of intervals are sorted, we process them in front-to-back order to find
the face intersections (see Section 4.6.3). Two consecutive intersections with the same

48 CHAPTER 4 : VISUALIZATION OF NURBS-BASED ISOGEOMETRIC ANALYSIS

// first pass (Section 6.1)
for all proxy geometries {
generate ray intervals of face intersections

}

// second pass (Section 6.2)
for all rays {
sort list of intervals in ascending depth order

}

// third pass
for all rays {
for all intervals of each ray {
find face intersections // Section 6.3
classify ray segment // Section 6.4
if segment is inside cell {
search isosurface intersections// Section 6.5
}
}
}

Figure 4.3: Pseudo code of our algorithm.

cell limit a ray segment which is classified with respect to the cell (see Section 4.6.4). If
the ray segment is inside the cell, the intersections with isosurfaces are searched by sam-
pling along the ray. An adaptive sampling strategy (see Section 4.6.5) increases the rate
of convergence and thus reduces costs for sampling. The pseudo code explanation in
Figure 4.3 summarizes the main tasks of each pass. Figure 4.4 illustrates an example and
shows the corresponding results of each task.

4.6.1 Generate Ray-Interval Lists

In the first pass of our algorithm, we find the ray intervals which potentially contain
face intersections. These intervals are generated by the rasterization of the convex hulls
of the cells’ faces. However, hulls are culled based on the cell’s properties in order to
minimize the number of generated intervals.

4.6.1.1 Culling

The convex hull of a cell’s face is only rendered if it complies with one of the following
requirements: 1) The face is part of the outer boundary of the model or 2) the attribute
bounds of the associated cells include the current isovalue. Otherwise, the entire con-
vex hull is discarded at the geometry processing stage of this pass. This optimization
increases the performance of our approach because intervals are only generated and
stored in the per-pixel lists if they potentially contribute either to the visualization of the
model’s boundary or reference a cell which potentially contains an isosurface.

4.6 RAY CASTING BEZIER CELLS 49

@) Eiing >
(b) | / / >
"Ray-Interval List t
() [ol _ [l [o] >
’"Ray-Face Intersection t
(d) — é 5 >
Ray-Segment Classification t

(e) - >
Isosurface Intersection t

Figure 4.4: The intersection between a ray and a single NURBS volume, which was converted into six Bézier
cells. The ray-interval list (b) is generated from the projection of the faces’ convex hulls (a). In this
case, two of the hulls are culled with respect to their attribute bounds. The face intersections (c) are
found by processing the ray-interval list. The ray segments in the respective cells (d) are generated
from the face intersections and are searched for an isosurface intersection (e).

The costs for vertex and geometry processing directly relate to the number of Bézier
cells that need to be processed. For large models, a simple acceleration data structure
is used to prevent this stage from becoming a bottleneck. In this data structure, the
proxy geometries are organized in a small number of bins, each bin corresponding to a
particular attribute range. These ranges are determined by dividing the attribute bounds
of the entire model into a set of subranges. For each of these subranges, all the cells
with an overlapping attribute range are determined, and the associated proxy geometries
are then inserted into the corresponding bin. At runtime, only the geometry in the bin
containing the current isovalue and the convex hulls of outer faces have to be rendered.

4.6.1.2 Generation

For each hull the rasterization results in a number of pixel candidates, also called frag-
ments. For a single pixel, the fragments corresponding to the frontface and the backface
of the convex hull form an interval which is a conservative bound of potential intersec-
tions with the face. Note that we do not intersect the faces during fragment processing.
Instead, we store each fragment, as described in Section 4.7, with its associated values
and defer further computations. At the end of this pass, for each pixel we have an un-
sorted list of intervals which enclose the potential intersections with the cells’ faces. Fig-

50 CHAPTER 4 : VISUALIZATION OF NURBS-BASED ISOGEOMETRIC ANALYSIS

ure 4.4 shows the generation of these intervals, denoted by (b), for a single ray. These
lists are sorted in the next stage of our algorithm and later sequentially processed along
the ray.

Although rendering any bounding volume would also serve for ray generation, using
the convex hull has considerable advantages. In general, a convex hull is a tighter bound-
ing volume than, for example, a parallelepiped. Consequently, its screen projection gen-
erates a lower number of fragments and thus fewer rays need to be processed. In addi-
tion, they provide a coarse surface approximation which can be exploited to generate a
good initial guess for Newton’s method as proposed by Pabst et al. [41].

4.6.2 Sort Ray-Interval Lists

Once the ray-interval lists have been constructed, every list has to be sorted in ascending
depth order. Most sorting algorithms could be used to accomplish this task, but current
GPUs are still limited with respect to recursions and dynamic memory allocation. We
have found that Bubblesort works best within these limitations because of the follow-
ing reasons: First of all, the intervals are stored in singly-linked lists which prevents the
use of sorting algorithms that require random access. Furthermore, it is a non-recursive
sorting algorithm which performs all memory operations in place and thus has no ad-
ditional storage needs. Finally, the lists need to be sorted per pixel and the number of
list elements is relatively small and varies per pixel which makes GPU-optimized sorting
algorithms (such as radix sort) inefficient.

4.6.3 Ray-Face Intersection

The main objective of this stage is to identify the boundaries of the ray segments which
are analyzed for isosurface intersections, as illustrated in (d) in Figure 4.4. Such a ray
segment is limited by two consecutive face intersections, which are shown in (c) in Fig-
ure 4.4. The sequence of face intersections along the ray defines a number of mutually
disjoint segments because the cells do not overlap which is a precondition to isogeomet-
ric analysis. This allows us to compute these segments step by step in ascending depth
order and if necessary, analyze them for isosurfaces.

There is no closed-form solution for a curved face intersection. In general, subdivision
approaches [93], interval arithmetic [68] or iterative methods [83] are used instead. The
latter represent the most inexpensive approach, while the other two are more robust. In
this work, we chose an iterative approach because it enables us to achieve interactive
frame rates. However, we aim for a similar robustness and therefore combine the itera-
tive approach with a sampling-based root-isolation technique.

A ray-face intersection results in a system of nonlinear equations. In order to find all
the solutions, it is necessary to isolate the roots before using an iterative root-finding
method. Our method is capable of isolating all face intersections along the ray within
the accuracy of our heuristic, and it provides close start values for initiating Newton’s

4.6 RAY CASTING BEZIER CELLS 51

o samples withu <0 o initial guess
e samples with u >0 x ray-face intersection
R A MO
.
@
[e —
v c
J,,":
¢
‘ u
=0
a,
(@) ®)

Figure 4.5: This Figure illustrates our sampling-based root isolation (for clarity in a simplified 2D domain). For
each sample on the ray, shown as grey points in (a), we compute the corresponding domain coordi-
nates, which are shown as red and green points in (b). If two consecutive samples are on different
sides of the domain boundary, we use the interpolated intersection (shown as blue points) as an
initial guess for Newton's method.

method. Most other interactive rendering approaches [141] [41] [83] [123] sidestep the
issue of root isolation and assume at most two intersections with a single face. We also
implemented such a common intersection heuristic and compare the results of both
approaches in our discussion in Section 4.8.

The main idea of our root-isolation technique is to exploit the relationship between a
face and the trivariate domain space of the cell. Each boundary of the cell’s domain de-
fines an isoparametric surface which is equivalent to the respective face. Consequently,
we need to find the roots of the signed distance function which is defined by the ray’s
representation in domain space and a domain boundary. The ray’s representation in the
domain is not known and cannot be computed on-the-fly. However, two points on the
ray whose distances differ in sign imply a real root. Thus, roots can be isolated by sam-
pling along the ray, as shown in Figure 4.5. The interval which is sampled is limited by
the ray’s entry point and exit point into the convex hull. Note that sampling is not used
to compute the roots, but to isolate them and provide a close initial guess for Newton’
method.

Nevertheless, each point evaluation as described in Section 4.5 is an expensive task,
and the number of samples needs to be minimized. Sampling is started at the entry point
into the convex hull. After each point evaluation, we transform the ray direction into the
domain in order to estimate the next face intersection using a linear extrapolation. The
position of the next sample is then set to a small offset after the estimated intersection.
This is because we only need to find the sign-change. As offset we use the projected

52 CHAPTER 4 : VISUALIZATION OF NURBS-BASED ISOGEOMETRIC ANALYSIS

Figure 4.6: These three examples illustrate the cubic interpolation (shown as dotted line) of the signed-distance
function between two consecutive samples. If there is a single extremum (a) or even two extrema
between the two samples, as shown in (b) and (c), we continue sampling at the first of the approxi-
mated extrema, shown as yellow points, in order to reduce the chance of missing multiple roots.

screen-space error. In case of a sign-change, we approximate the intersection by means
of linear interpolation, as shown in Figure 4.5b, and we use the result as an initial guess
for Newton’s method. If the distance between entry and exit point is smaller than the
size of a pixel, we assume a top view of a flat convex hull, which contains at most a
single intersection. In this case, no point evaluation is required. Instead, the mean of
the initial guesses provided by the two fragments is used.

In general, a linear extrapolation of the ray in domain space is associated with an error.
Therefore, we provide two additional measures which both contribute to the robustness
of our approach:

- The step length is limited if the distance to the estimated intersection is too large
or negative. This reduces the chance of missing multiple intersections. The choice
for this maximum step length depends on the current view and the curvature of
the face and will be part of our discussion in Section 4.8.

- We adopt the idea of using a ray approximation in domain space, as shown by Bock
et al. [16]. While in their approach rays are approximated for the entire domain
in a preprocessing step, we use local interpolations which are computed on-the-fly.
For each pair of consecutive samples, we compute a cubic interpolation of the ray-
face distance and compute its extrema using its derivative, as shown in Figure 4.6.
If this approximation has a local extremum between the two samples and the ex-
tremum indicates a sign-change, roots may have been missed. In this case, we
continue sampling at the estimated position of the extremum and thereby isolate
the roots which would otherwise have been missed. Furthermore, this approach
also increases the quality of the interpolated initial guesses, because the signed
distance function between two samples is likely to be monotonic.

Our sampling-based root-isolation approach requires performing point evaluations
outside the actual cell. The bijective mapping inside the cell does not necessarily ap-
ply to the outside which may cause ambiguities. However, ambiguities are rare due to
the smoothness of the polynomial basis and the fact that all such point evaluations are
in close proximity of the cell's boundary. Furthermore, they do not represent a problem
because the corresponding domain points can still be classified outside.

4.6 RAY CASTING BEZIER CELLS 53

4.6.4 Ray-Segment Classification

Once a face intersection is found, the segment between the last two found intersections
is classified as inside or outside the cell. In general, this can easily be accomplished
by tracking the current state of the ray, similar to the point-in-polygon algorithm [132].
However, in our case this task might involve issues associated with the use of numeri-
cal methods such as double or missed intersections. Thus, we additionally use the cells’
adjacency information which was gathered during preprocessing to resolve inconsisten-
cies.

The adjacency information identifies whether the face belongs to the outer boundary
of the model or if it represents an inner transition between two adjacent cells. An inter-
section with the outer boundary can be classified as an entry or an exit point, depending
on the current ray state. Thus, if the ray hits an outer boundary the current state of the
ray switches from outside to inside and vice versa. In contrast, an intersection with a
transition face implies that the ray is inside and remains inside the model.

If the ray segment is inside the cell and the isovalue is in the corresponding attribute
bounds, as indicated for the segment (d) in Figure 4.4, we proceed with searching for
isosurface intersections by sampling through the cell.

4.6.5 Isosurface Intersection

Once a cell has been identified as having isosurface intersections, the next stage is to
sample along the ray, using the point evaluation techniques described in Section 4.5. A
naive implementation would perform equidistant point evaluations along the ray and
report if a transition of the respective isovalue occurs. Once a transition is found, an
iterative process could sample the corresponding range to determine the actual intersec-
tion point. However, this approach would be too expensive in our case due to the large
number of expensive point evaluations.

Our idea is to estimate the distance to the nearest isosurface intersection along the ray
using the derivative of the attribute function in ray direction. This adaptive sampling
approach allows for dense sampling of regions which are close to the isosurface inter-
section and skipping of parts of the cell which are quite distant from the isosurface. In
the following, we derive the size of the adaptive sampling step.

For the sake of simplicity, we assume that we are dealing with scalar attributes. For
higher-dimensional attributes a mapping to a scalar value would have to be provided.
Based on this assumption an isosurface, which corresponds to an isovalue pg € R, is
defined by all u which satisfy the equation py = ¥(u). Thus, we find all intersections
between the ray r(t) = 1o + ¢ - d and the isosurface by solving

0=po— T(D~H(r(t))). (4.8)

Given a cell C and a point s = C(u) on the ray, we determine the position s’ of the next

54 CHAPTER 4 : VISUALIZATION OF NURBS-BASED ISOGEOMETRIC ANALYSIS

sample as follows

s =s+A;-d (4.9)

where d is the normalized ray direction and A, denotes the distance to the next sample
point.

maz(tmin,0) if 0 <0 < tmae
A, = (4.10)

tmax else

The distance A; depends on an estimate of the nearest isosurface intersection, de-
noted by 4. Tt is provided by the linear extrapolation of the attribute function along the
ray. If the extrapolation diverges (§ < 0) from the isosurface or the sample point is al-
ready close to the isosurface, we use an alternative distance of t,,;;,/mae instead. The
choice of these parameters is discussed in detail at the end of this section. The estimate
is determined by

~ po—¥(u)
B ov
ot

5 (4.11)

and the extrapolation is given by projecting the derivatives of the attribute function
and the domain coordinates onto the ray:

ov Ju
ST O (4.12)
%;‘ =J1.d (4.13)
0¥ 0¥ 0V 1
J = <8((;(uu) 8%(@11) 835;)) (4.15)

If the interval of two attribute values of two consecutive samples contains the isovalue
po, a root-finding method is applied to the corresponding interval to find the exact inter-
section point. We have found that a bisection method works well due to its numerical
stability and the proximity to the root. In order to avoid missing thin features, we also
consider the values and derivatives of the attribute function along the ray as described
for the face intersection in Section 4.6.3.

Once the isosurface intersection is found, we perform the shading operations. If we
are dealing with semitransparent isosurfaces we reset the ray’s origin to the point of
intersection. The adaptive sampling continues until it reaches the cell’s exit point or the
pixel’s color is saturated.

4.7 EFFICIENT PER-PIXEL LI1STS 55

The behavior of our adaptive sampling strategy can be controlled by the parameters
timin and tpa., which form an interval which is used to clamp the distance to the next
sample.

In the proximity of an isosurface, the adaptive sample distance becomes very small
because it is based on an estimate of the actual intersection. In cases when we seek all
isosurface intersections in sequential order, the parameter ¢,,;, is used as a lower limit
for the distance to jump beyond the intersection found and continue the search for the
remaining interval. Thus, the value t,,;, is an error bound for the minimal distance
between two consecutive isosurface intersections determined by our algorithm. This
parameter is set to the size of one pixel.

The alternative step size t,q. is mainly motivated by the fact that the sample distance
is based on a first order extrapolation which may be divergent or singular even if an
intersection exists. This is generally caused by a local extremum. A higher-order ex-
trapolation could be employed, but it would not guarantee convergence. However, our
experience shows that ¢4, = % is a reasonable threshold, where S denotes the size of
the cell and n its polynomial degree. A comparison between different choices of ¢4, is
shown in Figure 4.11 and discussed in Section 4.8.

4.7 Efficient Per-Pixel Lists

At this point, we have to point out that an efficient implementation of the ray-interval list
generation is necessary to prevent this stage from becoming a serious bottleneck. Recall
that in the fragment processing stage of the first pass as described in Section 4.6.1.2, we
store all information that is necessary to perform the face intersection at a later stage.
Due to recent developments in modern graphics processors [129], it is possible to perform
atomic memory operations to arbitrary locations. This scatter capability allows us to
store the dynamic information in texture memory. The data structure we employ is based
on the dynamically constructed linked list structure presented by Yang et al. [151]. In
their approach, the concurrent access to the address of the next list element is handled
using a single atomic counter. As fragments are processed by concurrent threads, the
contention caused by all threads trying to update the same memory location represents
a major bottleneck. They sidestep this issue by utilizing append buffers — a feature only
available for DirectX 11. However, we need to remain platform-independent and have
developed an allocation scheme which alleviates the effects of memory contention.

For each pixel, all fragments are stored in a singly-linked list. A list element contains
the core information of a fragment: depth, face index, predecessor and the interpolation
of the initial guess for the face intersection.

Figure 4.7 illustrates the construction of our linked-list data structure. The address of
the last list element is stored in the head pointer image. All list elements are stored in a
single buffer which is organized in pages. This buffer is also referred to as fragment list
buffer. Every page reserves memory for a fixed number of list elements. The allocation

56 CHAPTER 4 : VISUALIZATION OF NURBS-BASED ISOGEOMETRIC ANALYSIS

viewport

allocation grid

0|2 0|2 +8| 0 8|2 8|2 +8| 0 16| 2

4|6 4| 6 +8|+8 12|14 12|14 0|0 1214

head pointer image |:Il_

o T T I A Ry B -1 -1)6\-1 S B | ST {jo | -1]-1]-1]-1|-1

R T T I I Ry -10-1)/4 _ﬁ S B | 1| -1905 |]/ -1 -1 -1

o T T I 0 R | T I I I I | ST -1TN\8A-1|-1]-1]-1|-1
\4

1
=
1
=
1
-
1
=
1
-
1
=
1
=
1
o
1
=
1
=
1
o
'
=
'
=y
1
=
1
=
1
=
'
=
1
=
1
=
1
=
1
=
1
-
1
=
1
=

fragment list buffer

ERENENEE NS SEn N SaEE SEw - || EE

01 23 45 67 89 1011.. 8 9 1011 .. 345 67 89 1011..

(a) (b) ©

Figure 4.7: In this example, two triangles (green, blue) are rendered sequentially into the per-pixel lists using
anallocation grid of 2 x 2 and a page size of 2. The pixel colors of the head pointer image indicate the
corresponding allocation counter. Initially, no pages are reserved (a). The fragments of the green
triangle have to request new pages for the corresponding pixels from the allocation grid. These
requests are addressed to different atomic counters and do not stall each other (b). For the blue
triangle, two fragments fit into the reserved pages and only one fragment has to request a new

page (c).

of pages is controlled by the allocation grid. This grid is a fixed size image which holds
indices to empty pages in the fragment list buffer. All indices in the allocation grid, also
referred to as allocation counters, work independently from each other.

At runtime, each fragment requests the head pointer for the pixel. If there is no space
left in the current page, a new page is requested from the allocation grid. The grid po-
sition which the request is addressed to is determined using modulo operations. It cor-
responds to the remainder of the division between the fragment’s screen position and
the grid resolution. At the grid position, we look up the address of an empty page and
perform an atomic increase on the corresponding counter. The offset which is added
depends on the page size and resolution of the grid. For a grid size of s, x s, and a page
size of s, the offset is s, x s, X s,. The result of this operation is the address of the next
empty page owned by this counter.

The size of the allocation grid directly affects the performance and memory consump-
tion of our algorithm. In general, a higher grid resolution improves render performance,
but also implies a slight memory overhead. In the following, we elaborate the reasons

4.8 RESULTS AND DISCUSSION 57

140% 2 1000 —
120% Va c
¥ / £
100% S
5 20 / 100
3 3
5 5% —/ g
2 60% &
S e 2
g 0% El \a-‘,(
E o/ 2
- e —— <
0% —# * * * g 1
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
allocation grid size (sy = sy) allocation grid size (sx = sy)
—&—page size=1 == page size=2 page size=4 ==<=page size=8 —4—page size=1 === page size=2 page size=4 === page size=8

(@) (b)

Figure 4.8: Different allocation grid sizes. (a) The memory overhead of the linked list generation for various
configurations. Using a page size of 4 and an allocation grid of 64 x 64, the list requires about 25%
more memory for unused list entries. (b) Costs for the fragment list generation for the close-up on
the bridge model shown in Figure 4.1c in various configurations. The performance scales with both
page size and allocation grid size. A maximum performance of about 5.5 ms for more than 4 million
fragments is reached using an allocation grid of 128x128 and a page size of 8.

for both.

The performance gain is due to the lower number of threads affected by contention.
In practice, fragment programs run on blocks of fragments. Each fragment is processed
concurrently and in the worst case, all threads request an empty page from the alloca-
tion grid at the same time. However, adjacent fragments address different allocation
counters due to the applied modulo operations. As all threads in the same block process
neighboring fragments, concurrent access to the same counter is rare. Furthermore, if
the grid resolution is higher than the block size, all threads in one block address differ-
ent counters. Thus, increasing the grid resolution minimizes the number of concurrent
accesses to the same atomic counter and improves performance.

The downside of a higher grid resolution is an increasing memory overhead. Each allo-
cation counter separately owns a number of pages. With respect to ownership, all pages
in the fragment list buffer are interleaved. A page request returns the next page for that
counter even though some pages in between may remain unused. In the example shown
in Figure 4.7, the second page remains empty because no request is addressed to the cor-
responding yellow counter. However, pixels that access the same allocation counter are
evenly distributed across the screen and the number of page requests for each counter
is similarly high. An evaluation of various configurations, as shown in Figure 4.8a, in-
dicates that the memory overhead remains fairly low in the range of about 15% to 60%
for a grid size of 64 x 64. Figure 4.8b shows that the corresponding performance gain
reaches up to a factor of 100x.

4.8 Results and Discussion

Figure 4.9 illustrates the technical realization of our three-pass algorithm, which was
implemented as described. The first pass is implemented using OpenGL and GLSL as

58 CHAPTER 4 : VISUALIZATION OF NURBS-BASED ISOGEOMETRIC ANALYSIS

CPU GPU framebuffer

vy}
08
N,
(0]
@
(o]
o
7

Q SIHERes
B SEE-E CEESeE]

=
)
Q =
Storage 3 3
5 @
= o
= image bﬁffer
NURBS
Figure 4.9: A schematic overview of our multi-pass ray casting system.
NURBS Bézier representation
Solids #Points Solids #Points Degree
Bridge 16 40,096 6296 169,992 2XxX2x2
_ Wind 120 789,680 705,550 19,049,850 2% 2% 2
Simulation

Table 4.1: The bridge data set comprises the following attributes: engineering stress, von Mises stress, engi-
neering strain, and displacement. The wind simulation comprises displacement, velocity and accel-
eration.

it depends on the rasterization capabilities. The resulting fragments are stored using
the image load and store capabilities [129]. Subsequently, the sorting pass and the ray
casting are performed by compute kernels which are implemented in CUDA. However,
the CUDA API does not provide the capability to directly write into the framebuffer. An
off-screen render target is used instead and finally mapped to the screen.

All tests were performed on a 3.33 GHz Intel Core i7 workstation with 12GiB RAM
equipped with a single NVIDIA Geforce GTX Titan graphics board with 6GiB video mem-
ory and using a window resolution of 1024x1024. The linked list generation was config-
ured using a page size of 4 and an allocation grid of 64x64.

We evaluated our approach using two datasets: A NURBS-based isogeometric analysis
applied on a bridge model, as shown in Figure 4.1; and a NURBS-based wind simulation
of the air flow around one rotor of a wind turbine as shown in Figure 4.10. The initial
preprocessing varies from less than a second for the bridge model to a few seconds for
the wind simulation. Table 4.1 shows the resulting number of Bézier cells for each model.
The rendering performance is mainly fill-rate dependent; it varies between 9 Hz to 18 Hz
for the views shown in Figure 4.1 and is about 6 Hz for the view shown in Figure 4.10.

4.8 RESULTS AND DISCUSSION 59

Figure 4.10: This Figure shows the air displacement around the rotor of a windturbine. The rotor is a separate
object which consists only of NURBS surfaces and is rendered using conventional NURBS ray cast-
ing [41] in a separate rendering pass. Some of the isosurfaces may not appear entirely smooth. This
is due to the Cp-continuity at the boundary of adjacent NURBS elements and not an artifact of the
proposed rendering algorithm.

The respective timings for the three passes of our algorithm are given in Table 4.2. The
rendering performance for the view shown in Figure 4.1b is slightly better considering
that it benefits from higher cache coherence and lower depth complexity.

First, we would like to discuss the memory requirements of our algorithm. The main
idea to focus the search for isosurfaces on the relevant parts of the model requires a con-
version from NURBS to a rational Bézier representation. While this is necessary to deter-
mine the geometric and attribute bounds for the respective knot spans, it also increases
the number of control points, as shown in Table 4.1, and thus memory requirements. The
resulting overhead is of an order (n + 1)3, where n is the polynomial degree. Besides the
parametric representation, a polygonal description of the faces’ convex hulls is required
including a per-vertex attribute for the initial guess. In our current implementation, the
Bézier control points are kept and used for efficient evaluation. This memory overhead
could be reduced by keeping only the proxy geometry and the associated knot span for a
direct evaluation of the NURBS representation. However, additional memory is also used
for the generation of the ray-interval lists. The budget reserved for this data structure
is mainly depth-complexity and resolution dependent. In our current implementation,
storing the necessary information for a single fragment requires 16 bytes and we found
that a budget of 256MiB of graphics card memory was sufficient even for views with a
high depth complexity.

At this point, we would like to discuss the choice of Newton’s method for numerical
root finding and also point out the associated limitations with respect to our algorithm.
The convergence properties, advantages and issues of this method are thoroughly dis-
cussed in [35]. In our algorithm, Newton’s method is used for four purposes: root iso-
lation, ray-face intersection, point evaluation and as a heuristic for adaptive sampling.
The latter increases rendering performance, as shown in Figure 4.15, and convergence
issues are addressed by limiting the resulting sampling distance with satisfying results as
shown in Figure 4.11. Likewise, we set the maximum step length of our sampling-based
root isolation approach to S/n, where S is the size of the interval which is sampled and
n the degree of the face. This choice worked well for all our models. However, adapting
these parameters to the curvature, the current view and the error tolerance is desirable,

60 CHAPTER 4 : VISUALIZATION OF NURBS-BASED ISOGEOMETRIC ANALYSIS

View #Fragments List generation Sorting Ray casting
Bridge 824,858 2.6ms 3.2ms 49ms
Pier 1,677,022 4.1ms 2.9ms 42ms
Close-up 4,025,634 9.5ms 5.6ms 97ms
Simviflilz‘ion 6,523,424 26.1ms 10.2ms 129ms

Table 4.2: This Table provides a detailed overview of the rendering times for views shown in Figures 4.1 and 4.10.
The view of the pier (Fig. 4.1b) runs at 18 Hz and benefits from discarding inner cells which do not
contain an isosurface. In contrast, the close-up view (Fig. 4.1c) renders at about 9Hz due to a higher
fill-rate and a larger number of cells in which a search for an isosurface is necessary. The list gen-
eration for the view of the wind simulation (Fig. 4.10) is more expensive due to larger number of
processed cells.

but also quite involved and remains future work. The point evaluation usually converges
to the only existing solution because the preceding sample provides a very close initial
guess. The convergence rate for finding ray-face intersections benefits from our root
isolation approach.

In practice, most models contain at least some degenerate cells. In our wind simula-
tion, for example, the space around the rotor is represented by a set of tubular sections.
The inner faces at the center of the tube degenerate to single edges. These degenerate
cells are located around the base of the rotor shown in Figure 4.10. In general, most de-
generacies are a result of one or more collapsed edges. During preprocessing, we detect
all faces which degenerated into a single edge or even into a single point and exclude
them from the rendering process. In this case, all entry and exit points can still be found
because such degenerate faces are coincident with an edge or a point of an adjacent face.
However, faces with only a single collapsed edge do not undergo special treatment. As a
consequence, the partial derivatives close to the collapsed edge become very small. Point
evaluations in these regions are limited by machine precision and the convergence prop-
erties of Newton’s method. Adapting the iteration with respect to the type of degeneracy
could reduce the problem, but remains future work.

While the bijective mapping may be valid inside a cell, it does not necessarily apply
to the outside. In particular degenerate cells tend to have ambiguities even close to the
boundary. For our sampling-based root isolation, this does not represent a problem. If
Newton’s method converges to one of the multiple solutions, the corresponding point in
domain space can still be classified as being outside.

Furthermore, we compared our results to the common intersection heuristic which is
used by most other interactive rendering approaches [141] [41] [83] [123]. In their work,
two initial guesses are generated using the intersections with a convex proxy geometry.
Newton’s method is then started for both, assuming not more than two intersections be-
tween the ray and the contained face. For the purpose of comparison, we implemented

4.8 RESULTS AND DISCUSSION 61

i

®) tmaz = % (©) tmaz = % (d) tmaz = o0

(a)

Figure 4.11: A close-up on the isosurface visualization shown in (a) reveals that a higher maximum sampling
distance may cause visual artifacts in regions with high curvature. The Figures (b) to (d) show the
visual quality for different choices of tmaz.

such a heuristic and use the interpolated initial guess which is provided by the rasteri-
zation of the textured convex hull. This heuristic is slightly faster compared to our ap-
proach, as shown in Figure 4.14. For most of our models, the visual results are also the
same. This is mainly because most parts of our models have a low curvature due to the
refinement process of the isogeometric analysis. These parts apply the assumption of
two or less intersections per face. However, parts with higher curvature are affected by
this limitation which causes visual artifacts, as shown in Figure 4.12. For the same view,
there are no visual artifacts using sampling-based root isolation.

The performance chart in Figure 4.14 includes the draw times for our approach as
described and a variant of our approach employing the common intersection heuristic.
The performance gain using the latter is relatively low because the sampling for root iso-
lation adapts to the curvature of the face and the thickness of its convex hull. Thus, most
point evaluations related to root isolation are performed in regions where it is necessary,
e.g. at the silhouette of the model.

We compared our algorithm to an implementation of the approach presented by Uffin-
ger et al. [141]. In addition, we implemented an alternative in which the parallelepipeds
are organized in an octree data structure instead of a regular grid. The octree adapts
better to different cell sizes and complex spatial configurations. This is very visible in
the frame rate variations of Uffinger et al. To ensure comparability, both approaches use
the same kernel for the actual isosurface intersection as our approach. At first glance,
the detailed rendering times of our performance tests in Table 4.2 suggest that the con-
struction of the ray-interval lists incurs a certain overhead in comparison to a spatial
acceleration scheme. But, as a matter of fact, our algorithm performs much faster than
both other approaches, as shown in Figure 4.14, because it takes a lot of computational
load off the actual ray casting kernel by generating a lower number of rays, exploiting the
GPU’s rasterization capabilities to intersect the proxy geometry and providing closer ini-

62 CHAPTER 4 : VISUALIZATION OF NURBS-BASED ISOGEOMETRIC ANALYSIS

(a) Common heuristic (b) Our approach

Figure 4.12: The visualization of the outer boundary of a tricubic Bézier volume. The upper and lower face are
highly curved. For these faces, the common intersection heuristic (a), which is used by Uffinger
et al., causes visual artifacts. By contrast, our approach (b) provides close initial guesses and finds
all face intersections.

tial guesses for the intersection of the cells’ faces. In addition, we found that performing
the major tasks in separate passes (as shown in Figure 4.13) is much more cache-coherent
than a single-pass approach. The reasons for this are:

- Segmentation: For the purpose of analysis, the NURBS basis is typically refined in
regions with high curvature. As a result, the cells’ sizes differ significantly which
makes using a regular grid rather unsuitable. In our tests, even grids with a very
high resolution contained grid cells with more than thousand faces. Our alternative
octree-based implementation easily adapts to different cell sizes. However, in both
data structures it is inevitable that many faces overlap multiple nodes or grid cells
which causes a considerable memory and performance overhead.

+ Cache coherence: A modern GPU operates on blocks of threads which are pro-
cessed in parallel. All threads in a single block accessing the same data benefit
from the GPU’s texture cache. However, the memory access can be quite incoher-
ent for each thread processing a single ray. Using a spatial acceleration structure,
the data required for ray traversal and intersection tests may be entirely different,
even for adjacent rays. By checking the attribute bounds during geometry process-
ing and using rasterization for intersecting the convex hulls we move tasks which
potentially cause incoherent memory access to earlier stages of the pipeline, where
they are processed more efficiently.

- Proxy intersection: The ray segment which is analyzed for face intersections is lim-
ited by the entry point and exit point of the face’s proxy geometry. Each point pro-
vides an initial guess for the point evaluation. In general, a convex hull provides a
tighter bounding volume than a parallelepiped or a bounding box. Consequently,
using convex hulls results in shorter ray segments. Furthermore, the convex hulls

4.8 RESULTS AND DISCUSSION 63

‘ proxy geometry | | proxy geometry ‘
| — |
B =
[= -~

—

< =

for all rays

for all rays

| —

=
sorted interv'alﬁlt ‘
= ~ <
—

for all rays

(a) Common approach using a spatial data struc- (b) Our approach
ture

Figure 4.13: A ray-casting kernel using a spatial data structure (a) requires to frequent switches between differ-
ent tasks. Even for adjacent rays, the path of execution may be completely different which is in
most cases cache-inefficient. In our approach (b) major tasks are performed in separate passes to
take full advantage of the GPU’s SIMD processing capabilities.

are more suitable to attach appropriate parameters for an initial guess [41]. How-
ever, an analytical intersection of a ray and a convex hull would require many more
operations than the intersection with parallelepipeds. Instead, we exploit the ras-
terization capabilities of the graphics hardware to perform this task.

+ Preprocessing: Our long-term objective to integrate our visualization approach into
an interactive isogeometric pipeline requires a rapid response to changes in design
and the corresponding simulation. While additional data structures help to accel-
erate the ray casting for a static geometry, they are a potential bottleneck for in-
teractive updates of the model. In contrast, our approach requires only minimal
preprocessing and allows for partial updates of the model.

Furthermore, we evaluated the effect of the adaptive sampling strategy. Figure 4.15
illustrates that the number of point evaluations is highly reduced in comparison to an
equidistant sampling approach. The resulting image quality was even better for the adap-
tive sampling approach because the minimum sampling distance ¢,,;, can be set much
lower than the step width of the equidistant approach.

Our approach sorts the ray-interval lists based on the intersection with the convex
hulls of the cells’ faces. In theory the order of the actual face intersections along the ray
could be different. This is not a problem for the rendering of opaque isosurfaces since
the traversal will continue until another intersection is found in front of the next interval.
For transparent isosurfaces multiple intersections need to be blended in the right order.
The computed face intersections are therefore stored temporarily in the corresponding
entry of the already allocated interval lists. If there are more than two face intersec-
tions, we insert new entries in the interval list using the allocation scheme described
in Section 4.7. Once the next interval lies behind all so far found face intersections the

64 CHAPTER 4 : VISUALIZATION OF NURBS-BASED ISOGEOMETRIC ANALYSIS

—— Our approach —— Our approach using common intersection heuristic
—— Uffinger et al. — Octree-based approach

IS
S
S

w
a
<3

2
P
<
Iy
y

%

draw time in ms
NN
o v
o o
'

.
1<}
15}

Figure 4.14: This graph shows the draw times for different views of the wind simulation (shown in Figure 4.10)
using the approach of Uffinger et al., an octree-based adaptation and our method. Our approach
performs about 2 to 3 times faster than both other approaches. For this model, using our sampling-
based root isolation results in about 10% slower performance compared to the common intersec-
tion heuristic.

100

samples per pixel

0
(@) (b) (© @
Figure 4.15: This Figure shows the number of point evaluations for a view of the strain in a single pier (a).

In comparison to equidistant sampling (b), adaptive sampling (c) reduces the number of point
evaluations required.

4.9 CONCLUSION AND FUTURE WORK 65

isosurface search is performed. Thus, early ray termination can still be efficiently used.

We would also like to point out that the applicability of our approach is not limited
to isosurface rendering of NURBS-based isogeometric analysis. Of course, our approach
also applies to NURBS and Bézier volumes of arbitrary degree with attached scalar fields
or attribute functions. Furthermore, the main idea to generate only ray intervals requir-
ing further computations could be adapted to other higher-order representations. In gen-
eral, the ray intervals can also be used for direct volume rendering (DVR) by exchanging
the search for isosurfaces with regular sampling. Using a linear approximation of the
attribute function between the samples, volume pre-integration [146] may be used to ac-
cumulate color and opacity contributions. However, the performance of our approach
mainly benefits from culling, adaptive sampling and a higher cache coherence by pro-
cessing only a few relevant intervals. For DVR, the number of relevant cells depends on
the given transfer function. In comparison to isosurface rendering, the number of gen-
erated intervals would be higher which increases storage needs, costs for sorting and the
number of point evaluations.

4,9 Conclusion and Future Work

We developed a GPU-based ray casting system for the direct visualization of the results
of a NURBS-based isogeometric analysis. Our system exploits current graphics hardware
capabilities to construct ray-interval lists on-the-fly which contain all intervals that are
relevant for the current isosurface visualization. Based on these interval lists, we demon-
strated how to efficiently search for an isosurface directly using the underlying paramet-
ric volume and attribute representation without the need of discretization or approxima-
tion.

We support NURBS volumes of arbitrary degree, which is enabled by our adaptation
of Sederberg’s [126] scheme to the trivariate case. Thus, our system always generates
pixel-accurate visualizations of the isosurfaces within the limitations of the numerical
approaches employed. The combination of our root-isolation approach and Newton’s
method represents a robust, adaptive and still interactive solution for finding multiple
ray-face intersections. We also provide a mathematically founded detailed description
of a practical GPU-based implementation of our system which interactively visualizes
models consisting of hundreds of thousands of cells with minimal preprocessing costs.
Furthermore, we show how to avoid the memory allocation bottleneck for creating per-
pixel linked lists and demonstrated that our approach is more than 100 times faster than
anaive implementation. A comparison to GPU-based ray casting implementations using
a regular grid and an octree data structure shows that our approach results typically in
a factor of 2 to 3 higher frame rates due to our efficient processing scheme.

There are many further options to refine and optimize our approach. The preprocess-
ing could be extended with an additional refinement stage, since currently we depend
directly on the refinement level of the isogeometric analysis. An adaptive subdivision of

66 CHAPTER 4 : VISUALIZATION OF NURBS-BASED ISOGEOMETRIC ANALYSIS

cells with a large attribute range would reduce the number and lengths of ray segments
which have to be analyzed for isosurface intersections. This subdivision creates a hier-
archy for each cell, which could also aid level-of-detail management for handling larger
models. Additionally, the development of an appropriate occlusion culling technique is
required for scenes with high depth complexity. Since we process only those cells which
belong to the boundary of a model and those that contain an isosurface, the number of
cell intervals per ray is typically small. However, if we were to render isosurfaces simul-
taneously for multiple isovalues the number of cell intervals could potentially become
larger even though only the first entries are typically needed. Furthermore, the interval
sorting step could significantly benefit from a coarse front-to-back rendering of the cells’
surfaces.

In structural dynamics it is common to simulate dynamic models, which are repre-
sented by a sequence of discrete time steps. Our aim is to move towards a full 4D NURBS-
model such that the visualization could show a smooth transition between the different
time steps. Ideally the structural engineers would not only avoid the discretization of the
geometry but instead generate the 4D model directly and therefore avoid the discretiza-
tion in time as well. Our direct visualization approach is an important first step towards a
complete isogeometric pipeline which allows for the design, simulation and visual anal-
ysis of volumetric NURBS models without the need for an intermediate approximation
of the geometry.

67

CHAPTER 5
PROGRAMMABLE ORDER-INDEPENDENT TRANSPARENCY

The content of this chapter was published as

Order-Independent Transparency for Programmable Deferred Shading Pipelines

by Andre Schollmeyer, Andrey Babanin and Bernd Froehlich

In Computer Graphics Forum 34(7), pp. 67-76, October 2015.

© The Eurographics Association and John Wiley & Sons Ltd., 2015. Reprinted, with permission, from
Schollmeyer et al. [120].

Figure 5.1: These are some image results for rendering an engine model using our pipeline. For the fully trans-
parent engine (a), our system performs at about 60Hz. If only some parts are transparent (b), it
runs at about 180Hz. The opacity remains programmable at fragment level which enables adaptive
interaction tools, e.g. virtual see-through lenses (c).

5.1 Abstract

In this paper, we present a flexible and efficient approach for the integration of order-
independent transparency into a deferred shading pipeline. The intermediate buffers
for storing fragments to be shaded are extended with a dynamic and memory-efficient
storage for transparent fragments. The transparency of an object is not fixed and re-
mains programmable until fragment processing, which allows for the implementation
of advanced materials effects, interaction techniques or adaptive fade-outs. Traversing
costs for shading the transparent fragments are greatly reduced by introducing a tile-
based light-culling pass. During deferred shading, opaque and transparent fragments are
shaded and composited in front-to-back order using the retrieved lighting information
and a physically-based shading model. In addition, we discuss various configurations
of the system and further enhancements. Our results show that the system performs at
interactive frame rates even for complex scenarios.

68 CHAPTER 5 : PROGRAMMABLE ORDER-INDEPENDENT TRANSPARENCY

5.2 Introduction

In interactive 3D applications, transparency is a highly desired feature as it increases
realism, spatial perception and the degree of immersion. However, supporting trans-
parent objects has always been a challenge in real-time rendering systems. Hardware-
accelerated rasterization is well-designed for rendering opaque geometry. It adapts the
Z-buffer algorithm [25], which keeps visible front-most surfaces, but discards the hidden.
For visualizing non-opaque surfaces, a correct result is only possible if semi-transparent
surfaces are sorted and blended in either front-to-back or back-to-front order. Presort-
ing the geometry before rendering is computationally expensive and results in artifacts
at triangle intersections. In contrast to geometry presorting, order-independent trans-
parency (OIT) refers to a class of rendering techniques that achieve the correct result
on a per-pixel basis. Most recent GPUs have gained support for atomic gather/scatter
operations. These capabilities can be used to implement an A-Buffer [22], which stores
the fragments generated during rasterization, to enable order-independent transparency
and a large number of other multi-fragment effects. In particular, it has already been
used for screen-space ambient occlusion [8], depth of field [154], screen-space colli-
sion detection [63], illustrative visualization for computer aided design (CAD) applica-
tions [21], constructive solid geometry (CSG) operations [108] or nearest-neighbor search
algorithms [110, 10].

We designed a deferred shading pipeline with support for order-independent trans-
parency by introducing transparency in the material concept. In our material descrip-
tion, transparency remains a programmable property which is either the result of user-
defined computations, a texture look-up or simply a constant. During fragment process-
ing, only the transparent fragments are routed into the A-Buffer while all other fragments
are stored in a multi-layered geometry buffer. A light-culling pass is used to determine
per-pixel lighting information. Once this information is acquired, we shade and blend all
fragments in front-to-back order. In addition to our novel pipeline concept, we compared
different state-of-the-art techniques for the generation of per-pixel linked-lists (PPLL) to
find the most efficient approach for an A-Buffer implementation on recent graphics hard-
ware.

Most modern rendering engines are based on deferred shading [112]. Some of these
engines, e.g. Unity or the Unreal Engine 4 [95], already have basic support for transparent
objects. However, we found that all existing systems lack at least one of the following
properties: programmability, performance or extensibility. The main reasons for this are
the challenges to tackle when integrating an A-Buffer into a deferred shading pipeline.
Therefore, we designed a new pipeline concept for the open-source rendering framework
guacamole [119] that supports all of the aforementioned properties. The main features
and contributions of our work are:

- Anintegration of order-independent transparency into an extensible deferred shad-
ing pipeline

5.3 BACKGROUND 69

- A programmable and easy-to-use material concept in which the transparency can
be set at fragment level

- An efficient solution for light accumulation for transparent fragments that adapts
the idea of tile-based shading

- Compile-time shader optimization is used to avoid an overhead for opaque objects

5.3 Background

The main challenge of integrating transparencies into a deferred shading pipeline is
finding an efficient combination of two contradictory concepts of fragment processing.
While a correct blending of transparencies requires the consideration of all the semi-
transparent fragments per pixel, deferred shading pipelines are designed for opaque ob-
jects because they store only the front-most fragment for shading.

5.3.1 Partial Coverage and Blending

Porter and Duff [104] introduced compositing algebra, which defines a set of operations
on images with partial coverage information (alpha channel). In particular, the over-
operator is used to overlay one surface on top of the other assuming that both surfaces
are partially transparent and no refraction is taking place when light passes through the
medium. For a foreground surface A and background surface B, the over-operator is
defined as follows:

P =py+(1—aa)pg, (5.1)

where p 4, pp are image pixels of A and B, both pre-multiplied by their transparency
a4 and ap, respectively. The output p’ is the resulting image pixel. A pixel p is defined
as a quadruple (r,g,b,«) that holds three color components and its coverage . The
compositing of multiple surfacesis accomplished iteratively. However, the over-operator
is not commutative. The transparent surfaces must be ordered either front-to-back or
back-to-front to obtain the correct result, as shown in Figure 5.2.

5.3.2 Deferred Shading

In forward rendering, every fragment passing the depth test is shaded and stored in the
frame buffer until it is replaced by a new fragment passing the depth test. For scenes with
many lights and sophisticated shading, this approach may become inefficient because
it needs to perform expensive shading computations for occluded fragments also. In
deferred shading, geometry and light processing are decoupled [112].

In the first step, scene geometry is rendered without performing any shading compu-
tations. Instead, the data necessary for shading is gathered and stored in a so-called

70 CHAPTER 5 : PROGRAMMABLE ORDER-INDEPENDENT TRANSPARENCY

Figure 5.2: This Figure illustrates the correct compositing result of the surfaces A, B, C using the over-operator.
Itisapplicable either in front-to-back (A over B) over C or back-to-front A over (B over C') order.

geometry buffer (G-buffer). In the second step, only the visible fragments stored in the
G-buffer are shaded, which avoids wasting resources for occluded fragments. For scenes
with many lights, it can also be advantageous to accumulate the light contributions in a
separate pass, a technique also referred to as deferred lighting [3].

Unfortunately, standard deferred shading does not consider transparency effects.
However, we do not want to reject the deferred approach as it performs very well for
opaque geometry, which is probably dominant in most scenes. Instead, we want to find
a way to combine them both, thereby benefiting from efficient rendering of opaque ge-
ometry and realistic transparency effects.

5.3.3 Transparency Effects in Real-time Rendering

The non-commutativity of Equation 5.1 used for compositing requires the surfaces to be
sorted in either front-to-back or back-to-front order. For rasterization-based pipelines,
this presents a major challenge because triangles are handled independently, disregard-
ing their distance and orientation to the viewport. According to [85], the methods of
sorting can be classified into the following categories: Depth-sorting independent, prob-
abilistic approaches, geometry sorting and fragment sorting.

Sorting-independent techniques [86, 9] approximate the compositing result without
explicit ordering by depth. They can be performed in a single pass and do not need any
buffer to store fragments. Despite their simplicity and high performance, these tech-
niques do not guarantee the correct compositing of semi-transparent surfaces and in
most cases, they produce visual artifacts. Therefore, their usage is limited to simple cases
where quality is less important than performance. As a remedy, Mauleetal. propose a
hybrid approach [84] which performs fragment-sorting and correct compositing only for
the front-most fragments, thereby balancing image quality, memory consumption and
performance.

Stochastic transparency [39] is an example of the probabilistic approach. In their work,
transparency effects are achieved by filling a multi-sampled texture by evaluating alpha-
to-coverage probability based on a random sub-pixel stipple pattern. However, this tech-

5.4 SYSTEM OVERVIEW 71

nique suffers from severe noise if not enough samples are generated.

Geometry-sorting approaches explicitly sort all primitives by depth before drawing.
Potential artifacts due to interpenetrating triangles or cyclic overlaps can be resolved by
splitting the corresponding triangles. In most cases, however, sorting at the primitive
level is too expensive. Therefore, some systems accept visual artifacts and use a coarse
object-based depth-sorting instead.

In contrast to geometry sorting, fragment-sorting techniques work at lower granular-
ity. After rasterization, the fragments are stored and sorted per pixel such that primitive
presorting is not required. Early implementations such as depth-peeling [40] did not
scale well with an increasing amount of geometry. However, recent hardware advance-
ments enable various approaches [151] [73] [62] for an efficient A-Buffer implementation.
We compared existing techniques (see Section 5.6) in order to find the most efficient ap-
proach on the latest hardware and redesigned the rendering pipeline of guacamole [119]
to support order-independent transparency.

5.4 System Overview

Guacamole is an extensible, lightweight open-source scene graph and rendering engine
based on deferred shading. Our redesigned pipeline concept presented in this paper does
not depend on this specific framework, but should be applicable to any other deferred
shading pipeline, as well. However, we will use our integrated system design to describe
and discuss the general ideas of our approach.

Figure 5.3 illustrates our novel rendering concept in guacamole. In contrast to the
originally proposed design [119], we employ a fixed G-buffer layout and physically-based
rendering [66] for shading. It is based on a configurable multi-pass pipeline in which the
user can define passes and their processing order. The minimal set of pipeline passes
required to render a scene consists of the following three steps:

- Geometry Pass: This pass is responsible for the rasterization of the geometry de-
scriptions in the scene. For all polygonal objects, a standard renderer is provided.
In addition, the system can easily be extended with any kind of geometric repre-
sentation and the corresponding rendering algorithm. This includes multi-pass
techniques, as well as ray-casting based rendering approaches. This extensibility is
demonstrated by the current support for trimmed NURBS [123], level-of-detail point
clouds and 3D video avatars [12]. During fragment processing, each renderer passes
the information necessary to defer shading to a shared shader interface which is
independent of the type of geometry. The material computations are then applied
to the fragment. Transparent fragments are submitted into an A-Buffer and, respec-
tively, all opaque fragments into the G-buffer, as described in Section 5.5.1.

- Light-Culling Pass: Lighting information is necessary to shade the fragments gath-
ered in the intermediate buffers. In this pass, light proxy geometries are rendered

72 CHAPTER 5 : PROGRAMMABLE ORDER-INDEPENDENT TRANSPARENCY

Geometry Description (Meshes, NURBS, ...)

Light Grid G-Buffer A-Buffer

Light Description

Shaded Image

Final Image

Figure 5.3: Rendering is accomplished by a configurable multi-pass pipeline based on deferred shading. In the
first pass, the geometry descriptions are rendered into the G- and A-Buffer using the correspond-
ing renderers. A shared shader interface and meta-programming methods are used to insert the
material-dependent shader code which makes the system extensible for different geometry descrip-
tions.

into a low-resolution grid. The result is a list of active lights for each grid cell. This
idea adapts from tile-based shading [96], which was originally proposed for the effi-
cient handling of a large number of light sources. In the context of OIT, we exploit
the generated light grid to avoid frequent traversal of the fragments stored in the
intermediate buffers. A detailed description of the light-culling pass is given in
Section 5.5.3.

- Shade-Compositing Pass: Once the fragment and lighting information is gathered,
shading and compositing is performed. For each pixel, we retrieve the list of ac-
tive lights from the light grid and start traversing the fragments stored in the A-
and G-Buffer. In front-to-back order, the fragments are shaded and blended using
Equation 5.1 until the pixel’s alpha value reaches a desired threshold. For details,
see Section 5.5.4.

After the shade-compositing pass, the shaded image can be processed by additional
screen-space passes. However, in this paper we do not elaborate on the possibilities of
post-processing effects.

5.5 SYSTEM DESIGN AND PASS DESCRIPTIONS 73

5.5 System Design and Pass Descriptions

In our system, rendering a given scene is accomplished by a pipeline. The resulting
image can be used as input to another pipeline, which allows for multi-pass rendering.
A pipeline is configured by the user by defining a set of passes and their order of exe-
cution. Some passes, such as post-processing, are optional, but the geometry pass, the
light-culling pass and the shade-compositing pass, as well as their processing order, are
compulsory. After culling and serialization, rendering is initiated by passing the scene
objects to the geometry pass.

5.5.1 Geometry Pass

All renderable objects consist of a geometric description and a material. A material is
programmable and consists of user-defined input and the corresponding shader code.
Using a shared shader interface for all geometry representations allows us to insert the
material-dependent source code into the geometry-specific programs at shader-compile
time. During fragment processing, the inserted material methods may manipulate the
transparency. Opaque fragments are then passed to the G-buffer, while transparent frag-
ments are inserted into an A-buffer.

5.5.1.1 Material Description

In our system, a material is an instance of a material description which consists of a
set of user-defined input parameters and the corresponding shader code that performs
the desired computations. A material description may provide methods for two stages:
displacement and visibility. In the displacement stage, all material effects are applied
that operate on vertex level, e.g. displacement mapping. The visibility stage operates
per fragment and may modify all shading relevant parameters such as normal or albedo,
as well as the transparency.

In contrast to other systems, the differentiation between opaque and transparent is
carried out at fragment level, not per object. This is quite advantageous, especially if
the opacity does not depend on the objects themselves, but on the current view or other
parameters. For example, in many virtual-reality applications, it is desirable to fade out
objects close to the viewer because the stereoscopic perception becomes uncomfortable.
Figure 5.4 shows an example of a material description in our system. In this material, the
transparency of a fragment depends on multiple parameters: an alpha texture, a virtual
see-through lens (as shown in Figure 5.1c) and the distance to the viewer.

5.5.1.2 Shared Shader Interface

Non-trivial geometry descriptions typically require sophisticated rendering algorithms,
e.g. ray casting or multi-pass approaches. In most cases, this involves designated shader

74 CHAPTER 5 : PROGRAMMABLE ORDER-INDEPENDENT TRANSPARENCY

"displacement_stage" : [],
"visibility_stage" : [

{

"name" : "pbr_lens_fade_out",

"uniforms"

L

{"name": "lens_pos", "type": "vec2", "value": "(0.5 0.5)"},
{"name": "lens_rad", "type": "float", "value": "0.3"},
{"name": "fade_dst", "type": "float", "value": "0.1"},
{"name": "roughtex", "type": "sampler2D", "value": "0"},
{"name": "alphatex", "type": "sampler2D", "value": "1"},

]

"source"

void pbr_lens_fade_out ()

{
// set material coefficients and initial alpha
gua_roughness = texture (roughtex, gua_texcoords).r;
gua_alpha = texture (alphatex, gua_texcoords).r;
//
// fade out close to see-through lens
float lens_dist = length(lens_pos - gua_position.xy);
float lens_fade_out = lens_dist / lens_rad;

gua_alpha *= clamp(lens_fade_out, 0.0, 1.0);

// fade out close to camera

float ndepth = gl_FragCoord.z / gl_FragCoord.w;
float depth_fade_out = ndepth / fade_dst;
gua_alpha *= smoothstep(0.0, 1.0, depth_fade_out);

Figure 5.4: In a material description, the built-in variable gua_alpha can be used to set the transparency. In
this example, in the visibility stage, the transparency is first initialized using a texture and then
increased if the fragment is either close to the near plane or inside the radius of a virtual see-through
lens.

programs. However, the rendering technique itself should be independent of the applied
material. A decoupling between rendering algorithm and material computations could
be achieved by a two-pass solution using an additional set of off-screen render targets
as an intermediate result. However, this would increase the bandwidth requirements
considerably and the support for transparencies would magnify this overhead. Instead,
we provide a generic interface which helps us to merge the shader code of the geometry
and the material description using meta-programming techniques.

Figure 5.5 shows a pseudo-code example of the fragment stage of a geometry program
used in our system. The shared interface consists of placeholders which are replaced be-
fore shader compilation with the corresponding definitions or invocations. Based on this
interface, all geometry and material computations are performed in a single program.
The material may modify all shading-relevant data (position, normal, alpha, albedo, etc.)

5.5 SYSTEM DESIGN AND PASS DESCRIPTIONS 75

@define_fragment_shader_interfaceQ@

// inserts shared interface for geometry and material, e.g.
// vec3 gua_world_position;

// float gua_alpha;

/7

@define_material_uniforms@
Q@define_material_methods@

void main () {
@map_rasterization_output@

perform_ray_casting();
@invoke_material_methods@

@submit_fragment@ // to G- or A-buffer (see Fig. 5)
}

Figure 5.5: This simplified pseudo-code example illustrates a fragment program for a ray-casting based ren-
derer in our system. The placeholders in between @ are replaced by the corresponding source code
before shader compilation. After ray casting, the material is applied and the fragment is submitted
into the corresponding buffer.

or even discard the fragment before it is stored in one of the intermediate buffers.

5.5.2 A-buffer Generation

The A-buffer is implemented using the lock-free insertion sort with early termination,
as described in [73]. In our performance experiments, we compared this approach to
other techniques and it shows the best results (see Section 5.6) on most recent hardware.
More importantly, it does not require a separate sorting pass because the fragments are
sorted during insertion. This has two major advantages. First, it reduces the heavy work-
load and register-usage of the compositing pass which already performs all shading and
blending computations. Secondly, it enables early termination based on the accumu-
lated opacity of the pixel.

In the presence of non-opaque objects, the geometry pass decides in which buffer a
fragment is stored, depending on its final alpha value. In general, a fragment with an
opacity of less than 100 % is inserted into the A-buffer and then discarded. Otherwise, it
is written to the G-buffer, as illustrated in Figure 5.6.

Utilizing the meta-programming capability of guacamole allows the user to manipu-
late the opacity value at fragment level. This gives a maximum flexibility in managing
object transparency, which is especially useful for the implementation of sophisticated
interaction techniques such as show-through techniques in co-located collaborative vir-
tual environments [4] or group navigation with fading-out obstacles [71]. Furthermore,
it enables advanced materials with a view-dependent transparency, e.g. based on the
Fresnel factor. At the same time, it maintains high performance because all opaque frag-

76 CHAPTER 5 : PROGRAMMABLE ORDER-INDEPENDENT TRANSPARENCY

void submit_fragment () {
manual_depth_test(); // discard hidden fragments

// try to insert transparent fragments in A-buffer
if (gua_alpha < 1.0) {
if (gua_write_to_A_buffer()) {
discard; // success, fragment can be discarded
} else {
// failure, saturation reached -> write depth
gua_write_to_G_buffer();

}
} else {
gua_write_to_G_buffer(); // write opaque fragments

}
}

Figure 5.6: This Figure illustrates the submission of a fragment. If saturation is reached, the depth is written
to the G-buffer to enable manual Z-culling for further fragments.

ments are routed into the G-buffer. Moreover, for materials that do not manipulate the
alpha value, the shader optimization will automatically remove the entire A-buffer deci-
sion path.

In contrast to the original lock-free insertion [73], we employ two enhancements to
improve performance and memory usage. We will elaborate on these improvements in
the following paragraphs.

For all potentially transparent materials, the opacity might depend on external infor-
mation, for example, originating from some input parameter or a texture. This informa-
tion is not known at shader compile-time and might also vary at run-time. As a conse-
quence, the graphics driver makes some assumptions about shader execution, e. g. reg-
ister usage or enabling/disabling rasterization optimizations. In particular, write oper-
ations to global GPU memory in a fragment shader disable the hardware’s early-Z test.
This behavior is caused solely by the presence of these operations in the shader assem-
bly, even if they are never called. The early-Z test could be explicitly enforced. In this
case, all per-fragment tests (depth, stencil, occlusion queries) would be performed not
after, but prior to fragment-shader execution, and the corresponding buffers would be
updated accordingly. However, this is not applicable for our approach as the geometry
pass uses discard operations to prevent writing transparent fragments to the G-buffer.
Thus, performing the depth test for those fragments before shader execution would cor-
rupt the depth buffer. However, an early termination of occluded fragments is highly
desirable. Therefore, we bind the current depth buffer and perform manual conserva-
tive Z-culling. Our results, which are presented in Section 5.6, show that this workaround
is quite effective in rejecting occluded fragments.

Furthermore, the lock-free insertion is capable of discarding fragments that are consid-
ered almost hidden. For each pixel, the algorithm stores a depth-sorted list of fragments.
While inserting a new fragment, the list needs to be traversed to find the correct place

5.5 SYSTEM DESIGN AND PASS DESCRIPTIONS 77

of insertion. During this traversal, the resulting opacity is accumulated and if it exceeds
a predefined threshold, the current, as well as all further fragments, are considered hid-
den. We modified the algorithm in such a way that, if it fails to insert a fragment due
to its accumulated opacity, instead of just discarding, it is written to the depth buftfer, as
indicated in Figure 5.6. As a result, newly generated fragments are culled by our manual
Z-culling prior to the insertion if they fall behind the current depth. This also prevents
memory allocation for those fragments and thereby decreases the algorithm’s memory
footprint.

5.5.3 Light-Culling Pass

Once the geometry is rasterized into the G- and A-buffer, we need to gather light infor-
mation in order to shade the fragments. A straightforward implementation on top of the
deferred shading pipeline may be inefficient in terms of scalability with an increasing
number of light sources. The reason is that, for light accumulation, the proxy geometries
of the light sources are rasterized, and for each affected pixel the lighting contribution is
typically accumulated in the G-buffer. This is sufficient for conventional deferred shad-
ing, but inefficient for transparent fragments as they are stored in per-pixel linked lists
and their frequent traversal would cause many un-coalesced memory accesses.

In order to resolve this issue, we exploit the idea of deferred tile-based shading [96].
In this approach, the non-relevant light sources are culled per pixel or, respectively, per
screen-space tile in a separate pass. Thus, lighting computations are deferred to the
shading pass. Therefore, the frame buffer is covered with a screen-space grid (light grid)
with a fixed tile size (see Figure 5.7a). Then the lights whose volumes intersect the tile’s
frustum are stored within a tile. Subsequently, every pixel is shaded for all lights assigned
to the corresponding tile. While the tile-based shading approach was initially designed
for shading opaque data, it is also quite beneficial for the transparent fragments stored
in the A-buffer. It resolves the aforementioned inefficiencies during light accumulation.
In the compositing pass, the corresponding per-pixel linked lists are only traversed once,
performing fragment shading and compositing on-the-fly.

There are various ways to generate the light grid. In our system, the grid is repre-
sented by a multi-layered 2D texture in which the two-dimensional coordinates address
grid cells. Each texture layer corresponds to a bit field, as shown in Figure 5.7b. If a bit
is set, the corresponding light has a contribution to at least one of the tile’s fragments.
Therefore, each texture stores the information for up to 32 lights, as shown in Figure 5.7c.
If the number of lights is higher than 32, multiple texture layers are used. However, of
course, not all scene lights, but only those visible for the current view, are enumerated
in the bit field.

The grid is populated by rasterizing the light volumes and setting the corresponding
bit for each light fragment using the atomic OR-operation. The resolution of the view-
port is set to the grid resolution, so tile dimensions become equal to one pixel. How-
ever, traditional rasterization evaluates the coverage only at the pixel center. We ensure

78 CHAPTER 5 : PROGRAMMABLE ORDER-INDEPENDENT TRANSPARENCY

e o

0ol 000 . . |

§ i 0ol 00 O oo, |

- 0000, 000, G0 0. |

. 0000, 000, G0 0.
() ©

Figure 5.7: The light grid is populated by rendering the light proxies (a) into a multi-layered texture (c) in which
each bit corresponds to a light. The mapping is stored in a bit-field light map (b).

(a) (b) (© (G

Figure 5.8: In contrast to traditional rasterization (a), conservative rasterization (b) generates fragments also
for partially covered tiles. If this feature is not available, either multisampling (c) or fullscreen (d)
fallbacks may be used.

proper light assignments by enabling conservative rasterization. This type of rasteriza-
tion generates fragments for every pixel if it at least partially overlapped by a primitive.
For hardware which does not support this extension, there are fallback solutions based
on either geometry shaders [57], multi-sampling or full-screen rendering, as illustrated
in Figure 5.8.

5.5.4 Shade-Compositing Pass

In this full-screen pass, the fragments stored in the G-buffer and the A-buffer are shaded
and blended into the final image. Compositing is performed from front-to-back by iter-
ating the A-buffer and accumulating the pixel’s color. We continue until the the depth of
the current fragment is greater than the depth stored in the G-buffer or there are no more
transparent fragments left to shade. After that, the current pixel color can be blended
with the shaded result of the G-buffer content.

Since tile-based shading is used, each fragment needs to be shaded for all light sources
affecting the corresponding tile. For that, we loop over all bits in the tile’s bit field and
perform shading only for those lights whose bit is set. This procedure is identical for
both G-buffer and A-buffer fragments. This way of shading has the following advantages.
The data necessary to shade a fragment is loaded only once. Common terms in the ren-

5.6 RESULTS AND DISCUSSION 79

dering equation can be factored out which is beneficial as we employ a computationally
expensive physically-based shading approach [66]. Furthermore, fragments within the
same tile have coalesced access to light information.

5.5.5 Post-processing Pass

After shading and compositing, additional screen-space effects are applied to the shaded
image through a set of optional post-processing passes. Their configuration and order
of execution is defined by the programmer. They have access to all intermediate buffers
(light grid, G-buffer and A-buffer) which enables a variety of sophisticated rendering ef-
fects.

5.6 Results and Discussion

All tests were performed on a 3.33 GHz Intel Core i7 workstation with 12GiB RAM
equipped with a single NVIDIA GeForce GTX 980 GPU with 4GiB video memory and using
a rendering resolution of 1024x1024.

For the implementation of the A-buffer, we considered various PPLL techniques. In
general, all methods capable of gathering incoming fragments could be used. How-
ever, the choice of algorithm affects the pipeline design, as well as the possibilities
for optimizations. In particular, early-termination based on the pixel’s saturation is
only possible for approaches which sort the fragments on-the-fly. We refer to these
approaches as pre-sort techniques, while we refer to approaches with a separate sort-
ing pass as post-sort. Furthermore, some methods benefit from recent hardware ad-
vancements more than others. Therefore, we compared various state-of-the-art PPLL-
implementations in order to find the best choice on the most recent graphics hardware.
Our comparison includes three base techniques and four variations of them:

- PreSortLF - A lock-free insertion sort based on 64-bit atomic operations [73].
- PreSortLF* - PreSortLF with early termination.

- PreSortLFMerge2* - Similar to PreSortLF* but using two PPLLs to reduce insertion
costs. The two lists are merged during compositing.

- PreSortCS - An insertion sort using a critical section, similar to [142].
- PreSortCS* - PreSortCS with early termination.

- PostSort - A PPLL-implementation as described by Yang et al. [151]. After gathering,
insertion sort is performed in fixed-sized local arrays.

- PostMergel6 - Similar to PostSort, but not limited by a fixed-sized array. Instead,
it performs multi-way merge sort [70] with a chunk size of 16.

80 CHAPTER 5 : PROGRAMMABLE ORDER-INDEPENDENT TRANSPARENCY

16

-
| |

Il

Dragons Sponza, view 1 Sponza, view 2

150

Hairball, view 1 Hairball, view 2

Figure 5.9: Depth complexity heat-maps of the three scenes: the Dragons scene, the Atrium Sponza, and the
Hairball. The bar on the right shows the colors associated with the number of fragments per pixel.

Table 5.1: Rendering time in milliseconds for the A-buffer techniques.

Scene Dragons Sponza, view 1 Sponza, view 2 Hairball, view 1 Hairball, view 2
Fragments 1772682 7940179 7964 342 15398 997 70591231

Stage I1st 2nd total 1st 2nd total 1st 2nd total 1st 2nd total Ist 2nd total
PreSortLF 25 08 33 53 14 67 63 13 76 879 120 999 555.5 1.5 5570
PreSortLF* 23 07 30 52 14 66 52 13 65 242 154 396 56.2 1.7 58.0

PreSortLFMerge2* 25 0.8 33 57 15 73 61 14 75 392 181 573 106.2 20 108.2

PreSortCS 56 09 66 126 34 160 219 28 247 2138 172 231.0 10304 2.4 1032.7
PreSortCS* 56 09 65 121 32 153 127 29 156 297 124 422 71.0 2.2 73.3
PostSort 38 20 58 120 70 190 121 157 278 252 1396 1648 1076 6727 7804

PostMergel6 38 14 52 120 56 176 121 73 194 252 651 90.2 1076 3122 4198

5.6 RESULTS AND DISCUSSION 81

——back-to-front ——front-to-back ——back-to-front ——front-to-back

N
o
N
o

draw time in ms
=
S

draw time in ms
e

n o o

o
o

0 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
planes #planes
(a) Opacity = 50%. (b) Opacity = 80%.

Figure 5.10: This Figure shows the draw times for rendering semi-transparent full-screen planes in different
order of submission. For both tests, the pixel’s saturation threshold was set to 99%. In back-to-front
order (blue), draw times increase almost linearly because the fragments are inserted efficiently
at the front of the A-buffer. In contrast, insertion costs for rendering front-to-back (orange) first
increase almost quadratically but, if saturation is reached, all further fragments can be discarded.
For higher opacity (b), this threshold is reached earlier than for lower opacity (a).

In order to evaluate the performance of each PPLL technique, the following three
scenes have been used: the Dragons, the Atrium Sponza, and the Hairball. Figure 5.9
shows the views and the corresponding complexity of our test scenes. In the applied
material description, a constant opacity value of 50 % was set for all fragments while the
saturation threshold was set to 98 %. However, a direct comparison of the timings of the
subtasks is not possible because, in some cases, they are inseparable. Nevertheless, we
measured the timings for the two major stages. For pre-sort techniques, the 1st stage con-
tains the gathering and sorting of fragments while the 2nd stage performs shading and
blending. For post-sort techniques, the 1st stage simply gathers while the 2nd stage sorts,
shades and blends the fragments. The performance results are summarized in Table 5.1.

The results show that pre-sorting based on lock-free insertion and early termination
performs best for all our scenes. The performance of post-sorting techniques suffers
from the lack of early termination. In addition, we noticed that all lock-free approaches
benefit from the highly improved support for atomic operations of most recent hard-
ware. On previous hardware generations, we found the results were mixed and different
approaches performed best depending on the scene’s complexity.

Nevertheless, there are some limitations in our system. The memory requirements
and the rendering performance are both affected by the order of geometry submission,
the window resolution and applied material descriptions.

The memory budget reserved for storing non-opaque fragments needs to be set in ad-
vance because there is no dynamic memory allocation in shader programs. This is not
a specific limitation of our system, but common to all PPLL implementations. In par-
ticular, the minimum storage requirements for the lock-free insertion [73] consist of the
pre-allocation of all head pointers and the storage for the respective fragment informa-
tion. This represents a space-time tradeoff, but it also implies an overhead if there are no
transparencies present. The necessary memory mainly depends on the amount of trans-

82 CHAPTER 5 : PROGRAMMABLE ORDER-INDEPENDENT TRANSPARENCY

parencies in the scene, the window resolution and the data stored for each fragment.
For example, in our system, 48 bytes are stored for each fragment and 8 bytes are used
for each head pointer which results in a minimum budget of about 60MB for a resolu-
tion of 1024x1024. In our tests, we set the budget to 1GB which was sufficient for all our
models and allows us to store an average number of 18 transparent fragments per-pixel.
However, higher resolutions and depth complexities may require more memory. If the
reserved budget is not sufficient, artifacts may occur. Therefore, an adaptive memory
management is highly desirable, but remains for future consideration.

In our system, occluded fragments can be discarded based on their depth or the pixel’s
accumulated saturation. However, the efficiency of this optimization directly depends
on the order of incoming fragments. If the scene is rendered back-to-front, all fragments
are inserted at the head of the PPLL. The insertion at the head of the list is efficient, but
it does not allow for an early discard of occluded fragments. In this case, the storage
requirements are higher compared to front-to-back rendering.

In addition, the processing of occluded fragments decreases rendering performance.
Figure 5.10 shows our test results for analyzing this effect. In this example, semi-
transparent full-screen planes are rendered in ascending depth order and vice versa. For
a low depth complexity of less than 5 fragments per pixel, both approaches perform al-
most equally. For higher depth complexity, the draw times for front-to-back rendering
increase almost quadratically because the insertion of a fragment requires traversing
the list of all fragments gathered for this pixel. However, once the pixel’s opacity is sat-
urated, the depth is written to the G-buffer and all further fragments can be discarded.
In contrast, the draw times for rendering back-to-front increase linearly, but no discard-
ing is possible. Consequently, the required memory budget and the performance of our
current implementation does not only depend on the current view and the object’s ma-
terials, but also on the order of geometry submission. As a remedy, insertion costs for
front-to-back rendering could be reduced by adapting the lock-free insertion sort.

Furthermore, we measured the performance overhead if no transparent objects were
in the scene. In a first test, we analyzed the material descriptions to disable the A-buffer
initialization and to simplify the shade-compositing pass if all materials were opaque. In
addition, the A-buffer insertion code was automatically removed by the shader optimiza-
tion. As a result, there was no performance overhead at all. However, for some materials,
the transparency calculations may also result in opaque fragments. Therefore, we per-
formed a second test in which the shader optimization was avoided by explicitly setting
the opacity to 100 % via input parameter. The measured draw times indicate that the per-
formance drops about by 4 %. This overhead is caused by the buffer initialization and
the check for transparent fragments during compositing. This constant overhead only
depends on the viewport resolution, not the geometry or depth complexity.

In our system, anti-aliasing is achieved as a post-process using FXAA [34] which has
no additional memory requirements and a very low performance overhead. If a higher
visual quality is desired, multisampling with a corresponding G-buffer could also be con-
sidered. In addition, the A-buffer would need to be extended with a 4-byte sample mask

5.7 CONCLUSION AND FUTURE WORK 83

for each transparent fragment, which would increase the memory requirements by about
10%. During compositing, all fragments would need to be blended based on their trans-
parency and corresponding sample mask.

5.7 Conclusion and Future Work

In this paper, we presented an efficient integration of order-independent transparency
into a programmable deferred shading pipeline. Our pipeline concept is easily extensi-
ble in terms of additional passes, geometry representations and user-defined materials.
Transparency is a property of our material description which is programmable at vertex
and fragment level, thereby, giving the user maximum flexibility to manipulate the opac-
ity values on a per-fragment basis. The material description and the designated shader
programs for different geometry representations are merged using meta-programming
techniques. During rendering, only the transparent fragments are routed into the A-
buffer, which is based on lock-free insertion. All opaque fragments are submitted to
the G-buffer. The light information is gathered in a multi-texture bit-field. Gathering
this information in a separate pass allows for an efficient shading and blending of all
transparent and opaque fragments.

In addition, we evaluated and compared various state-of-the-art A-buffer implemen-
tations to find the most efficient on latest graphics hardware. Based on the results,
we redesigned the deferred shading pipeline of the open-source rendering framework
guacamole to add support for order-independent transparency. The flexibility of pro-
grammable opacity increases the realism and also improves usability and spatial percep-
tion by enabling adaptive fade-outs or see-through lenses. The overhead of our system
is output-sensitive and minimal if only opaque objects are present.

For future work, we plan to improve the dependency between rendering performance
and order of geometry submission. By extending the pre-sorting implementation with
back-pointer semantics, we could greatly reduce insertion costs for front-to-back ren-
dering without losing the benefit of early termination. Furthermore, the proposed light
culling approach has some limitations concerning how lights are assigned to a tile. The
tile frustum intersection test is achieved implicitly by rasterization, which might create
a bottleneck in the scenes with very large number of lights. Therefore, we would like to
investigate depth-aware methods suggested in [56, 97] for use in conjunction with order-
independent transparency.

85

CHAPTER 6
HYBRID IMAGE WARPING FOR STEREOSCOPIC RENDERING

The content of this chapter was published as

Efficient Hybrid Image Warping for High Frame-Rate Stereoscopic Rendering

by Andre Schollmeyer, Simon Schneegans, Stephan Beck, Anthony Steed and Bernd Froehlich

In IEEE Transactions on Visualization and Computer Graphics 23(4), pp. 1332 - 1341, January 2017.
© 2017 [EEE. Reprinted, with permission, from Schollmeyer et al. [124].

(a) LOD point cloud rendering (b) Rendering with highest (c) Rendering with low LOD (d) Rendering with high
of a scanned rock scene LOD quality (20Hz) quality (60Hz) quality and image warping
(60Hz)

Figure 6.1: Our hybrid image warping strategy provides effective high frame rates with high image quality.(a)
Shows a high-quality rendering of a level-of-detail (LOD) point cloud. (b) A zoom-in of this image. At
this level of quality, conventional stereoscopic rendering is quite slow. (c) Shows the level of quality
achievable at 60Hz with conventional rendering. A much lower level of detail must be used. (d)
With our method, 60Hz is achievable at a higher level of detail. Even with minor warping artifacts,
the image quality is significantly better.

6.1 Abstract

Modern virtual reality simulations require a constant high-frame rate from the rendering
engine. They may also require very low latency and stereo images. Previous rendering
engines for virtual reality applications have exploited spatial and temporal coherence by
using image-warping to re-use previous frames or to render a stereo pair at lower cost
than running the full render pipeline twice. However these previous approaches have
shown artifacts or have not scaled well with image size. We present a new image-warping
algorithm that has several novel contributions: an adaptive grid generation algorithm
for proxy geometry for image warping; a low-pass hole-filling algorithm to address un-
occlusion; and support for transparent surfaces by efficiently ray casting transparent
fragments stored in per-pixel linked lists of an A-Buffer. We evaluate our algorithm with

86 CHAPTER 6 : HYBRID IMAGE WARPING FOR STEREOSCOPIC RENDERING

avariety of challenging test cases. The results show that it achieves better quality image-
warping than state-of-the-art techniques and that it can support transparent surfaces
effectively. Finally, we show that our algorithm can achieve image warping at rates suit-
able for practical use in a variety of applications on modern virtual reality equipment.

6.2 Introduction

The real-time generation of realistic imagery remains a considerable challenge for any
rendering engine. Advancements in graphics hardware are often compensated by an
increasing demand for highly detailed models, sophisticated shading effects and high
display resolutions. Furthermore, immersive 3D displays such as head-mounted displays
(HMDs), 3D monitors or stereoscopic projection systems are on the verge of becoming
standard consumer products. For these displays, high frame rates and low latency are
essential requirements to prevent simulator sickness and provide smooth interaction.
For example, the Oculus Rift CV1 is recommending a consistent 90Hz rendering rate.
They also need imagery to be generated for both eyes. As a result, trade-offs between
visual quality and high frame rates become often necessary.

Recent HMD frameworks minimize the latency by predicting the user’s head move-
ments just before display and update the already rendered image by a 2D warp!. This
2D transformation would be sufficient for pure eye rotations, but it also works well for
head rotations because they result in only small positional changes of the eyes. For
position changes of the head, 3D image warping involving the depth buffer is neces-
sary [87]. 3D warping has also been used for stereoscopic image generation [37]. However,
most existing 3D warping approaches do not scale well with increasing image resolution
and are prone to visual artifacts. Furthermore, existing warping approaches for semi-
transparent surfaces [76] are limited to a single layer.

In this paper, we present novel techniques to increase the scalability, applicability and
visual quality of 3D image warping for stereoscopic displays. We start by generating an
image using an existing deferred rendering engine which stores opaque fragments in a
G-Buffer [112] and transparent fragments in per-pixel lists of an A-buffer [73]. For the
G-Buffer, an adaptive grid is generated based on the curvature and continuity of the con-
tained depth image. For the A-Buffer, a min-max quadtree is built to accelerate backward
warping by ray casting. The current stereoscopic views are generated from a reference
image by combined forward and backward warping using these data structures. The grid
and the min-max quadtree are both independent of the warp direction and can be used
multiple times. Potential artifacts are reduced by a novel hole-filling strategy.

Thttps://developer.oculus.com/blog/asynchronous-timewarp-examined/

6.3 RELATED WORK 87

The main contributions of our approach can be summarized as follows:

+ A hybrid warping approach combining grid reprojection for opaque pixels and ray
casting of semi-transparent fragments

- A GPU-based adaptive grid generation for 3D warping which results in fewer prim-
itives than other state-of-the-art approaches

- An efficient A-Buffer ray casting accelerated by a min-max quadtree which is built
on-the-fly

+ A GPU-based depth-aware, low-pass filter for hole filling which achieves higher
quality than existing algorithms

We demonstrate our algorithms for practical virtual reality scenarios by extending an
open-source rendering engine. We provide two warping strategies, one that is best suit-
able for mostly static scenes and one that works better for dynamic scenes. Our imple-
mentation shows that the performance of the warping scales well with high resolutions
due to the adaptive warping grid. Furthermore, it proves that image warping is not lim-
ited to opaque geometry, but can also be combined with per-fragment programmable
transparency. An evaluation shows that our approach produces better results than other
state-of-the-art approaches and may improve performance as well as latency. In addition,
warping in combination with an output-sensitive rendering system may also be used to
significantly improve visual quality while maintaining the same frame rate as conven-
tional rendering, as shown in Figure 6.1. A user study confirms that in some scenar-
ios users strongly prefer stereoscopic warping over conventional stereoscopic rendering
while warping artifacts go largely unnoticed.

6.3 Related Work

Image warping, that is applying geometric transformations to a source image, is a ma-
ture field with several application areas. These transformations often use additional per-
pixel information such as depth or motion. The resulting target image may appear as if
it was created for another perspective. In general, warping is neither injective nor sur-
jective, i.e. the target image may contain artifacts caused by holes and folds. A survey of
rendering systems exploiting temporal coherence by image warping was given by [116].
Furthermore, image warping has been used to generate post-processing effects such as
motion blur and depth of field [90].

6.3.1 Warping of opaque objects

Existing warping algorithms can be categorized by their data-access pattern: forward-
warping algorithms are based on data scattering and backward-warping approaches are
based on data gathering.

88 CHAPTER 6 : HYBRID IMAGE WARPING FOR STEREOSCOPIC RENDERING

The most common data-scattering approach is to render one point for each pixel in
the source image [87] which was also shown for multiple layered depth images [130]. A
problem of this approach is that the calculated target locations are usually not at discrete
pixel locations and coloring the pixel closest to the calculated position will lead to alias-
ing artifacts. Therefore, techniques such as point splatting [147] were proposed and have
been widely used in the context of image warping. However, transforming each pixel sep-
arately does not scale well with increasing image resolutions. Since adjacent pixels from
the source image often keep their relationship after warping, Chen et al. [27] proposed to
warp such areas as blocks. This idea was improved by Didyk et al. [37]. Their GPU-based
implementation repeatedly subdivides a coarse screen-space grid until all pixels of the
grid cells have a maximum allowed depth disparity. The resulting grid is transformed
and rasterized in the destination image space. For opaque objects, we follow the idea of
using an adaptive grid but provide more efficient generation schemes.

For data gathering approaches, suitable color information is retrieved from a single or
multiple source images [152] by an iterative search. An advantage of this method is that
no z-buffering is required because contributing pixels are gathered and composited in
one step. Bowles et al. [18] proposed a search based on a fixed-point iteration. Motivated
by an in-depth analysis of its convergence behavior, they enhanced their system by using
adaptive grid warping to find appropriate iteration starting points. Another data gather-
ing approach is ray casting. Peek et al. [99] used basic ray casting into the depth buffer
to perform translational warping for latency reduction of HMDs.

Both, data scattering and data gathering are used by our system. Data scattering allows
for very quick warping of opaque surfaces while data gathering will be used to composite
semi-transparent image information.

6.3.2 Hole Filling

In many cases, there is not sufficient information in the source image to correctly de-
termine the color of each output pixel. Many strategies have been proposed either to
prevent or fill the resulting holes.

The most common preventive hole-filling approach is to stretch neighboring texture in-
formation over the holes [81]. This results in artificial geometry, so-called "rubber sheets",
spanning the gap between foreground and background. While this popular method is
cost-efficient, it introduces noticeable artifacts especially in the presence of high fre-
quencies in the depth buffer. In order to reduce these artifacts, several works perform a
low-pass filtering on the depth-buffer [155, 58, 103, 102].

Reactive hole-filling methods try to fill holes and therefore relate to image reconstruc-
tion [94]. For tiny holes, simple inpainting methods may be sufficient, for instance,
choosing a random neighboring pixel color [18]. For larger holes, it is possible to extend
the boundary color of a hole in epipolar direction which has similar results as the pre-
ventive rubber sheet approach. Other research focuses on efficient hole-filling strategies
based on ray casting [2]. However, for complex scenes, performing ray casting for scat-

6.3 RELATED WORK 89

Figure 6.2: Visualization of an engine model. Inner parts can be explored using a see-through lens which re-
quires programmable transparency.

tered pixels may represent a potential performance bottleneck. Therefore, we suggest a
novel reactive hole-filling algorithm.

6.3.3 Warping of semi-transparent objects

Many modern rendering engines are based on deferred shading [112]. The color and ge-
ometry information are stored in offscreen render targets (G-Buffer) which makes the
integration of a warping stage straightforward. If support for transparent objects is re-
quired, warping becomes non-trivial. Blending transparencies before warping results in
visual artifacts, as shown in Figure 6.7. Works extending the G-Buffer are limited to a
single layer of semi-transparent objects [76]. A potential solution would be to render and
blend transparent objects for each eye separately.

However, some systems support programmable transparency [120] which allows for
the implementation of advanced 3D interfaces, e.g. see-through techniques [143] as
shown in Figure 6.2. In such a system, the opacity of an object is computed on a per-
fragment basis. All opaque pixels are stored in a G-Buffer, while all transparent frag-
ments are routed into an A-Buffer [22] for later compositing. In this case, re-rendering
transparent objects would usually require re-rendering large parts of the scene which is,
of course, not suitable.

The A-Buffer is a versatile data structure for storing multiple semi-transparent frag-
ments per pixel. The generation of this data structure has been presented before; how-
ever, nothing has been published regarding warping of the A-Buffer.

90 CHAPTER 6 : HYBRID IMAGE WARPING FOR STEREOSCOPIC RENDERING

Existing Pipeline Introduced Warping Stage

Lo
; Generation
Tracking | Ray Screen
Input -Buffer Grid Grid [Hole Casting [fI'Response
Generation [Warping [Filling

Figure 6.3: The warping follows the application processing and the regular rendering. It is separated into two
parts: A warp-direction independent preprocessing stage and the re-rendering which performs the
actual warping based on the latest tracking data as additional input.

Application
Processing

Graphics
Processing

6.4 System Overview

The proposed 3D warping approach is added to an open-source VR-system which imple-
ments a deferred rendering pipeline and supports also programmable transparency [120].
Opaque pixels are stored in a G-Buffer while transparent fragments are stored in an A-
Buffer. These two buffers form the basis of the warping stage, which needs to accom-
plish three major tasks: a 3D depth image warp of opaque pixels, the hole filling and the
reprojection of transparent fragments. The costs of these tasks are highly dependent on
the image resolution. We perform preprocessing to generate appropriate data structures
for accelerating re-rendering. The conceptual integration of such a warping stage into
an existing rendering pipeline is shown in Figure 6.3.

6.5 Warp Preprocessing

As described in the system overview, the results of the application-defined rendering
pipeline are an A-Buffer and a G-Buffer. These two buffers are used to build the following
data structures: an adaptive warp grid for opaque pixels and a min-max quadtree storing
depth values for transparent fragments. Both are used to accelerate the subsequent re-
rendering. In particular, the adaptive grid is used for 3D image warping, while the min-
max quadtree minimizes the costs for the ray casting. However, they do not depend
on the warp direction and thus may be reused multiple times, e.g for both eyes or for
multiple frames in an asynchronous warping system.

6.5.1 Adaptive Grid Generation

The main goal of this stage is to find blocks of adjacent pixels that belong to the same
almost flat and connected surface patch which can therefore be safely warped together
without producing holes and geometric distortions. At first, we filter the depth buffer
in order to find such surface patches. To allow for parallel processing, the source im-
age’s depth buffer is divided into tiles of a certain size, e.g. 32x32 pixel. For each tile,

6.5 WARP PREPROCESSING 91

(a) Didyk et al. ~ 9.3k (b) Cross-kernel & 12.7k (c) Partial cross-kernel & 6.7k (d) Irregular grid ~ 4.3k

Figure 6.4: Depth-buffer quad trees for four different collinearity estimation algorithms and the corresponding
number of primitives. The approach of Didyk et al. (a) tends to split inclined surfaces unnecessarily,
while the cross-kernel estimation (b) leads to over-tessellation close to depth discontinuities. The
partial cross-kernel estimation (c) yields much better results. The number of generated primitives
can be decreased significantly if rectangular cells are allowed (d).

W R &

(@) (b)

Figure 6.5: (a) In the cross-kernel surface reduction, a cell of four pixels is classified as a surface if all eight
collinearity tests (marked as red lines) with the adjacent pixels are true. (b) In contrast, the partial
cross-kernel surface reduction considers a cell of four pixels as a surface if at least one of the four
configurations reports collinearity.

a surface-estimation quadtree is constructed bottom-up. A node in the quadtree only
contains information about the connectedness and flatness of the corresponding area.
Didyk et al. [37] derive connectedness information from the minimum and maximum
depth values of all represented pixels stored in a quadtree. However, their approach
leads to over-tessellation on surfaces which are connected, but tilted with respect to the
camera, as indicated in Figure 6.4a. In contrast, we provide three reduction strategies to
construct a surface-estimation quadtree which also detects surfaces that are slanted in
view space: cross-kernel surface reduction, partial cross-kernel surface reduction and
irregular grid reduction.

In the following, we will elaborate on these three strategies and then we will describe
how to build an adaptive grid from this tree.

6.5.1.1 Cross-Kernel Surface Reduction

Instead of storing and comparing absolute depth values or disparities, this estimate
stores in each quadtree node whether all leaves below this node form a connected sur-
face. For leaf nodes, the four represented pixels are assumed to be part of a larger flat
surface patch if each of them is collinear with its adjacent pixels in 3D space. This is
verified by a set of collinearity tests L : R®> — B. Each collinearity test is based on the
change of differences between the pixel’s depth d; and its neighbors which is computed

92 CHAPTER 6 : HYBRID IMAGE WARPING FOR STEREOSCOPIC RENDERING

as follows:
f(difla d’ia di+l) - |(di71 - dl) - (d’L - di+1)‘ (61)

Slightly curved surfaces are accounted for by introducing an e-tolerance. If f is within
this e-tolerance, the three adjacent pixels are considered approximately collinear. Thus,
a collinearity test L is defined as:

true iff(difl,di,di+1) <e

6.2
false otherwise 6.2)

L(di—1,di, digr1) = {

The cross-kernel surface reduction performs two collinearity tests for each of the four
pixels and the corresponding neighbors in horizontal and vertical direction, as shown in
6.5a. If all eight tests are positive, the four pixels are assumed to form a surface patch.

For all positive tests, the maximum deviation from collinearity is stored as an estima-
tion error for curved surfaces and accumulated to higher levels.

The information of whether four pixels form a connected surface can be safely prop-
agated to higher levels of the quadtree. If all four children of an inner node are part
of a connected surface, they are assumed to be part of the very same surface, because
neighboring patches used overlapping pixel pairs to check for collinearity. The result-
ing quadtree is used to generate an adaptive tessellation in screen space, as shown in
Figure 6.4b. At edges, however, the tessellation may be too fine because the depth dis-
continuity between the edge and the background is propagated to the inner nodes. This
over-tessellation can be reduced using the partial cross-kernel reduction.

6.5.1.2 Partial Cross-Kernel Surface Reduction

In order to detect surfaces close to depth discontinuities, the shape of the kernel has
to be adaptive. Therefore, this reduction strategy assumes a surface if a group of four
pixels is collinear to at least two adjacent sides, as indicated in Figure 6.5b. Using this
improved kernel, it is possible to detect connected surfaces which touch a depth discon-
tinuity. However, it becomes non-trivial to propagate this information to higher levels
of the quadtree. If two adjacent four-pixel groups form a surface each, it would still be
possible that there is a discontinuity between them.

Therefore, each quad-tree node uses multiple bits to encode the connectedness char-
acteristics. Each node separately encodes its connectedness to its left, right, top and bot-
tom neighbor. In addition, storing this information to its four diagonal neighbors can
improve the warp quality, as described in Section 6.6.1. Compared to the cross-kernel re-
duction, eight additional bits encode the partial connectedness of each node to its neigh-
bors. Each bit is set if the adjacent pixels in the corresponding direction are collinear
in 3D space. Using this information, it is possible to propagate surface information to
higher levels in the quadtree. Each inner node forms a surface if its children are each
part of a surface and they are connected in the corresponding directions. If that is the

6.5 WARP PREPROCESSING 93

none all top_bottom top bottom left_right left right

Ob000 0Ob0O0O1T O0ObO10 0bO11 O0ObL100 0Ob101T Ob110 0Ob111

Figure 6.6: Merge modes of the irregular grid: There are eight possibilities of merging adjacent cells to form a
cell with rectangles.

case, the node is marked as belonging to one surface and the connectedness bits of all
children are merged by a logical and.

An example quadtree generated by this reduction is depicted in Figure 6.4c. Far fewer
primitives are generated which speeds up the actual 3D warping process.

6.5.1.3 Irregular Grid Reduction

While the partial cross-kernel reduction already yields much better results, the num-
ber of cells generated can be reduced even further. The idea is to relax the constraint
that each node of the quadtree has to have exactly four children: The irregular grid will
also generate rectangular cells with an aspect ratio of 2 : 1 in the following way. When
four tree nodes are merged to create a new node on the next level, a merge type is as-
signed based on the connectedness of its child nodes. All eight possible configurations
are shown in Figure 6.6. Since there are eight different merge types, three additional bits
are required to encode the merge type of each node. Based on this information, the grid
generation can produce a sparser grid because some adjacent cells will be merged into
one rectangular cell. An example quadtree generated by this reduction is depicted in
6.4d. With this approach, even fewer primitives are generated.

6.5.1.4 Building the grid

The reduction strategies are extensions of each other and are only used separately. Each
strategy will result in a different quadtree. The surface-estimation quadtree is then used
to create an adaptive grid in multiple iterations. Generation starts with a screen-sized
grid with the same tile size used for the generation of the surface-estimation quadtree.
Thus, each cell of the grid corresponds to a quadtree. Then, in each iteration, the con-
nectedness information and the accumulated estimation error stored per node are used
to decide if a grid cell needs to be split. If a node is connected but exceeds a certain es-
timation error threshold, it is split to avoid geometric distortions during warping. Note
that such a split would not affect the connectedness of the grid because the continuity
information is stored separately. This process is repeated until the leaf level is reached.
The size of the resulting grid cells varies between one pixel and the initial cell size. The
adaptive grid generation can be efficiently implemented using a mipmap pyramid for

94 CHAPTER 6 : HYBRID IMAGE WARPING FOR STEREOSCOPIC RENDERING

storing the surface-estimation quadtrees and a transform feedback loop for the multi-
pass grid refinement.

6.5.2 Min-Max Quadtree Generation

Transparent fragments stored in the A-Buffer are re-projected using ray casting. For each
pixel in the destination image, a ray needs to be generated and transformed into the
source image space. These rays easily reach a considerable length and sampling all pix-
els along the ray is not feasible in practice. Furthermore, in single-pass A-Buffer imple-
mentations (e.g. [73]), the fragment data is typically scattered in memory, which results
in incoherent memory access. However, often only a few samples along the ray will ac-
tually contribute to the final color. Therefore, a min-max quadtree is used to allow for
empty space skipping.

The data structure is generated in two main steps on the GPU. At first, the minimum
and the maximum depth of the semi-transparent fragments are gathered per pixel. Then,
a series of parallel reductions is performed to create the quadtree bottom-up. On each
level, it propagates only the minimum and maximum depth of its four children. The
number of required passes depends logarithmically on the resolution of the source im-
age. In order to benefit from texture caching, the quadtree is stored as a mip-map pyra-
mid. The quadtree is recreated every reference frame. However, it is independent of the
warp direction. Once it is created, it can be used to perform multiple consecutive warps.

6.6 RE-RENDERING 95

(a) Input scene (b) Min-max quadtree

Figure 6.7: For a rendered scene (a), a min-max quadtree is used to accelerate the ray casting of semi-
transparent fragments (b). The color coding shows the number of cells a ray traverses. The anaglyph
3D images (c) to (e) show the result of three different warping approaches for semi-transparencies.
(c) Using conventional image warping based on depth values written only by opaque geometry,
the glass appears to be painted on the floor (SSIM=0.885). (d) If semi-transparent geometry con-
tributed to the depth buffer as well, the floor behind the glass seems to be part of the glass texture
in the warped stereo image (SSIM=0.957). (e) These artifacts can be avoided using our approach
(SSIM=0.975).

6.6 Re-rendering

Based on the latest input, the view for each eye is re-rendered in three stages. In the first
stage, the adaptive warp grid is used to reproject all opaque geometry. In the second stage,
the intermediate result is passed to a low-pass filter to mitigate potential dis-occlusion
or aliasing artifacts. Finally, a ray is generated for each pixel and intersected with the
fragments stored in the A-Buffer to gather and blend all semi-transparent objects.

6.6.1 Grid Warping

In this stage, the actual 3D warping of opaque pixels is performed by applying the warp
function to all vertices of the adaptive warping grid, see Figure 6.4. In particular, a depth
value from the source image is retrieved for each grid vertex. Using this depth and the
inverse view projection matrix, all grid vertices are re-projected to world space. Finally,

96 CHAPTER 6 : HYBRID IMAGE WARPING FOR STEREOSCOPIC RENDERING

W -5

(a) Disocclusions (b) Stretched (c) Our method

Figure 6.8: Result of different inpainting hole-filling methods for the oilrig scene.

the view projection matrix of the target camera is used to project the grid vertices to the
target camera’s clip space. Since the projection and view matrices will not change during
one warp, the matrix multiplications can be precomputed to one combined warp matrix.
Thus, only a single matrix multiplication is required to warp a grid vertex.

However, special attention has to be paid to which depth values are used. Existing
grid warping approaches assume vertices between pixels. Consequently, adjacent grid
cells are properly stitched together as their corners use the same depth. While this pre-
vents the generation of holes, foreground and background objects will be connected,
which is usually not desired as it produces similar artifacts as stretched inpainting, see
Figure 6.8b. In contrast, placing grid corners directly on pixels would lead to a large
number of micro holes since neighboring grid vertices do not use the same depth value.

Instead, we use the connectedness information stored in the surface-estimation
quadtree. Grid vertices fetch their depth between pixels, if the adjacent cells form a
connected surface, and directly from pixels, if there is a depth discontinuity between
the cells. At this point, the connectedness to diagonal neighbors is used as well. The
warped grid produces neither rubber sheets nor an excessive number of micro holes.

Another important challenge in grid warping is the texture filtering used. When the
adaptive grid has been rasterized in target image space, a texture lookup into the source
image has to be performed per fragment. Since this lookup location will not coincide
with source pixel locations, interpolation becomes necessary. If linear interpolation is
used, good results are achieved on smooth surfaces. At object boundaries, however, color
would bleed between foreground and background. This sub-pixel effect would cause se-
rious issues with hole-filling strategies, such as inpainting, because the incorrect color
would be extended into the generated holes. On the other hand, nearest-neighbor filter-
ing prevents these issues but causes aliasing artifacts on other surfaces.

Our solution to this issue is similar to the presented grid corner placement. The infor-
mation generated in the preprocessing stage allows for an adaptive solution: we calculate
the appropriate texture coordinates using the surface-estimation quadtree. If the current
pixel is in the vicinity of a depth discontinuity (i.e. none of the corresponding collinear-

6.6 RE-RENDERING 97

Figure 6.9: This example shows five different levels of the filtered image pyramid. Holes and the foreground
object dissolve in higher levels because only non-hole pixels and pixels with a depth larger than the
kernel average are taken into account for filtering.

ity bits is set), nearest neighbor interpolation has to be used. Otherwise, a surface is
assumed that requires linear interpolation.

6.6.2 Hole Filling Using Depth-Based Low-Pass Filter

For hole filling, an epipolar search combined with an adaptive low-pass filtering may
increase the visual quality significantly [80]. Mark blurred the generated stripes with in-
creasing distance from the hole’s boundary. However, an efficient GPU implementation
is far from obvious.

Our solution is to generate multiple low-pass filtered versions of the intermediate
warping result, each version being blurred more than the previous, as shown in Fig-
ure 6.9. In particular, the filter uses depth information to avoid foreground objects from
occluding valid background information. Before averaging the color of pixels within a
certain kernel size, their mean depth is computed. Only pixels which are neither a hole
nor closer to the camera than the average depth are taken into account. This guarantees
that foreground objects are gradually dissolved by the low-pass filtering. The resulting
images are stored in a mip-map pyramid.

Finally, the mip-map pyramid is used to fill holes caused by dis-occlusions. The lookup
level in the pyramid depends on the distance to the background border of the hole. This
border is searched in epipolar direction with an exponentially increasing step size. This
is possible because the filter radius is effectively doubled in each layer of the mip-map
pyramid. This yields a very conservative hole border distance estimate because a precise
nearest-neighbor search would be too slow.

6.6.3 Ray Casting Transparencies in the A-Buffer

The ray casting algorithm performs on the min-max quadtree, see Section 6.5.2, and the
A-Buffer. The traversal of the min-max quadtree is inspired by the stackless height-field

98 CHAPTER 6 : HYBRID IMAGE WARPING FOR STEREOSCOPIC RENDERING

ray casting algorithm presented by Tevs et al. [138]. The generated ray enters the min-
max quadtree at its root node. Its exit intersection with the root node is computed in
screen space using the formulas presented by Dick et al.[36]. The quadtree is traversed
until an intersection with a leaf node occurs. Compared to the original traversal, the algo-
rithm cannot stop, if an intersection is found. Instead it continues to gather transparent
fragments along the ray until either the accumulated opacity exceeds a given threshold
or the ray reaches the depth of the warped grid.

Thus far, a leaf node can be found efficiently; however, the possibility to move upwards
in the quadtree structure is required in order to find secondary hits or to regain traversal
speed when a ray travels close to a semi-transparent surface without actually hitting it.
We follow the approach of Tevs et al. to ascend one level whenever the ray start advances
to a boundary which is also a boundary between nodes one level above. That means,
whenever a node has no sibling in the ray direction, the traversal will ascend one level.

At leaf nodes, the corresponding linked lists from the A-Buffer are searched for inter-
sections and the retrieved colors along the ray are composited. In practice, intersecting
these fragments would cause aliasing artifacts because adjacent fragments do not form
awater-tight surface. A ray could pass between them which would result in micro holes.
Therefore, we extrude each fragment slightly in depth and intersect the resulting box.
We make sure that the ray does not hit any other fragment within the thickness of the
box to avoid multiple intersections with the same surface.

6.7 Evaluation

As mentioned in Section 6.4, the presented algorithms were integrated into an open-
source rendering engine [Schollmeyer2015]. This framework implements programmable
transparency and is therefore well-suited for a test implementation. The underlying de-
ferred rendering pipeline was extended with two different warping strategies, see Fig-
ure 6.10. Cyclops warping warps a frame from a central rendered perspective into the
left and right eye. Alternate frame warping exploits temporal coherence by warping the
left and right reference views for two consecutive frames. Each strategy can be enabled
instead of conventional stereo rendering. Depending on the type of interaction and 3D
content, both approaches have their advantages and disadvantages which will be dis-
cussed later.

All tests were performed on a 3.33 GHz Intel Core i7 workstation with 12GiB RAM
equipped with a single NVIDIA GeForce GTX 980 GPU with 4GiB video memory. All per-
formance timings were measured for a rendering resolution of 1920x1080, if not stated
otherwise. The maximum node size for both the surface estimation quadtree and the
min-max quadtree was set to 32x32 pixel. In all tests, except the comparison of the differ-
ent surface estimation strategies, the irregular grid reduction was used for the adaptive
grid generation. The test scenes are depicted in Figure 6.11.

6.7 EVALUATION 99

. rendering
/. warping

e pg——
left cyclops right left cyclops right
(a) ®) (©

swap
frame 4

swap
frame 3

swap

.
o
.
v

swap
frame 1

Figure 6.10: Our two proposed image warping strategies. Cyclops warping from a central perspective (a) and
alternate frame warping for two consecutive frames (b).

A

(b) Hairball (c) Sponza

Figure 6.11: This Figure shows our test scenes with different complexities: The oilrig (a) has some large surfaces,
but also many small geometries and occlusions. The hairball (b) represents a worst case scenario
for the grid generation as it has a high frequency of depth discontinuities. For the evaluation of
the ray casting, the standard Sponza scene (c) was extended with galleries of semi-transparent
windows.

6.7.1 Results

A detailed comparison of the timings for the adaptive grid generation and warping is
shown in Figure 6.12. For all scenes, the proposed reduction strategies perform much bet-
ter than the method proposed by [37] because they produce far fewer primitives. Mostly,
the irregular grid strategy will produce the smallest number of grid cells. However, a sig-
nificant difference between our strategies can only be observed for the extreme hairball
scene.

Furthermore, we evaluated the costs for the different warping stages. The graph,
shown in Figure 6.14, indicates that the performance of most stages is hardly affected
by the scene complexity. Only for the hairball, the grid generation does not benefit from

100 CHAPTER 6 : HYBRID IMAGE WARPING FOR STEREOSCOPIC RENDERING

Didyk et al. | [

Cross-kernel | []

[] Grid warping
[J Grid generation

QOilrig

Partial cross-kernel [|

Irregular grid | [|

Didyk et al.| [|

Cross-kernel | [|

Hairball

Partial cross-kernel [|

Irregular grid [|

Didyk et al. | [|

Cross-kernel | [|

Sponza

Partial cross-kernel [|

Irregular grid | []

T T T T T T 1
0 0.5 1 15 2 2.5 3

Time in [ms]

Figure 6.12: Comparison of different surface estimation strategies.

_ [] Didyk et al.
[] Cross-kernel

Oilrig [Partial cross-kernel

i [Irregular grid

Hairball]

Sponza E’—‘
T T T T T T

0.00 500.00 k 1.00M 1.50 M 2.00 M 2.50 M 3.00 M
Number of primitives in grid

Figure 6.13: Comparison of number of primitives in the adaptive grid for different surface estimation strategies.

the adaptive reduction which results in more primitives that need to be reprojected, as
shown in Figure 6.13.

We also evaluated the image quality of our adaptive grid warping. Table 6.1 shows
a comparison of the resulting image errors between our method and an implementa-
tion of [37]. For better comparability, both methods used our hole-filling approach. The
results indicate that although less triangles are used for warping, the image quality is
almost equal. In two cases, our results are even slightly closer to ground truth. This is
because of two reasons. The adaptive grid generation prevents an over-tessellation of
slanted surfaces which may cause aliasing artifacts after reprojection. Furthermore, the
adaptive texture filtering at depth discontinuities improves the quality of the hole-filling.
In conclusion, our method delivers the same quality as Didyk et al. while being signifi-
cantly faster (see Fig. 6.12) in most cases.

In addition, we evaluated how our algorithms scale with increasing image resolutions.

6.7 EVALUATION 101

T [Ray casting & hole filling
Oi\rigi | | | | | [] Grid warping
oo [T] | it
Sponza | | | | | [0 Grid generation
0 | 2] J :

Time in [ms]

Figure 6.14: These timings show that all stages perform almost scene-independently. In the extreme hairball
scene, grid generation and grid warping stages are slower because they do not benefit equally from
the adaptive grid generation. For sponza, the costs for ray casting are slightly higher because semi-
transparent surfaces are visible.

Error metric Didyk et al. Our method
Ol PSNR 25.4221 25.4061
& SSIM 0.95673 0.95647
S PSNR 20.6883 20.7276
SSIM 0.90727 0.90774
Shomga PSNR 35.6339 35.8308
P SSIM 0.99141 0.99148

Table 6.1: This table shows the image warping error for our test scenes. For all views, the image quality of our
approach is almost equal to Didyk et al. In some cases, it is even slightly better due to the adaptive
texture filtering and the prevention of over-tessellation.

Figure 6.13 shows that the number of primitives in the grid increases sublinearly with
higher resolutions due to the adaptive grid generation. The corresponding timings of
the different stages are illustrated in Figure 6.15. Ray casting and hole filling can be ef-
ficiently performed in a single pass as they both operate on a per-pixel level. Therefore,
the corresponding timings appear as one stage in the graph. Although, some stages ex-
hibit sublinear behavior, most stages also include parts thatlinearly depend on the image
resolution, e.g. the rasterization of the grid and the ray casting.

As shown in Figure 6.7, ray casting the A-Buffer for warping transluscent fragments
results in images hardly distinguishable from the ground truth image. This was also con-
firmed by the corresponding image error metrics. The ray casting stage requires less than
1ms for the Sponza scene with the translucent window gallery, as shown in Figure 6.14.
In general, the performance may depend on the application scenario. It is interesting
to observe that an increasing warp disparity affects the performance of the ray casting
much more than a high depth complexity of semi-transparent fragments. If per-fragment
programmable transparency is required, ray casting of the A-Buffer is probably the only
suitable option because an efficient forward warping algorithm for these fragments has
not been shown yet. For scenes with constant per-object opacity values, however, sepa-

102 CHAPTER 6 : HYBRID IMAGE WARPING FOR STEREOSCOPIC RENDERING

129 ~3.0M
[0 Raycasting & hole filling
104 [l Grid warping —25M
[0 Low-pass filtering =
O Min-max quadtree gﬂ
_ s 0 Grid generatlonv F2aom =
O | |eesese Generated primitives ¢
é =
= k=]
£ €
: ol FemE
E ks
=
" Fiom &
€
S
=z
2 /\/—/—/\//—/ 1-500.0 k
cesces
.o
0 T T T T T T T T 00

T
2.00M 400M 6.00 M 8.00 M 2.00M 4.00M 6.00 M 8.00 M
Resolution in pixels

Figure 6.15: This graph shows the contributions of the different stages to the warping time for different resolu-
tions of the oilrig (left) and the hairball scene (right).

Error metric Rubber sheets Stretch inpaint ~ Our method
Oilri PSNR 24.36 24.67 2591
& SSIM 0.92580 0.94359 0.95277
Hairball PSNR 20.60 20.42 21.60
SSIM 0.87819 0.87642 0.90650
Sponza PSNR 35.45 3741 37.63
P SSIM 0.99449 0.99486 0.99461

Table 6.2: Image quality results for various hole-filling strategies: For each result, the luminance of the warped
image and of a ground-truth image were compared. Green numbers are the best results for each
metric while red numbers are the worst results.

rate rendering and compositing of semi-transparent objects may be in some cases more
efficient than our approach.

We also evaluated our hole-filling method in comparison to other approaches. There-
fore, we compared warped images with ground truth images by using various image qual-
ity metrics. In the related literature, other researchers used the peak signal-to-noise ratio
(PSNR) and the structural similarity index (SSIM) [145]. The latter was proven to correlate
better with perceived quality than PSNR [54]. However, we will present both for better
comparability. The results are shown in Table 6.2. For the given test scenes, our method
provides the highest quality, but was only about 0.3ms slower compared to stretched in-
painting. The kernel-size of the filter and the reduction heuristic both allow for tradeoffs
between quality and performance.

Finally, we briefly investigated the potential gain in visual quality when combining our
approach with an output-sensitive rendering system. For this purpose, we integrated a

6.7 EVALUATION 103

renderer for level-of-detail point clouds, similar to [48]. In this system, the performance
can be increased by decreasing the model fidelity. However, if image warping was en-
abled, a higher level-of-detail could be rendered at the same frame rates. We assumed
that the resulting increase in image quality would outweight potential warping artifacts.
Figure 6.1 shows some results for a rock scene which consists of about 400 million points
at the highest detail. For the view shown in 6.1a, a pixel-accurate stereoscopic rendering
performs at about 20Hz. A corresponding close-up is shown in Figures 6.1b to 6.1d. If a
frame rate of 60Hz was required, the necessary decrease of fidelity led to a perceivable
loss of detailed features (SSIM=0.945), as shown in 6.1c. In contrast, using image warping,
the resulting image quality loss could hardly be seen (SSIM=0.990).

6.7.2 User study

The presented algorithms can increase the efficiency, quality and applicability of stereo-
scopic rendering via image warping. However, image warping may introduce visual ar-
tifacts which can hardly be evaluated using quantitative error metrics. Therefore, a user
study was conducted with 16 participants (2 female, 14 males) between 20 and 38 years
old, each experienced in 3D computer graphics and the usage of stereoscopic displays.

6.7.2.1 Study Design

The users were head-tracked and they could freely move in front of a 27-inch passive
stereoscopic display with a resolution of 2560x1440 pixels for each eye. As shown in Fig-
ure 6.17a, the display employs a semi-transparent mirror and two monitors with Nvidia G-
Sync support. We chose this display because we did not get access to the raw position and
orientation tracking data of recent HMDs. Furthermore, the performance gained by im-
age warping directly results in higher frame rates without screen tearing because of the
adaptive synchronization between graphics hardware and monitor via G-Sync. The evalu-
ation was performed using conventional rendering and two warping strategies which are
illustrated in Figure 6.10. The users were asked to rank the different rendering modes by
their preference. They were allowed to indicate ties because a forced choice may have
distorted the result. Furthermore, the users answered detailed Likert-scale questions
about the perceived pleasantness, performance, image quality and latency while they
were using the system.

Our study was focused on the evaluation of the grid warping and the hole-filling strate-
gies. There were three different test scenes: the rock (Figure 6.16¢), the oil rig (Fig-
ure 6.16b) and a scene with many textured balls (Figure 6.16a) which were falling on
the ground, colliding and rolling away. The ball scene was chosen to investigate how
image warping is perceived in highly dynamic scenes. In contrast, the rock and the oil
rig scenes are both static scenes and were used to investigate how image warping is per-
ceived for highly detailed scenes. However, while the oil rig has a high depth complexity

104 CHAPTER 6 : HYBRID IMAGE WARPING FOR STEREOSCOPIC RENDERING

(a) Balls (b) Oil rig (c) Rock

Figure 6.16: In the user study, the participants were shown three different scenes: a physics simulation showing
many bouncing balls (a), the oil rig (b) and a highly-detailed rock scene (c). The frame rates for the
test scenes in all rendering modes are shown in Figure 6.17b.

. III III 1|
0

Balls Qil rig Rock
m Conventional m Cyclops m Alternate frame

Average fps
S

(a) Display setup (b) Performance

Figure 6.17: The rendering performance was logged while participants moved in front of the stereoscopic dis-
play (a). The average frame rates and their standard deviation are shown in (b).

with many potential un-occlusions, the rock scene is highly realistic with many little fea-
tures on the rock. Figure 6.17b shows the average frame rates for all scenes and rendering
modes. The oil rig scene rendered at about 43Hz with regular stereoscopic rendering and
at about 55Hz with warping, the rock with 18Hz and 26Hz, and the balls scene with 45Hz
and 55Hz. The regular end-to-end latency of our system depends on the frame rate and
ranges from about 70ms at 60Hz to about 105ms at 20Hz and was measured based on Fris-
ton et al. [46]. Furthermore, we limited user interaction to tracked head-movements to
avoid confounding influences of navigation parameters, viewing angles and potentially
varying frame rates.

Two separate tests were performed. In both tests, the scenes were shown in random
order. In the first test, for each scene the participants could switch between three render
modes in shuffled order: conventional stereoscopic rendering, cyclops warping and alter-
nate frame warping. In the second test, each scene was rendered using alternate frame
warping and the users could choose between our hole-filling method and stretching.

6.7.2.2 Study Results

The results of our study are shown in Figure 6.18. They indicate that the participants’
general preferences depend on the scene content. For the rock scene, both warping ap-
proaches were preferred to conventional rendering. For the oil rig, conventional render-

6.7 EVALUATION 105

15

© 5

e 3

& 10 e

= RO

& o [| — & ﬁ

& Balls Qil rig Rock Balls QOil rig Rock
m Conventional m Cyclops m Alternate frame m Conventional m Cyclops m Alternate frame
5 5

©)

S 4 = 4

© 35

€3 o3

k] ©

il B

a >
1 1

Balls Qil rig Rock Balls QOil rig Rock

m Conventional m Cyclops m Alternate frame m Conventional m Cyclops m Alternate frame

Figure 6.18: These are the results for the warping strategy evaluation. The upper left diagram shows the pre-
ferred modes for all participants. If a user indicated a tie between two preferred modes, both were
counted. The other diagrams show the mean values and standard deviations of the answers to the
detailed questions about the perceived pleasantness, performance and visual quality.

ing and alternate frame warping were preferred, while the latter was quite unpopular for
rendering the ball scene.

The answers to our detailed questions point to the reasons for these results. The par-
ticipants replied to these questions on a 5-point Likert scale ranging from worst (1) to
best (5). For the evaluation of the answers, we used two-sided, paired sample t-tests and
an a-value of 0.05. After the Bonferroni adjustment, we obtain statistical significance for
t-values greater than 7.6488 or p-values lower than 0.0166 respectively.

For all three scenes, the general preferences mostly coincide with the perceived pleas-
antness. In particular, for the rock scene alternate frame warping (¢(2) = 19.8024,p =
0.0025) and cyclops warping (£(2) = 9.8042,p = 0.01024) were considered significantly
more pleasant than conventional rendering, mainly because both were perceived more
fluent (¢(2) = 5011.1,p = 3.9810~8 for alternate frame warping and #(2) = 51.178,p =
0.0004 for cyclops warping) while no difference in visual quality was observed. In con-
trast, many visual artifacts were noticed for the cyclops warping of the oil rig (p ~ 0)
because of its high depth complexity and the resulting un-occlusions.

For the ball scene, users found alternate frame warping quite unpleasant compared
to conventional rendering (¢(2) = 6.8375, p = 0.0207). The lower update rate of dynamic
objects for the alternate frame warping and the conventional rendering was interpreted
as visual artifacts by many users. Surprisingly, the image errors of cyclops warping were
barely noticed for this scene.

The outcome of the second test, in which we compared the different hole-filling ap-
proaches, did not show significant differences. Preliminary tests on a stereoscopic,
projection-based display indicated that differences are perceivable on larger screens.

106 CHAPTER 6 : HYBRID IMAGE WARPING FOR STEREOSCOPIC RENDERING

Further studies are necessary, but remain future work.

In conclusion, the study confirms that image warping was preferred to conventional
rendering for two of three scenes and visual artifacts went mostly unnoticed. However,
the choice of the warping strategy highly depends on the dynamics in the scene.

6.7.3 Discussion and Limitations

In this work, we focused on the development of scalable image-warping algorithms for
high frame-rate, low-latency stereoscopic rendering systems. We suggested two warp-
ing strategies: cyclops warping and alternate frame warping. Cyclops warping updates
the positions of moving objects in each frame whereas alternate frame rendering has
the disadvantage that it can only update moving objects every second frame. However,
the beauty of alternate frame warping is that it converges to correct and artifact-free im-
ages when the user slows down. Furthermore, additional per-pixel motion information
could be used to improve the warping of dynamic objects [135, 134] for both warping
approaches, but in particular for the alternate frame warping. Although, this could be
added easily for the grid-based forward warping of opaque pixels, an adaptation of our
ray-casting based warping of translucent fragments is quite intricate. In particular, it
would require to reinsert all dynamic fragments into the A-Buffer at their new positions
and thereby also trigger a recreation of the corresponding min-max quadtree. For dy-
namic light sources, per-pixel object ids could be used to reshade the warped fragments.
However, in most modern rendering engines the shading computations are quite costly.
If they would be performed for each pixel in the target image, grid warping may become
a bottleneck for high resolutions.

The results of the warping process can be further improved by adding prediction of
head movements which is currently not supported in our system. Prediction could not
only minimize the perceived latency; it would also decrease the warping distance and
therefore improve the visual image quality of the warp. Our approaches can be also
implemented if the rendering of reference frames and warping are performed asyn-
chronously [134]. However, for an implementation on a single graphics card effective
fine-granular preemption and a high-priority context are needed. Both are not yet avail-
able in OpenGL.

The applicability of our warping approach depends strongly on the achievable frame
rates for rendering the scene, the image resolution and the complexity of the scene. Fig-
ure 6.15 shows that for today’s image resolutions of head-mounted displays of around
two to three megapixels for both eyes together (a single display stretching across both
eyes is typically used), the complete warping for the left and right eye can be performed
in two to four milliseconds on current GPUs. If we want to achieve a frame rate of 90Hz
for stereoscopic applications, this leaves us with only 5.5ms for rendering each eye. If
we use warping instead, and assume a cost of 3ms, we can spend 8ms on rendering one
view. That corresponds to a 45% increase in geometry, shading complexity or generally
visual quality. At the same time the latency is reduced by 8ms (11ms-3ms). This relation-

6.8 CONCLUSION AND FUTURE WORK 107

ship improves for lower frame rates, e.g. at 60Hz we have about 8ms per eye for regular
stereoscopic rendering. We can spend 13ms on rendering if we use 3ms on warping both
eyes. That corresponds to more than a 60% increase in rendering time for the scene. At
the same time, the latency decreases by about 13ms. This confirms that the technique
is a good match for today’s GPU and HMD configurations. Figure 6.15 also reveals that
warping would not be worthwhile on current GPUs if the resolution of the head-mounted
displays increases to 4 or even 8 megapixels. However, we expect that the performance
of the GPUs also increases in lockstep and thus our techniques will remain useful in the
future.

The memory requirements of the presented algorithms are quite decent. For full-HD
resolution, all required intermediate data structures sum up to 68.6MiB. However, the im-
plementation of an A-Buffer involves the allocation of a fixed memory budget which may
require hundreds of megabytes depending on the image resolution and the application
scenario.

6.8 Conclusion and Future Work

Our algorithms increase the scalability and applicability of image warping as a means
to improve the frame rate and latency of stereoscopic rendering systems. We presented
three novel reduction schemes to generate a surface-estimation quadtree for a depth im-
age. Based on the continuity information stored in this data structure, an adaptive grid
for positional image warping is generated. We have shown that our approach yields fewer
primitives than other methods and therefore decreases the warping overhead. An impor-
tant feature of our algorithm is that the detected continuity is used to adaptively adjust
the grid vertices’ position and color texture lookup such that both aliasing and stretching
artifacts are mostly prevented and become almost imperceptible in head-tracked envi-
ronments. Furthermore, we suggest an efficient method for ray casting translucent frag-
ments stored in an A-Buffer, which integrates well into our warping. Potential artifacts
due to disocclusions are mitigated by a depth-based low-pass filter.

In order to confirm these claims, we integrated two warping strategies based on our al-
gorithms into an open-source rendering engine and performed quantitative tests consid-
ering the image quality and performance as well as a user study. Performance improve-
ments are scene-dependent and are typically in the range of 20 to 40% in our scenarios.
Image quality for stereoscopic warping was not significantly decreased compared to con-
ventional rendering and was hardly noticed by users in head-tracked environments. The
evaluation of our user study reveals that rendering modes with image warping were pre-
ferred for two test scenarios.

Ray casting the A-Buffer has far fewer disocclusion artifacts than the forward warp-
ing of the depth buffer since the A-Buffer effectively contains a rasterised version of the
complete set of (partially) visible translucent surfaces. Thus re-rendering the discretized
scene description contained in the A-Buffer from a slightly different perspective works

108 CHAPTER 6 : HYBRID IMAGE WARPING FOR STEREOSCOPIC RENDERING

well. Tt also performs well if the number of visible translucent fragments is limited. How-
ever, this approach cannot be easily transferred to larger scenes of opaque objects with
non-trivial depth complexity since it becomes inefficient to store a discretized version of
the entire scene in a multi-layered G-Buffer even though this would have the advantage
that G-Buffer and A-Buffer could be merged into one buffer. Nevertheless, we think that
there is potential to apply this idea to a conservative approximation of the potentially
visible set of opaque and transparent objects instead of the entire scene.

Our efficient and high-quality image warping contributes to the arsenal of practical so-
lutions to respond to the challenges of modern virtual reality applications such as stereo-
scopic rendering, effective handling of transparencies, high frame rates and low latency.

109

CHAPTER 7
CONCLUSION AND FUTURE WORK

This thesis presented a set of novel rendering algorithms, data structures and strategies
that improve the interactive visualization of higher-order geometric representations as
commonly used in computer-aided design applications. The algorithms are described in
the main chapters 3 to 6 — each focusing on a different visualization aspect: direct ren-
dering of trimmed NURBS surfaces, direct isosurface ray casting of NURBS-based simu-
lation data, programmable order-independent transparency, and accelerated rendering
for stereoscopic displays. Each of these chapters discussed the corresponding state-of-
the-art in order to motivate and explain the design decisions that led to the proposed
algorithms and data structures. All approaches were fully implemented and comprehen-
sively evaluated. The results of the evaluation include qualitative and quantitative mea-
surements that show the methods’ applicability and the advancements in comparison to
related work. In addition, all implementations were made open source! to increase the
comprehensibility of the corresponding publications and to allow other researchers to
compare their work with the presented approaches.

7.1 Contributions

The contributions of this work include novel rendering algorithms, data structures and
traversal schemes, heuristics and strategies for cost optimization, numerical robustness
and the reduction of visual artifacts.

In particular, Chapter 3 presented a direct rendering approach for trimmed NURBS sur-
faces, which includes the following main contributions: (1) a pixel-accurate three-pass
rendering scheme based on adaptive tessellation, (2) a novel cost-optimized partitioning
and traversal scheme for trimming, and (3) an additional pixel-coverage estimation of
trimmed edges for anti-aliasing.

!The implementations of the algorithms described in Chapter 3 and 4 are available on
https://github.com/vrsys/gpucast. The concepts presented in Chapters 5 and 6 were integrated into the
rendering engine guacamole, which is available on https://github.com/vrsys/guacamole.

https://github.com/vrsys/gpucast
https://github.com/vrsys/guacamole

110 CHAPTER 7 : CONCLUSION AND FUTURE WORK

Chapter 4 proposed a direct isosurface ray-casting system for the visualization of
NURBS-based simulation data. The very high costs for ray-surface intersections, root-
finding and sampling could be greatly reduced by (1) a novel ray-interval generation
scheme based on per-pixel linked lists and (2) an efficient solution for the memory-
allocation bottleneck.

The evaluation of both direct rendering approaches, for trimmed NURBS surfaces and
NURBS-based isogeometric analysis, proves that higher-order geometric data represen-
tations can be rendered directly, interactively and accurately without time-consuming
preprocessing or approximation steps. In particular, the proposed direct trimming ap-
proach advances existing state-of-the-art methods [123, 31, 150] in terms of efficiency, per-
formance, stability, and image quality to a level of industrial applicability. An integration
into standard CAD software is easily conceivable and would highly increase image quality
and rendering performance. On the other hand, the isosurface ray-casting approach for
NURBS-based simulations is distinguished by being the first prototype of a direct interac-
tive rendering system for volumetric NURBS representations. The approach was picked
up by most recent research on this topic [47] and will be of increasing importance due to
the growing interest in isogeometric analysis [33].

Furthermore, Chapter 5 introduced the versatile concept of programmable order-
independent transparency, which increases the applicability of the proposed direct ren-
dering approaches. In particular, programmable semi-transparent geometry and its cor-
rect blending are a necessity for collaborative 3D interaction techniques [4], where mul-
tiple users explore and interact with a CAD model in a shared virtual environment. Fur-
thermore, programmable transparency is also important for illustrative rendering and
the visualization of depth-complex CAD models. The realization was based on the in-
troduction of (1) a programmable and easy-to-use material concept, (2) a corresponding
shader optimization to minimize the overhead for opaque geometry, and (3) an efficient,
tile-based light source accumulation to reduce per-pixel shading costs. Up to this day,
there is no other rendering engine available that supports these features.

Nevertheless, computer-aided design applications are not limited to common desktop
environments. Virtual environments and 3D displays are increasingly used for the design
and review of CAD models. The necessary stereoscopic rendering often represents a per-
formance bottleneck. Chapter 6 described the development of a depth-image warping
approach which increases the crucial rendering performance for stereoscopic displays.
This hybrid rendering method works for both, semi-transparent and opaque geometry,
by proposing (1) a novel adaptive grid generation for an efficient re-rendering of opaque
geometry, (2) the on-the-fly generation of min-max-quadtrees to accelerate ray casting
of semi-transparent fragments, and (3) a depth-aware low-pass filter for the reduction of
disocclusion artifacts. In addition, it was the first system that showed interactive depth-
image warping for an arbitrary number of semi-transparent layers.

Both, the algorithms for programmable order-independent transparency and hybrid
depth-image warping, perform at a pixel-based granularity because they are executed
after the rasterization in the graphics pipeline. Therefore, their use is not limited to

7.2 FORESIGHT AND FUTURE WORK 111

higher-order geometric data, but they are applicable to any kind of geometric represen-
tation as well — including triangle meshes. Consequently, the corresponding publica-
tions present the algorithms in a general way and contribute as well to the much larger
computer graphics, augmented and virtual reality community.

7.2 Foresight and Future Work

The usage of computer-aided design tools, CAD model visualization and computer-aided
manufacturing is no longer limited to a specialized group of users or professions. Easy-
to-use 3D modeling and simulation tools are readily available with interfaces for online
3D printing and visualization using VR/AR head-mounted displays. Most users only have
mobile devices, integrated or low-cost graphics processors at their disposal, which have
much less computational power than dedicated high-end graphics hardware. This re-
quires further optimizations or different rendering techniques.

In general, computational costs can be reduced by increasing the level of output-
sensitivity. All of the presented approaches are already output-sensitive and aim for
pixel-accurate rendering with mostly fill-rate dependent performance. In particular, the
direct rendering algorithms for trimmed NURBS surfaces and NURBS-based simulation
data focus on a precise visualization of the parametric description by means of adap-
tive tessellation and ray casting, respectively. Both works well for medium to close view-
ing distances (magnification). However, using the exact parametric description may be-
come incoherent and inefficient for far viewing distances (minification). Objects that
are far away, tiny or (partially) hidden may produce a large amount of computational
costs, even if their visible output is barely perceivable. The integration of level-of-detail
representations and occlusion culling techniques is highly desirable, as they would both
decrease the computational load. For rendering trimmed NURBS surfaces, tessellation-
based level-of-detail methods [51] have been presented and could be used to accelerate
rendering for the minification case. However, polygonal level-of-detail methods are often
prone to popping artifacts and increase memory requirements. Advanced methods [59]
blend between different levels of detail, but are only suitable for static models. Instead,
the development of a parametric level-of-detail representation is conceivable, based on
simplifications by means of knot- and degree reduction and re-parametrization of the
original NURBS input. Such a representation would be slim and reduce the required
memory bandwidth. Different levels of detail could be blended easily. The necessary
error control and minimization, however, requires further research. A similar approach
is also conceivable for NURBS-based isogeometric analysis.

Furthermore, latest advancements of display technologies include higher resolutions,
wider field of views, high-dynamic range- and eye tracking capabilities [14]. In general,
higher resolutions increase the computational costs for rendering. However, particularly
gaze recognition by means of eye- and head tracking can be used to reduce these costs.
The idea of foveated rendering [50] adapts the sampling rate to the limited acuity of the vi-

112 CHAPTER 7 : CONCLUSION AND FUTURE WORK

sual periphery. In a similar way, the error estimation of the presented approaches could
be adapted accordingly. In particular, the gaze direction could be included in the compu-
tation of the tessellation factors (Chapter 3), the sampling rate of isosurface ray casting
(Chapter 4) and the adaptive grid generation (Chapter 6).

And last but not least, it would be great to see an integration into an existing CAD
application with interactive modeling capabilities, an advanced material- and shading
concept and a virtual reality interface. All implementations were made available as open
source to facilitate this step and we hope that colleagues will be able to benefit from the
performance and quality improvements presented in this work.

113

BIBLIOGRAPHY

[1] O. Abert, M. Geimer, and S. Muller. Direct and fast ray tracing of nurbs surfaces.
In 2006 IEEE Symposium on Interactive Ray Tracing, pages 161-168, Sept 2006.

[2] S.]J. Adelson and L. F. Hodges. Generating exact ray-traced animation frames by
reprojection. Computer Graphics and Applications, 15(3):43-52, May 1995.

[3] T. Akenine-Moller, E. Haines, and N. Hoffman. Real-Time Rendering 3rd Edition.
A. K. Peters, Ltd., Natick, MA, USA, 2008.

[4] F. Argelaguet, A. Kulik, A. Kunert, C. Andujar, and B. Froehlich. See-through
techniques for referential awareness in collaborative virtual reality. International
Journal of Human-Computer Studies, 69(6):387-400, 2011.

[5] A. Babanin. Order-Independent Transparency for Programmable Deferred Shad-
ing Pipelines. Master’s thesis, Bauhaus-Universitat Weimar, Germany, March 2015.

[6] A. Baldsz, M. Guthe, and R. Klein. Fat Borders: Gap Filling for Efficient View-
Dependent LOD NURBS Rendering. In D. Reiners, D. Fellner, R. Klein, and J. Kautz,
editors, Computers and Graphics, volume 28, pages 79-86. Elsevier, Feb. 2004.

[7] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The quickhull algorithm for convex
hulls. ACM Transactions on Mathematical Software, 22:469-483, December 1996.

[8] F.Bauer, M. Knuth, and J. Bender. Screen-Space Ambient Occlusion Using A-Buffer
Techniques. In 2013 International Conference on Computer-Aided Design and
Computer Graphics, pages 140-147. IEEE, Nov. 2013.

[9] L. Bavoil and K. Myers. Order Independent Transparency with Dual Depth Peeling.
Technical report, NVIDIA Corporation, 2008.

[10] S. Bayraktar, U. Gudiikbay, and B. Ozglic. GPU-Based Neighbor-Search Algorithm
for Particle Simulations. Journal of Graphics, GPU, and Game Tools, 14(1):31-42,
Jan. 2009.

[11] Y. Bazilevs, V. M. Calo, T. J. R. Hughes, and Y. Zhang. Isogeometric fluid-structure
interaction: theory, algorithms, and computations. Computational Mechanics,
43(1):3-37, 2008.

114

BIBLIOGRAPHY

[12] S. Beck, A. Kunert, A. Kulik, and B. Froehlich. Immersive group-to-group telepres-

[22

[24

]

ence. [EFEF Transactions on Visualization and Computer Graphics, 19(4):616-625,
April 2013.

C. Benthin, S. Woop, M. Niessner, K. Selgrad, and I. Wald. Efficient ray trac-
ing of subdivision surfaces using tessellation caching. In Proceedings of the 7th
Conference on High-Performance Graphics, HPG '15, pages 5-12, New York, NY,
USA, 2015. ACM.

K. Berkner-Cieslicki, R. J. Motta, S. H. Lim, M. Kim, K. Saito, B. Petljanski, J. C.
Sauers, and Y. Shinohara. Eye tracking system, 2018.

J. F. Blinn. A scan line algorithm for displaying parametrically defined surfaces.
SIGGRAPH Computer Graphics, 12(S1):1-7, Aug. 1978.

A. Bock, E. Sunden, B. Liu, B. Wunsche, and T. Ropinski. Coherency-based curve
compression for high-order finite element model visualization. IEEE Transactions
on Visualization and Computer Graphics, 18(12):2315-2324, 2012.

W. Boehm. Inserting new knots into B-spline curves. Computer-Aided Design,
12(4):199-201, July 1980.

H. Bowles, K. Mitchell, R. W. Sumner, J. Moore, and M. Gross. Iterative image
warping. Computer Graphics Forum, 31(2ptl):237-246, 2012.

R. Budynas and J. Nisbett. Shigley's Mechanical Engineering Design. Number v. 10
in McGraw-Hill series in mechanical engineering. McGraw-Hill, 2008.

H. J. Bullinger, M. Richter, and K.-A. Seidel. Virtual assembly planning. Human
Factors and Ergonomics in Manufacturing & Service Industries, 10(3):331-341,
2000.

R. Carnecky, R. Fuchs, S. Mehl, Y. Jang, and R. Peikert. Smart transparency for illus-
trative visualization of complex flow surfaces. [EEFE Transactions on Visualization
and Computer Graphics, 19(5):838-51, May 2012.

L. Carpenter. The a -buffer, an antialiased hidden surface method. In Proceedings
of the 11th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH "84, pages 103-108, New York, NY, USA, 1984. ACM.

N. A. Carr, J. D. Hall, and J. C. Hart. The ray engine. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, HWWS 02, pages
37-46, Aire-la-Ville, Switzerland, Switzerland, 2002. Eurographics Association.

E. Catmull. A hidden-surface algorithm with anti-aliasing. In Proceedings of the
5Sth Annual Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH 78, pages 6-11, New York, NY, USA, 1978. ACM.

(25]

[26]

(27]

(32]

(33]

[34]

[35]

[36]

[37]

BIBLIOGRAPHY 115

E. E. Catmull. A Subdivision Algorithm for Computer Display of Curved Surfaces.
PhD thesis, The University of Utah, 1974.

Y.-K. Chang, A. Rockwood, and Q. He. Direct rendering of freeform volumes.
Computer-Aided Design, 27(7):553 - 558, 1995.

S.E. Chen and L. Williams. View interpolation for image synthesis. In Proceedings
of the 20th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH 93, pages 279-288. ACM, 1993.

P. Cignoni, P. Marino, C. Montani, E. Puppo, and R. Scopigno. Speeding up iso-
surface extraction using interval trees. IEEFE Transactions on Visualization and
Computer Graphics, 3:158-170, 1997.

P. Cignoni, C. Montani, E. Puppo, and R. Scopigno. Optimal isosurface extraction
from irregular volume data. In Proceedings of the 1996 symposium on Volume
visualization, VVS '96, pages 31-38, Piscataway, NJ, USA, 1996. IEEE Press.

F. Claux, L. Barthe, D. Vanderhaeghe, J.-P. Jessel, and M. Paulin. Crack-free render-
ing of dynamically tesselated b-rep models. Computer Graphics Forum, 33(2):263-
272, May 2014.

F. Claux, D. Vanderhaeghe, L. Barthe, M. Paulin, J.-P. Jessel, and D. Croenne. An Ef-
ficient Trim Structure for Rendering Large B-Rep Models. In M. Goesele, T. Grosch,
H. Theisel, K. Toennies, and B. Preim, editors, Vision, Modeling and Visualization.
The Eurographics Association, 2012.

J. Cottrell, T. Hughes, and A. Reali. Studies of refinement and continuity in
isogeometric structural analysis. Computer Methods in Applied Mechanics and
Engineering, 196(41-44):4160 - 4183, 2007.

J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric Analysis: Toward
Integration of CAD and FEA. Wiley Publishing, 1st edition, 2009.

P. Cozzi and C. Riccio. OpenGL Insights. CRC Press, July 2012. http://www.
openglinsights.com/.

P. Deuflhard. Newton Methods for Nonlinear Problems. Affine Invariance and
Adaptive Algorithms. Springer Series in Computational Mathematics. Springer,
2006.

C. Dick, J. Kriiger, and R. Westermann. Gpu ray-casting for scalable terrain render-
ing. In Proceedings of Furographics 2009 - Areas Papers, pages 43-50, 2009.

P. Didyk, T. Ritschel, E. Eisemann, K. Myszkowski, and H.-P. Seidel. Adap-
tive image-space stereo view synthesis. In Vision, Modeling and Visualization
Workshop, pages 299-306, Siegen, Germany, 2010.

http://www.openglinsights.com/
http://www.openglinsights.com/

116

(38]

BIBLIOGRAPHY

A. Efremov, V. Havran, and H.-P. Seidel. Robust and Numerically Stable Bézier
Clipping Method for Ray Tracing NURBS Surfaces. In Proceedings of the 21st Spring
Conference on Computer Graphics SCCG 05, pages 127-135, May 2005.

E. Enderton, E. Sintorn, P. Shirley, and D. Luebke. Stochastic transparency. /EEE
Transactions on Visualization and Computer Graphics, 17(8):1036-1047, 2011.

C. Everitt. Interactive order-independent transparency. White paper, Nvidia, 2(6):7,
2001.

H. f. Pabst, J. P. Springer, A. Schollmeyer, R. Lenhardt, C. Lessig, and B. Froehlich.
Ray casting of trimmed nurbs surfaces on the gpu. In 2006 IEEE Symposium on
Interactive Ray Tracing, pages 151-160, Sept 2006.

G. Farin. Curves and Surfaces for Computer Aided Geometric Design: A Practical
Guide. Academic Press Inc., New York, NY, USA, 1990.

M. S. Floater. Derivatives of rational Bézier curves. Computer Aided Geometric
Design, 9(3):161-174, Aug. 1992.

G. Florin, A. Beraru, D. Talaba, and G. Mogan. Visual depth perception of 3d cad
models in desktop and immersive virtual environments. International Journal of
Computers Communications & Control, 7:840-848, 09 2014.

J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics:
Principles and Practice (2Nd Ed.). Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1990.

S. Friston and A. Steed. Measuring latency in virtual environments. [EEE
Transactions on Visualization and Computer Graphics, 20(4):616-625, April 2014.

F. G. Fuchs and J. M. Hjelmervik. Interactive isogeometric volume visualization
with pixel-accurate geometry. /EEFE Transactions on Visualization and Computer
Graphics, 22(2):1102-1114, Feb 2016.

P. Goswami, Y. Zhang, R. Pajarola, and E. Gobbetti. High quality interactive render-
ing of massive point models using multi-way kd-trees. In I8th Pacific Conference
on Computer Graphics and Applications, pages 93-100, 2010.

C. Green. Improved alpha-tested magnification for vector textures and special ef-
fects. In ACM SIGGRAPH 2007 Courses, SIGGRAPH '07, pages 9-18, New York, NY,
USA, 2007. ACM.

B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder. Foveated 3d graphics. ACM
Transactions on Graphics, 31(6):164:1-164:10, Nov. 2012.

M. Guthe. Appearance Preserving Rendering of Out-of-Core Polygon and NURBS
Models. Dissertation, Universitat Bonn, Oct. 2005.

BIBLIOGRAPHY 117

[52] M. Guthe, A. Baldsz, and R. Klein. GPU-based Trimming and Tessellation of NURBS
and T-Spline Surfaces. ACM Transactions on Graphics, 24(3):1016-1023, 2005.

[53] M. Guthe and R. Klein. Efficient nurbs rendering using view-dependent lod and
normal maps. In journal of WSCG, volume 11, Feb. 2003.

[54] P. Hanhart and T. Ebrahimi. Quality assessment of a stereo pair formed from de-
coded and synthesized views using objective metrics. In 3DTV-Conference: The
True Vision-Capture, Transmission and Display of 3D Video, pages 1-4. IEEE, 2012.

[55] 1. Hanniel and K. Haller. Direct rendering of solid cad models on the gpu. In
Proceedings of the 2011 12th International Conference on Computer-Aided Design
and Computer Graphics, CADGRAPHICS ’11, pages 25-32, Washington, DC, USA,
2011. IEEE Computer Society.

[56] T. Harada. A 2.5D culling for Forward+. In SIGGRAPH Asia 2012 Technical Briefs
on - SA 12, pages 18:1-18:4, New York, USA, 2012. ACM Press.

[57] J. Hasselgren, T. Akenine-Moller, and L. Ohlsson. Conservative rasterization. GPU
Gems, 2:677-690, 2005.

[58] S.-F. Hsiao, J.-W. Cheng, W.-L. Wang, and G.-F. Yeh. Low latency design of depth-
image-based rendering using hybrid warping and hole-filling. In International
Symposium on Circuits and Systems, pages 608-611. IEEE, 2012.

[59] L. Hu, P. V. Sander, and H. Hoppe. Parallel view-dependent refinement of progres-
sive meshes. In Proceedings of the 2009 Symposium on Interactive 3D Graphics
and Games, 13D '09, pages 169-176, New York, NY, USA, 2009. ACM.

[60] T.Hughes, J. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement. Computer Methods in Applied
Mechanics and Engineering, 194(39-41):4135 — 4195, 2005.

[61] D. Jackson and C. Northway. Scalable vector graphics (svg) full 1.2 specification.
World Wide Web Consortium, Working Draft WD-SVG12-20050413, April 2005.

[62] S.Jahne. Using per-pixel linked Iists for transparency effects in remote-rendering.
PhD thesis, Universitat Stuttgart, 2014.

[63] H. Jang and J. Han. Fast collision detection using the A-buffer. The Visual
Computer, 24(7-9):659-667, May 2008.

[64] Z. Jianwen, F. Lin, and S. H. Soon. A volume modeling component of CAD. In
Volume Graphics, pages 103-117, 2001.

[65] J. T. Kajiya. Ray Tracing Parametric Patches. SIGGRAPH 82: Proceedings of the
9th Annual Conference on Computer Craphics and Interactive Techniques, pages
245-254, 1982.

118

[66]

[67]

[77]

(78]

BIBLIOGRAPHY

B. Karis and E. Games. Siggraph '13: Acm siggraph 2013 courses: Real shading in
unreal engine 4, 2013.

J. Kloetzli, M. Olano, and P. Rheingans. Interactive volume isosurface rendering us-
ing bt volumes. In Proceedings of the 2008 Symposium on Interactive 3D Graphics
and Games, 13D '08, pages 45-52, New York, NY, USA, 2008. ACM.

A. Knoll, Y. Hijazi, C. Hansen, I. Wald, and H. Hagen. Interactive ray tracing of
arbitrary implicits with SIMD interval arithmetic. In Proceedings of the 2007 IEEE
Symposium on Interactive Ray Tracing, RT '07, pages 11-18, Washington, DC, USA,
2007. IEEE Computer Society.

A. Knoll, I. Wald, S. Parker, and C. Hansen. Interactive isosurface ray tracing of
large octree volumes. Symposium on Interactive Ray Tracing, pages 115-124, 2006.

P. Knowles, G. Leach, and F. Zambetta. Backwards Memory Allocation and Im-
proved OIT. Pacific Conference on Computer Graphics and Applications - Short
Papers, pages 59-64, 2013.

A. Kulik, A. Kunert, S. Beck, R. Reichel, R. Blach, A. Zink, and B. Froehlich. Clxé:
A Sterepscopic Six-User Display for Co-located Collaboration in Shared Virtual En-
vironments. Proceedings of the 2011 SIGGRAPH Asia Contference on - SA 11, 30:1,
2011.

J. M. Lane, L. C. Carpenter, T. Whitted, and J. F. Blinn. Scan line methods for
displaying parametrically defined surfaces. Commun. ACM, 23(1):23-34, Jan. 1980.

S. Lefebvre, S. Hornus, and A. Lasram. Per-Pixel Lists for Single Pass A-Buffer. In
W. Engel, editor, GPU Pro 5: Advanced Rendering Techniques, pages 3-23. CRC
Press, 2014.

B. Lichtenbelt, C. Dodd, E. Werness, G. Sellers, G. Roth, J. Bolz, N. Haemel,
P. Brown, P. Boudier, and P. Daniell. ARB_shader_atomic_counters, 2012.

B. Lichtenbelt, B. Licea-Kane, E. Werness, G. Sellers, G. Roth, N. Haemel,
P. Boudier, and P. Daniell. ARB_shader_image_load_store, 2011.

G. Lochmann, B. Reinert, T. Ritschel, S. Miiller, and H. Seidel. Real-time reflective
and refractive novel-view synthesis. In VMV 2014: Vision, Modeling & Visualization,
Darmstadt, Germany, 2014. Proceedings, pages 9-16, 2014.

W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface
construction algorithm. SIGGRAPH Computer Graphics, 21:163-169, August 1987.

T. Lottes. Fast approximate anti-aliasing (FXAA). Technical report, Nvidia, Feb.
2009.

[79]

[80]

[85]

(36]

(87]

(38]

[89]

BIBLIOGRAPHY 119

F.Luna. Introduction to 3D Game Programming with DirectX 11. Mercury Learning
& Information, USA, 2012.

W. Mark. Post-rendering 3d image warping: Visibility, reconstruction, and perfor-
mance for depth-image warping. Technical report, University of North Carolina at
Chapel Hill, Chapel Hill, NC, USA, 1999.

W.R. Mark, L. McMillan, and G. Bishop. Post-rendering 3d warping. In Proceedings
of the 1997 Symposium on Interactive 3D Graphics, pages 7-16. ACM, 1997.

T. Martin, E. Cohen, and M. Kirby. Direct isosurface visualization of hex-
based high-order geometry and attribute representations. [/EEE Transactions on
Visualization and Computer Graphics, 18(5):753-766, 2012.

W. Martin, E. Cohen, R. Fish, and P. Shirley. Practical Ray Tracing of Trimmed
NURBS Surfaces. Journal of Graphical Tools, 5(1):27-52, 2000.

M. Maule, J. a. Comba, R. Torchelsen, and R. Bastos. Hybrid transparency. In
Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, 13D 13, pages 103-118, New York, NY, USA, 2013. ACM.

M. Maule, J. a. L. D. Comba, R. Torchelsen, and R. Bastos. A survey of raster-based
transparency techniques. Computers & Graphics, 35(6):1023-1034, Dec. 2011.

M. McGuire and L. Bavoil. Weighted Blended Order-Independent Transparency.
Journal of Computer Graphics Techniques (JCGT), 2(2):122-141, Dec. 2013.

L. McMillan and G. Bishop. Head-tracked stereoscopic display using image warp-
ing. In Stereoscopic Displays and Virtual Reality Systems II, volume 2409 of
Proceedings SPIE, pages 21-30, March 1995.

R. McNamara, J. McCormack, and N. P. Jouppi. Prefiltered antialiased
lines using half-plane distance functions. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware, HWWS '00, pages
77-85, New York, NY, USA, 2000. ACM.

M. Meyer, B. Nelson, R. M. Kirby, and R. Whitaker. Particle systems for effi-
cient and accurate high-order finite element visualization. [EEE Transactions on
Visualization and Computer Graphics, 13(5):1015-1026, 2007.

D. Nehab, P. V. Sander, J. Lawrence, N. Tatarchuk, and J. R. Isidoro. Accelerat-
ing real-time shading with reverse reprojection caching. In Proceedings of the
22Nd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware, GH
‘07, pages 25-35, Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics Associ-
ation.

120

[91]

[100]

[101]

[102]

BIBLIOGRAPHY

B. Nelson and R. M. Kirby. Ray-tracing polymorphic multidomain spectral/hp ele-
ments for isosurface rendering. IEEFE Transactions on Visualization and Computer
Graphics, 12(1):114-125, 2006.

B. Nelson, E. Liu, R. M. Kirby, and R. Haimes. Elvis: A system for the accurate and
interactive visualization of high-order finite element solutions. /EEE Transactions
on Visualization and Computer Graphics, 18(12):2325-2334, 2012.

T. Nishita, T. W. Sederberg, and M. Kakimoto. Ray Tracing Trimmed Rational Sur-
face Patches. Computer Graphics, 24(4):227-345, Aug. 1990.

M. M. Oliveira, B. Bowen, R. McKenna, and Y. Chang. Fast digital image inpainting.
In Proceedings of the IASTED International Conference on Visualization, Imaging
and Image Processing (VIIP 2001), Marbella, Spain, September 3-5, 2001, pages 261-
266, 2001.

P. Oliver. Unreal engine 4 elemental. In ACM SIGGRAPH 2012 Computer Animation
Festival, SIGGRAPH ’12, pages 86-86, New York, NY, USA, 2012. ACM.

O. Olsson and U. Assarsson. Tiled Shading. Jjournal of Graphics, GPU, and Game
Tools, 15(4):235-251, Nov. 2011.

0. Olsson, M. Billeter, and U. Assarsson. Clustered Deferred and Forward Shad-
ing. In Proceedings of the Fourth ACM SIGGRAPH / FEurographics Conference on
High-Performance Graphics, EGGH-HPG'12, pages 87-96, Aire-la-Ville, Switzerland,
Switzerland, 2012. Eurographics Association.

T. Pavlidis. Algorithms for Graphics and Image Processing. Computer Science
Press, Rockville, Maryland, 1982.

E. M. Peek, B. C. Wiinsche, and C. Lutteroth. Image warping for enhancing con-
sumer applications of head-mounted displays. In Proceedings of the Fifteenth
Australasian User Interface Conference-Volume 150, pages 47-55. Australian Com-
puter Society, Inc., 2014.

M. Pharr and G. Humphreys. Physically Based Rendering, Second Edition: From
Theory To Implementation. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2nd edition, 2010.

L. Piegl and W. Tiller. The NURBS Book (2nd Ed.). Springer-Verlag New York, Inc.,
New York, NY, USA, 1997.

N. Plath, L. Goldmann, A. Nitsch, S. Knorr, and T. Sikora. Line-preserving hole-
filling for 2d-to-3d conversion. In Proceedings of the 1ith European Conference on
Visual Media Production, pages 8:1-8:10. ACM, 2014.

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

BIBLIOGRAPHY 121

N. Plath, S. Knorr, L. Goldmann, and T. Sikora. Adaptive image warping for
hole prevention in 3d view synthesis. IEEE Transactions on Image Processing,
22(9):3420-3432, Sept 2013.

T. Porter and T. Duff. Compositing digital images. ACM SIGGRAPH Computer
Graphics, 18(3):253-259, July 1984.

A. Ravivand G. Elber. Interactive direct rendering of trivariate b-spline scalar func-
tions. [EEE Transactions on Visualization and Computer Graphics, 7:109-119, 2001.

T. Ritschel, T. Grosch, and H.-P. Seidel. Approximating dynamic global illumina-
tion in image space. In Proceedings of the 2009 Symposium on Interactive 3D
Graphics and Games, 13D 09, pages 75-82, New York, NY, USA, 2009. ACM.

A. Rockwood, K. Heaton, and T. Davis. Real-time rendering of trimmed surfaces.
SIGGRAPH Computer Graphics, 23(3):107-116, July 1989.

J. Rossignac, I. Fudos, and A. Vasilakis. Direct rendering of Boolean combinations
of self-trimmed surfaces. In CAD Computer Aided Design, volume 45, pages 288-
300, 2013.

S. Rottger, M. Kraus, and T. Ertl. Hardware-accelerated volume and isosurface ren-
dering based on cell-projection. In Proceedings of the Conference on Visualization
00, V1S 00, pages 109-116, Los Alamitos, CA, USA, 2000. IEEE Computer Society
Press.

T. RozZen, K. Boryczko, and W. Alda. GPU bucket sort algorithm with applications
to nearest-neighbour search. Journal of the 16th Int. Cont. in Central Europe on
Computer Graphics, Visualization and Computer Vision, pages 161-168, 2008.

F. Sadlo, M. Uffinger, C. Pagot, D. Osmari, J. Comba, T. Ertl, C.-D. Munz, and
D. Weiskopf. Visualization of cell-based higher-order fields. Computing in Science
and Engineering, 13:84-91, 2011.

T. Saito and T. Takahashi. Comprehensible rendering of 3-d shapes. In Proceedings
of the 17th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH '90, pages 197-206, New York, N'Y, USA, 1990. ACM.

T. Saito, G.-J. Wang, and T. W. Sederberg. Hodographs and normals of rational
curves and surfaces. Computer Aided Geometric Design, 12(4):417 - 430, 1995.

[114] J. Salmon and J. Goldsmith. Automatic creation of object hierarchies for ray tracing.

[115]

IEEE Computer Graphics and Applications, 7:14-20, 1987.

M. Samueléik. Visualization of trivariate NURBS volumes. Journal of Applied
Mathematics, 2(1):143-150, 2009.

122

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

BIBLIOGRAPHY

D. Scherzer, L. Yang, O. Mattausch, D. Nehab, P. V. Sander, M. Wimmer, and E. Eise-
mann. Temporal coherence methods in real-time rendering. Computer Graphics
Forum, 31(8):2378-2408, 2012.

D. Schmalstieg and R. F. Tobler. Fast projected area computation for three-
dimensional bounding boxes. Journal of Graphics Tools, 4(2):37-43, Mar. 1999.

S. Schneegans. Image Warping for Latency Reduction in Virtual Reality. Master’s
thesis, Bauhaus-Universitat Weimar, Germany, December 2015.

S. Schneegans, F. Lauer, A.-C. Bernstein, A. Schollmeyer, and B. Froehlich. gua-
camole - an extensible scene graph and rendering framework based on deferred
shading. In Software Engineering and Architectures for Realtime Interactive
Systems (SEARIS), 2014 IEEFE 7th Workshop on, pages 35-42. IEEE, 2014.

A. Schollmeyer, A. Babanin, and B. Froehlich. Order-independent transparency for
programmable deferred shading pipelines. Computer Graphics Forum, 34(7):67-76,
2015.

A. Schollmeyer and B. Froehlich. Direct isosurface ray casting of nurbs-based iso-
geometric analysis. [EEFE Transactions on Visualization and Computer Graphics,
20(9):1227-1240, Sept 2014.

A. Schollmeyer and B. Froehlich. Efficient and anti-aliased trimming for rendering
large nurbs models. [EEE Transactions on Visualization and Computer Graphics
(early access), PP(1):1-10, 2018.

A. Schollmeyer and B. Frohlich. Direct trimming of nurbs surfaces on the gpu.
ACM Transactions on Graphics, 28(3):47:1-47:9, July 2009.

A. Schollmeyer, S. Schneegans, S. Beck, A. Steed, and B. Froehlich. Efficient hybrid
image warping for high frame-rate stereoscopic rendering. IEEE Transactions on
Visualization and Computer Graphics, 23(4):1332-1341, April 2017.

M. Schwarz and M. Stamminger. Fast gpu-based adaptive tessellation with cuda.
Computer Graphics Forum, 28(2):365-374, 2009.

T. W. Sederberg. Point and tangent computation of tensor product rational Bézier
surfaces. Computer Aided Geometric Design, 12(1):103-106, 1995.

T. W. Sederberg. Computer aided geometric design course notes.
https://scholarsarchive.byu.edu/facpub/1/, January 2012.

T. W. Sederberg, G. T. Finnigan, X. Li, H. Lin, and H. Ipson. Watertight trimmed
nurbs. ACM Transactions on Graphics, 27(3):79:1-79:8, Aug. 2008.

M. Segal and K. Akeley. The OpenGL graphics system: A specification (version 4.2).
www.opengl.org/documentation/specs, August 2011.

BIBLIOGRAPHY 123

[130] J. Shade, S. Gortler, L.-w. He, and R. Szeliski. Layered depth images. In Proceedings
of the 25th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH 98, pages 231-242, New York, N'Y, USA, 1998. ACM.

[131] J. Shen, J. Kosinka, M. A. Sabin, and N. A. Dodgson. Conversion of trimmed
{NURBS} surfaces to catmull-clark subdivision surfaces. Computer Aided
Geometric Design, 31(7-8):486 — 498, 2014. Recent Trends in Theoretical and Ap-
plied Geometry.

[132] M. Shimrat. Algorithm 112: Position of point relative to polygon. Commun. ACM,
5(8):434-, Aug. 1962.

[133] D. Shreiner and T. K. O. A. W. Group. OpenGL Programming Guide: The Official
Guide to Learning OpenGL, Versions 3.0 and 3.1. Addison-Wesley Professional, 7th
edition, 20009.

[134] F. A. Smit, R. van Liere, S. Beck, and B. Frohlich. An image-warping architecture
for vr: Low latency versus image quality. In Virtual Reality Conference, 2009. VR
2009. IEEE, pages 27-34, March 2009.

[135] F. A. Smit, R. van Liere, and B. Frohlich. The design and implementation of a vr-
architecture for smooth motion. In Proceedings of the 2007 ACM Symposium on
Virtual Reality Software and Technology, VRST '07, pages 153-156, New York, NY,
USA, 2007. ACM.

[136] X. Song, T. W. Sederberg, J. Zheng, R. T. Farouki, and J. Hass. Linear perturbation
methods for topologically consistent representations of free-form surface intersec-
tions. Computer Aided Geometric Design, 21(3):303-319, Mar. 2004.

[137] T. Tejima, M. Fyjita, and T. Matsuoka. Direct ray tracing of full-featured subdi-
vision surfaces with bezier clipping. Journal of Computer Graphics Techniques
(JCGT), 4(1):69-83, March 2015.

[138] A. Tevs, I. Thrke, and H.-P. Seidel. Maximum mipmaps for fast, accurate, and scal-
able dynamic height field rendering. In Proceedings of the 2008 symposium on
Interactive 3D graphics and games, pages 183-190. ACM, 2008.

[139] D. L. Toth. On ray tracing parametric surfaces. In B. A. Barsky, editor, SSIGGRAPH
85 Confterence Proceedings (San Francisco, CA, July 22-26, 1985), pages 171-179,
1985.

[140] D. Turner. FreeType glyph conventions: Version 2.1. World-Wide Web document,
2000.

[141] M. Uffinger, S. Frey, and T. Ertl. Interactive high-quality visualization of higher-
order finite elements. Computer Graphics Forum, 29(2):337-346, 2010.

124

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

BIBLIOGRAPHY

A. A. Vasilakis and I. Fudos. k + -buffer. In Proceedings of the 18th meeting of the
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games - 13D ’14, pages
143-150, New York, USA, 2014. ACM Press.

J. Viega, M. J. Conway, G. Williams, and R. Pausch. 3d magic lenses. In Proceedings
of the 9th Annual ACM Symposium on User Interface Software and Technology,
pages 51-58. ACM, 199¢.

I. Wald, H. Friedrich, A. Knoll, and C. D. Hansen. Interactive isosurface ray trac-
ing of time-varying tetrahedral volumes. /EEE Transactions on Visualization and
Computer Graphics, 13(6):1727-1734, Nov. 2007.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assess-
ment: from error visibility to structural similarity. [EEE Transactions on Image
Processing, 13(4):600-612, April 2004.

M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-based ray casting for tetrahe-
dral meshes. In Proceedings of the 14th IEEE Visualization 2003 (VIS03), VIS 03,
pages 44—, Washington, DC, USA, 2003. IEEE Computer Society.

L. Westover. Footprint evaluation for volume rendering. In Proceedings of the 17th
Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
90, pages 367-376, New York, NY, USA, 1990. ACM.

J. Whyte, N. Bouchlaghem, A. Thorpe, and R. McCaffer. From cad to virtual real-
ity: modelling approaches, data exchange and interactive 3d building design tools.
Automation in Construction, 10(1):43 - 55, 2000.

S. Widmer, D. Pajak, A. Schulz, K. Pulli, J. Kautz, M. Goesele, and D. Luebke. An
adaptive acceleration structure for screen-space ray tracing. In Proceedings of the
7th Conference on High-Performance Graphics, HPG 15, pages 67-76, New York,
NY, USA, 2015. ACM.

R. Wu and J. Peters. Correct resolution rendering of trimmed spline surfaces.
Computer Aided Design, 58(C):123-131, Jan. 2015.

J. C. Yang, J. Hensley, H. Griin, and N. Thibieroz. Real-time concurrent linked list
construction on the gpu. In Proceedings of the 21st Eurographics Conference on
Rendering, EGSR’10, pages 1297-1304, Aire-la-Ville, Switzerland, Switzerland, 2010.
Eurographics Association.

L. Yang, Y.-C. Tse, P. V. Sander, J. Lawrence, D. Nehab, H. Hoppe, and C. L.
Wilkins. Image-based bidirectional scene reprojection. In Proceedings of the 2011
SIGGRAPH Asia Conference, SA ’11, pages 150:1-150:10, New York, NY, USA, 2011.
ACM.

BIBLIOGRAPHY 125

[153] Y.I. Yeo, L. Bin, and J. Peters. Efficient pixel-accurate rendering of curved surfaces.
In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, 13D '12, pages 165-174, New York, NY, USA, 2012. ACM.

[154] X. Yu, R. Wang, and J. Yu. Real-time Depth of Field Rendering via Dynamic Light
Field Generation and Filtering. Computer Graphics Forum, 2010.

[155] L.Zhang and W. J. Tam. Stereoscopic image generation based on depth images for
3d tv. [EEF Transactions on Broadcasting, 51(2):191-199, June 2005.

[156] Y. Zhou and M. Garland. Interactive point-based rendering of higher-order tetrahe-
dral data. IEEF Transactions on Visualization and Computer Graphics, 12(5):1229-
1236, Sept. 2006.

	Related Publications
	1 Motivation
	2 Background
	2.1 Higher-Order Geometric Data Representations
	2.1.1 Rational Bézier Curves
	2.1.2 Non-Uniform Rational B-Splines
	2.1.3 Trimmed NURBS Surfaces and Geometric Limitations
	2.1.4 Efficient Evaluation Schemes for Rational Bézier Representations on Modern GPUs

	2.2 Modern Graphics Pipeline Design
	2.2.1 Programmability
	2.2.2 Deferred Shading and Geometric Buffers (G-buffer)
	2.2.3 A-buffer and its Advanced Usage

	3 Direct Rendering of Trimmed NURBS Models
	3.1 Abstract
	3.2 Introduction
	3.3 Background
	3.3.1 Ray Casting
	3.3.2 Tessellation
	3.3.3 Trimming

	3.4 System Overview
	3.5 Efficient and Sub-Pixel Precise Trimming
	3.5.1 Piecewise Monotonic Curve Sets
	3.5.2 Curve Set Optimization and Kd-tree Generation
	3.5.3 In-search Trim Classification
	3.5.4 Curve Coverage Estimation

	3.6 Adaptive Tessellation
	3.6.1 Estimation Pass
	3.6.2 Tessellation Pass
	3.6.3 Compositing Pass

	3.7 Results and Discussion
	3.7.1 Limitations

	3.8 Conclusion and Future Work

	4 Visualization of NURBS-based Isogeometric Analysis
	4.1 Abstract
	4.2 NURBS-Based Isogeometric Analysis
	4.3 Related Work
	4.4 Preprocessing
	4.5 Point Evaluation
	4.6 Ray casting Bézier Cells
	4.6.1 Generate Ray-Interval Lists
	4.6.2 Sort Ray-Interval Lists
	4.6.3 Ray-Face Intersection
	4.6.4 Ray-Segment Classification
	4.6.5 Isosurface Intersection

	4.7 Efficient Per-Pixel Lists
	4.8 Results and Discussion
	4.9 Conclusion and Future Work

	5 Programmable Order-Independent Transparency
	5.1 Abstract
	5.2 Introduction
	5.3 Background
	5.3.1 Partial Coverage and Blending
	5.3.2 Deferred Shading
	5.3.3 Transparency Effects in Real-time Rendering

	5.4 System Overview
	5.5 System Design and Pass Descriptions
	5.5.1 Geometry Pass
	5.5.2 A-buffer Generation
	5.5.3 Light-Culling Pass
	5.5.4 Shade-Compositing Pass
	5.5.5 Post-processing Pass

	5.6 Results and Discussion
	5.7 Conclusion and Future Work

	6 Hybrid Image Warping for Stereoscopic Rendering
	6.1 Abstract
	6.2 Introduction
	6.3 Related Work
	6.3.1 Warping of opaque objects
	6.3.2 Hole Filling
	6.3.3 Warping of semi-transparent objects

	6.4 System Overview
	6.5 Warp Preprocessing
	6.5.1 Adaptive Grid Generation
	6.5.2 Min-Max Quadtree Generation

	6.6 Re-rendering
	6.6.1 Grid Warping
	6.6.2 Hole Filling Using Depth-Based Low-Pass Filter
	6.6.3 Ray Casting Transparencies in the A-Buffer

	6.7 Evaluation
	6.7.1 Results
	6.7.2 User study
	6.7.3 Discussion and Limitations

	6.8 Conclusion and Future Work

	7 Conclusion and Future Work
	7.1 Contributions
	7.2 Foresight and Future Work

	Bibliography

