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ABSTRACT

While boundary representations, such as nonuniform rational B-spline (NURBS) surfaces, 

have traditionally well served the needs of the modeling community, they have not seen widespread 

adoption among the wider engineering discipline. There is a common perception that NURBS 

are slow to evaluate and complex to implement. Whereas computer-aided design commonly 

deals with surfaces, the engineering community must deal with materials that have thickness. 

Traditional visualization techniques have avoided NURBS, and there has been little cross-talk 

between the rich spline approximation community and the larger engineering field.

Recently there has been a strong desire to marry the modeling and analysis phases of the 

iterative design cycle, be it in car design, turbulent flow simulation around an airfoil, or lighting 

design. Research has demonstrated that employing a single representation throughout the cycle 

has key advantages. Furthermore, novel manufacturing techniques employing heterogeneous 

materials require the introduction of volumetric modeling representations. There is little question 

that fields such as scientific visualization and mechanical engineering could benefit from the 

powerful approximation properties of splines. In this dissertation, we remove several hurdles 

to the application of NURBS to problems in engineering and demonstrate how their unique 

properties can be leveraged to solve problems of interest.
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CHAPTER 1

INTRODUCTION AND AIMS

Nonuniform rational B-spline (NURBS) curves and surfaces form the foundation for many 

geometric modeling systems. There are a host of reasons for this. First, because splines contain 

the space of polynomials, they are flexible enough to describe complex functions. On the other 

hand, they are coordinate independent, meaning affine transformations do not alter qualitative 

shape. Further, a relatively small number of parameters are required to specify complex be

haviour. Shape interpolating B-splines provide the designer a few descriptive handles (e.g., 

control vertices) for easy modification of surface properties. Continuity between adjacent patches 

is ensured by the representation, and its degree is adjustable via the knots [3].

Relative to other smooth representations, NURBS also exhibit fast evaluation due to the local 

extent of their basis functions. Similarly, the impact on the model of modifying the control points 

is localized. The variation diminishing property of B-splines says, loosely, that a curve/surface 

will exhibit no more variation (oscillation) than its control polygon -  that is, the B-spline function 

acts as a low-pass filter on its mesh. The convex hull property of B-splines allows us to intuitively 

isolate the location of a NURBS curve or surface in space and the refinement property facilitates 

the addition of control points without loss in precision. Finally, the B-spline basis possesses many 

useful integral and differential properties, some of which we will leverage in Chapter 7.

Despite these attractive features, splines have not been traditionally embraced by the engineer

ing community at large. Downstream from the modeling phase in the design cycle, approxima

tions in representation are frequently made, be it polygonization in rendering or the introduction 

of tetrahedra or hexahedra in a finite element simulation. Furthermore, traditional computer-aided 

design targets surface representations, whereas simulation and analysis frequently require volu

metric models. Recent research in a new field called isogeometric analysis has demonstrated that 

there can be significant advantages to leveraging the same representation throughout the design 

cycle [4]; that is from modeling, to simulation, to manufacture.

The fundamental premise is that there is something in the original NURBS representation 

(or a smooth representation) that is worth preserving. With change in representation comes
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the potential for approximation error. And because design is a feedback loop, be it lighting 

design or automobile design, it is necessary to relate results back to the original model so that 

adjustments can be made. It all comes back to the notion that defects in your computation 

ought to be due to fundamental aspects of your problem and not features introduced by your 

approximation. Our goal in this work has been to develop techniques that make the native NURBS 

representation amenable to problems in engineering. Among the fields we target are modeling, 

medical visualization, manufacture, and rendering. Our key aims in this work will be

1. Developing optimized methods for NURB evaluation.

2. Facilitating direct rendering of NURBS for visualization.

3. Extending surface-based modeling and rendering approaches to volumetric NURBS.

4. Providing methods for converting boundary representations into volumetric models for 

analysis.

5. Demonstrating how the approximational power of splines can be leveraged to solve a 

complex problem in engineering.

1.1 Organization
To this end, the dissertation is organized in the following way. In Chapter 2, we list some 

of the problems that have driven our work and discuss the previous research that has influenced 

our own. Next, because visualization is often key to problem exploration, we derive in Chapter 3 

the necessary machinery for ray tracing NURBS directly. Part of this derivation yields a highly 

optimized evaluation algorithm. All of the details required for building a NURBS rendering 

system are provided, as well as indications of common pitfalls. In Chapter 4, we introduce the 

mathematics for volumetric NURBS. We make this representation amenable to common scientific 

computing and engineering tasks by providing methods for fitting them to data, modeling with 

them, and imbuing them with attribute data. We also develop methods for visualization and 

introduce a novel technique for optical path tracing. Chapters 5 and 6 provide operators for 

converting existing boundary representations into true surface and volumetric ones. They have 

the advantage of preserving the original boundary parameterization, a trait prescribed by the 

field of isogeometric analysis for many types of finite element analyses [4]. In Chapter 7, we 

demonstrate the approximation power of splines for capturing functions on manifolds, generaliz

ing the attribute modeling techniques given in Chapter 4. Our example application characterizes
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the radiance function for a global illumination simulation using a four-dimensional (4D) spline. 

Finally, we close with a brief recap of our contributions in Chapter 8.



CHAPTER 2

BACKGROUND

This dissertation relies on results from several areas of computer science, mathematics, and 

engineering. In this section, we briefly summarize some applications that have motivated us to 

pursue this work, as well as work related to ours in the field.

2.1 Motivating Applications
There are a number of fields that we believe could benefit from spline-based representations. 

We now survey some of these that have motivated the present work.

2.1.1 Scientific and Engineering Analysis
Scientific simulations often involve characterization and analysis of volumetric phenomena. 

Fluid dynamics simulations commonly take into account variables such as pressure, density, 

temperature, and velocity, which can vary continuously. Stress and fracture simulations may 

track force, density, stress, and deformation. For the field of molecular dynamics, isosurfaces of 

equal electrostatic potential provide an informative visualization.

In the area of meteorology, there are a number of quantities which are critical to weather 

and climate prediction. Among these are temperature, wind speed, barometric pressure, pollutant 

density, molecular concentration, and humidity. These typically vary globally and with altitude, 

indicating a volumetric model. Simulations are used for daily weather forecasting as well as 

predicting the incidence and behavior of such extreme weather phenomena as hurricanes and 

tornadoes.

Meteorological variables also have a direct impact on atmospheric optics. Localized changes 

in temperature and density are responsible for mirages. Due to a varying atmospheric index of 

refraction, light is guided along a curved path, making objects appear to be where they are not. 

The techniques we discuss later for lens modeling apply equally well here. Over a larger scale, 

similar phenomena are responsible for the twinkling of the stars, the colors in a sunset, color 

shifts due to atmospheric perspective, and have a direct impact on the quality of astronomical
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observations. Whereas splines have a wide array of advantages when applied to functional 

approximation, they have not historically been leveraged to model and track these scientific 

variables. A key reason for this has been the historical perception that they are not suitable 

for simulation and analysis.

In the area of engineering design, models must frequently be synthesized and then analyzed. 

Computer-aided design (CAD) programs are usually employed to build the model, leveraging 

an underlying spline- or subdivision surface-based representation. The reasons for this represen

tation are many, and they are well-documented in the literature [5]. This model must then be 

handed to a different team of engineers for analysis. Consider for example the aerodynamical 

analysis for a new air foil on a plane. In some situations, such as automotive design, there are 

aesthetic as well as fluid dynamics factors to be considered when building a part. The analysis 

phase frequently involves the transformation of the smooth model into a representation that is 

amenable for finite element analysis (FEA). The goal of FEA is to determine how a quantity such 

as heat or stress varies throughout the model, as these can indicate the potential for failure or 

unwanted side-effects such as turbulent flow. Hence, a smooth surface-based representation is 

traded for a tessellated volumetric one.

However, the process of design is a feedback loop. Results from the analysis phase must

be applied to the design step so that modifications can be effected. The translation between

representations can introduce errors into the feedback loop. Also, simulations can be particularly

sensitive to minor deviations in domain geometry.

Recent trends taking place in engineering analysis and high-performance computing 
are ... demanding greater precision and tighter integration of the overall modeling- 
analysis process. We note that a finite element mesh is only an approximation of the 
CAD geometry, which we view as ‘exact.’ This approximation can in many situa
tions create errors in analytical results. The following examples may be mentioned:
Shell buckling analysis is very sensitive to geometric imperfections, boundary layer 
phenomena are sensitive to the precise geometry of aerodynamic and hydrodynamic 
configurations, and sliding contact between bodies cannot be accurately represented 
without precise geometric descriptions. Automatic adaptive mesh refinement has not 
been as widely adopted in industry as one might assume from the extensive academic 
literature, because mesh refinement requires access to the exact geometry and thus 
seamless and automatic communication with CAD, which simply does not exist. 
Without accurate geometry and mesh adaptivity, convergence and high-precision 
results are impossible ([4, p. 2]).

The mesh translation process itself can be extremely costly -  as much as 80% of the time

spent in the analysis pipeline can be spent constructing geometry in a form that is amenable

to processing [4]. This indicates that contrary to popular opinion, meshing is far from turnkey.
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The recent area of isogeometric analysis has demonstrated advantages in leveraging a single 

NURBS-based representation in both the modeling and analysis phases of design [4]. While 

spline elements require more expensive evaluation than traditional basis functions, they make up 

for this in the quality of their results, their greater expressiveness in functional representation, and 

their lesser susceptibility to noise [4].

The problem remains that CAD-based modeling is a primarily surface-based endeavor. In 

Chapter 4, we introduce techniques for applying trivariate splines to problems in engineering. 

We provide methods for fitting volumetric NURBS to data and introduce modeling operators 

amenable to integration in CAD programs. In order to support modeling with heterogenous 

materials (discussed in Section 2.1.2.1), we introduce an attribute-based model which can sup

port, among other things, material composition. We also introduce visualization and rendering 

operators to support the use of trivariate NURBS, and we conclude by modeling a GRIN lens and 

rendering its appearance.

In Chapters 5 and 6, we introduce methods for upgrading CAD boundary representations 

(B-Reps) into truly volumetric representations. One of the key aspects of our approach is that 

it preserves the parametrization of the original surface-based model. This means that values 

determined in the analysis process can be related directly back to the source model, decreasing 

the potential for error in translation.

2.1.2 Novel Materials
2.1.2.1 Functionally Gradient Material (FGM) Manufacturing

One of the most exciting developments in modern manufacturing has been the emergence 

of functionally graded materials (FGMs). FGMs are composites with the interesting property 

that the proportion of each constituent material can be varied continuously. Thus, for example, a 

turbine blade may have a steel (temperature resistant) edge and an aluminum (lightweight) interior 

with a smooth blend between the two. The gradient boundary between materials improves the 

wear life of the part, as failures tend to occur at discrete material boundaries (typically, on the side 

of the softer material). With the improved failure resistance of graded materials, turbine blades 

can be made lighter, thereby improving their efficiency. In fact, the concept of graded materials 

can be traced back to feudal Japan, where, analogously, the blades of swords possessed a soft but 

tough core, and a hardened edge [6]. Furthermore, many natural structures such as bamboo, plant 

stems, and bone are graded and provide strength in areas of high stress [6].

There are a number of competing technologies for manufacturing using functionally gradient 

materials. Among them are molecular beam epitaxy, vapor deposition, three-dimensional printing
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(3DP), bulk and surface micromachining, and lithography. For the rapid-prototyping community, 

three-dimensional printing may be most familiar through analogy to stereolithography. To pre

pare a model for stereolithography, first the model is sliced into parallel layers of a prescribed 

thickness. The lithography machine then acts as a kind of ink jet printer, laying down a layer of 

material as specified by the bottom-most slice. Subsequent layers are laid down similarly until the 

part is completed. M.I.T.’s 3DP process [7] takes the inkjet analogy one step further by allowing 

mixtures of materials to be laid down in each layer (see Figure 2.1). Thus, in theory, gradient 

materials can be made from any material that can be reduced to a powder.

FGMs pose exciting possibilities for the future of manufacturing, since in theory, materials 

can be specifically tailored to function. This will in turn have an impact on approaches to 

modeling. For example, techniques such as pocketing to reduce weight in parts may become 

unnecessary as heavy materials can be graded to lighter ones. There are important implications 

to graphics research as well. If materials can be accurately tailored, then their corresponding 

reflectance properties can be collected in a database, allowing for precise renderings of parts 

from their modeling software descriptions. In Chapter 4, we introduce methods for augmenting 

traditional modeling systems with data structures and modeling operators required to fit and 

model with these materials.

2.1.2.2 Optics
As this dissertation is being written, novel lens technology is revolutionizing the optics com

munity. So-called GRIN (GRadient INdex) lenses are unique in that their index of refraction is 

designed to vary continuously across the lens (see Figure 2.2). One implication is that lenses 

made from gradient material can be milled flat, and still focus light. A consequence is potentially

Figure 2.1: Diagram summarizing the three-dimensional printing technology (courtesy of MIT 
3D Printing Lab -  h t t p  : /  /w eb  . m i t . e d u / td p /w w w /w h a t i s 3 d p  . h tm l).
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TM
Figure 2.2: Examples of commercially available Gradium GRIN lenses (courtesy of LightPath 
Technologies -  h t t p  : //w w w . l i g h t p a t h . com).

higher accuracy in lens fabrication, since gradient materials may be more precisely tuned than 

the traditional grinding process would allow. Typically, GRIN lenses have an index of refraction 

that varies radially from a central axis, although this need not be the case.

In reality, GRIN technology is not new. Every fax and copy machine contains an array of 

gradient lenses. The technology has also been used in fiber optic cable (see Figure 2.3). However, 

recent breakthroughs in fabrication technology have allowed GRIN lenses to be made to higher 

accuracy, at very large and very small sizes, and from a variety of materials. These advances have 

made GRIN lenses suitable for a range of applications, including solar power collection, digital 

communications (wave division multiplexing), medical instrumentation, and astronomical optics. 

In Chapter 4, we introduce methods for modeling and visualizing these lenses.

Figure 2.3: Light travels along a curved path in a medium with graded refractive index. This 
property is used in multi-mode optical fiber to reduce ’modal dispersion.’ Image courtesy of 
Marc Achermann, Lucerne University of Applied Sciences and Arts, 6048 Horw, Switzerland.
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2.1.3 Medical Visualization
In the area of medical diagnostics, volumetric data are commonly acquired through magnetic 

resonance imaging (MRI) or computed tomography (CT) scans. We briefly summarize how these 

machines work to impart some understanding of the quantities they record. An MRI machine 

(Figure 2.4) is essentially a machine capable of generating a strong magnetic field. When exposed 

to this field, the hydrogen atoms of the body tend to fall either into alignment or anti-alignment 

with the direction of the field. The machine generates an image by casting radio waves at a 

hydrogen-specific frequency toward the center of the measurement apparatus. This causes the 

atoms to precess (rotate 90 degrees) and generate a corresponding signal which can be recorded by 

the machine. Different tissues of the body contain different densities of hydrogen atoms, and the 

strength of the signal emitted is proportionate to this density. Thus, tissues can be differentiated 

in the resulting 3D photo.

A CT machine is a specialized form of X-ray machine. X-ray machines work by casting 

X-rays through the object of interest. Since different kinds of tissue absorb X-rays in different 

degrees, X-rays can be used to expose structures within the body. The CT machine has an X- 

ray device which rotates about the object, and produces slices of data, which can be used to 

reconstruct a 3D image. The output of both machines is three-dimensional volumetric data which 

are indicative of localized tissue type (see Figure 2.5).

In Chapter 4, we extend traditional methods for scientific data fitting and visualization to 

volumetric NURBS.

2.1.4 Realistic Rendering

The area of computer graphics has long been dominated by triangles. However, there are 

many reasons why it is a good fit for the application of spline-based techniques. First, because

Figure 2.4: An MRI machine.
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Figure 2.5: Visualization of CT data from the National Library of Medicine’s Visible Human 
Project® (image courtesy of Steven Parker, University of Utah).

many of the models in production scenes are generated in CAD software, the models are typically 

spline (or subdivision surface)-based. As with finite element analysis, the initial step in the render

ing process is often to convert smooth models into a triangular mesh. The reasoning has been that 

triangles are simpler to render, and because all smooth representations admit a tessellation [8], 

triangles become the common currency across rendering systems. Shortcomings of this approach 

are precisely parallel to those mentioned for isogeometric analysis. The models must frequently 

be tweaked in response to lighting conditions as well as the aesthetic opinions of the director (or 

engineer if we consider automotive design). This requires access to the underlying models. A 

solution employed by Pixar (in their Reyes architecture [9]) has been to delay tessellation until the 

final rendering step, tessellating to the granularity of a pixel and beyond in order to avoid visible 

seams, jaggies, and other artifacts of tessellated models. This approach is not generally applicable 

to interactive rendering as each rendered frame will entail many millions of polygons, composited 

in different layers, etc. Microtriangles also are not a programmatic simplification, as the rendering 

program must still deal with smooth surface representations and dice them into microfacets for 

the rendering step. If tessellation is applied earlier, one instead deals with the potential for visible 

seams -  which can be magnified by shadows, specular highlights, and the presence of optical 

elements -  as well as an explosion of data (and the resulting memory utilization) which often 

accompanies the approximation of curved surfaces using piecewise planar elements. Finally, we 

note that in recent years, ray tracing has become a legitimate alternative to raster-based rendering.
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Particularly as the size of the models has increased, and it has done so exponentially [10], ray 

tracing has become attractive because its complexity scales in the number of pixels, and not in 

the number of elements. Because of the efficiency by which the ray tracing paradigm solves the 

visibility problem, the expense of evaluating primitives such as NURBS has become less of a 

concern.

In Chapter 3, we have developed a system for directly rendering NURBS surfaces which is 

optimized, general, and supports implementation within a parallel rendering system. We have 

successfully integrated our work into one such system, with promising results [1].

The global illumination problem (which we introduce in more detail in Chapter 7) aims 

to achieve photorealistic rendering of a scene by simulating how light interacts with, and is 

retransmitted by, interfaces in the scene. The radiance function, which captures this notion, is a 

function on manifolds -  in its most general form, a function of (volumetric) position, wavelength, 

viewing angle, and time, a seven-dimensional function. However, in the absence of intervening 

media (fog, atmospheric dispersion, etc.), it is frequently framed as a surface-based function. 

The solution to the steady-state global illumination problem is often phrased as a finite element 

problem [11-13]. As we have discussed previously, this problem has historically been dominated 

by triangular mesh elements. However, smooth representations have all the advantages given 

in the preceding paragraphs, including potentially fewer elements. The basis functions used 

to represent radiance have traditionally been orthogonal functions which simplify quadrature 

of the global illumination problem -  among these, spherical harmonics and Haar wavelets. A 

downside of these basis functions is that they can introduce oscillations in their reconstruction. 

One of the attractive aspects of spline approximation is that it can be constructed so as to avoid 

undue oscillation. Splines also possess integral properties which make them ideal candidates for 

quadrature. And intuitively, we observe that the radiance in most scenes appears to be smooth 

over large areas -  and splines are nearly ideal for capturing such smooth functions. Obvious 

counterexamples include sharp shadows, specular reflections (caustics), and areas of high textural 

frequencies.

In Chapter 7, we generalize our attribute-based model from Chapter 4 to capture the view- 

dependent radiance function as a spline. We demonstrate how spline-based approximation tech

niques can be leveraged to simplify the integration of the global illumination equation, in the 

process demonstrating quadrature techniques which are readily amenable to other classes of 

engineering analysis problems. We generalize the gathering/scattering approach of radiant trans

fer to solve the global illumination problem, demonstrating how splines can be applied to FEA
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problems outside the field of isogeometric analysis and we posit that our solutions to the rendering 

equation take the same form. We have implemented our spline-based radiance function in a 

real-time rendering system, allowing the radiance function to be interactively computed for novel 

views via a simple texture evaluation (see Chapter 7).

2.2 Related Work
Much work has preceded ours. The organization of this section mirrors the organization of 

the rest of our document, and details the work we consider most related or relevant to ours.

2.2.1 Ray Tracing NURBS Surfaces/Volumes
Several of the techniques we shall present in this dissertation entail ray tracing a trivariate 

NURBS volume. Such a technique requires ray intersection with the solid boundary and subse

quent traversal of its interior. Since the parametric faces of a trivariate volume are themselves 

NURBS surfaces, we shall therefore require the capability to ray trace NURBS surfaces. Tech

niques for ray tracing NURBS can be divided into two broad classes — those that tessellate (e.g., 

[14-18]) and those that work directly with the underlying representation (e.g., [19-27]). The 

former are far more prevalent in commercial software systems. The techniques we propose are of 

the latter sort, for reasons we shall discuss in more detail later. We shall refer to these techniques 

as direct methods.

The seminal article on ray tracing parametric surfaces is that of Kajiya [22]. His method 

uses the theory of resultants to reduce the problem of ray tracing patches to that of finding the 

simultaneous roots of two parametric curves. Toth [26] introduces an intersection technique based 

on Newton-Raphson root finding. His algorithm subdivides the surface into intervals such that 

the Newton iteration is guaranteed to converge to a root, if one exists, from any start value in that 

interval. This guarantee is made, however, at the price of linear convergence, as his analysis only 

holds for a Newton interation with a fixed Jacobian (so-called linear Newton). These two articles 

by Kajiya and Toth contain the major ideas upon which most subsequent NURBS ray tracing 

papers have built.

The basic operation of a NURBS intersection routine can be summarized as follows:

•  As a preprocess, refine the surface to facilitate ray culling using a hierarchy of bounding 

volumes. For Newton-type iterative schemes, this step will also determine good start values 

to ensure swift convergence.

•  At run time, use the bounding volume hierarchy (BVH) to limit sections of the surface
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under consideration, and apply the more costly patch intersection routines only if a ray 

successfully traverses to a leaf.

We summarize briefly the contributions of several other authors. Fournier and Buchanan [21] 

introduce Chebyshev polynomials and demonstrate that tight bounding volumes can be obtained 

directly from the coefficients of a Chebyshev bilinear patch. Their approach subdivides a surface 

patch until the subpatches can be well approximated by a bilinear representation. The bounding 

volumes are generated bottom-up using the coefficients of the Chebyshev representation, and 

intersections with the bilinear patches can be found exactly via a quadratic equation. Another 

novel approach, introduced by Nishita et al. [24], uses a technique called Bezier clipping to 

iteratively remove regions of the patch which do not intersect the ray. Their treatment also handles 

trimming curves using a technique of point classification, but requires that patches be represented 

in the Bezier-Bernstein basis.

There are a number of Newton-based techniques, which differ mainly in the way they form 

the bounding volume hierarchy and the manner in which initial values are chosen for the iteration. 

Barth and Stiirzlinger [19] subdivide the NURBS surface until each subpatch can be approximated 

by a parallelogram. The hierarchy of patches is bounded by parallelipipeds. If a ray is not 

eliminated by intersections with the bounding volume hierarchy, then at the leaf, it is intersected 

with the approximating parallelogram. This intersection yields a start value for the Newton 

iteration on the leaf surface patch. Sweeney and Bartels [25] suggest refining the NURBS surface 

until the screen projection of each mesh facet is less than a few hundred pixels, and until the knot 

they associate with each control point constitutes a good starting value for the Newton iteration. 

The leaves of their bounding volume hierarchy are the axis-aligned rectangles which contain a 

particular refined control vertex and its 4-connected neighbors. If a ray succeeds in reaching a 

leaf node, a Newton iteration is started using the knot value associated with the vertex.

Yang [27] uses a modified spatial subdivision scheme to generate a BVH. First, points are 

generated on the surface using a user-specified parametric step size. An axis-aligned bounding 

box is produced for these points. Next, the bounding box is subdivided into 16 sub-boxes. Sub

boxes containing none of the surface points are discarded. If the limit depth has not been reached, 

the procedure is repeated for each remaining sub-box. If the limit depth has been reached, the 

parameter values for the points in the box are averaged to produce the start value for the Newton 

iteration. Lischinski and Gonczarowski [23] introduce a number of efficiency improvements to 

the NURBS ray tracing technique. Among these are development of a hybrid of BVH and spatial 

subdivision schemes, search tree caching for Toth’s method, improved screen sampling order
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based on the Peano curve, and a treatment of secondary rays which avoids trivial intersections at 

the ray origin.

2.2.2 Volumetric Representations and Techniques
We have noted that there are a variety of applications for which generating, analyzing, and 

visualizing volumetric quantities is key. This conclusion motivates the development of volumetric 

models which encapsulate the behavior of such systems. A number of representation techniques 

have been developed for volumetric data. The most commonly encountered of these is the voxel 

representation, which has become standard among the medical visualization community. One 

reason for this is that scanned data are typically captured in regularly spaced slices, each slice 

composed of a rectangular grid of values. The samples provided by the imaging machine must be 

reconstructed in order to generate a continuous volumetric function. One commonly used filter is 

a trilinear interpolant.

Among the scientific community, finite elements are a common tool for analysis. Finite 

elements (e.g., tetrahedra) provide simplified connectivity information, allowing attributes, such 

as stress or temperature, to propagate across the volume. They are well suited to iterative schemes, 

and are commonly used in the solution of ordinary and partial differential equations. Both voxels 

and finite element meshes can be seen as spatial subdivision structures, which differ in regularity 

and shape.

Within the modeling community, volumes have been traditionally represented by their bound

aries. Such representations include Bezier surfaces, NURBS, Steiner patches, Coons patches, 

and Hermite patches, among others. This has proven sufficient for models with homogeneous 

interior. However, the desire to apply proven modeling techniques to novel technologies, such 

as functionally gradient materials and GRIN lenses, has led to the development of higher dimen

sional parametric formulations. It is these representations which are most closely related to the 

present work, and we now discuss them in greater detail.

Farouki and Hinds [28] present a nice overview of parametric modeling techniques, including 

the generalization of bivariate NURBS surfaces to trivariate NURBS volumes. In the same year, 

Lasser [29] explored the Bernstein-Bezier volume representation, and extended techniques for 

evaluation and interpolation to them. Traditional modeling operations, such as ruling, extrusion, 

and revolution, were extended to trivariate NURBS by Paik in [30]. She also allowed volumes 

to represent surfaces which evolve through time by designating one coordinate as a temporal 

axis. A final contribution of that thesis was a physical simulation which incorporated a system of 

springs at the vertices. Madrigal and Joy [31] develop an algorithm for determining the boundary
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of a trivariate solid that is swept through space. The method employs the results of Joy and 

Duchaineau [32] for determining the boundary of a trivariate solid, and then performing a sweep 

of that boundary to determine the resulting sweep envelope. As an alternative to parametric mod

eling, Wang and Kaufman [33] present a technique for volumetric modeling which is analogous to 

sculpting. A voxel representation is employed, and material can be removed or have its attributes 

(e.g., color) modified using a variety of tools.

Historically, a number of papers have developed volumetric representations which incoporate 

attribute data and geometry. In a visionary 1977 paper, Stanton et al. [34] describe a batch 

system which uses a tricubic Hermite volume for stress analysis. Their results lead them to 

conclude that parametric volumes are “an important new analytical tool for solids of composite 

material.” In a followup article, Casale and Stanton [35] develop a system of modeling volumes 

with carried attribute data. Their representation is tricubic, augments the geometry (vertices) 

with “data entries,” and supports finite element analysis. Yen [36] generalizes this result with 

a scheme for performing finite element analyses on trivariate NURBS volumes. In his method, 

the volume is divided into regions, and attributes can be specified for each region. Subsequent 

meshing is performed to achieve a given simulation error tolerance. Yen further introduces a 

Boolean sum operator to generate volumes from boundary surfaces, in a spirit similar to the 

Coons patch. Dickinson et al. [37] use a B-spline volume to represent scalar and vector fields. 

Again providing a worthy foil, Kaufman [38] has combined modeled objects and measured data 

within a voxel-based volume visualization system, along with an algorithm for scan converting 

tricubic Beziers.

More recently, there has been a resurgence in interest in volumetric representations of het

erogeneous materials, particularly as the applications of medical imaging and FGM manufacture 

become more common. Bonnell et al. [39] give a technique for determining discrete material 

interfaces for objects represented in a voxel formulation, provided that for each voxel, the propor

tion of volume filled by each material to total voxel volume is known. The result of their algorithm 

is a triangulated approximation to the interfaces between materials. Raviv and Elber [40,41] 

employ trivariate B-splines for representing scalar fields and provide efficient algorithms for 

multiresolution sculpting using their coefficients. Park and Lee [42] use a rational NURBS 

volume to model fluid flow data. They present a data structure which couples attributes (such 

as flow density and flow velocity) to geometry and develop methods for nodal interpolation to the 

data.

Kumar and Dutta [43] develop an abstract mathematical representation by extending r-sets to
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multimaterial objects. r-sets are an established mathematical representation of solid models [44]. 

However, they are limited to representing geometry. Their article extends the r-set to a new 

representation which contains both geometric and material information, called the rm -set. The 

approach entails generalizing the traditional CSG operations to the new representation. The 

article also introduces a software framework for representing these models. The models presented 

in this work are limited however to objects with discrete boundaries and a single material per 

domain.

The authors correct this limitation in a followup article [45] which generalizes r m-sets to 

handle funtionally graded materials (FGMs). Again, the CSG operations are extended to the new 

r m-set representation. However, now care must be taken to assure that material fractions remain 

normalized. A software framework is introduced and a simple FGM object is generated using the 

aforementioned representation. Application to layered-manufacturing techniques is discussed. 

Kumar et al. [46] provide a good summary of the various mathematical representations for models 

found in the literature. They then proceed to generalize the notion of an rm-set to that of a fiber 

bundle. Each material is a manifold in this representation. The CSG operations are extended to 

this ’’trivial” fiber bundle and an augmented software framework is introduced.

Marsan and Dutta [47] apply the preceding theory to the class of trivariate parametric func

tions. The traditional trivariate NURBS formulation is extended to represent material composi

tion. This is done in one of two ways. The material can be represented as an explicit function 

over rectilinear coordinates (x, y, z), which also serve as the parametric domain. This is similar 

to the voxel formulation traditionally applied in the visualization literature. On the other hand, the 

coefficients of the trivariate volume can be extended to contain material information, resulting in 

a true parametric volume formulation, with attributes coupled to geometry. Methods of evaluation 

and data fitting, as well as applications to layered manufacturing, are discussed.

There have been several articles from M.I.T. supporting the use of heterogeneous materials 

in manufacture, with particular application to their 3DP technology. Liu et al. [48,49] present a 

finite element-based system for designing FGM solids and develop an efficient distance transform 

so that composition can be automatically specified as a function of boundary proximity. They also 

produce a method to efficiently evaluate material composition at a point. Jackson [50] provides 

an extensive survey of volumetric techniques as applied to the problem of FGM modeling and 

local composition control. He provides analysis of the techniques in terms of memory utilization, 

and finds that cellular techniques afford the greatest efficiency. Cellular techniques decompose 

the geometry into cells, over which material properties can be defined. Among the region types
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he introduces is a trivariate Bezier patch, with attribute data decoupled from geometric data, in 

the same spirit as the formulation we propose here.

2.2.3 Volume Visualization
In this dissertation, we will be describing a data structure which associates geometry and 

attributes in a single model. Such representations are by their nature high-dimensional, and it 

is typically difficult for designers and analysts to reason about this space. Therefore, techniques 

for encoding information in visualizations will play a key role in making these models usable 

and intuitive. A number of researchers have developed approaches to this problem, and we will 

leverage many of their ideas in our present work.

Perhaps the best known volume visualization algorithm is the so-called Marching Cubes 

technique for constructing isosurfaces, introduced by Lorensen and Cline [51]. For a given voxel 

and a particular isovalue, each vertex of the voxel is labelled with a 0 or 1 according to whether 

its attribute value is above or below the value sought. There is only a small set of ways a given 

isosurface can pass through a voxel, and the vertex labeling is used to lookup the tessellation for 

each corresponding configuration. The algorithm then marches forward to the next cell.

Isosurface rendering is one approach to extracting structure in volumetric datasets. Another 

technique is assigning colors and opacities to materials, and pulling out structural detail using 

traditional graphics shading models (see Figure 2.5). Such approaches may be classified under 

the moniker “direct volume rendering.” Drebin et al. [52] introduce a technique for volume 

rendering which operates on data decomposed into material percentage volumes. Each material 

percentage volume tracks some material of interest, e.g., skin or bone, its data values indicat

ing the proportion of the material present in a given voxel. From this representation, the user 

associates a density with each material, and gradients can be calculated based on how quickly 

materials transition. Likewise, colors and opacity are associated with materials, and this together 

with gradient information is used to shade the volumetric data.

Shirley and Tuchman [53] provide a clever method for direct scalar volume rendering of 

datasets represented in a tetrahedral format. First, tetrahedra are classified according to their face 

orientation relative to the viewer. The tetrahedra are projected onto the viewing plane, and broken 

into a set of triangles, based on their classification. Ray integration is calculated at the thickest 

point of ray-tetrahedron traversal, and linear interpolation is used to generate the brightness and 

opacity across each triangle. The technique produced renderings of high quality with an order of 

magnitude increase in performance over ray traced techniques.
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Nonetheless, given its simplicity, ray tracing is an attractive option for direct volume ren

dering. Levoy [54] describes methods for efficiently ray tracing volumetric data. The two 

techniques focused on are hierarchical gridding of data to speed ray-grid traversal, and adaptive 

ray termination based on accumulated opacity. Max [55] provides an overview of optical methods 

for direct volume rendering, with particular attention to multiple scattering effects, such as are 

seen in clouds.

There have been some techniques targeted specifically to rendering parametric volumes. 

Dickinson et al. [37] and Park and Lee [42] present methods for generating isosurfaces and 

streamlines for trivariate scalar and vector fields to effect feature segmentation. Raviv and El- 

ber [41] achieve interactive visualization of complex scalar fields by fixing the viewpoint and 

preintegrating the B-spline functions along a line of sight. The user can freely modify the scalar 

coefficients and see the results in realtime. Chang et al. [56] develop a scanline technique for 

direct rendering of trivariate volumes using line-of-sight integration and compositing. Madi and 

Walton [57] allow visualization of multilayer objects using the concept of cuboids. Objects are 

discretized into layers of cube-like objects, allowing layers to be easily peeled away for display. 

Joy and Conkey [58] apply the results of [32] to visualize the envelope of a swept trivariate 

B-spline solid. The crux of the technique is to generate the trivariates formed from the parametric 

boundary of the surface and union them with the solid generated by the swept implicit boundary. 

Recently, Martin et al. [59] have employed a frustum-based approach to rendering the isosurfaces 

of trivariate volumes. Their technique leverages the subdivision and convex-hull properties of 

splines along with an optimized oriented bounding box hierarchy to expedite the isolation of 

isosurface-frustum intersections. A further advantage of their technique is that it trivially affords 

rendering the underlying geometry in the context of the isosurface.

2.2.4 Medial Axis Transforms

This dissertation will introduce a new modeling operator which is based on the concept of a 

medial axis and an associated generalized cylinder. The notion of a medial axis was formalized 

by Blum [60] and later reformulated using his famous “grass fire analogy” [61]. Given a closed 

curve in the plane, the medial axis of the curve can be found by setting a fire along the perimeter, 

and allowing the fire to propagate inward at a fixed rate. When two fire fronts collide at so-called 

“quench points,” they are extinguished. The collection of all quench points is termed the medial 

axis. Other definitions are possible, as well. The medial axis can be seen as the locus of the centers 

of all maximal circles which are inscribed in a closed curve, and touch it at two or more points. It
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can also be found contained in the Voronoi diagram of the curve boundary. The medial axis can 

be elevated to higher dimensions, by generalizing the grass fire analogy to a boundary surface, 

the maximal circle definition to spheres, and the 2D Voronoi to 3D. An object can be completely 

reconstructed from the maximal circle definition provided that the radius of the maximal sphere 

is recorded for each point on the axis. See Figure 2.6 for an example of the medial axis transform 

applied to a planar figure.

The medial axis in some sense forms the backbone of the object from which it is derived. This 

has made it popular for shape recognition in the vision community and as a handle for character 

manipulation in the animation community. The axis has also been applied in the field of robotics 

for collision avoidance. By following the medial axis, the robot is roughly speaking as far as 

possible from obstacles on the perimeter. There are a number of problems with the medial axis, 

however. It is notoriously slow to compute, numerically unstable, and very sensitive to noise. 

The slightest perturbation in a boundary will cause a spike whose magnitude is uncorrelated to 

the degree of perturbation. This has led Chuang [62-64] to develop an approximation to the 

medial axis which is less sensitive to noise, and easier to compute as well.

Ahuja and Chuang [62] develop a potential-based model for approximating the medial axis 

of a 2D polygonal region. Their idea is to treat the boundary of the region as possessing a charge. 

The force acting on an oppositely charged point in the interior can be calculated by integration 

over the boundary. This force reaches a local minimum when the particle is approximately 

equidistant from two boundaries. Thus, valleys in the potential function correspond roughly 

to the medial axis. Chuang [63] generalizes the potential approach to 3D for the purpose of 

obstacle avoidance and later [64] applies the technique to skeletonization of three-dimensional 

polyhedral objects. In three dimensions, the potential-based skeleton does not converge to the

Figure 2.6: Medial axis of a planar figure.
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medial axis. Chuang’s potential-based skeleton remains a space curve, whereas the medial axis 

is in fact a series of joined surfaces, termed “medial surfaces.” We shall discuss the exact form of 

the potential-based approach in later chapters.

There are many other excellent skeletonization algorithms. In particular, we have considered 

two. Lee et al. [65] modify the erosion operator to thin a voxelized model while preserving 

component connectivity to yield a thin skeleton. Cohen-Or et al. [66] employ a sequence of 

repulsive forces and edge collapses to produce a skeleton from a model.

A number of articles have further motivated our research. Yao et al. [67] present a simple 

method for computing the medial axis of a polygon and Chin et al. [68] manage it in linear 

time. Wolter [69] discusses the role of the medial axis in shape representation, and explores the 

relationship between the homotopy type of a solid and the homotopy type of its medial axis. 

Amenta et al. [70-72] develop methods for surface reconstruction from unorganized data by 

calculating the approximate medial axis of the point cloud.

2.2.5 Surface / Volume Completion
Surface completion is the process of “filling in” a surface from its boundary representation. 

As such, it bears some similarity to the problem of hole-filling, for which several methods have 

been introduced (e.g., [73]). Often these techniques do not address the parameterization of the 

filled region. When the parameterization is addressed, it is often piecemeal, composed of a series 

of adjacent parametric patches.

There are a number of classic works on completing a surface from a series of bounding 

curves [74-77]. This work is most closely related to the algorithm we will develop. However, 

in contrast to our approach, these techniques generally assume the boundary can be naturally 

decomposed into n-faces, which can in turn be blended together. For example, schemes have 

been developed to complete a surface from 3, 4, 5, and 6-sided areas. There are many commonly 

occurring curve examples that do not easily admit such a decomposition

Similarly, volume completion builds a volume representation from a surface boundary rep

resentation. While this is not a new problem, the goal of completing a NURBS boundary while 

preserving its parameterization is relatively new. It is a point of view that has become more 

popular with the advent of the field called isogeometric analysis [4], as discussed above. The 

work of Martin et al. [78,79] is most similar to ours, starting with a family of offsets projected 

inward towards a central midstructure. Their work diverges from ours on the question of how 

to deal with the difficult area near the axis. We have chosen to span this region with a separate 

NURBS volume, whereas they have opted for a hybrid representation, filling this region with
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tetrahedra. Our work has the disadvantage of possible parametric distortion as the volume ele

ments map to a one-dimensional figure. Theirs must deal with communicating values amongst 

two representations, with the possible introduction of errors or loss in precision.

Our volume completion operator amounts to a parametrization of the volume bounded by a 

boundary representation. A number of authors have dealt with the problem of parametrization, 

especially as it relates to surfaces. Two excellent overviews are provided by [80, 81]. The 

generalized cylinder (GC) representation was a starting point for our work. The definition of 

the medial axis as the locus of the centers of spheres that touch the boundary at two or more 

points suggests a method whereby the original boundary can be reconstructed by tracking a 

scaling function along the axis and centering a scaled sphere at that point. Our intuition of an 

offset-based approach to a simple midstructure was borne from this intuition. The GC-based 

representation was originally proposed by [82] and was recently extended by Chuang et al. [83] to 

their potential-based approach. An equally evocative idea was given by Blum’s original work [60] 

that defined the medial axis as the quench points of fires placed on a boundary.

2.2.6 Global Illumination

In the area of photorealistic rendering, one often speaks of radiance, the function that charac

terizes the light leaving the surface of an object in a particular direction. Capturing this radiance 

function facilitates solution of the global illumination equation. Most approaches to radiance 

computation and storage have simplified the problem by either decreasing the dimensionality 

of the radiance function or assuming a simplified surface representation. The original radiosity 

approach to the problem captured view-independent irradiance at discrete points over piecewise- 

planar patches [11]. Troutman and Max [84] and Zatz [85] extended the basic radiosity approach 

to higher order functions of surface position. Ward’s work on illuminance caching [86] allowed 

for nonuniform sampling of the diffuse radiance function over arbitrary surfaces, and the work of 

Greger et al. [87] generalized the representation to volumes, allowing for scenes with dynamic 

elements. Walter et al. [88] trace photons from light sources into the environment, and track 

the intersections of these packets to reconstruct the surface illumination function. Their method 

applies to polygonal models and does not render view-dependent shading effects (although it does 

capture view-dependent illumination effects). Photon maps [89] further generalize the approaches 

of Ward and Walter et al. by caching illumination as discrete oriented packets. At render time, 

the global illumination integral can be approximated at a surface point by considering the closest 

k packets and performing quadrature. In this way, arbitrary surfaces and a 4D radiance function
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are supported. Difficulties include ensuring adequate sampling (thereby avoiding blurring) and 

determining the k significant neighbors.

A number of techniques for caching angularly varying radiance have been introduced. Walter 

et al. [90] employ Phong lobes as a basis for capturing nondiffuse lighting effects. The radiance 

function of each surface in the scene is approximated using virtual lights and Phong lobes. 

Hardware support for interpolated shading enables interactive walkthroughs of these scenes. 

However, the technique requires the results of a prior global illumination solution, has limited 

flexibility in the basis functions (e.g., fixed, per-surface Phong exponents), and is restricted 

to polygons (GL shader). Another approach is to assume that the rendering equation can be 

factored into a sum-of-products of lower dimensional functions [91]. McCool et al. [92] apply 

factorization to the BRDF, allowing direct use of texture mapping hardware in conjunction with 

point source-based lighting. Latta and Kolb [93] apply the factorization to the entire GI integral. 

Some limitations of their approach are the assumption of isotropic materials and a distant envi

ronment (environment map). Object-object interactions are not treated, shadowing is due only to 

self-shadowing, and self-lighting is not accounted for.

Alternatively, spherical harmonics (SH) are a common representation for capturing directional 

radiance. Sillion et al. [12] generalize the basic radiosity approach to cache radiance as spherical 

harmonics coefficients at the vertices of planar surfaces. Surface colors are then determined 

by interpolation at render time. Stamminger et al. [94] extend this work to a multiresolution 

representation of the angular radiance. Cabral et al. [95] represent the surface reflectance (BRDF) 

in a 2D spherical harmonics representation by assuming isotropy and discretizing the remaining 

dimension. They assume an infinitely distant environment (environment map) which can be 

projected onto the SH basis, reducing the global illumination integral to a sum of coefficients. 

Sloan et al. [96] and Kautz et al. [97] take a similar approach, extending the model to include 

dynamic lighting, self-illumination, and arbitrary BRDFs. The environment is generally assumed 

to be distant, except for distinguished points in a local neighborhood of the object. Ramamoorthi 

and Hanrahan [98] have demonstrated that for diffuse materials and distant environments, 9 SH 

coefficients are sufficient to encode incident illumination.

Similar approaches for capturing surface radiance have been applied in the field of image- 

based rendering. Wood et al. [99] associate a piecewise linear 2D directional radiance map with 

each texel on the surface, allowing for real-time playback of photographic imagery. An idea 

related to the one we present was introduced by Malzbender et al. in their paper ’’Polynomial 

Texture Maps” [100]. Each texel stores 6 coefficients to a biquadratic function that approximates
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surface luminance variation with respect to lighting direction. The model assumes directional 

lighting and a fixed viewing direction to reduce the dimensionality of the radiance function.

Several authors have explored hierarchical approaches to radiant transfer. Hanrahan etal. [101] 

develop a technique for patch-based energy exchange at multiple scales, thereby decreasing the 

number of interactions required in a radiosity solution. Their basic technique is limited to diffuse 

polygonal environments. Aupperle and Hanrahan [102] generalize the hierarchical technique to 

account for glossy reflections, assuming polygonal environments and that illumination is constant 

over a patch. The work of Gortler et al. [103] generalizes the Galerkin and hierarchical methods 

by introducing the multiscale wavelet basis to radiosity. Their method treats diffuse scenes, 

does not enforce continuity across patch boundaries (which can result in visible seams), and 

is implemented solely for polygonal environments (although they hint at an implementation 

for parametric patches). Yu and Peng [104] apply spline wavelets as a basis for representing 

irradiance at multiple scales over curved surfaces. Christensen et al. [105] demonstrate how 

wavelets and importance-driven refinement can be used to accelerate the radiosity solution for 

glossy environments. In contrast to our work, their approach is view dependent, requires a final 

gather, applies numerical integration in addition to approximation of the GI integrand, and is 

limited to convex patches. Bala et al. [106] introduce a bounded-error quadtree-based method 

for caching directional radiance on surfaces. The radiance function is generated using lazy 

evaluation, and whenever possible, colors are interpolated from previously cached values. It 

is an impressive system, but necessarily makes some concessions for the sake of efficiency and 

simplicity. In particular, it uses convex primitives, linear interpolation of radiance, and does not 

support general BRDFs, diffuse interreflections, or area light sources.

The approach we describe is most similar in spirit to that of Redner et al. [107]. Their 

paper develops the theory of B-spline density estimators and applies the resulting formulation 

to represent illumination functions across smooth surfaces. Our work differs from theirs in 

significant ways. Our radiance representation is directionally varying, incorporates arbitrary 

luminaires, addresses trimming curves, and provides for a hierarchical representation of radiance. 

On a more philosophical note, their work has the flavor of a radiosity formulation, with explicit 

projection onto basis functions. We take an approximation theoretic approach, and utilize the 

integration properties of B-splines to simplify the solution of the rendering equation.



CHAPTER 3

RAY TRACING TRIMMED NURBS SURFACES 

3.1 Overview
A system is presented for ray tracing trimmed NURBS surfaces. While approaches to com

ponents are drawn largely from existing literature, their combination within a single framework 

is novel. This chapter also distinguishes itself from prior work in that the details of an efficient 

implementation are fleshed out. Throughout, emphasis is placed on practical methods suitable to 

implementation in general ray tracing programs.

3.2 Introduction
The modeling community has embraced trimmed NURBS as a primitive of choice. The 

result has been a rapid proliferation in the number of models utilizing this representation. At the 

same time, ray tracing has become a popular method for generating computer graphics images 

of geometric models. Surprisingly, most ray tracing programs do not support the direct use of 

untessellated trimmed NURBS surfaces. The direct use of untessellated NURBS is desirable 

because tessellated models increase memory use which can be detrimental to runtime efficiency 

on modern architectures. In addition, tessellating models can result in visual artifacts, particularly 

in models with transparent components.

Although several methods of generating ray-NURBS intersections have appeared in the litera

ture [19-21,23-27], widespread adoption into ray tracing programs has not occurred. We believe 

this lack of acceptance stems from both the intrinsic algebraic complexity of these methods, and 

from the lack of emphasis in the literature on clean and efficient implementation. We present a 

new algorithm for ray-NURBS intersection that addresses these issues. The algorithm modifies 

approaches already in the literature to attain efficiency and ease of implementation.

Our approach is outlined in Figure 3.1. We create a set of boxes that bound the underlying 

surface over a given parametric range. The ray is tested for intersection with these boxes, and for 

a particular box that is hit, a parametric value within the box is used to initiate root-finding. The 

key issues are determining which boxes to use, how to efficiently manage computing intersections
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Figure 3.1: The basic method we use to find the intersection of a ray and a parametric object 
shown in a 2D example. Left: The ray is tested against a series of axis-aligned bounding boxes. 
Right: For each box hit, an initial guess is generated in the parametric interval the box bounds. 
Root-finding is then iteratively applied until a convergence or a divergence criterion is met.

with them, how to do the root-finding, and how to efficiently evaluate the geometry for a given 

parametric value.

We use refinement to generate the bounding volume hierarchy, which results in a shallower 

tree depth than other subdivision-based methods. We also use an efficient refinement-based 

point evaluation method to speed root-finding. These choices turn out to be both reasonable 

to implement and efficient.

In Section 3.3, we present the bulk of our method, in particular how to create a hierarchy of 

bounding boxes and how to perform root-finding within a single box to compute an intersection 

with an untrimmed NURBS surface. In Section 3.4, we describe how to extend the method to 

trimmed NURBS surfaces. Finally, in Section 3.5, we show some results from our implementa

tion of the algorithm.

3.3 Ray Tracing NURBS
In ray tracing a surface, we pose the question “At what points does a ray intersect the surface?” 

We define a ray as having an origin and a unit direction

r (t) = o +  d  * t.

A nonuniform rational B-spline (NURBS) surface can be formulated as

M -1 N -1
Sw(u,v)  =  £  (u )B hkv(v)

i=0 j =0
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where the superscript w denotes that our formulation produces a point in rational four space, 

which must be normalized by the homogeneous coordinate prior to display. The {PWj } =  j  =0— 1 

are the control points (wj j  x j j , wj j yj j , wj j  z j j , wjj ) of the M  x  N  mesh, having basis functions 

B j , ku, B j,kv of orders ku and kv defined over knot vectors

TU — {uj  }j=0

Tv — {Vj }M=M— 1+kv 
j=0

formulated as

B j , ku (u) =  <

B j , kv (v) = <

Uj + ku-1 Uj 
U.j + ku~U 

Ujjrku ~ujJr 1

vi+kv —1 vi
Vj+ky-V 

vi-\-kv vi-\-1

1
0

B j,ku—1(u) +
Bj+i,ku-i(u)
1
0

■Bi>kv-  i(v) +

B j+1, kv —1(v)

if ku — 1 and u  € [uj ,Uj+1) 
if ku — 1 and u €  [uj,Uj+ 1) 
otherwise

if kv — 1 and v € [vi, vj+ 1) 
if kv — 1 and v €  [vj , vj+1) 
otherwise.

(NB: For historical reasons, we refer to the “order” ku or kv of a surface in the u or v directions, 

respectively. Recently, it has been more commonplace to speak of the degree du or dv. In this 

case, du =  ku — 1 and dv =  kv — 1.) Such a surface S is defined over the domain [uku—1,u N) x 

[vkv—1,v M). Each nonempty subinterval [u j, u j+1) x [vj , vj+ 1) corresponds to a surface patch.

In this discussion, we assume that the reader has a basic familiarity with B-Splines. For 

further introduction, please refer to [5,108-111].

Following the development by Kajiya [22], we rewrite the ray r  as the intersection of two 

planes (Figure 3.2), {p | P i  ■ (p, 1 ) — 0} and {p | P 2 ■ (p, 1) — 0}, where P i  — ( N i , d1) and 

P 2 — (N 2 ,d 2). The normal to the first plane is defined as

N i
(dy , —d x , 0) if |dx | >  |d y | and |d x | >  |dz| 
(0, d z , —d y) otherwise.

u—uj

v-v
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Figure 3.2: A ray formulated as the intersection of two planes.

Thus, N i  is always perpendicular to the ray direction d , as desired. N 2 is simply

N 2 =  N 1 x d .

Since both planes contain the origin o, it must be the case that P 1 ■ (o, 1) =  P 2 ■ (o, 1) =  0. 

Thus,

di =  —N 1 ■ o 

d2 =  —N 2 ■ o.

An intersection point on the surface S must satisfy the conditions

P 1 ■ (S (u, v), 1) =  0 

P 2 ■ (S(u, v), 1) =  0.

The resulting implicit equations can be solved for u  and v using numerical methods.

Ray tracing a NURBS surface proceeds in a series of steps. As a preprocess, the control 

mesh is flattened using refinement. There are several reasons for this. For Newton to converge 

quadratically, our initial guess for the root (u*,v*) must be close. By refining the mesh, we 

can bound the various subpatches, and use the bounding volume hierarchy (BVH) both to cull 

the rays, and also to narrow the prospective parametric domain and so yield a good initial root 

estimate. It is important to note that the refined mesh does not persist in memory. It is used to
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generate the BVH and then is discarded.

During the intersection process, if  we reach a leaf of the BVH, we apply traditional numerical 

root finding to the implicit equations above. The result will determine either a single (u*,v*) 

value or that no root exists.

In the sections that follow, we discuss the details of flattening, generating the BVH, root 

finding, evaluation, and partial refinement. Together. these are all that is needed for computing 

ray-NURBS intersections.

3.3.1 Flattening
For Newton to converge both swiftly and reliably, the initial guess must be suitably close to 

the actual root. We employ a flattening procedure — i.e., refining/subdividing the control mesh 

so that each span meets some flatness criteria — both to ensure that the initial guess is a good 

one, and for the purpose of generating a bounding volume hierarchy for ray culling.

A wealth of research exists on polygonization of spline surfaces, e.g., [14-17], and for the 

most part, these approaches can be readily applied to the problem of spline flattening. Some 

differences merit discussion. First, in the case of finding the numerical ray-spline intersection, we 

are not so much interested in flatness as in guaranteeing that there are not multiple roots within 

a leaf node of the bounding volume hierarchy. We note that this guarantee cannot always be 

made, particularly for nodes which contain silhouettes according to the ray source. Fortunately, 

the convergence problems which these boundary cases entail can also be improved with the mesh 

flattening we prescribe. We would also like to avoid any local maxima and minima that would 

serve to delay or, worse yet, prevent the convergence of our scheme. The flatness testing utilized 

by tessellation routines can be used to prevent these situations.

As ray tracing splines is at the outset a complicated task, we recommend the application of as 

simple a flattening procedure as possible. We have examined two flattening techniques in detail. 

The first of these is an adaptive subdivision scheme given by Peterson in [16]. As the source for 

the Graphics Gems is publicly available, we will not discuss that method here, but instead refer 

the reader to the source.

The second approach we have considered is curvature-based refinement of the knot vectors. 

The number of knots to add to a knot interval is based on a simple heuristic which we now present.

Suppose we have a B-spline curve c(t). An oracle for determining the extent to which the 

span [tj, tj+ i) should be refined is given by the product of its maximum curvature and its length 

over that span. Long curve segments should be divided in order to ensure that the initial guess 

for the numerical solver is reasonably close to the actual root. High curvature regions should be
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split to avoid multiple roots. As we are utilizing maximum curvature as a measure of flatness, 

our heuristic will be overly conservative for curves other than circles. The heuristic value for the 

number of knots to add to the current span is given by

n i =  C i * m ax {curvature(c(t))} * arclen(c(t))[ti,t ).
1)

We also choose to bound the deviation of the curve from its linear approximation. This notion 

will imbue our heuristic with scale dependence. Thus, for example, large circles will be broken 

into more pieces than small circles. Erring again on the conservative side, suppose our curve 

span is a circle with radius r, which we are approximating with linear segments. A measure of 

the accuracy of the approximation can be phrased in terms of a chord height h which gives the 

maximum deviation of the facets from the circle. Observing Figure 3.3, it can be seen that

h =  r  — d
6

=  r — r cos -

62
*  K i - ( i - y ) )

rO2
~  I T '

The number of segments n 2 required to produce a curve within this tolerance is computed by

Figure 3.3: Illustration of the chord height tolerance heuristic.
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2n/0. Thus, we have

n2 =
2n

27t -\fr

Combining the preceding oracles for curve behavior, our heuristic for the number of knots n  to 

add to an interval will be n 1 * n 2:

n  =  C * max {curvature(c(t))} * arclen(c(t))3/2t . ^
[ti,ti+1) t .

where C  allows the user to control the fineness. Since the maximum curvature and the arc length 

are in general hard to come by, we will estimate their values. The arc length of c over the interval 

is given by

f  ti+1
/  |c' (t) |d t =  avg[ti,ti+i){|c/(t)|} * (ti+1 — t i) .

J t.

Curvature is defined as

|c//(t) X c/(t)|curvature(c(t)) =

<

|c/(t)|3 
Ic//( t) | |c /( t) ||s in ^ | 

|c '( t)|3 

|c"(f)|| s in 0 |

|c '( t)|2

|c//(t)|

|c/ (t)|2

lc"(t) IWe make the simplification curvature(c(i)) «  In general, this estimate of the

curvature will be overstated. The error will be on the side of refining too finely rather than not 

finely enough, so it is an acceptable trade-off to get the speed of computing second derivatives 

instead of curvature.
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We are interested in the maximum curvature over the interval [tj , t j+ 1)

r  + f  m a x M i + i ) { l c " C O I }m ax |cu rva tu re(c(i) j  ~  i t /
J "  avg[t.;t.+1) { |c/(t)|}2

If we assume the curve is polynomial, then the first derivative restricted to the interval [tj , t j+1) 

is given by

c'(*>= e  (* - 1)(Pj: f j- i ) B , ^ 1w
• • 7 i O  tj+k- 1 t jj=j-k+2 J J

where { P j} are the control points of the curve. The derivative of a rational curve is considerably 

more complicated. While the polynomial formulation of the derivative is in general a poor 

approximation to the rational derivative, in the case of flattening, we have obtained reasonable 

results when applying the former to rational curves. For the remainder of this section, we shall 

assume that rational control points have been projected into Euclidean 3-space.

Since ^  Bj,k -1 (t) = 1, we can approximate the average velocity by averaging the control 

points V j of the derivative curve:

j= j-k +2 j + j j=i-k+2 

where V j (k — I ) 1 ■ The average speed is therefore

1 j
avgM i+ l){ |c '(t) |}  «  IV j I-

j= j-k +2

The second derivative over [tj , t j+ 1) is given by

c " ( i ) =  E  ( f c - 2) |V] V^ , l l % t -2  ( i ) =  E  A JBM - 2(t)
tj+k-2  -  tjj =j-k+3 J J j=j-k+3

where Aj (k — 2) V-'_/' . Using the convex hull property again, the maximum magnitude



32

of the second derivative is approximated by the maximum magnitude of the second derivative 

curve control points A j:

max {!c//(t)!) «  . ,m ax ,{!Aj !)-
[ti,ti+l) i-k+3<j<i

Our heuristic is finally:

_  r  m ax[ti,ti+i){lc"(*)ll * [avg[ti,ti+i){ |c /(f)|} * (tj+i - t j ) } 3/ 2
71 ~  * avgM i+ l){ |c '(t)|}2

m ax[t. t i+l){ |c"(t)|}  * (ti+1 -  t i ) f / 2
=  ( y -------------------------------------------------

avg^^odc 'W I}1/2
_  ^  max^_A.+3<j<^{|Aj|}(i^+1 - U ) ^ 2
— O - _• , .

For each row of the mesh, we apply the above heuristic to calculate how many knots need 

to be added to each u knot interval, the final number being the maximum across all rows. This 

process is repeated for each column in order to refine the v knot vector. The inserted knots are 

spaced uniformly within the existing knot intervals.

As a final step in the flattening routine, we transform all of the knot intervals in the refined 

knot vectors t u and t v into intervals with “open” end conditions. By this, we mean that we give 

multiplicity ku — 1 to each internal knot of t u and multiplicity ku to each end knot. Similarly, 

we give multiplicities of kv — 1 and kv to the internal and external knots, respectively, of t v . The 

results are Bezier surface patches that correspond to each nonempty interval [ul , u l+ i ) x [vj, vj + i ) 

of t u x t v , each of which can be bounded using the convex hull of the corresponding refined 

surface mesh points. This becomes critical in the next section.

The refined knot vectors determine the refinement matrix used to transform the existing mesh 

into the refined mesh. There are many techniques for generating this “alpha matrix.” As it is not 

critical that this be fast, we refer the reader to several sources [109,112-114].

Both adaptive subdivision and curvature-based refinement should yield acceptable results. 

Both allow the user to adjust the resulting flatness via a simple intuitive parameter. We have 

preferred the latter mainly because it produces its result in a single pass, without the creation of 

unnecessary intermediate points. Adaptive subdivision does have the advantage of inserting one 

knot value at a time, so one does not necessarily need to implement the full machinery of the Oslo 

algorithm [113]. Instead, one can opt for a simpler approach, such as that of Boehm [112]. It
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is not clear which method produces more optimal meshes in general. On the one hand, adaptive 

subdivision computes intermediate results which it then inspects to determine where additional 

subdivision is required. On the other hand, our method utilizes refinement (we only subdivide in 

the last step), and this converges more swiftly to the underlying surface than does subdivision.

Neither technique is entirely satisfactory. Each considers the various parametric directions 

independently, while subdivision and refinement clearly impact both directions. The curvature- 

based refinement method refines a knot interval without considering the impact of that refinement 

on neighboring intervals. This can lead to unnecessary refinement. Neither makes any attempt to 

find optimal placement of inserted knots.

The adaptive subdivision and curvature-based refinement methods are the products of the 

inevitable compromise between refinement speed and quality. Both satisfy the efficiency and 

accuracy demands of the problem at hand.

A point which we do not wish to sweep under the carpet is that the selection of the flatness 

parameter is empirical and left to the user. As this parameter directly impacts the convergence of 

the root finding process, it should be carefully chosen. Too small a value may cause the numerical 

solver to fail to converge or to converge to one of several roots in the given parametric interval. 

This effect will probably be most noticeable along silhouette edges and patch boundaries. On 

the other hand, too large a value will result in over-refinement of the surface, leading to a deeper 

bounding volume hierarchy, and therefore, potentially more time per ray. We have found that 

after some experimentation, one develops an intuition for the sorts of parameters which work for 

a surface. For an example of a system which guarantees convergence without user intervention, 

see Toth [26]. This guarantee is made at the price of linear convergence in the root finding 

procedure.

3.3.2 Bounding Volume Hierarchy
We build a bounding volume hierarchy using the points of the refined control mesh we found 

in the previous section. The root and internal nodes of the tree will contain simple primitives 

which bound portions of the underlying surface. The leaves of the tree are special objects, which 

we call interval objects, and are used to provide an initial guess (in our case, the midpoint of the 

bracketing parametric interval) to the Newton iteration. We will now examine the specifics in 

more detail.

The convex hull property of B-spline surfaces guarantees that the surface is contained in the 

convex hull of its control mesh. As a result, any convex objects which bound the mesh will bound 

the underlying surface. We can actually make a stronger claim; because we converted our knot
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vectors into “open” knot vectors in the last section (made the multiplicity of the internal knots 

k — 1 ), each nonempty interval [ui , u i+ 1) x [vj ,v j+1) corresponds to a surface patch which is 

completely contained in the convex hull of its corresponding mesh points. Thus, if we produce 

bounding volumes for each of these intervals, we will have completely enclosed the surface (refer 

to Figure 3.4.) We form the tree by sorting the volumes according to the axis direction which has 

greatest extent across the bounding volumes, splitting the data in half, and repeating the process.

There remains the dilemma of which primitive to use as a bounding volume. Many different 

objects have been tried, including spheres [21], axis-aligned boxes [21,25,27], oriented boxes 

[21], and parallelepipeds [19]. There is generally a tradeoff between speed of intersection and 

tightness of fit. The analysis is further complicated by the fact that bounding volume performance 

depends on the type of scene being rendered.

We have preferred simplicity, narrowing our choice to spheres and axis-aligned boxes. Spheres 

have a very fast intersection test. However, spheres, by definition, can never be flat (see Fig

ure 3.4). Since our intersection routines require surfaces which are locally “flat,” spheres did not 

seem to be a natural choice.

Axis-aligned boxes have many advantages. First, they can become flat (at least along axis 

directions), so they can provide a tighter fit than spheres. The union of two axis-aligned boxes 

is easily computed. This computation is necessary when building the BVH from the leaves.

Figure 3.4: Convergence of the bounding volume hierarchy under 4-to-1 subdivision. The 
top figures show the parametric intervals. The bottom figures show the spheres bounding the 
corresponding control meshes.
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With many other bounding volumes, the leaves of the subtree must be examined individually to 

produce reasonable bounding volumes. Finally, many scenes are axis-aligned, especially in the 

case of architectural walkthroughs. Axis-aligned boxes are nearly ideal in this circumstance.

A simple ray-box intersection routine is intuitive, and so we omit its discussion. An optimized 

version can be found in the paper by Smits [115].

3.3.3 Root Finding
Given a ray as the intersection of planes P 1 — (N 1, d1) and P 2 — (N 2, d2), our task is to 

solve for the roots (u*, v*) of

A variety of numerical methods can be applied to the problem. An excellent reference for 

these techniques is [116, pp 347-393]. We use Newton’s method for several reasons. First, it 

converges quadratically if the initial guess is close, which we ensure by constructing a bounding 

volume hierarchy. Furthermore, the surface derivatives exist and are calculated at cost comparable 

to that of surface evaluation. This means that there is likely little computational advantage to 

utilizing approximate derivative methods such as Broyden.

Newton’s method is built from a truncated Taylor’s series. Our iteration takes the form

un+1
vn+1

J  1(un ,vn) * F (u n ,v n )

where J  is the Jacobian matrix of F , defined as

J  — (F u , F v ).

F u and F v are the vectors

N i  ■ Su(u,v) 
N 2 ■ Su(u,v)

N 1 ■ Sv (u, v) 
N 2 ■ Sv (u, v)
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The inverse of the Jacobian is calculated using a result from linear algebra:

r-1 ad j(J)
d e t ( J ) ’

The adjoint ad j(J) is equal to the transpose of the cofactor matrix

C 11 C 12C =
C 21 C 22

where C j  =  (—1)i+ jd e t ( J j ) and J ij  is the submatrix of J  which remains when the ith row and 

j th  column are removed. We find that

ad j(J) =  ( J  J 12 —J 21 J 11

We use four criteria, drawn from Yang [27], to decide when to terminate the Newton iteration. 

The first condition is our success criterion: if we are closer to the root than some predetermined e

||F(Un,Vn)|| <  e

then we report a hit. Otherwise, we continue the iteration. The other three criteria are failure 

criteria, meaning that if they are met, we terminate the iteration and report a miss. We do not 

allow the new (u*, v*) estimate to take us farther from the root than the previous one:

||F(Un+1,Vn+1)|| >  ||F (U n,v„)||.

We also do not allow the iteration to take us outside the parametric domain of the surface:

U £  [Uk u - 1  ,UN),v  £  [vk v - 1  , v m )•

We limit the number of iterations allowed for convergence:

iter > M A X I T E R .
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We set M A X IT E R  around 7, but the average number of iterations needed to produce conver

gence is 2 or 3 in practice.

A final check is made to assure that the Jacobian J  is not singular. While this would seem 

to be a rare occurrence in theory, we have encountered this problem in practice. In the situation 

where J (u k, vk) is singular, either the surface is not regular (Su x Sv — 0) or the ray is parallel 

to a silhouette ray at the point S (uk, vk) . (A proof of this assertion is given in the Appendix.) In 

either situation, to determine singularity, we test

| d e t(J ) | <  e.

If the Jacobian is singular, we perform a jittered perturbation of the parametric evaluation point,

f  u fc+1 \  /  u fc \  + 1 V  drand48() * (uo -  u fc) \  
v vk + 1  J  V vk )  ' V drand48() * (vo -  vfc) )

and initiate the next iteration. This operation tends to push the iteration away from problem 

regions without leaving the basin of convergence.

Because any root (u*,v*) produced by the Newton iteration is approximate, it will almost 

definitely not lie along the ray r  — o +  t * d  . I n  order to obtain the closest point along r  to the 

approximate root (u*, v*), we perform a projection

t — (P  — o) ■ d .

The approximate nature of the convergence also impacts other parts of the ray tracing system. 

Often, a tolerance e is defined to determine the minimum distance a ray can travel before reporting 

an intersection. This prevents self-intersections due to errors in numerical calculation. The 

potential for error is larger in the case of numerical spline intersection than, say, ray-polygon 

intersection. Thus, the tolerances will need to be adjusted accordingly. Failure to make this 

adjustment will result in “surface acne” [117] (see Figure 3.5).

An enhanced method for abating acne would test the normal at points less than e along the ray 

to determine whether these points were on the originating surface. Unfortunately, we have found 

that we cannot rely on modeling programs to produce consistently oriented surfaces. Therefore, 

our system utilizes the coarser e condition above.
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Figure 3.5: Left: Failure to adjust tolerances may result in surface acne. Right: Properly adjusted 
tolerances solve the problem. Black regions result from truncated ray depth.

The Newton iteration requires us to perform surface and derivative evaluation at a point (u, v) 

on the surface. In this section, we examine how this can be accomplished efficiently. Prior work 

on efficient evaluation can be found in [114,118].

We begin by examining the problem in the context of B-spline curves. We then generalize the 

result to surfaces. The development parallels that found in [119].

We evaluate a curve c(t) by using refinement to stack k — 1 knots (where k  is the order of 

the curve) at the desired parameter value t*. The refined curve is defined over a new knot vector 

t  with basis functions Nl k(t) and new control points wlD l .

Recall the recurrence for the B-Spline basis functions:

Let t* € [tM , t M+1). As a result of refinement, t* =  tM =  . . .  =  t^ -k+2. According to the 

definition of the basis functions, N M)1 (t*) =  1. There are only two potentially nonzero basis 

functions of order k  =  2, namely, those dependent on N M)1: NM)2 and N M-1)2. From the 

recurrence,

3.3.4 Evaluation

Nl,k(t)
1
0

if k  =  1 and t € [tl , t l+ 1) 
if k  =  1 and t €  [tl , t l+ 1)

N ^ 2(U) = U ^  N „ i ( U ) +  U+k U N,l+hl(U)

t ^ + k  t /J.+ 1

= 0
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and,

t p+k-2 t p-1 t Ju+k- 1 t p
= 0 * 0 +  1 * 1

=  1 .

Likewise, the only nonzero order k =  3 terms will be those dependent on NM-1)2: N p-1,3 and

N p-2,3.

t* t p- 1

N p - z M  = ( • • • ) * ( ) +  tfl- 2+k U *1
t p - 2+k — fy-1

= 1

The pattern that emerges is that NM-k+1 k(t*) =  1. A straightforward consequence of this result 

is

/. \ _  Z ^iJV i , k \ i ^  1 _  tJJv-k+1*Jp -k +1 _  -p.
C [ t * )  -U /i—k + 1 -

/  /i N i,k( t*)Wi W^-k+1

The point with index ^  — k  +  1 in the refined control polygon yields the point on the curve. 

A further analysis can be used to yield the derivative. Given a rational curve

=  E ^ A M ^ P i  =  =  o ( t )
Y , i N i,k{t)Ui Y , i N i,k{t)Wi u ( t ) ’

where D "  =  wiD 1, the derivative is given by the quotient rule

w (t)(D " ) '(t) — D "  (t)w '(t)

W ( t ) 2

0
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By the preceding analysis, D r  (t*) — D “_k+ 1. Likewise, w(t*) — _ k+ 1. The derivative of 

the B-Spline basis function is given by

N i' k (t) — (k — 1)
Ni, k_1(t) N i+ 1,k_1(t)

t i+k_1 — t i t i+k — t i+1

Evaluating the derivative at t*, we have

(D r  )'(t*) — ] T  N , k(t* )D;

(k — 1^  D r Ni , k_1( t*) Ni+1 , k_1( t*)
t i+k_1 — t i t i+k — t i+1

— (k — 1)
t i+k — t i+1

We know the only nonzero basis function of order k — 1 is N ^_k+2 ,k_ 1(t*) — 1. Therefore,

(D r  )'(t*) — (k — 1 )
D wD M_k+2 D wD M_k+1

.^ + 1  — t Ju_k+2 t^+1 — t ^_k+2_

Analogously,

w'(t*) — (k — 1 ) Wu_k+2

.^ + 1  — t ^_k+2

WjU_k+1

t^+1 — t ^_k+2_

Plugging in for c ' (t)

c'(t*) — (k — 1)

_DW/li —k + 2  /_t —k + 1  

^  + 1 t  ̂— k + 2 WM_k+ 1 — D r _k+1
^M-fc+2~ rM-fc+i 

^  + 1 t^-k + 2
2
^_k+1

k 1

(tjU+1 t Ju_k+2)wJu_k+1

________ f c - - l ________

(tjU+1 t Ju_k+2)wJu_k+1

(k — 1)w^_k+2

D r  D rD ^_k+2 — D ^_k+1
W/x-k+2
w^_k+1

w^_k+2D ^_k+2 — w^_k+1D ^_k+1
Ŵ i-fc+2 

w^_k+ 1_

(t^+1 t * )w^_k+1
[D ^_k+2 — D ^_k+1] -

The result for surface evaluation follows directly from the curve derivation, due to the inde-
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pendence of the parameters in the tensor product, so we shall simply state the results:

S (u* , v* ) =  D iv —kv+1 ,iu -ku +1

(ku -  1 )uj^v- k v+\

Vu+1 — u *)wiv — kv 
(kv 1)^iv  — kv+2,iu —ku+1

o  \  __ (fcM l ) u i n v — k v + l , f j , u — ku + 2  |-[-^ -p . l
u \ ^ * i  J / \ [■u /U v - k v + l , /U u - k u + 2  L i v  — k v + l , ^ u — k u +lj

(Ulu + 1 U*)^lv  —kv + 1,lu—ku + 1
O  \  __  v ^_______ 7 Llv — Kv - \ -z ,L lu  — ̂ u - r l  | p t  1&-v\U*,V*J , , [-D/iv —kv+2,/iu—ku+ l —kv+l,/iu —ku+lj •

(vlv + 1 v*)^lv  — kv + 1,lu—ku+1

The normal n (u , v) is given by the cross product of the first order partials:

n(u*,v*) =  Su(u*,v*) x Sv(u*,v*).

If the surface is not regular (i.e., Su x Sv =  0), then our computation may erroneously generate 

a zero surface normal. We avoid these problem areas in our numerical solver by perturbing the 

parametric points (see Section 3.3.3).

3.3.5 Partial Refinement
We still need to explain how to calculate the points in the refined mesh so that we can evaluate 

surface points and derivatives. What follows is drawn directly from Lyche et al. [114], tailored 

to our specialized needs. We again formulate our solution in the context of curves, and then 

generalize the result to surfaces.

Earlier, we proposed to evaluate the curve c at t* by stacking k  — 1 1*-valued knots in its knot 

vector t  to generate the refined knot vector t .  The B-spline basis transformation defined by this 

refinement yields a matrix A  which can be used to calculate the refined control polygon D w from 

the original polygon P w :

D w =  A P w .

We are not interested in calculating the full alpha matrix A , but merely rows ^  — k +  2 and 

^  — k +  1 , as these are used to generate the points D^_ k+2 and D "_ k+1 which are required for 

point and derivative evaluation.

Suppose t* £ [t^  , Tl /+1) . We can generate the refinement for row ^  +  k — 1 using a triangular
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scheme

%',0
° y - 1,1 a ^',1

a  / v,v a

where v is the number of knots we are inserting and

aj ,1

a

=  S3,P

j,P+1

7?,p

— 7j,pa j,p +  (1 -  Tj+1,p)a j+1,p

(t* t m'— P+j—(k-1—v)) /d , if d TM/+1+j Tm'—P+j —(k -1—v) >  0
arbitrary otherwise.

A m—k+1)j- — a j  v for j  — — v, ■ ■ ■ , and A i)j- — 0 otherwise. If n  knots exist in the original 

knot vector t  with value t*, then v — maxjfc — 1 — n, 1 } -  that is to say, we always insert at least

1 knot. The quantity v is used in the triangular scheme above to allow one to skip those basis 

functions which are trivially 0 or 1 due to repeated knots. As a result of this triangular scheme, 

we generate basis functions in place and avoid redundant computation of a / values for subsequent 

levels.

The procedure of knot insertion we propose is analogous to Bezier subdivision. In Figure 3.6, 

a Bezier curve has been subdivided at t  — .5, generating a refined polygon {pi} from the original 

polygon { P i}. Recall that a Bezier curve is simply a B-spline curve with open end conditions, 

in this case, with knot vector t  — {0, 0, 0, 0 ,1 ,1 ,1 ,1 } . The refined knot vector is then t  — 

{0, 0, 0, 0, .5, .5, .5 ,1 ,1 ,1 ,1 } . According to our definitions, ^  — 6, ^  — 3. Thus, the point on 

the surface should be indexed ^  — k +  1 — 6 — 4 +  1 — 3, which agrees with the figure. We 

observe that p 3 is a convex blend of p 2 and p 4.

P1 P2

— •-----
p2 p3 p4 

P1 p5

P0 •  p0 p6 *  P3

Figure 3.6: Original mesh and refined mesh which results from Bezier subdivision.
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Likewise, in the refinement scheme we propose, the point on the curve D r _k+1 will be a 

convex blend of the points D ^  _k and D r _k+2. The blend factor will be 7 /̂ ,0. The dependency 

graph shown in Figure 3.7 will help to clarify. The factor 7 /̂ 0 is introduced at the first level of 

the recurrence. The leaf terms can be written as

a j>  — (1 — 7^/ ,0 )lj,v +  7^/ ,0 r j,v

with j  — — v, ■ ■ ■ , . {/j;V} and {rj;V} are those terms dependent on a ^ _ i,i  and , 

respectively. They are the elements of the alpha matrix rows —k and —k+ 2 with A M_ k j — 

and A M_ k+2,j — for j  — ' — v, ■ ■ ■ , . We can generate the { } by setting _11  — 1 

and a y 1 — 0 and likewise, generate {rj)V} by setting _11  — 0 and a ^/1 — 1. Thus, A M_ k j 

and A M_k+2j can be generated in the course of generating A M_ k+1j at little additional expense.

The procedure above generalizes easily to surfaces, allowing us to generate the desired rows 

of the refinement matrices A u and A v . The refined mesh D r  is derived from the existing mesh 

P w by:

D r  — A vP w A T -

Figure 3.7: Graph showing how the factor 7 /̂ ,0 propagates through the recurrence.



44

To produce the desired points, we only need to evaluate

D "  D "Kv- kv+1,Ku-ku+1 Kv- kv+1,Ku-ku+2
D " D "Kv- kv+2,Ku-ku+1 Kv- kv+2,Ku-ku+2

(Av )Kv +kv + 1,[kV-Vv ...kV ] ) pw  | (A u)Ku +ku + 1,[KU-Vu---KU]
(A v )Kv +kv +2,[kV-Vv...kV] /  [Kv-Vv- K'v][K'u-Vu- K'u^  (A U)Ku +ku+2,[KU-Vu...KU]

T

This can be made quite efficient. We have been able to calculate approximately 150K surface 

evaluations (with derivative) per second on a 300MHz MIPS R12K using this approach.

3.4 Trimming Curves
Trimming curves are a common method for overcoming the topologically rectangular limi

tations of NURBS surfaces. They result typically when designers wish to remove sections from 

models which are not aligned with the underlying parameterization. In this section, we will define 

what we mean by trimming curves.

A trimming curve is a closed, oriented curve which lies on a NURBS surface. For our 

purposes, the curve will consist of piecewise linear segments in parametric space {pi =  (ul , vl)}. 

(In principle, there is no reason one could not extend our hierarchical technique to higher order 

trimming curves. [24] deals with Bezier trims.) Often other data are available, such as the real- 

world coordinates over the various curve vertices, but we will not make use of this information. 

It is important to note that these curves are not necessarily convex.

We calculate the orientation of the curve using the method of Rokne [120] for computing the 

area of a polygon. Given parametric points {p i =  (ul , vl )}, i =  0 . . .  n, the signed area can be 

computed by

u lv(l+1) mod n u (l+1) mod nvl. 
l=0

If A is negative, the curve has a clockwise orientation. Otherwise, the orientation is counter

clockwise.

The orientation of a trimming curve determines which region of the surface is to be kept. We 

use the convention that the part of the surface to be kept is on the right side of the curve [as you 

walk in the direction of its orientation]. Inconsistencies in orientation that would result in an 

ambiguous determination of whether to trim are not allowed (see Figure 3.8).

An important characteristic of the trimming curves we use is that they are not allowed to cross.
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Figure 3.8: Invalid trimming curves: a curve which is not closed, curves which cross, and curves 
with conflicting orientation.

Trimming curves can contain trimming curves, and can share vertices and edges. Areas inscribed 

by counter-clockwise curves are often termed “holes,” while those inscribed by clockwise curves 

are termed “regions.”

3.4.1 Building a Hierarchy
Given a set of trimming curves on a particular B-spline surface, we can build a hierarchy 

based on containment (see Figure 3.9). Since the curves are not allowed to cross, there are only 

three possible relationships between two curves c 1 and c 2. c 1 can contain c2, be contained in c2, 

or share no regions in common with c2. Each node in our hierarchy is a list of trims, and each 

trim can refer to yet another list of trims which fall inside of it. The procedure for building the 

hierarchy is given in Figure 3.10.

The contains function for trims needs a bit of clarification. Since trims can share edges and 

vertices, proper containment tests -  those that test only the vertices -  will not always work. 

Instead, we perform inside/outside tests on the midpoints of each trim segment. In comparing 

c 1 and c2, c 1 is judged to be contained in c2 if and only if the midpoint of some segment of c 1

Figure 3.9: A set of trimming curves and the resulting hierarchy.
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Insert (Trim newtrim , TrimList tl)
for each Trim t in TrimList tl do 

if t contains newtrim then 
Insert (newtrim, t.trimlist) 
return 

else
if newtrim contains t then 

Insert(t,newtrim.trimlist)
Remove(t,tl) 

end if 
end if 

end for
tl.Add(newtrim)

Figure 3.10: Algorithm for adding a trimming curve to the trimming hierarchy.

falls inside c2. Since curves cannot cross, any such midpoint will do. The inside/outside test is 

performed with regard to some e so as to counteract round-off error.

For each trim curve, and for each trim list, we store a bounding box which we will use to 

speed culling in the following ray tracing step. Once the trim hierarchy is created, we perform 

a quick pass through the surface patches, removing those patches which are completely trimmed 

away. This is an optimization step which reduces the size of the BVH and the number of patches 

which must be examined by the intersection routines. The procedure given in Figure 3.11 can be 

used by encoding the parametric boundary of the patch to be tested as the trimming curve crv.

IsTrimm ed(TrimList tl, Trim  crv)
for each Trim t in TrimList tl do 

if t contains crv then
return IsTrimmed(t.tl, crv) 

else
if t crosses crv then 

return false 
end if 

end if 
end for
return !tl.is-dockwise______________________________________________________________

Figure 3.11: Algorithm to determine whether a closed curve in paramteric space is trimmed away 
by the trimming hierarchy.
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3.4.2 Ray Tracing Trimmed NURBS
We ray trace trimmed NURBS by first performing ray intersection with the untrimmed sur

face. If an intersection point (u*, v*) is found, we then look to the trim hierarchy to determine 

whether it is to be culled or returned as a hit. Please see Figure 3.12 for details. Because 

ambiguous orientations are not allowed, trims at the same level of the hierarchy will have the same 

orientation. This orientation is referenced above as tl. is-clockwise. The variable keep determines 

whether the point should be culled.

3.5 Results
We have generated some images (see Figures 3.13, 3.14, 3.15, 3.16, 3.17, and 3.18) and 

timings (refer to Table 3.1) for datasets rendered using our technique.

The results in this section were published in 2000 [121] on hardware that was state-of-the-art 

at that time. All timings are for a single 300MHz R12K MIPS processor with an image resolution 

of 512x512. All models were Phong shaded and timings include shadow rays.

We have implemented our method in a parallel ray tracing system, and have obtained inter

active rates with scenes of moderate geometric complexity. For a discussion of that system, we 

refer the reader to Parker et al. [1]. See also Figure 3.14 for the images included in that paper.

Source code and other material related to the system which we have described can be found 

online at http://www.acm.org/jgt/papers/MartinEtAl00.

Inside(Point p, TrimList tl, boolean& keep)
keep = !tl.is_clockwise 
if tl.boundingbox contains p then 

for each Trim t in TrimList tl do 
if t.boundingbox contains p then 

if t contains p then 
Inside(p,t.tl,keep) 
return 

end if 
end if 

end for
end if____________________________________________________________________________

Figure 3.12: Algorithm for determining whether a ray-surface intersection should be trimmed 
(reported as a miss).

http://www.acm.org/jgt/papers/MartinEtAl00
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Figure 3.13: A scene containing NURBS primitives. All of the objects on the table are spline 
models which have been ray traced using the method presented in this chapter.
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Figure 3.14: Ray traced Bezier surfaces from the interactive ray tracing paper by Parker et 
al. [1]. Reprinted with permission. ©  Copyright 1999 by ACM, Inc. Definitive version:
h t t p : / / d o i . a c m . o r g / 1 0 . 1 1 4 5 / 3 0 0 5 2 3 . 3 0 0 5 3 7 .

Figure 3.15: Teapot scene from different viewpoints.

Figure 3.16: Rendering of a NURBS scene featuring left) a metallic goblet, center) a bump- 
mapped glass, and right) a scratched metallic tabletop.

http://doi.acm.org/10.1145/300523.300537
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Figure 3.17: Mechanical parts produced by the Alpha.l [2] modeling system (crank, CranklA, 
and allblade).

Figure 3.18: A commercial headlight rendered using our system.
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Table 3.1: Statistics for our technique. “Light BV intersections” are generated by casting shadow 
rays and are treated (and measured) separately from ordinary BV intersections. “NURBS tests” 
give the number of numerical NURBS surface intersections performed. “Total NURBS time”and 
“Avg time per NURBS” give the total and mean time spent on numerical surface intersections, 
respectively. “NURBS hits” denote the number of numerical intersections which yielded a hit. 
“Reported hits” give the number of successful numerical hits which were not eliminated by 
trimming curves or by comparison with the previous closest hit along the ray.

♦

Statistics teapot teapot-solid spoon pencil
Number of Surfaces 32 10 3 17
Number of Trims 0 5 0 9
Number of Rays 262144 262144 262144 262144
Total Time (sec.) 14 17 4.8 10
BV Intersections 12642506 10861260 3265298 3439462
Light BV Intersections 6542330 5098600 902120 1714142
NURBS tests 431620 642511 155118 475934
Total NURBS time (sec.) 9.35 12.17 3.42 8.28
Avg Time per NURBS (sec.) 2.17E-5 1.89E-5 2.20E-5 1.74E-5
NURBS hits 367307 458061 79387 226927
(% of tot tests) (85.1%) (71.3%) (51.2%) (47.7%)
Reported hits 119597 196051 21753 36577
(% of tot tests) (27.7%) (30.5%) (14.0%) (7.7%)

Statistics goblet Crank 1A crank allblade
Number of Surfaces 1 20 73 351
Number of Trims 0 18 64 0
Number of Rays 262144 262144 262144 262144
Total Time (sec.) 7.8 78 40 61
BV Intersections 3756604 23818532 14716416 47701788
Light BV Intersections 1638038 6669190 3334258 17060564
NURBS tests 320622 2287689 1306480 2340071
Total NURBS time (sec.) 5.97 39.39 20.82 43.46
Avg Time per NURBS (sec.) 1.86E-5 1.72E-5 1.59E-5 1.86E-5
NURBS hits 226753 1488391 542912 1319143
(% of tot tests) (70.7%) (65.1%) (41.6%) (56.4%)
Reported hits 100001 209344 103525 445496
(% of tot tests) (31.2%) (9.2%) (7.9%) (19.0%)



CHAPTER 4

REPRESENTATION OF VOLUMETRIC DATA 

USING TRIVARIATE SPLINES 

4.1 Overview
Our goal in this chapter is to leverage traditional strengths from the geometric design and 

scientific visualization communities to produce a tool valuable to both. We present a method 

for representing and specifying attribute data across a trivariate NURBS volume. Some relevant 

attribute quantities include material composition and density, optical indices of refraction and 

dispersion, and data from medical imaging. The method is independent of the granularity of the 

physical geometry, allowing for a decoupling of the resolution of the carried data from that of the 

volume. Volume attributes can be modeled or fit to data.

A method is presented for efficient evaluation of trivariate NURBS. We incorporate methods 

for data analysis and visualization, including isosurface extraction, planar slicing, volume ray 

tracing, and optical path tracing, all of which are grounded in refinement theory for splines. The 

applications for these techniques are diverse, including such fields as optics, fluid dynamics, and 

medical visualization.

4.2 Introduction
Volumes have long been important in the fields of scientific and medical visualization. MRI 

and CAT scanning devices produce a 3-dimensional photograph of the internal state of a subject. 

In the field of fluid dynamics, pressure and velocity are spatially varying quantities whose values 

are critical to analysis. Likewise, turbidity and pollutant density play a large role in the simulation 

of atmospheric optics. The ability to deal with volumetric data is clearly a requirement.

True volumetric primitives are encountered less frequently in the field of computer-aided 

geometric design. Traditionally, boundary representations have been utilized extensively. This 

certainly makes sense for modeling solids having uniform interior. However, recent advances 

have led to manufacturing technologies supporting heterogeneous materials. For example, there 

are now machines with the capability to combine different source materials by percentage. In the
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area of optical design, lenses with continuously varying index of refraction are coming available

— so-called GRIN (Gradient Index) lenses. With these advances has come the need to model the 

interiors as well as the boundaries of objects. Finally, among the engineering community, there is 

often the desire to perform analyses on the products of design. These tests, such as temperature 

and stress simulation, generally involve propagation of attributes across an object’s interior.

Traditionally, volumetric primitives have been grid-based. This has served well among the 

scientific community, where the data are often regularly spaced along grid lines. This preference 

may change as adaptive 3D scanning technology becomes more common. Among the geometric 

design community, NURBS have been the de facto  primitive of choice. In this article, we 

advocate that a trivariate NURBS model may well serve the needs of both communities.

There are many advantages to the model we propose. First, it decouples geometric repre

sentation from attribute representation. This means that complicated geometries with simple 

attributes, and vice versa, may be represented at the resolution that best suits them. The result 

may be a large savings in storage and execution time. Furthermore, noise is an important variable 

in any visualization involving measured data. NURBS generally provide a robust representation 

for a signal containing moderate noise. Splines are a terse representation. By this, we mean 

that compared with polygons, or higher dimensional analogues such as voxels, splines generally 

represent a smooth function with fewer points.

For scientific and medical applications, either shape approximating or interpolating splines 

may be used with the attribute data, depending on whether a qualitative or more quantitative 

approach is required. From the computer-aided geometric design (CAGD) perspective, an ex

tended NURBS representation means that all of the existing algorithms can be applied in the new 

problem domain. We can consider modeling both the geometry and the attributes carried by the 

volume. Methods for visualization for design analysis can be borrowed from the visualization 

community.

We begin with a review of the existing literature and introduce our representation in Section 

4.3. Section 4.4 deals with techniques for fitting data and modeling shape. Section 4.5 introduces 

an efficient method for evaluating trivariates, which is critical for large datasets. In Section 4.6, 

we adapt visualization techniques to our aggregate spline representation. We conclude and give 

future work in Section 4.7.
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4.3 Background
Trivariate NURBS representations have been considered by a number of researchers. Early, 

Farouki and Hinds [28] gave a unified approach to curves, surfaces, and volumes. Lasser [29] 

explored the Bernstein-Bezier volume representation, and extended techniques for evaluation and 

interpolation to them. In her thesis, Paik [30] explored trivariates for modeling, and in particular, 

modeling operators, deformations, and animations. Kaufman [38] has combined modeled objects 

and measured data within a volume visualization system, along with an algorithm for scan con

verting tricubic Beziers. Chang et al. [56] provided a method for rendering volumes using line 

of sight integration and compositing, and an attribute volume representation similar to the one 

described here. A sculpting method introduced by Raviv and Elber [40] allows the user to sculpt 

a three-dimensional object by modifying the scalar coefficients of a trivariate NURBS equation. 

Lee and Park [42] introduce an attribute model whose coefficients are generated from fluid flow 

data. Finally, Joy and Duchaineau [32] generate a complete representation for the boundary of a 

trivariate by unioning the faces with an implicit equation based on the Jacobian.

4.3.1 Trivariate Volumes
A nonuniform rational B-spline (NURBS) volume is a mapping P w : IR3 ^  P 3 that can be 

formulated as

Ni N2 N3

P W (Ul,U2,U3) =  £ £ £ p ?;,2 ,i3 (u 1)B i2,k2 (u2)B t3,fc3 (u3)
ii =0 i2=0 i3=0

where the superscript w denotes that our formulation produces a point in rational four space. 

The omission of the superscript, as in P , will denote the function which results from divid

ing P w by its rational coordinate, a mapping IR3 ^  IR3. The { P ^ bc} are the control points

w a,b,c(xa,b,c, Va,b,c, za,b,c, 1) of the ( N  +  1) x (N 2 +  1) x (N 3 +  1) mesh, having basis functions 

B ij,kj of orders kj with knot vectors Tj =  {ujj }N=+fcj for j  =  1, 2, 3. For notational conve

nience, we may occasionally assign names to the variables such as u, v, w, where (u ,v ,w ) =

(Ui ,U2 ,U3 ).

Such a volume P w is defined over the domain n | = 1[uj kj - 1 , uj Nj+ 1), where we use H  to 

denote the Cartesian product. Each nonempty subinterval H 3= 1[uj i j , u j ij+1) corresponds to a 

volume fragment.

The partial derivatives of P w are likewise NURBS. Their control points are simply scaled 

differences of adjacent points in the original control mesh. For example, the control points for



55

dFw
dui are given by

k  — 1( n  p wv  . . — 1 (y>w _  p w 'i
Al,*2>*3 1 1 V il +  l,i2,*3 *1,*2>*3'‘

Uil+fcl Uil + 1

The corresponding derivative volume is then given by

d P w
- ( Ui , U2 , U3) =

d u 1

Ni — 1 N2 N3

E E E  [(D « lP  )ii,j2,*3B il+ 1,fcl-1(u 1)B i2,fc2 (U2)B i3,fc3 (u 3)] (4.1)
il=0 i2=0 i3=0

4.3.2 Aggregate Data Types
We now provide a representation which incorporates an arbitrary number of volume attributes. 

Each volume consists of a geometric description P w and a set of attribute descriptions (A f }. 

Each attribute is represented as an independent trivariate volume

A W(u 1, u 2, u3) =  E  A Wil)i2)i3B il,kpl (u1)B i2,kP2 (u2)B i3,fcP3(u3)
il=0 i2=0 i3=0

All aspects of the representation, e.g., order, dimensions of the control mesh, and knot vectors, 

are independent of the geometric trivariate representation. The only requirement is that all the 

volumes share the same parametric domain. In our implementation, we normalize all the domains 

to the unit cube 13.

Two advantages of this representation merit mention. First, by decoupling the representation 

of the geometry from the attributes, and likewise, the attributes from one another, each function 

may be specified only to its required resolution. As volume data can be large, the so-called “curse 

of dimensionality,” this may result in substantial savings. Furthermore, evaluation times will ben

efit for functions which are represented at differing orders (degrees). The second advantage of this 

scheme is that a trivariate NURBS package can be easily extended to include this representation. 

It does not increase the dimensionality of the points nor does it slow down existing routines.

NP l NP 2 NP 3

4.4 Modeling and Data Fitting
As is a common paradigm in modeling systems, trivariate splines can easily be built up 

from lower dimensional primitives. Consider the example in Figure 4.1. Here, a line segment
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Figure 4.1: Building a trivariate using simple modeling operators. We implemented these 
modeling operators in Alpha. 1 [2] as a straightforward extension of the surface-based operators. 
This is possible because of the tensor-product nature of the primitives.

is constructed from two points. Next, the segment is rotated about an axis to form a disk. 

Finally, this disk is then rotated about another axis to sweep out a torus. Each step entails an 

increase in dimension, from curve, to surface, to volume, and each has a well-defined curve, 

surface, and volume NURBS representation. The modeling system constructs a dependency 

graph which encapsulates how complex models are built up from these primitives. Subsequent 

changes to the underlying pieces -  for example, altering the shape of our segment in Figure 4.1

-  will immediately propagate to downstream primitives that depend upon them. Consider also 

Figure 4.2 that constructs a trivariate solid through extrusion.

Because the attributes of our system are represented as NURBS volumes, they can be modeled 

using any of the traditional operators. For example, we can model an attribute curve, extrude it 

into a surface, and rotate the surface about an axis to obtain a volume. While this might be 

useful, it can lead to some nonintuitive results, as the values of the attributes are contained in 

the coordinate values of the resulting objects. In the absence of underlying geometry, it is not 

immediately clear what meaning those operations have on the attribute functions.

For the purpose of modeling, we have developed a hierarchy of aggregate data types. Ag

gregate curves contain a geometry curve and an arbitrary number of attribute curves. Similarly, 

there are aggregate surfaces. At any stage of design, an attribute object may be combined with 

a geometric object to form an aggregate object. Additional attributes may be added to the
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Figure 4.2: A swept cylindrical solid build up from primitives.

aggregate data type at any later stage of design, as well. Once an attribute has been added 

to an aggregate data type, it becomes carried data. It can still be edited explicitly, but the 

default target of modification becomes the geometry. If the aggregate data type is mapped one 

level up the hierarchy, for example, by extruding the geometry curve into a surface, the carried 

attribute data are also generalized to a higher parametric dimension. By default, a ruled object is 

created from the attribute objects contained in the original aggregate data types. If the geometric 

modeling operator only took one aggregate parameter, such as ruling or rotation about an axis, 

each attribute object is ruled with itself. That is, in the absence of additional data, we assume that 

the attribute varies only along the original parametric dimensions. If the mapping is applied to 

several aggregate objects, the ruling is applied across the corresponding attribute objects.

Let us consider a brief modeling example. Consider the two curves in Figure 4.3. The curve 

on the top left corresponds to geometry, and the curve on the bottom left represents a particular 

attribute. Here, the y-coordinate contains the relevant attribute data, and it can be seen that the 

attribute varies with t in a nonlinear way. We form an aggregate curve from these two curves, and 

then extrude the geometry to form a surface. The attribute will be constant along the extrusion 

direction. Finally, surface is rotated about an axis to form a volume of revolution. If the axis 

of revolution is the ‘z-axis’ and perpendicular to the extrusion direction, then it is clear that the 

attribute data varies with ‘z ’, and is constant in planes perpendicular to ‘z ’.

If we wish to edit the attribute curve, we can do so, and because of the dependency graph used 

by our modeling environment, all changes will propagate through the structure. Furthermore, 

we can explicitly request to modify the attribute objects at any level of the hierarchy. Thus,



58

Attribute

Figure 4.3: Design example using aggregate objects.

if  we want to allow variation along other parametric axes, we can do that now, in light of the 

completed geometric shape. The visualization techniques discussed in Section 4.6 can provide 

further information to guide these edits.

The visualization community often produces data by measurement or simulation. In such an 

instance, data fitting becomes a primary concern. If the qualitative shape is the most important 

thing, then the data points may simply be used as control points in the trivariate representation. In 

many cases, it is desired that the functional approximation interpolate the data. It is this problem 

that we now address.

If the data points are j 2 j3, the problem is to find the control points P i1,i2,i3 such that

^  '  P ii,i2,i3B ii (Uj 1 )B i2 (Uj 2)B i3 (Uj 3) =  cji,j2,j3 
ii,i2,i3

where u 11, j , j  are particular parameter values that correspond to the region of maximum 

influence for P j 1,j2,j3, called nodal values or Greville abscissas. The nodal values in u 1 for knot 

vector t  1 =  { u 1} are given by

-i ki - 1 
~1 _  1
uh ~  f, — i  2-^t u n+ i 

j =1
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There are analogous formulations for u 22 and u 33.

In similar fashion to [42], we make the following definitions. Let

Nl
P i2,i3 ('uj l ) =  'y '  P il,i2,i3B il,kl ('uj l ) (4.2)

il=0 
N2

P i3 (u1l ,u i2 ) =  S  P i2,i3 (u1l )B i2,k2 (ui2 ) (4.3)
i2=0

Thus, we have

N3
P i3 (ujl , 3  )B i3,fc3 (uj3 ) =  C3l,32,33

i3=0

For each fixed j  1, j 2 pair, we can solve N 3+1 equations for N 3+1 unknowns to get ( P i3 (u jl , u 22)}. 

Likewise, for each fixed i3, j  pair, we can solve Equation (4.3) for ( P i2 i3 (u jl )}. Finally, for 

each i2, i3, we can solve Equation (4.2) for ( P il)i2,i3}, thereby solving the interpolation problem.

Modeling and data fitting can certainly be combined. For example, suppose the object in 

Figure 4.2 represents a lens, with radially varying index of refraction. The attribute curve could 

have been generated by the data fitting technique discussed above. By importing the curve into 

our modeling program, it can now be used as a primitive for lens design.

4.5 Evaluation
Efficient evaluation schemes are critical to the success of any data representation — ever more 

so as the size of the dataset increases. In this section, we present a rapid evaluation scheme based 

in refinement.

For simplicity, we briefly restate some of the results of Section 3.3.4 and Section 3.3.5. We 

evaluate a curve c(t) with order k  and knot vector t  by using refinement to stack k  — 1 knots 

(recall that k is one more than the degree of the curve) at the desired parameter value t*. The 

refined curve is defined over a new knot vector t  =  {ti} with basis functions Ni k(t) and new 

control points wiD i .
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Let t* € [tM, t M+ 1). Then,

C( t*) — D p -k +1

J  (± \ _ (k 1)wp-k + 2 r-p. T\ 1 /̂l /I xc (£*) — 77 TT“  [D ^ .k +2 — D ^ .k+ iJ  (4.4)
(tp+1 t *)WJu-k+1

(see [121]).

Analogously, in order to evaluate a trivariate volume P  having knot vectors t u , t v , t w and 

orders ku, kv,k w , we stack ku — 1 , kv — 1, and kw — 1 knots valued u*, v*, and w*. If, with

regard to the new knot vectors, u* € [u ^  ,u Mu+ 1), v* € [vM̂ ,vMv+ 1), and w* € [w^w ,w ^w+ 1), 

then

P ( u * , v*,w*) =  D pu-ku+ 1,^v-kv+1,Pw-kw+1 (4.5)

and

P u  (u*,v*,w* ) =  (4.6)
(J ^ u  k u -\-2,fj,v  — k v - \ - l , f i w  — k w - \- l

(uPu + 1 u  * ) -  ku + 1 ,Pv -  kv + 1, Pw -  kw +1
[DPu -  ku+2,pv-kv +1,Pw -  kw+1

D Pu -  ku+1,Pv -  kv+1,Pw-kw+1]

P v  (u* ,v* ,w*) =
{ k  v  f i u — k u ~\~ 1 ,/^ ^  — k v - \ - 2 ^ f iw  — k u j H~1

(vPv + 1 v* ) -  ku + 1,Pv -  kv + 1,Pw -  kw + 1
[DPu-ku+1,pv-kv +2,pw -  kw+1

D Pu -  ku+1,Pv -  kv+1,Pw-kw+1]
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Pw (u*,V*,W*) —

In order to perform these evaluations, we must first generate the refinement matrices which 

map the old control points into the new ones. For curves, the refinement problem can be written as 

D  — AuP , and for surfaces D  — AuP A j . However, as the parametric dimensionality increases, 

this type of notation no longer suffices. We introduce a new notation which generalizes to any 

number of parametric dimensions.

We define the operator such that

D  — A®fc C  =  (D )C0),C0,Cl,...,Cfc_l,l,Cfc+l,...CM

For curves, then

D 0 — Au®°C =  (D 0)i ^ ( A „ ) SiJ (C )j — AuC

Likewise, for surfaces,

D 1’0 — Av ®1(Au®0C)

— Av ®1D 0

— d 0a T

— AuCAT

which is what would be expected. The operator generalizes to n  dimensions. For trivariates, the
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evaluation refinement given at the beginning of this section can then be denoted

Aw ®2(Av ®1(Au®°Pw))

Returning to the curve case of Equation (4.4), we are not interested in calculating the full 

alpha matrix A , but merely rows ^  — k +  2 and ^  — k + 1 , as these are used to generate the points 

D - -k+ 2  and D “ _ k+1 which are required for point and derivative evaluation.

Suppose t* € [7y , t^ /+ i) . We can generate the refinement for row ^  +  k — 1 using a triangular 

scheme

a K',G
a K'_1,1 a K',1 

a K'_v,v • • • a K',v

where v is the number of knots we are inserting and

a j,i =

a j,p+i =  7j,pa j,p +  (1 — 7j+i,p)a j+i,p 

7j,P ( t* — TJu/_p+j_(fc_i_v)) /d

A ^_k+i j =  a j  v for j  =  ^  — v, • • • , and A j j  =  0 otherwise. If n  knots exist in the original 

knot vector t  with value t*, then v =  max{k — 1 — n, 1} — that is to say, we always insert at 

least 1 knot. The quantity v is used in the triangular scheme above to allow one to skip those 

basis functions which are trivially 0 or 1 due to repeated knots. As a result of this triangular 

scheme, we generate basis functions in place and avoid redundant computation of a  values for 

subsequent levels.

In the refinement scheme we propose, the point on the curve D " _ k+1 will be a convex blend 

of the points D " _ k and D "_ k+2. The blend factor will be 7^/,G. The dependency graph shown 

in Figure 4.4 will help to clarify. The factor 7 ^  is introduced at the first level of the recurrence. 

The leaf terms can be written as

a j,V — (1 YK/,G)lj,v +  7/U/,0r j,v
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QL'\l'-V,V CL ' (X' -V+1,V ■■■ Ol, (X'-l,V

Figure 4.4: Graph showing how the factor ,0 propagates through the recurrence.

with j  =  — v, • • • . { j ,V} and {rj)V} are those terms dependent on o^ - 11 and «M 1, 

respectively. They are the elements of the alpha matrix rows ^ —k and ^ —k + 2 with A m—k j =  1jV 

and A m—k+2j =  r j)V for j  =  — v, • • • , . We can generate the {1j V} by setting «M' —11 =  1 

and «M' 1 =  0 and likewise, generate {rj)V} by setting a^ '—11 =  0 and a^ ' 1 =  1. Thus, A m—k j 

and A m—k+2j can be generated in the course of generating A m—k+1,j at little additional expense.

To produce the desired points for Equation (4.5) we only need to evaluate

Mu—ku+1,Mv—kv+1,Mw—kw+1

(A u )Mu +k«+1, [mU — Vu ---mU ] ®

( A v )Mv +kv + 1,[mV — Vv ---mV ] ̂

( A w )Mw +kw + 1,[mw — Vw---Mw] ® 
p w

[mU—vu---mU ][mV—Vv---mV ][mW—Vw---mW ]

To calculate Equation (4 .7), we (A u)mu+ku+2,[mU—Vu---mU] for (A u )mu+ku+1,[mU—Vu---mU]

in the above expression to obtain D ^u—ku+2 —kv+1 —kv+1, and perform similar substitutions

to obtain d ^u—ku+1,mv—kv+2,mv—kv+1 and D mu—ku+1,mv—kv+1,mv—kv+2 . This can be made 
quite efficient.

4.6 Visualization Techniques
4.6.1 Isosurfacing and Slicing

In this section, we provide a unified approach to two common methods of data visualization. 

An isosurface with respect to a data attribute A p is the set of points within the volume having
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a particular value for A p. The display of isosurfaces within a volume gives useful information 

about the variation of A p. Another visualization technique is to create a planar slice of the 

volume, and color code it according to a given attribute (see Figure 4.5).

The isosurfacing problem can be formalized as finding the set of points which obey the 

equation

If all the weights wpil i2 i3 are positive, then for a root to be possible on an interval I , the bounding 

box of the associated control points must contain the origin. In the case of scalar A *, this means 

that the difference (A pil i2 i3 — A *) must change signs.

A P(U)
B il ,i2 ,i3 (u 1 j j u 3)

Sil,i2,i3 WPii,i2,i3B il ,i2,i3(u l j u 2j U3)

A *B il,i2,i3 (u 1jU2jU3)

i3B il ,i2,i3(u 1j u 2j u 3)

Thus,

0

Figure 4.5: Planar cut.
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If we are given a plane p  — {x : (a, b, c, d) ■ (x, 1) — 0}, then the points in P w which are 

sliced by p  are given by

Wh,i2,h(^>h ,i2,i3 ' (a>b, C, d))Tiilti2ti3(u)

S i 1,i2,i3 wil ,i2 ,i3 B il,i2,i3 (u)

(wil,i2,i3P il,i2,i3) ' (a , b, c, d )B il,i2,i3(u)
il,i2,i3

In both the case of isosurfacing and planar slicing, we are left with the problem of finding the 

zeros of a trivariate spline having the form

D (u 1, u 2> u 3) ^   ̂ D il,i2,i3B il,i2,i3 (u1,u 2> u 3)*
il,i2,i3

To solve the problem, we first break the D  into Bezier volumes and place these into a search 

list. For each element in the list, we test whether the control points are within an epsilon box 

of zero. If so, this volume is added to the root list. If not, we test whether the bounding box of 

the points contains the origin. If the answer is yes, the volume is subdivided and the resulting 

volumes are appended to the list. On the other hand, if the answer is no, the volume is discarded. 

This procedure continues until no further volumes are in the search list.

The result of the outlined procedure is a list of volumes which contain the roots of D  (refer to 

Figures 4.6 and 4.7). We now have to refine P w at the interval values which describe the domains 

for the volumes in the root list. The resulting geometric volumes may need to be further refined 

according to a flatness criterion. A polygonal approximation can then be displayed. In the case 

of planar slicing, the resulting polygons may be colored according to the average isovalue in each 

volume.

4.6.2 Direct Volume Rendering
It is a common technique to map scalar values to colors and visualize volumetric data by 

passing rays through it. This is frequently termed “direct volume rendering” (see Figure 4.8). 

Mathematically, this operation can be formulated as the calculation

rtb
/ a (o  +  td )C (o  +  td )d t,
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Figure 4.6: Visualization of subdivision-based isosurface extraction.

Figure 4.7: Visualization of subdivision-based planar cut extraction.
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Figure 4.8: Direct volume rendering (left) compared with optical path tracing (right).

where a (x )  and C (x) are the accumulated opacity and color values corresponding the attributes 

at the point x, and t a , tb are the entry and exit points of the ray o + td  with the volume P (u , v, w). 

It is clear that under energy conservation, a (x )  <  1. In this section, we provide the machinery 

for ray tracing volumetric splines.

A trivariate spline P (u , v, w) is a mapping from the rectangular cell x / v x / w to K,3. The 

faces of the domain cell, x / v x / w, x x / w, and x / v x d /w map to surfaces in K,3. 

These surfaces necessarily bound a closed volume, as they share boundaries and are collectively 

equivalent topologically to a cube. However, as shown in [32], the faces need not enclose the 

same volume as does d P (u , v, w).

Theorem 1 Given a rectangular cell B  =  [ua , ub] x [va , vb] x [wa , wb] and a trivariate B-spline 

function P (u , v, w) defined over B , the surface boundary o f the solid P  is contained within the 

union o f the faces o f the solid over B  and the points where the determinant o f the Jacobian o f P  

over B  vanishes.

This theorem was first brought to our attention in [32] and a proof can be found in [122].

To trace a ray through the volume P , we first wish to find the closest point at which the ray 

o +  td  contacts the boundary surface d P . If a ray is defined as the intersection of two planes 

p 1, p 2, where pi =  {x : (a^, fy, q , dj) • (x, 1) =  0}, l =  1 , 2, then a ray intersecting d P  will 

satisfy at least one of the following relations:

F k(s, t) • (aj, bj, cj, d ) =  0, for l =  1,2 (4.7)
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or

P(UjVjW) ■ (aijbijCijdi) =  0, for l =  1,2 (4.8)

J  P(UjVjW) =  0

where F k , k =  1..6 are the faces of P  and J P  is the determinant of the Jacobian matrix for P . 

This is simply a restatement of Theorem 1.

As the formulas in Equation (4.7) and Equation (4.8) are implicit equations, we can apply 

Newton’s method to find the roots, and therefore, the intersection of the ray with d P , provided 

we have a good initial guess. With each face, we generate and store a bounding volume hierarchy 

using subdivision according to a flatness criteria. This is a preprocessing step. See [121] for a 

detailed discussion. Boxes which do not intersect the ray are culled, and we apply a Newton’s 

method to Equation (4.7) using the starting value associated with each of the remaining boxes.

To handle the implicit boundaries described by Equation (4.8), we store with each volume P  

a bounding hierarchy obtained by subdividing P  until each piece is within a maximum volume 

tolerance. We cull those boxes whose volumes cannot contain a zero Jacobian determinant 

according to the following method due to [32].

A cone is determined by a normalized axis vector C  and a spread angle d (Figure 4.9). In what 

follows, a “"”, as in v, will denote the normalized form of a vector. Given a set of vectors |v i} , we 

can fit a bounding cone to them using the following algorithm due to [123]. Set Co =  v 0/ | |vo | | , 

and 0o =  0. For each subsequent vector Vi, the angle a  between Vi and C i_ i is given by 

a  =  cos_1(v i ■ C i_ 1). For a  <  0i-1 , C i =  C i - 1j0i =  0i-1 . Otherwise, we compute an

C

Figure 4.9: A bounding cone.



69

intermediate vector Vt

V i-i, if ^i-1  — 0
cot 0i-1  sin a C  i-1  — Vi; otherwise.

We have that

=  cos ft =  6 , .  Vt

(Since the publication of our work in 2001, an algorithm for finding optimal bounding cones 

using linear programming has been published. We refer the reader to [124].)

We extend the dot product and cross product operators to cones in the following way. Given 

two cones C 1, C2, C 1 ■ C 2 is the range of scalar product values for vectors bounded by C 1 and 

C2. Analogously, C 1 x C 2 is the cone C 3 which bounds the cross-products of vectors bounded 

by C 1 and C2. A conservative estimate of the cross product is accomplished by crossing the cone 

axes, and calculating the spread angle 03 via:

where is the smaller of the angles between the two cone axes [123].

We know that the partial derivatives of a NURBS volume P w are again NURBS volumes 

(Equation (4.1)). Consider the cones Cu, Cv, Cw which bound the homogenized (K3) control 

points denoted (DuP ) il ,i2 ,i3, (DvP ) il )i2;i3, (DwP ) il ,i2,i3, respectively, of the derivative volumes. 

By virtue of the convex hull property, we have that

J ( P )  =  D uP  ■ (DvP x DwP) C L(Cu ■ (Cv x CW)),

where L  is an interval of positive values [32]. This implies that J P  — 0 in the given volume if 

0 ^  Cu ■ (Cv x Cw). We can remove bounding boxes containing such volumes from consideration. 

As before, we can also cull those boxes which the ray does not intersect, and apply the Newton 

iteration to Equation (4.8) using the start (e.g., average parameter) values stored in the remaining 

boxes.

The result will be a list of points where the ray p 0 +  v 0t intersects d P . For each volume,
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there should be a pair of points: an entry and an exit point. Let the point closest to the ray origin 

have coordinates U1, p 1, where U1 =  (u1,u 2,u 3)T. We evaluate the attribute data at the point 

U1, and obtain an opacity a  and a color C 1. The accumulated color Cacc =  a 1 * C 1 and the 

accumulated opacity a acc =  1 — a 1.

Now, we begin to traverse the volume. Starting from P 1 and traveling a small distance A t 

along the vector V1, we arrive at the point p*. Since p* is close to P 1, we are justified in 

the approximation p* — P 1 ~  J P ( u 1)(u* — U1), where J P ( u )  is the Jacobian matrix, u fc =  

(u1,u 2, u 3)T and we know (u1,u 2, u 3)T from the previous Newton iteration. This leads to the 

Newton iteration

[J P (u k )]- 1(p* — P ( u k )) +  u fe =  u fe+1 (4.9)

Note that the functions P  and J P  lack the superscript w. This denotes a projection into IR3. 

P ( u k ) is found by dividing P y (u k ) by its rational coordinate. In similar fashion, J P ( u k ) =  

[Pu(uk) P v (uk ) Pw (uk)] is found by computing PU (uk), P y  (uk), and PW (uk) andhomoge- 

nizing each.

From Equation (4.9), we obtain u*, which we can again use to calculate the attribute data and 

corresponding color and opacity functions, C 2 and a 2. We increment the accumulated colors and

OpacitieS C acc C acc +  a acc * a 2 * C 2 and a acc a acc * (1 a 2).

This process is repeated until the ray exits the volume. The color of the ray can be written as 

Cacc = J2 i=1 a i C ^ j = 11(1 — a j ). An image rendered in this fashion is shown in Figure 4.10.

Figure 4.10: A sequence of progressively sharper isosurfaces extracted using direct volume 
rendering.
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4.6.3 Optical Path Tracing
An application that sometimes occurs in optics is the desire to trace the path of a ray which 

is perturbed by a spatially varying refractive index. Some example applications are visualizing 

atmospheric effects such as thermal clines near the ground, metropolitan pollution, atmospheric 

perspective, and cutting-edge optical lenses such as GRIN (gradient index of refraction) lenses.

each point of its interior.

The well-known Snell’s law formula at the interface between discrete media is nin sin 0in =  

nout sin 0out, where 0in, 0out are measured between the normal and the ray. See Figure 4.11 for an 

illustration. The formula also holds true in a volume with a varying refractive index. The interface 

in the discrete formula corresponds to the isosurface with constant n in the volume. A ray with 

direction v  is perturbed with respect to the normal n  of the isosurface which it contacts. Since 

this normal will by necessity point in the direction of maximum change in n, n  =  Vn. It follows 

that the path of a ray will in general trace a curved path through a medium with continuously 

varying refractive index. See Figure 4.8.

The gradient V n is given by (dn /dx , d n /dy , dn /d z). By the chain rule, we have that

The attribute data for such a volume would include a model of the refractive index, n(u, v, w), at

d y /d u
dy /dv
dy/dw

yielding that

V n =  ( J P T) 1(dn /du , dn /dv , d n /d w )T (4.10)

h  out

Figure 4.11: Snell’s law.
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The method described in Section 4.6.2 may be modified as follows. We calculate the intersection 

of the ray p 0 +  tv 0 with the boundary of the volume d P , yielding points u 1 and p 1. We evaluate 

n and n 1 =  V n at u 1 to generate a new ray direction v 1. n 1 is reflected, if necessary, so that n 1 ■ 

v 0 <  0. It must be the case that v 1 is in the plane containing v 0 and n 1. We can generate a vector 

tangent to the isosurface t 1 =  n 1 x (v0 x n 1). As a byproduct of this computation, we obtain 

sin(0o) =  ||v 0 x n 1 1|. The angle between —n 1 and v 1 is given by 01 =  arcsin(n0 sin(0o) /n 1), 

where no is 1 for air. The outgoing ray direction is then given by v 1 =  sin 01t 1 +  cos 01n 1. We 

walk a distance A t as before, determining points u 2, p 2, and the perturbation is calculated using 

the n1, n2 =  n (u 2), and n 2 =  V n (u 2). Note that in the process of calculating Equation (4.9), we 

have calculated the Jacobian needed for Equation (4.10). Also note that the stepsize A t can be 

made to depend on the gradient Vn. The larger the gradient magnitude, the shorter the distance 

we can cover without missing something.

Figure 4.12 demonstrates our path tracing technique. Both lenses are geometrically flat. The 

one on the left has a constant index of refraction, whereas the lens on the right has a radially 

varying index of refraction.

4.6.4 Summary of Ray Tracing
We summarize the ray tracing algorithm in Figure 4.13. Here, we have integrated the devel

opments from the previous sections to produce a general approach.

Figure 4.12: Lens with constant index of refraction (left) and varying index of refraction (right).
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TraceRay ( Environment env, Ray r, Color C) 
loop

for each Volume vol in env do 
IntersectBoundary(r,vol,hitlist) 

end for
if hitlist = NULL then 

return 
end if
vol = hitlist.closest 
uv = r.hit.uv 
p = r.hit.p 
n = r.hit.normal 
while p e  vol do 

r.o = p
PerturbRayDirection(r,vol,uv)
ComputeColor(C,vol,uv) 
p = r.o + At * r.v 
CalcParametricPoint(r.o,p,uv) 

end while 
r.o = p
PerturbRayDirection(r,vol,uv) 

end loop
Figure 4.13: Algorithm for tracing rays through a trivariate volume.

4.7 Conclusion and Future Work
This chapter has introduced a framework for representing attribute data orthogonally to ge

ometric data within a trivariate NURBS volume. It extends existing modeling and data fitting 

techniques to this new representation and presents an efficient algorithm for volume evaluation. 

In addition, we have incorporated techniques for data visualization such as planar slicing, iso- 

surfacing, ray tracing, and optical path tracing which may serve as invaluable aids to composite 

design or data analysis.

From the modeling standpoint, there is much yet to be done. Tensor-product surfaces are a 

deformation of a rectangle, and therefore limited topologically. In the past, trimming curves have 

provided added flexibility to surface design. In the case of volumes, the problem is decidedly 

harder, and a practical solution is not yet known. The scheme we prescribe generalizes in a 

straight-forward manner to subdivision surfaces. On the other hand, greater flexibility leads to a 

reduction in performance.

The visualization techniques depend critically on how well-behaved the target models are. 

For example, if the mapping from parameter space to geometry is not one-to-one, then the search 

for preimage as prescribed in the optical path tracing section is not well-defined. Likewise, 

topological information such as adjacency may need to be available for our routines. As an
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example, consider a cylindrical volume of revolution (see Figure 4.14). A cylinder has three 

exterior faces, whereas a trivariate NURBS must have six. Three of the parametric boundary 

faces are therefore interior to the geometric model. Two of the faces meet to form an internal 

boundary. This boundary must be ignored for the ray tracing algorithm to perform properly. 

Likewise, one of the faces is singular — it maps to a line segment. A ray tracing algorithm 

must be aware of this singularity or unexpected results may occur. Our method for computing 

the closure of a B-rep will induce such a singularity at the medial axis. Knowledge of these 

singularities should be encoded in the data structure to ensure proper algorithm performance. In 

our programs, we have dealt with these singularities in an ad hoc manner, leaving their proper 

identification and resolution to future work. Splines lend themselves to multiresolution methods. 

For example, modeling can be expedited if  changes are made from coarse to fine. As another 

example, evaluations often only need to be made within a given error tolerance, opening the door 

to potential savings. We suspect further exploration of these traits will prove fruitful.

Figure 4.14: Demonstration of boundary singularities. A rectangle is revolved about a vertical 
axis to create a solid (left). The resulting volume (right) has two coincident internal faces (shown 
in gray) and one singular (one-dimensional) parametric boundary along the axis.



CHAPTER 5

SURFACE COMPLETION FROM AN 

IRREGULAR BOUNDARY CURVE 

5.1 Overview
It is frequently necessary to complete the design of a surface from a specification of its 

boundary. This chapter introduces a technique for completing the surface when the boundary 

is described by a non-self-intersecting, closed, planar, B-spline curve. The mapping produces a 

tensor product B-spline surface whose outer boundary is the input curve, and whose parameteri

zation generalizes the polar parameterization of the disc.

5.2 Introduction
In this chapter, we propose a new operator for generating a planar surface from a closed, non

self-intersecting piecewise polynomial boundary in the plane. We consider this approach to be a 

novel step towards the larger goal of surface completion from a freeform curve boundary. This 

is a common problem arising in geometric modeling. Examples include “capping” extrusions 

and filling holes where adjacent patches come together. Holes also commonly occur in scanned 

datasets. There are many applications where such models must be made “watertight.”

Given the importance of the problem, a number of methods have been proposed for surface 

completion. Rather than attempt to warp a rectangular uv domain to an irregularly shaped region, 

a common approach is to employ tensor product surfaces whose parameter domains are further 

restricted by trimming curves. Generally, the boundary must be densely sampled to accurately 

represent this subset and the parameterization originally associated with the boundary curve is 

lost. Moreover, the representation does not lend itself easily to further modeling operations.

Several methods have been introduced for hole-filling (e.g., [73]). Often, these techniques do 

not address the parameterization of the filled region. When the parameterization is addressed, it 

is often piecemeal, composed of a series of adjacent parametric patches.

Finally, there are a number of classic works on completing a surface from a series of bounding 

curves [74-77]. This work is most closely related to the algorithm we will develop. However,
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in contrast to our approach, these techniques generally assume the boundary can be naturally 

decomposed into n-faces, which can in turn be blended together. For example, schemes have 

been developed to complete a surface from 3, 4, 5, and 6-sided areas. There are many commonly 

occurring curve examples that do not easily admit such a decomposition (see Figure 5.1). Another 

drawback is that many techniques are tailored for a certain “sided-ness.” Finally, the parameteri

zation, when it is developed, is not always a straightforward mapping from a rectangular domain.

The starting point for surface completion algorithms is a description of the boundary. There

fore, an intuitive approach to completion is a parameterization that starts on the boundary and 

works its way inward (see Figure 5.2). This idea is evocative of offset curves. Take the sequence 

of curves generated by successively moving each point on the curve a fixed distance in the 

direction of its normal. The union of such a sequence can be used to parameterize the interior of 

the boundary. However, this type of completion has a problem in that all points do not generally 

come together simultaneously. Thus, as seen in Figure 5.2, portions of the offsets will begin 

to cross and must be clipped to avoid singularities in the parameterization. This results in a 

complex parameterization. Another possible technique is to use variable offsets. The problem 

now becomes how to choose the offset distances. This chapter offers a solution — concentric 

parameterization.

A related technique that does not have the crossing problem is based on level set meth

ods [125]. However, these methods are grid-based and do not produce parameterizations. Our 

technique uses parametric functions and therefore has straightforward application in most com

monly used geometric modeling systems.

Our parameterization is inspired by the standard (r, 0) parameterization of the disc. Such a 

surface parameterization respects the parameterization of the outer circle which is its boundary 

(see Figure 5.3). One parameter can be seen as traversing the boundary, whereas the other selects

Figure 5.1: Motivating examples for our work.
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Figure 5.2: Moving curves and a problem with offsets

the successive scalings of the boundary which work their way to the center. The main goal of this 

chapter is to find a method of surface completion which simulates this (r, #)-type relationship 

while assuring that the successive offsets meet simultaneously (see Figure 5.3, rightmost).

The medial axis is the natural generalization of the circle’s centerpoint to objects with more 

complex boundaries. The medial axis of a figure is defined to be the locus of the centers of all 

maximal inscribed circles. Such a circle will touch the boundary at at least 2 points. Since there 

is a corresponding point on the medial axis for each boundary point, it is natural to consider the 

trivial surface completion operator

(1 — £)y (s) +  £M A (y (s))

where y (s) is a point on the boundary curve, and M A ( y (s)) maps this point to the medial axis. 

The left frame of Figure 5.4 shows this mapping applied to a rectangle, and the middle panel 

shows the resulting surface parameterization.

This parameterization is subject to a considerable distortion — in particular, every isoline 

( s , t0) travels through the corners (Figure 5.4, middle). This certainly does not capture the 

intuitive notion of a disc-like parameterization. Another problem is that M A  is not always a

r=3 0 =  100

Figure 5.3: The inspiration for our parameterization
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Figure 5.4: Weaknesses in a direct medial mapping.

function. A concave vertex, for example, maps to an entire curve segment along the medial axis 

(Figure 5.4, right).

5.3 The Concentric Parameterization
Figure 5.5 contains a brief review of nomenclature. The medial axis can be divided into 

roughly two types of curves. Sheets are portions of the medial axis that do not touch the boundary. 

They are joined to the boundary (and in particular to the convex points) by the seams. It was the 

inclusion of these seams in the surface completion that led to the severe distortions of Figure 5.5. 

Our new mapping projects solely to the sheet, using the seams to guide the contraction.

5.3.1 Polygonal Boundary
Let us first consider the case of a polygonal boundary. The right panel of Figure 5.5 illustrates 

that the medial axis divides the polygon into regions. Each region is bounded by two seams, a 

portion of the boundary curve, and a portion of the sheet (which can degenerate to a point). Each 

point contained in a region is closer to its boundary and sheet segment than it is to any of the

Figure 5.5: Nomenclature review; regions formed by the medial axis.
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other boundary or sheet segments. In particular, the boundary segment is closer to the part of 

the sheet bounding its region than it is to any other part of the sheet. (Similar observations have 

been made by [126].) Thus, it is natural to consider a mapping of each region boundary onto 

its corresponding sheet segment. Our contraction is based on a particular approximation to the 

sheet:

Definition 5.1 The concentric axis o f a polygon is a piecewise linear approxima

tion to the medial axis sheet whose vertices, termed concentric vertices satisfy the 

following two properties:

•  a) every vertex o f the polygon corresponds to a concentric vertex and

•  b) every concentric vertex has a corresponding vertex on the boundary polygon 

o f each region it borders.

If condition b) is not satisfied, the surface completion may contain holes [126]. The set of 

concentric vertices will include the junction and branch points (Figure 5.5). The convex vertices 

naturally map to the junction points of the medial axis. To fully satisfy condition a), we must find 

a mapping of the concave boundary vertices onto the medial axis. Considering the right pane of 

Figure 5.4, it is reasonable to select any point in the range of M A  corresponding the concave 

vertex as an addition to the concentric axis. If there are preexisting concentric vertices in this 

range, we may select the closest one to simplify the next step.

We now form a curve from the concentric axis; this curve will be blended with the boundary 

curve to complete the surface.

Definition 5.2 The concentric control polygon or more simply concentric polygon 

is a sequence o f concentric vertices determined by traversing the boundary polygon 

in the direction o f increasing parametric value, and inserting the concentric vertex 

corresponding to each boundary point encountered.

Definition 5.3 A  concentric curve is a piecewise linear B-spline defined by a con

centric control polygon and a corresponding knot vector (termed the concentric knot 

vector).

We want to preserve the original parameterization of the boundary curve as an isoparametric 

direction in the surface completion. Since even the case of a polygonal boundary admits a
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nonuniform parameterization, we assume that there is a knot vector associated with the boundary. 

Each vertex of the boundary therefore has an associated parameter, which is used to assign 

parameters to the corresponding concentric vertices, and form a knot vector for the concentric 

curve.

In order to satisfy condition b) of Definition 1, it is necessary to ensure that each concentric 

vertex has a boundary vertex correspondence for each region it borders. If a boundary corre

spondence is lacking, one will be inserted as follows. Because we have imbued the concentric 

curve with a parameterization, we can approximate the parameter value of the concentric vertex 

for this region, and add this value to the concentric knot vector. We add the concentric vertex 

to the corresponding location in the concentric polygon. When we bring the boundary curve 

and concentric curve into the same spline space for the final blend, the refinement will find the 

boundary correspondence automatically. The mapping based on this blend is demonstrated for a 

rectangle in Figure 5.6.

5.3.2 Generalization to Higher Order Curves
Direct application of this technique to arbitrary curves is somewhat difficult. One wishes 

to perform the sort of contraction introduced above on a finite number of points, but one also 

generally wants to avoid discretizing the curve. The B-spline representation provides a tractable 

solution to this problem. Because the B-splines are a) defined by a control polygon, b) possess 

the convex hull property with respect to the control polygon, and c) are variation diminishing 

with respect to the control polygon, the contraction of the boundary control polygon onto its 

concentric polygon implies a mapping of the boundary curve to the concentric curve. Since the 

boundary control polygon converges to the boundary curve under refinement, the medial axis of 

the control polygon will converge to that of the boundary curve in the limit. Hence, the technique 

of the previous section provides a good approximation to the continuous case with sufficient 

refinement. The quality of the parameterization is largely dependent on how well the boundary 

control polygon approximates the boundary curve.

Figure 5.6: Parameterization of the rectangle which results from our mapping.
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The concentric completion algorithm for curves is an extension of the algorithm for polygons. 

The method of determining the parameterization of the concentric curve is a straightforward 

generalization. We associate with each boundary vertex the nodal value of its associated B-spline 

basis function. This is the parameter where, to first approximation, its influence is greatest. We 

summarize the concentric algorithm in Figure 5.7. Figure 5.8 demonstrates the algorithm on a 

simple, uniform, cubic curve (Figure 5.8(a)).

Figure 5.9 shows a simple case where using the concentric axis of the boundary control 

polygon fails, because this approximate skeleton crosses the boundary curve. This example 

violates our assumption that the boundary control polygon is a good approximation to the shape 

of the underlying curve. However, we can detect cases where the concentric curve crosses the 

boundary curve rather easily. We simply test each concentric polygon edge for crossings. One 

way to do this is to cast a ray along each edge. If there is an intersection with the boundary curve 

between the endpoints of the segment, then the concentric axis is not valid. We note that for low 

order curves, this intersection can be accomplished analytically. A similar method can be used to 

determine the quality of the approximation by calculating distance to the boundary curve [127].

If the concentric axis approximation is found inadequate, one option is to refine the boundary 

control polygon, and restart the concentric algorithm. However, we want to avoid an unnecessary

1. Assign a parameterization to the boundary vertices using the nodal values (Greville abscis
sas) of the spline space (Fig. 5.8(b)).

2. Calculate the medial axis of the control polygon (Fig. 5.8(c)).

3. For each concave vertex, insert a concentric vertex (Fig. 5.8(d-e)).

4. Form the concentric axis control polygon: for each boundary vertex, find the closest 
concentric vertex along the seam, and add it to the concentric axis. Add the associated 
parameter (nodal value from step 1) to the concentric knot vector (Fig. 5.8(f-l)).

5. For each region, if there are internal concentric vertices, insert them at the appropriate place 
in the concentric control polygon. Calculate the interpolated parameter value, and add it to 
the concentric knot vector (Fig. 5.8(m-n)).

6 . Degree raise the concentric linear B-spline to match the degree of the boundary.

7. Refine the boundary and concentric curves using the union of their knot values.

8. Form the sweep surface (Fig. 5.8(o)).

Figure 5.7: Basic concentric completion algorithm.
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Figure 5.8: The concentric completion algorithm, illustrated.
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Figure 5.8: (continued)
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explosion in the number of surface control points. An alternative is to move the concentric curve 

until it is seated within the boundary curve. It is sometimes possible to do this by calculating the 

medial axis of the refined control polygon and moving the concentric axis into alignment. When 

successful, this can eliminate the need for additional control points. This technique was used 

in Figure 5.10. The tradeoff between approximation quality and the number of control points is 

readily apparent.

5.4 Conclusions
We have presented a technique for completing a surface from a non-self-intersecting, closed, 

planar B-spline curve. Figure 5.11 shows that the algorithm works as expected for convex curves. 

Figures 5.12 and 5.13 demonstrate the algorithm on some more complicated curves. On the 

right of Figure 5.13, we again demonstrate the results of moving the axis to avoid refining the 

boundary. Our method has produced reasonable parameterizations of a variety of complex figures 

where existing completion techniques would fail or experience difficulty. Presently, we pursue a 

generalization of the technique to nonplanar boundary curves and methods for accommodating 

further modeling operations involving the boundary and the completed surface. The present 

technique is not ideal for boundaries with detail at many scales. Such boundaries tend to have 

secondary and tertiary branches that have little to do with the basic shape of the surface. We are 

developing methods to deal with these issues.
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Figure 5.9: An example where the basic algorithm fails (degrees 1 and 3).

Figure 5.10: Moving the coarse concentric axis to its refined position.

Figure 5.11: Our algorithm applied to a simple convex curve (degrees 1 and 3).

Figure 5.12: A more complicated example for degrees 1 and 3.

Figure 5.13: A sharp polygon for degrees 1 and 3.



CHAPTER 6

VOLUME COMPLETION FROM A BOUNDARY 

REPRESENTATION 

6.1 Overview
There are many occasions where it is useful to relate a boundary representation of a solid 

to a true volumetric representation. Examples include heterogeneous manufacture, scientific 

and engineering simulation, and medical visualization. Traditionally, obtaining this volumetric 

representation entails discretizing the solid into volume elements. However, this can be nonop- 

timal for a variety of reasons, including a potential explosion of data, loss of precision, artifacts 

related to sampling, and loss of any associated parameterization — with the corresponding loss 

of encoded information. Other volumetric representations, such as those based on implicits, 

result in a fundamentally different mode of interaction with the resulting volume, producing a 

loss of familiarity and intuition. We desire a representation which is more generally compatible 

with an iterative design cycle, and preserves the functional relationships present in the source 

representation.

We introduce a method for synthesizing a parameterized volume from a boundary representa

tion. The ideas apply generally to boundary representations possessing the convex hull property 

with respect to a finite set of control points. Due to their widespread utilization in modeling and 

manufacture, our target domain is the tensor-product NURBS surfaces. In this case, the resulting 

volume is likewise a tensor product. The volume is synthesized through the application of an 

approximate medial axis transform to produce a swept volume terminating at a central axis. The 

resulting parameterization is concentric in nature, preserving the original parameterization along 

the boundary. The radial parameter is an index into a family of offset surfaces, resulting in a 

natural correspondence between parametric and geometric locations within the volume.

6.2 Introduction
Traditional models from animation, rendering, and geometric design are boundary representa

tions. However, when simulations are desired, volumetric representations are frequently required.
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It is useful to preserve the carefully crafted surface representation in the volumetric model. Some 

example applications are heat transfer, stress simulation, heterogeneous manufacture, and hole 

filling. A burgeoning field called isogeometric analysis has married NURBS-based modeling 

to finite element analysis, demonstrating favorable results when a single representation is used 

throughout the design cycle [4].

The process of “upgrading” a surface-based boundary representation to a true volumetric 

representation is called volume completion. Our approach to volume completion involves the 

generation of some well-chosen offsets that converge at a central axis, thereby parameterizing the 

model. The (r, 0) parameterization of a circle in the plane, where r  indexes a family of offsets, 

is evocative of our approach (see Figure 6.1). The question with more complex figures is how 

to generate these offsets without introducing discontinuities in the mapping or necessitating a 

different parameterization of the boundary. Recall the problem of uniform offsets (Figure 6.2).

Often, research in the field refers to this radially indexed family of offsets as a “general

ized cylinder” representation. This representation is frequently associated with the medial axis 

transform. While the medial axis transform has a number of advantages, we eschew it for a few 

significant disadvantages. Foremost among these is that given an n  — 1 manifold embedded in n

Figure 6.1: The basic idea behind the concentric parameterization.

Figure 6.2: Uniform offsets may introduce crossings.
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dimensional space, the medial axis is itself an n — 1 degree manifold. So whereas in the plane, the 

medial axis is 1D, it becomes a “medial surface” in 2D. This is shown for a simple configuration 

in the left of Figure 6.3.

The key difficulty with mapping the boundary onto a 2D axis is in matching the parameteri- 

zations of surfaces as they meet across the axis. Consider the extremely simple situation pictured 

in Figure 6.4. In order to traverse the medial surface, we would need to track, for each point on 

the “medial surface,” which parameters map to that point -  in essence encoding a 2D trimming 

surface from the field of computer-aided geometric design. Furthermore, it is nearly impossible 

to ensure that the boundary surfaces abut perfectly at the medial surface. This is because the 

medial surface is piecewise biquadratic. While the splines include the space of biquadratic 

functions, the tensor product nature of B-spline surfaces means they can only perfectly capture 

these functions along certain orientations -  consider a diagonal line on a raster display. The 

“jaggies” are analogous to the imperfect characterization of the off-axis function.

The medial axis transform is also highly susceptible to noise. A single small notch on the 

boundary can result in a spur in the medial surface. That is, small boundary perturbations can 

result in disproportionately large changes in the medial surface.

In order to resolve these shortcomings, we turn to skeletonization algorithms. There are a 

large variety of these in the literature, and some of the most promising techniques were summa

rized in [66]. The mapping of a boundary onto a 1D skeleton by no means escapes the problems 

indicated in Figure 6.4. However, this problem area is well isolated and has a low probability of 

being encountered during volume traversal. It also is in some sense as far from the boundary as 

possible, which in many simulations is where the interesting features lie.

To summarize, we shall prefer a 1D axis for our generalized cylinder representation because:

junction point
sheet

seam-end point 

seam

Figure 6.3: Comparing the medial axis to the potential-based skeleton.
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v=.25 v=.5 v=.75

v=.25 v=.5 v=.75 Sheet Surface

u

v

Figure 6.4: A parameterization mismatch resulting from contracting the boundary onto a medial 
surface. Shown are the six boundary surfaces of a box. The top and bottom surfaces represent 
identical geometries. However, the control points on the top are not uniformly spaced, resulting 
in isoparametric lines that are not parallel. Hence, the parameterizations do not match when 
projected on the medial axis sheet.

1. It is easier to control and less noise-sensitive than the medial axis.

2. Matching parameterizations across the center is greatly simplified.

3. Discontinuities are “hidden” in a narrow seam.

4. Techniques we develop will generalize to higher dimensions.

5. It possesses overall simplicity of implementation.

Our technique comprises two parts: 1) the extraction of a skeleton and 2) the derivation of a 

driver function that maps the surface boundary onto the skeleton in a continuous manner. As in the 

previous chapter, we will compute the skeleton and the driver function with respect to the control
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polygon/mesh that determine the B-spline boundary. This allows us to focus on the simpler 

polygonal/polyhedral problem. Because of the convex hull and variation diminishing properties 

of splines, the skeletal projection of the boundary we prescribe will indicate a corresponding 

projection of the smooth boundary. Some care has to be taken to get this projection right, and the 

details follow below. The control polygon/mesh converges very quickly to the underlying smooth 

representation, allowing us to compute skeletons of arbitrarily high quality (albeit at a tradeoff in 

performance).

Early in our work, we discovered an elegant idea by Chuang et al. [62-64], that defines the 

skeleton as the 1D minimum of the potential due to a charged boundary. Appealing characteristics 

of this skeleton are that it can be made to converge to the medial axis in 2D (see Figure 6.5), and

Figure 6.5: A planar figure with its medial axis, compared with the potential-based skeleton of 
degree 1, 2, 3 , and 9. Notice the progressive convergence to the medial axis shape.
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in higher dimensions, the skeleton remains 1D (a curve) [64]. Another seemingly positive feature 

is that the potential function can also be used as the driver function for producing the family of 

offsets toward the skeleton. We will examine why that may not be advantageous in a later section.

A major shortcoming of the papers by Chuang et al. is an incomplete formulation of the 

algorithm for computing the potential-based skeleton. In this chapter, we shall develop methods 

for computing this skeleton.

The key contributions of this chapter are:

1. An improved method for calculating the skeleton of a potential field inscribed by a polyg

onal or polyhedral figure.

2. A method for computing the potential-based skeleton of a closed planar curve or closed 

freeform surface.

3. A method for parameterizing the interior of a closed polygonal figure in the plane.

4. A method for parameterizing the interior of a closed planar curve in the plane.

5. A method for parameterizing the interior of a closed polyhedral figure.

6 . A method for parameterizing the interior of a closed freeform surface.

6.3 Potential-Based Skeletonization
The key idea of the potential-based skeleton is to imbue the boundary surface with a charge. 

Intuitively, each boundary point has an impact everywhere in space. Hence, the potential function 

is C ^ .  Now, consider a particle with opposite charge dropped inside the boundary. The force 

acting on this particle is given by the gradient. The gradient to the potential function determines 

a vector field which is everywhere continuous -  and particles advected by the field never cross. 

In fact, lines of force only meet where the force magnitude is 0. These points are the sinks and 

saddles of the system, and the (locally minimal) ridgelines that connect them form a skeleton for 

the figure. This skeleton is generally 1D (however, it can be higher dimensional in instances of 

exceptional symmetry -  consider a sphere within a sphere). We formalize this idea below.
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6.3.1 Potential Field Formulation
The potential at a point P  is given by

f  dS
H P ) = J s j ^ , m > 2  (6.1)

where R is the distance from P  to the surface S . The potential is divergent on S , and falls off 

with increasing R. The force at P  is then given by the gradient

f  dS
V 0 (P ) =  V  — , m > 2  

J s  R m ~

In the plane, there exists a closed form for a polygonal boundary, and we have provided the 

derivation in the Appendix. In R 3, the situation is more complex. However, there exists a closed 

form for this computation when the boundary is polyhedral, and the degree of potential falloff, m, 

is 3. This result is derived in Chuang et al. [63], so we merely restate it here, with substantially 

more detail to ease implementation. The gradient (force) due to the charged boundary is given by

^  f  dS
m p h  =  v j s T 3

=  E  E  ( v # ' ) * l j j  +  V ^ - ' ( v ' , , ) « U j, +  V « f ‘.j (v ',j) *
Si y Eij
—a /v 2 * n ^  (6.2)

where Sj is one of the polygonal facets forming the boundary, E ^, is the j th  line segment 

forming the ith  facet, is the vector in the direction of E j ,  in the plane of S j, u^, is the 

vector perpendicular to Zj)j- in S j, n j is the normal to Sj , vj,j is the vector from the E jJ- to P  

reparameterized into the coordinate system {ljJ-, u j,j , n j }, l0 and l i are similarly the endpoints of 

E j ,  in this local system (see Figure 6.6), and

p. . f 0 if  vy =  0
V 0 * ’3 {v) = < ----- = =  otherwise.
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( 0 if Vx =  0
V(f>y ''3(v) = l - v x*{v2x+2*vl+»l)____  otherwise

I Vf I +vl +n *{vl +<’y ) *(Vy +n )

V<fz i j  (v) =
1—J

( v l + v D * s J v 2x+ v l+ v
— arctan

if vx =  0 
if  vy =  0 
if  vz =  0

otherwise.Vx *Vy z y*
z

0 Projection of P  onto Sj is outside
=  6 Projection of P  onto Sj falls on a vertex whose edges form angle 6

n Projection of P  onto Si falls on an edge
2n Projection of P  onto Sj falls on the interior

6.3.2 Properties of the Potential Skeleton
1. Except in situations of high symmetry, it is 1D (Figure 6.3).

2. It converges to the medial axis in 2D and something like a curve approximation to the 

medial surface in 3D. See Figure 6.5.

3. It requires no topology -  as indicated in the Equation (6.2), the potential field computation 

and its gradient consider the facets independently.

4. It does not require closed figures -  again, this is a by-product of considering the facets
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independently.

5. It is C ^  except at the sources, sinks, and saddles. This is clear from the formulation of 

Equation (6.1).

6 . As a corollary, the potential field provides nonintersecting trajectories for our swept offsets. 

For example, see Figures 6.7, 6 .8, 6.9.

7. It is relatively noise-insensitive. The degree m of the generalized Newtonian potential gives 

a knob for trading noise-insensitivity against closeness to the medial axis in 2D.

8. It has an inner and outer formulation (see Figure 6.10). This is a very interesting feature 

of the potential-based skeleton. Particles can be advected inward toward the skeleton, but 

they can equally well be advected outward. These paths are also guaranteed not to cross, 

so they can be used to generate outer offsets as well.

9. It works with contours/holes -  again without tracking topology. See for example Fig

ure 6 .11.

10. It lends itself to importance (Figure 6.12).

11. It is appropriate for path planning. Because paths cannot cross, and because a robot 

navigating the scene will be repelled from the boundary by the potential field, it makes 

an excellent candidate for path planning (see [63] for more details).

12. It generalizes to higher dimensions. For an n  — 1 manifold embedded in Rn , the axis

Figure 6.7: Uniform speed offsets generated inward from the boundary, and the swept surface 
that results from their blend.
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Figure 6.9: Sweeps are trivially generated from contours as well.
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Figure 6.10: Inner and outer force lines generated by a potential field.

Figure 6.11: A potential-based approach requires no tweaking to handle contours. Shown left 
and right are the same curves with inside and outside reversed.

remains 1D.

6.3.3 Improving Evaluation Speed
One of the disadvantages of the potential-based approach is its speed of evaluation. The time 

to evaluate the potential or force at a point in space is linear with respect to the number of facets. 

Hence, evaluation becomes extremely tedious for larger models. We have applied Algorithm 1 

to improve the performance of our technique. At run time, when an evaluation is requested, a 

search that is average-case logarithmic in the number of triangles (tetrahedra) is applied to find 

the triangle (tetrahedron) to evaluate, and then a constant time operation is performed to compute 

the barycentric interpolant of the vertex forces.
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Figure 6.12: Because the gradient to the potential field becomes roughly equivalent to the medial 
axis at higher degrees, we can use the potential (or the nth root of the potential) to determine 
feature size in much the same way as the medial axis. Note how the magnitude of the potential 
function evaluated on the skeleton can be used to gauge the size of the corresponding feature 
(higher values correspond to smaller features).

Algorithm 1 A technique for improving the evaluation of the potential function.

1: Triangulate (2D) or tetrahedralize (3D) the interior of the figure.
2 : For each triangle (tetrahedron), compute the force at the vertices.
3 : Evaluate the quality of the approximation given by the barycentric interpolation of the force 

versus direct evaluation. If the quality is too low, subdivide using a 4-1 (12-1) subdivision. 
And repeat the quality evaluation with the children.

4 : If a triangle’s area (tetrahedron’s volume) is less than a user-specified tolerance, mark the 
triangle (tetrahedron) as needing direct evaluation and return.

6.3.4 Determination of the Skeleton
The sinks and saddles of the system, and the (locally minimal) ridgelines that connect them 

form a skeleton for the figure. The basic algorithm for determining the skeleton is given by 

Algorithm 2.
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Algorithm 2 High-level algorithm for computing the potential-based skeleton.

1: Find all the sinks by tracing the boundary points along the lines of force.
2: Locate the saddles by using the Poincare index theorem to isolate the regions where they 

reside.
3 : Trace the saddle to sink paths to compute the skeleton.
4 : Does this skeleton (based on the control mesh) fall outside the actual surface? If so, refine 

uniformly and repeat.

6.3.4.1 Determination of the sinks
As we mentioned previously, the sinks are discovered by walking from the boundary in the 

direction opposite to the gradient to the potential field until we encounter a zero force (gradient). 

Trajectories that have a common endpoint improve our estimate of the sinks.

6.3.4.2 Locating the saddles
Saddles are traditionally much more difficult to isolate because vector fields diverge from 

these points except along separatrices. However, we are fortunate in that we have already isolated 

the sources at the boundary and the sinks in the previous step. Hence, we can reliably use the 

Poincare Index to isolate these remaining critical points. In the plane, the index theorem says that 

given any continuous vector field, and any closed curve in that field, the vectors measured on the 

boundary of that curve sweep out angles that are some integer multiple of 2n. The number of 

sweeps k is given by

k  =  n+  +  n -  — n x

where n+ , n - , and n x are the number of sources, sinks, and saddles enclosed by the curve. The 

danger in applying this formula is that critical points can cancel each other, thereby hiding their 

presence. However, since we know the location of the sinks (and there are no sources on the 

interior), we can account for their impact when necessary, and reliably locate saddles.

The same basic intuition applies to 3D vector fields. However, here rather than covering the 

Gaussian circle an integral number of times, the vector directions over a closed surface cover the 

Gaussian sphere. Mann and Rockwood showed how to use geometric algebra to compute signed 

areas on the Gaussian sphere [128]. The GAIGEN package can be used to generate an algebra for 

tracking the summation of these signed areas [129]. An equally effective, albeit slower (but more 

accessible) approach is to tessellate the Gaussian sphere and accumulate the vector coverage in 

bins. We have employed both approaches with equal success.
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The final piece of machinery needed is a method for decomposing the interior of our model 

into closed curves/surfaces. In the plane, we utilize the software called triangulate from UNC- 

Chapel Hill [130]. For freeform surfaces, we make use of TetGen [131]. Once our figure has 

been decomposed into closed triangles/tetrahedra, we sample the boundary of these regions and 

accumulate the angles to determine the index of that region. Regions with negative index (after 

subtracting out the number of sinks) are subdivided using a 4-1 (triangle) or 12-1 (tetrahedron) 

subdivision. We stop when the area or volume of the enclosed region is less than a given tolerance, 

and designate the centroid as the approximate saddle location.

6.3.4.3 Tracing the saddle-sink paths
The output of the last step was a set of triangles or tetrahedra containing saddles. The index 

of each tells us what kind of saddle this region contains. Most commonly we will have 1-saddles, 

which connect two sinks. In situations of extraordinary symmetry (as may occur for products of 

computer-aided design), we may encounter n-saddles, which connect n  +  1 sinks. As almost all 

vectors flow away from a saddle, it is a simple thing to perform a search for outbound directions 

on the enclosing triangle or tetrahedron to discover the unique saddle-sink paths. The diameter 

of the enclosing triangle/tetrahedron gives the radius at which it is safe to perform this search. 

Figure 6.13 shows this algorithm applied to a planar curve, and Figure 6.14 does the same for 

surfaces.

6.3.5 Saddle-sink Connectivity Graph
Sinks are connected to one another through saddles. Hence, it is possible to gain a sense of the 

connectivity of a figure by computing the graph of its saddle-sink connections. If the nodes are 

sinks and the arrows are saddles, then this graph decomposes a model into star-shaped regions. 

We can further make use of this graph to improve the shape of the potential-based skeleton. Let us 

define leaf-sinks as sinks that are connected to only one saddle point. Leaf sinks can exhibit the 

poor behavior shown in the left of Figure 6.15, where force lines are pushed very close together 

but do not actually meet in a sink until much farther along. This behavior does not produce a 

desirable mapping. We can detect this sort of behavior and improve the mapping by expanding 

our skeleton to the point where the trajectories approach within epsilon. We have implemented 

this improvement, and demonstrate it in the center and right panels of Figure 6.15.
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Figure 6.13: 2D figures illustrating how the index theorem is used to isolate saddle points of 
the skeleton (see Section 6.3.4.2). The saddle in the middle of the ‘L’ is quickly isolated using 
subdivision. The triangles evaluated to achieve isolation are shown.

Figure 6.14: A visualization of the tetrahedra generated to isolate the saddles of a 3D potential 
field. This 3D ‘L’ has three saddle points. The three dense clusters in the figure on the right 
visualize the tetrahedra that are evaluated as shown in Section 6.3.4.2.
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Figure 6.15: Improvement of the concentric axis at graph endpoints to avoid ‘pinching.’

6.3.6 Application to Curves/Surfaces
The curves and surfaces we consider in this dissertation all have two important properties: 

1) convex hull and 2) convergence under refinement. In the case of B-spline curves and sur

faces, uniform refinement of the control polygon (mesh) results in a sequence of refined control 

polygons (meshes) that converge quadratically to the underlying curve (surface) [132]. This 

property means that relatively little refinement of the initial control polygon (mesh) is needed 

to produce an excellent approximation to the potential-based skeleton (see Figure 6.16). The 

technique for computing the skeleton of areas/volumes bounded by B-spline curves/surfaces is 

given by Algorithm 3.

6.4 Surface Completion of Planar Curves
Before proceeding, we briefly note that the technique of Chapter 5 applies directly if the 

medial axis is traded for the potential-based axis. Hence, we will not revisit the planar case here. 

Please see Figure 6.17 for a summary.

Figure 6.16: Because control polygons converge rapidly to the shape of the curve/surface they 
describe, so too does the potential skeleton. In the example shown, only one level of subdivision 
is required to obtain a reasonable skeleton for the continuous curve.
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Figure 6.17: Every point on the boundary has a corresponding mapping on the axis. The 
highlighted boundary segments span saddles. The sinks can be thought of as nodes of the graph, 
and they are connected through saddles, which can be thought of as graph edges. This graph 
can be used to reconstruct the skeleton as well as to determine the mapping regions. Once the 
mapping has been determined, offsets can be generated or the surface can be completed. See 
Chapter 5 for more details.
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Algorithm 3 Method for calculating the potential-based skeleton of a B-spline curve/surface.
1: Apply the method of Section 6.3.4 to the control mesh to produce a coarse approximation to

the skeleton.
2: Use uniform subdivision to refine the boundary.
3 : Compute the refined skeleton.
4 : Compute the difference between the skeletons.
5 : If the difference is too large, repeat from 2.

6.5 Surface Completion of Space Curves
Consider a space curve embedded in R 3. If there exists a continuous homeomorphic defor

mation of the curve onto the plane, then we can project the curve onto the plane, complete its 

interior, and then reverse the projection to obtain the surface. Because this represents a trivial 

extension of the our planar technique, we will not dwell on it here. Obviously, the difficulty lies 

in deriving an appropriate projection operator, and that is beyond the scope of this work.

6.6 Decoupling the Skeletonization Operator 
from the Driver

Our technique for completing a manifold from its boundary requires two things: a skeleton 

and a function that propels the boundary onto the skeleton. Again, our intuition is summarized 

in Figure 6.1. Because the boundary may require refinement in order to improve the shape of the 

offsets and the resulting parameterization, it is appropriate that the skeleton be decoupled from 

the driving function. Furthermore, in the case of the potential function, the computation scales 

in the number of control points -  so recomputing the skeleton each time may result in very long 

recomputation. Our optimization of Section 6.3.3 alleviates this somewhat. However, it is still 

inconvenient to recompute the skeleton with each boundary refinement.

Instead of a forward technique, where the goal destination is implicit, a better approach 

rephrases the problem as a boundary value problem as in [78]. This allows the source (boundary) 

and destination (skeleton) functions to be adjusted independently. Hereafter, we assume that the 

skeleton of the boundary has been computed using one of various techniques [63,64,66,133], 

where we have given one candidate above. In the next section, we will introduce our technique 

for determining a driver.

6.7 Harmonic Analysis
Rephrasing the application as a boundary value problem allows us to specify the source and 

target functions for the driver independently. Hence, boundary refinements will not result in
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motion of the skeleton. We take the approach of Martin et al. [78,79], employing the Finite 

Element Method with discrete harmonic functions satisfying Laplace’s equation:

V 2u =  0

The idea is to tetrahedralize the interior of the boundary representation, assign functional 

values of u  =  —1 and u =  1 to vertices on the boundary and skeleton, respectively, and solve 

for the values of u  at the internal vertices. u  is then represented as a trilinear interpolant of its 

vertices:

n
u(x) =  ^  uiB i (x) 

i=0

where

0 x  outside tet defined by P i
B*(x) =   ̂ 1 x  =  P i (6.3)

c € (0,1) otherwise.

To be more specific, if x  falls within a tetrahedron defined by Po, P i , P 2, P  3, then the basis 

functions B  have values determined by

B  * (  Po P i  P 2 P 3

( 1 0 0 0 \
0 1 0 0
0 0 1 0
0 0 0 1 )

and

B =  Po P i  P 2 P 3
,-1 (6.4)

and then c from Equation (6.3) is given by:

c =  B x
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The gradient of c is then

V c =  B V x  =  B

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

Returning to the Finite Element Method, recall that our function u has the property

V 2u = 0

The weak formulation states that for any smooth functions v where v = 0 on the boundary of the 

domain dQ where

V 2u =  f

that the following relationship holds

/ V 2uvds =  / f vds  
Jn Jn

Using Green's Theorem, the left-hand side can be rewritten as

/ V 2uvds =  V uv |dn — / V u ■ Vvds 
Jn Jn

= — V u  ■ Vv ds  
n

This last simplification is made possible because v =  0 on the boundary. Hence,

— / V u ■ V vds = I f v ds  
n n
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In our case, we have f  =  0, hence,

/ V u ■ Vvds 
'n
„ n

/ V  V ]  u jB j(x) ■ Vvds
•/n  i=0 
n «

/  V B j(x) ■ Vvds
i=o ^n

The functions v are termed “test functions,” and they are what provide sufficient constraints to 

make the Finite Element Method soluble. We note that our basis functions B j at the tetrahedral 

vertices satisfy the requirements of a test function, so long as they do not touch the boundary. 

Hence, for each B j corresponding to the P j e  V i , the internal set of m vertices for our tetrahe- 

dralization, we have the equations

0 =  Uj / V B j(x) ■ Vvds 
i=o •/n
n «

=  E  u ^  V B j(x) ■ V B j(x )d s, P j e  V i
i=0 n

Let T (i, j )  be the set of tetrahedra that include vertices P i and P j. Then, for a particular test 

function B j , we have

E u  E  VBk ■ VBkV(Tfc), P j e  V i (6.5)
j=0 Tk eT (i,j)

where V(Tk) is the volume of the tetrahedron Tk. Equation (6.5) expresses a subtle point -  

whereas the gradients V B j are piecewise constant, they will be different for each tetrahedron the 

vertex Pj is involved in.

Let us define the sets P i e  V b  and P i e  V s as the set of vertices on the boundary and 

skeleton, respectively. We know the values of the u  at these points. Hence, we can split

0

n
0
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Equation (6.5) into knowns and unknowns

0 =  E  (—1) E  y Bk -V B kV (T fc)
PiSVe Tk eT (i,j)

+  E  (1) E  y Bk ■ VBkV(Tk)
Pie Vs Tk eT (ij)

+  E  u  E  y Bk ■ VBjk V(Tk)
Pie Vi TkeT (ij)

E  E  y Bk ■ VBj?V(Tk)
PieVB TkeT(ij)

— E  E  y Bik ■ V BjkV(Tk) =  E  u  E  V 5 * ■ VBjkV(Tk) (6 .6)
PieVs TkeT(i,j) PieVi TkeT(ij)

Because we have a formulation like Equation (6.6) for each of the m internal vertices corre

sponding to the m test functions B j , we have m equations and m unknowns, and can solve for 

the internal u^

b =  Au

The procedure is summarized in Algorithm 4.

Algorithm  4 Solve Laplace’s Equation.

1 for all tets te tJ  do
2 for all vertices v_j in tet_i do
3 tetJ.v_j.coeff = coefficient from Equation (6.4)
4 end for
5 end for
6 Initialize a sparse matrix A of dimension n to 0
7 Initialize b to 0
8 for all tets te tJ  do
9 for all edges (j,k) in let i do

10 s = Dot( grad(tet_i.v_j), grad(tet_i.v_k)) * Volume(tetJ)
11 A(j,k) += s
12 A(k,j) += s
13 :  end for
14 :  end for
15 Apply boundary constraints, Dot( A J ,x  ) = +/- 1 for boundary vertices
16 Solve A * x = b
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Once we have have computed the driver function u, we can compute the mapping of the 

boundary vertices onto the skeleton using any number of streamline advection algorithms. In our 

work, we have used the streamline functionality of VTK [134]. In Figure 6.18, we show a simple 

3D figure with these streamlines, the computed skeleton, and a sequence of offsets toward that 

skeleton.

6.8 Volumetric Completion of a B-Spline Boundary 
Representation

Our volume completion algorithm has two prerequisites: the computation of a skeleton and 

the definition of a mapping that moves the boundary onto the skeleton. In previous sections, 

we have provided examples of how to satisfy these prerequisites, although many other solutions 

are possible. In this section, we assume a piecewise-linear skeleton has been provided and that 

nonintersecting paths from the boundary vertices onto this skeleton can be readily computed.

Figure 6.18: A simple 3D shape, shown with its potential field, its extracted 1D potential 
skeleton, and the sequence of blended polygons that parameterized its interior.
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In the case of a B-spline boundary, simply pushing the control points onto the skeleton does 

not guarantee a closed figure -  the geometry of the mapped surfaces is not guaranteed to match 

the shape of the skeleton. We will introduce some requirements to guarantee that the surfaces 

meet in exactly the 1D figure that is the skeleton:

1. We will require that the surfaces be linear on the axis. This will have the result that patches 

will map to line segments.

2. We will require that patches cannot have any internal skeleton points. This means that 

surfaces will interpolate the shape of the skeleton.

The left side of Figure 6.19 illustrates for a simple planar configuration why smooth midstructures 

can cause difficulties. Patches (or in this case curves) whose control vertices abut at the axis may 

still trace out different shapes. For this reason, we require that the midstructure be piecewise 

linear. This does not restrict the offset surfaces to be linear however -  we will degree-raise the 

midstructure so that we can blend it with the higher order offsets. The right side of Figure 6.19 

illustrates a difficulty with allowing patches to span skeleton segments. Even though both bound

ary patches (in this case, curves) are piecewise linear, their mappings do not abut because Curve A 

spans a skeleton vertex. We will ensure that patches do not map across a vertex in the midstructure 

by applying subdivision. The implication is that patches will map onto the midstructure as either 

“pyramids” or “wedges,” as shown in Figure 6.20 for the 2D and 3D case.

However, the refinements required to achieve this configuration could potentially introduce 

many control points into the offset sequence, depending on the number of skeleton points, and 

also on how closely the contraction paths approach the skeleton points. To avoid the possible 

explosion of control points, we pursue a two-part technique:

1. Generate a sequence of offsets from the original boundary that come within an e tube of the 

central skeleton -  we know we can do this because of the continuous nature of the driving 

function -  however, we may need to refine the boundary to prevent intersection of the 

offset layers and intersection with the central skeleton. We can detect these intersections 

by looking for singularities in the Jacobian as prescribed in [58].

2. Once we have this family, we generate a separate volume that spans the distance from 

the innermost offset and the skeleton. The skeleton will be represented as a linear spline 

surface that is made compatible with the innermost offset in terms of its spline space.
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Figure 6.19: Simple configurations illustrating potential problems with mapping boundary 
representations onto a central axis. On the left, we demonstrate how mapping onto a curved 
midstructure can fail -  simply moving the control vertices of the boundary to the axis does not 
ensure that the resulting curves trace out the same shape. This can result in gaps or overlaps in 
the completed surface, and the same is true for the volumetric case. On the right, we demonstrate 
that even linear boundaries can fail to match if inflection points in the skeleton are missed.

Figure 6.20: We require that patches map to either a point or a segment on the skeletal 
midstructure. In 2D, this results in either a “triangular” or “rectangular” completion surface, 
respectively. In 3D, surface patches will generate “pyramid” or “wedge” volume completions, 
respectively.
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This high-level approach is summarized in Algorithm 5.

Algorithm 5 High-level summary of the surface/volume completion algorithm.
1: Compute the skeleton.
2: Compute the sequence of offsets.
3: Compute the sweep of the offsets to produce a nearly filled in figure.
4: Create a linear curve/surface that represents the shape of the axis.
5: Make the axial control mesh and the innermost offset curve compatible (in both the geometric 

and parametric sense -  that is, embed them in the same spline space).
6: Perform a linear blend to fill the gap.

We begin by computing the parameterized family of offsets. The ideas are summarized in 

Algorithm 6.

Algorithm 6 General approach for producing the generalized cylinder offsets.
1: For each boundary patch, move the patch towards the skeleton.
2: Using the set of bounding boxes computed from a refined version of the patch, test for 

intersection with the axis. The techniques from Section 3.3.4 are readily amenable to this 
type of analysis.

3: If the patch intersects the axis, and the maximum distance of the patch to the axis is greater 
than the user-specified e, then we need to refine the boundary, recompute the axis, and repeat 
from above.

4: Otherwise, we proceed to test the next patch.
5: We are guaranteed, under refinement, that we can achieve a sequence of offsets that approach 

the skeleton within e. However, the surface becomes progressively more densely sampled, 
which is what we are hoping to avoid.

The detailed recipe for computing the family of offsets to a B-spline boundary is given in 

Algorithm 7.
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Algorithm 7 Compute the family of offsets that terminate within epsilon of the axis.
1: repeat
2: repeat
3: for each patch do
4: move the points along the lines of force until they are within epsilon of the axis
5: {test for intersection with the axis}
6: refine the patch to high resolution
7: test each bbox against the axis
8: optionally refine further and test again.
9: if the patch is pierced by the axis then

10: uniformly insert knots into a refined knot vector.
11: end if
12: end for
13: if patches were found that penetrate the axis then
14: refine using the refined knot vector
15: end if
16: until no patches penetrate the axis
17: Compute the family of patches that fall between the boundary surface and the terminal 

offset
18: if The sweep is singular -  passes through itself, Apply Joy et al. to test this then
19: refine problem areas
20: end if
21: until swept volume is nonsingular
22: Compute clamped (i.e., nonfloating) sweep that starts at the boundary and terminates at the 

innermost offset, with knot values {0....1 — t e}

Our final task is to produce a surface mesh that is geometrically identical to the skeleton and 

provides a correspondence between the control points of the innermost offset and the axis. We 

can then perform a simple sweep to produce the spanning volume. First, some definitions:

• Let m (Pi , t) be the mapping that takes a control point Pi to the central axis c at t =  1.

• Let sU(i), sv(j) be the ith and jth  Greville abscissa for the knot vectors tu and tv for a 

particular patch.

• Let lenc(p, q) be the distance from p to q as measured along the central axis c.

• Let Ci , tU and D j, Tj be the control polygons and knot vectors for the axial curves obtained 

by mapping the rows/columns (respectively) of the innermost offset onto c. These curves 

will be blended to form the central (1D) surface to be swept with the innermost offset.

The approach for computing the spanning patch is given in Algorithm 8. Figure 6.21 demonstrates 

the approach.
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Algorithm 8 Compute the linear span from the innermost offset to the skeleton.

1: for each inner offset surface do {build a surface from the potential axis}
2: for each row i in the offset surface’s control mesh do
3: for each span Pi;j , Pi,j+ 1 do
4: add m ( P j , 1) to C
5: add s„(j) to
6: apply Dijkstra’s algorithm to compute the path from m (Pi)j-, 1) and m (Pi j+ 1, 1) on 

c
7: for each axis point ak falling between m (Pi)j-, 1) and m (Pi j+ 1, 1) on c do
8: add ak to Ci
9: add (1 — lenc(m (P j , 1 )),ak)/len c(m (P ij, 1) ,m (P ij+ 1 , 1))) * s„(j) +  

lenc(m(Pi;j , 1), ak)/lenc(m (P ij, 1), m (P ij+ 1 , 1)) * s„(j +  1) to
10: end for
11: end for
12: add m (Pin, 1) to Ci
13: add su(n) to
14: end for
15: Make the spline spaces of the rows compatible via refinement, to form a unified knot vector 

and control mesh C .
16: for each column j  of C do
17: for each span C j , Ci+1j do
18: add C j  to Dj
19: add sv (i) to Tj
20: apply Dijkstra’s algorithm to compute the path from C j  and Ci+1j on c
21: for each axis point ak falling between C j  and Ci+1j do
22: add ak to Dj
23: add (1 lenc(Cj , ak)/len c(Cij ? Ci+1j )) (i) + lenc(Cij > ak)/len c(Cij? Ci+1j )*

sv (i +  1 ) to Tj 
24: end for
25: end for
26: add Pmj to Dj 
27: add sv (m) to Tj 
28: end for
29: Make the spline spaces of the columns compatible via refinement, to form a unified knot 

vector T  and control mesh D 
30: Degree raise the medial surface to match the boundary.
31: Make the spline spaces of the terminal offset and the medial surface compatible via 

refinement
32: Compute the swept surface -  the two w  knots will be 1 — t e and 1.
33: end for
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Figure 6.21: Demonstration of our algorithm for mapping the innermost offset onto the skeletal 
axis c. For each row / column of the innermost offset, we will compute a skeletal curve to which 
it maps. On the left, we consider the jth  span of the ith row of the control polygon for a patch 
in the innermost offset. The function m is our driver function that maps the boundary onto the 
skeleton. Given the mapping of the jth  span onto c, we apply Dijkstra’s algorithm to determine 
the skeletal vertices ak that fall between m (P i,j) and m (PiJ+1). These vertices are added to the 
control polygon Ci of the skeletal curve for row i. We assign knots corresponding to m (P itj ) and 
m (P i,j+1) using the j  and j  +  1 nodal values of the innermost offset surface’s knot vector, t u. We 
assign knots to the ak using linear interpolation of the aforementioned nodal values based on the 
geodesic distance traveled along c, as detailed in Algorithm 8. On the right, we show the result of 
refining the innermost offset surface to make it compatible with the skeletal curve we built on the 
left. Postrefinement, we can guarantee that the mapping of the refined jth  span onto the skeleton 
will contain none of the original skeletal vertices, except at the end points (recall, we wish to 
avoid the situation in Figure 6.19). By building a skeletal curve for every row of the innermost 
offset, making these compatible, and blending them into a surface, and then repeating for the 
columns, we ensure that for the resulting blend, no patches violate the mapping configurations 
indicated in Figure 6.20.
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6.9 Conditions for Success
Theorem 1 Given a closed surface B with parametric domain X  comprised o f NURBS patches 

B i with adjacency information and compatible spline spaces across patch boundaries (that is 

the param eter spaces can be brought into accord along shared boundaries, and data structures 

are maintained to allow boundary traversal across patches, as is common in CAD systems); and 

provided that the control meshes form  a closed surface, as will often be the case as a by-product 

o f design or can often be ensured using refinement without losing exactness o f the representation; 

and given a straight line skeleton S that is homotopy equivalent to B , our algorithm produces a 

homotopic mapping H (x, 0) =  B and H (x, 1) =  S ,fo r  x € X .

Proof: We require that the control polygons form  a closed surface boundary as this is needed 

fo r  application o f the Finite Element technique. The requirement can be relaxed somewhat if the 

potential field is used as the driving function, as mentioned in Section 6.3.2. We require that the 

patches have compatible parameterizations and possess cross-boundary traversal data structures 

because then, we can operate on shared rows and columns, thereby ensuring that no black holes 

o r  cross-patch discontinuities are introduced in mapping the patches to the skeleton. Many 

skeletonization algorithms produce boundary-homotopic skeletons -  the potential-based skeleton 

that was discussed in Section 6.3 as well as that o f [66] satisfy this requirement. Obviously, there 

are an infinite number o f homotopy equivalent skeletons fo r  a given boundary, and the quality of 

the parameterization will depend in part on how well the skeleton approaches the shape o f the 

surface. Below, we will implicitly assume “skeleton” refers to a homotopy equivalent skeleton. 

Because the control mesh o f a NURBS surface converges quadratically to the limit surface under 

refinement [132], we can derive a skeleton using the suitably refined control mesh as a surrogate.

We model the mapping o f the boundary onto the skeleton as a boundary value problem  

using harmonic analysis. Because the resulting harmonic function is continuous and satisfies 

the “maximum principle,” the mapping o f the boundary onto the axis is also a homotopy [78]. 

Furthermore, it is shown in [78] that the discrete approximation to this function reconstructed 

using finite elements is also a homotopy provided care is taken in handling degeneracies. We 

refer the reader to that work fo r  details.

Our algorithm has two complexities not addressed by the preceding statements. First, our 

boundary is not a continuous set o f points being mapped onto the axis, but rather a discrete set 

o f control vertices. Second, the boundary being moved to the axis is a surrogate fo r  a piecewise 

polynomial surface, and merely mapping the boundary to the axis is not sufficient to ensure a 

closed, nonsingular figure. These considerations are demonstrated in Figure 6.19.
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The algorithm comprises two parts: 1) Generating a fam ily o f offsets to within a user-specified 

e o f the axis and 2) computing a blend between this innermost offset and the axis. In 1), we 

are guaranteed that we can offset the boundary to within e o f the skeletal midstructure (without 

passing through it), because the boundary and skeleton can be made arbitrarily close to the 

continuous case by employing refinement. The intermediate offsets can be made to conform 

arbitrarily closely to the continuous function, again via refinement. Since the continuous case 

does not have degeneracies, we can avoid intersections in the offset surfaces. The algorithm fo r  

achieving this is straightforward and indicated in Algorithm 7. Hence, the volume swept from the 

boundary to the innermost offset will be continuous.

Now, we must ensure that the mapping from the innermost offset onto the skeleton will be 

continuous. Our approach is to subdivide the innermost offset so that the refined patches map 

to line segments on the axis, as shown in Figure 6.20. Given a patch, fo r  every row interval 

and column interval in the control mesh, we consider its mapping onto the skeleton, as shown 

in Figure 6.21. We employ Dijkstra’s algorithm to find the path between the two corresponding 

skeleton vertices. Because the control vertices were path connected in the mesh, and because 

the skeleton is homotopic to the mesh boundary, we know that there exists a path between these 

points on the skeleton. That is, homotopic mappings preserve path connectivity. As described in 

Algorithm 8, we add knots to the refinement vector o f the innermost offset so that sufficient points 

will be inserted in the control interval to achieve a correspondence with the desired path on the 

skeleton. By doing this fo r  every row and column interval in the control mesh fo r  the innermost 

offset, and treating the skeleton as a linear spline, we can ensure that every refined patch on the 

innermost offset maps to a single linear span on the skeleton. Hence, the mapping path sweeps 

out a wedge or pyramid. Because o f the convex hull and variation diminishing properties of 

B-splines, the resulting fam ily o f surfaces cannot pierce the patch o f  B that caps the wedge, nor 

the envelope o f the mesh sweep up to the axis. Hence, the only place where we need to ensure that 

the fam ily o f swept surfaces behaves is at the internal parametric boundary, which is the skeleton 

axis.

Finally, because refinement produces a geometrically identical surface, the innermost blend 

o f part 2) and the sweep form ed from the offsets from part 1) will meet with C 0.

□
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6.10 Results
We have applied the volumetric completion algorithm of Section 6.8 to both polyhedral and 

spline models. In Figure 6.22, we show one of these models, its skeleton, and a contraction onto 

the skeleton.

While we are guaranteed a continuous mapping of the boundary onto the skeleton, given suf

ficient refinement, the quality of the parametrization can be a concern. Inherent to this particular 

generalized cylinder model is some distortion of the parametric domain in the vicinity of the 

axis. Square domains are mapped to either points or lines on the axis, resulting in pyramidal or 

wedge-shaped volumes. Our approach has been to isolate these regions away from the boundary 

where areas of interest often lie. However, parametric distortion can occur throughout the volume 

depending on characteristics of the driver function such as the “speed” at which it modifies 

the sweep. For simplicity, we have used approximately arc-length uniform offsets to generate 

intermediate offset surfaces between the boundary and the interior. One aspect worth noting is 

that the contraction speed can be modified to improve the parameterization. So long as control 

points start at the boundary and end at the innermost offset, and move exclusively forward, the 

contraction remains valid. Hence, the degree of stretch can be optimized by tuning the local 

speed of the contraction function, the refinement of the boundary, and the number of intermediate 

offsets. One measure of parametric stretch can be found by tracking the Jacobian of the volume

In other words, how well preserved is the volume of the (u, v,w) parallelepiped when passed 

through V? Other measures track the lengths of the sides of the parallelepiped, 11 ^  11, | ^ | | ,  and 

11 ^  11, or consider the angles between the partials, e.g., a r c ta n ( | |^  x ^ | | )  Optimizing

these metrics remains future work.

6.11 Parametric Stretch

V:
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Figure 6.22: Our contraction-based technique, applied to a mechanical part. First, the skeleton of 
the part is computed, based on its control polygon. Depending on the quality desired, refinement 
may be used to develop a closer approximation to the surface before skeletonization. This first 
refinement is merely for the purpose of computing a skeleton, and may be discarded prior to 
the next step. Next, the contraction paths are computed from the driver function. Based on the 
user-selected epsilon, refinement may be required so that the innermost offset can more closely 
approximate the shape of the midstructure. This is an essential tradeoff of our method. (Model 
courtesy of David Johnson, University of Utah.)
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6.12 Conclusions and Future Work
In this chapter, we have presented methods for

1 . computing the skeleton of a boundary representation,

2. computing a driver function that maps the boundary onto the skeleton, and

3. computing the closure of a boundary representation.

We have assumed a B-rep comprised of NURBS in our development, although the methods 

apply more generally. Future work includes extending our development to T-splines [135], LR- 

splines [136], and hierarchical splines [137]. These representations would allow us greater control 

over our mapping onto the midstructure with reduced concern for the explosion in geometric 

complexity that accompanies tensor product formulations. In Chapter 7, we demonstrate how a 

hierarchical spline formulation can be applied to greatly reduce computational complexity and 

memory requirements when utilizing 4D splines in the solution of a finite element problem. 

Another area of future work is minimizing parametric distortion due to the mapping onto the 

midstructure. This can be accomplished by better refining the boundary in areas of high distortion, 

and adjusting the speed (e.g., based on local curvature) by which the control vertices are mapped 

to the skeleton.



CHAPTER 7

SPLINES FOR GLOBAL ILLUMINATION 

7.1 Overview
We introduce a spline-based approach for representing radiance as a texture over surfaces. 

Our technique enables speedy capture and playback of view-dependent lighting effects for a 

wide variety of surface types, illumination conditions, and material elements. The B-spline 

formulation facilitates the solution of the global illumination equation. Once computed, the 

surface radiance representation is view independent, can be evaluated quickly, and is equally 

suited for incorporation into ray tracing or hardware rasterization algorithms.

7.2 Our Approach
Our goal in this chapter is to enable interactive exploration of realistically rendered scenes 

containing complex illumination, material, and surface types. A central consideration in any 

rendering program is determining the colors of the visible surface points. Due to complex surface- 

surface lighting interactions, on-the-fly solutions to the general global illumination problem are 

not presently possible. Instead, it is common to maintain cached representations of (incident or 

exitant) radiance throughout the scene that can be queried both as part of the global illumination 

solution preprocess and at render time. For a given wavelength of light, surface radiance is 

a 4D function that depends on both surface position (u,v) and viewing direction (0,0). Key 

considerations in selecting a radiance representation are compactness, expressiveness, accuracy, 

and speed of evaluation.

Existing approaches to representing radiance can generally be divided into two classes: those 

that vary continuously in the spatial domain but neglect angular variation, and those that represent 

directional radiance at discrete points. In the present work, we introduce a unified representation 

for surface radiance in the form of 4D tensor product B-splines. The B-spline representation can 

be viewed as a general type of directionally dependent smooth texture map that is compactly 

represented, yet is easy and fast to evaluate. In particular, our formulation properly generalizes 

the polynomial textures of Malzbender et al. [100] and the B-spline illumination maps of Redner
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et al. [107]. The representation leads directly to a global illumination algorithm analogous 

to gathering in radiosity. By suitably representing the integrand with a B-spline function, we 

can solve the resulting integral exactly. Because the B-spline radiance representation is itself 

sufficient for final rendering quality and is a full view-independent solution, the need for a 

view-dependent final gather is eliminated.

We have chosen the B-spline basis to represent angular variation instead of spherical harmon

ics for a number of reasons. While spherical harmonics have the advantage of being parameter

ized over the sphere, they also carry several well-known drawbacks. They have nonlocal support, 

meaning that capturing local variations in texture has global consequences. Increasing the number 

of basis functions to achieve finer control results in polynomials of higher degree. The number of 

coefficients that must be evaluated increases with the desired accuracy and the associated basis 

functions become progressively more expensive to evaluate. These higher degree polynomials 

that can assume negative values can result in visible ringing, an intrinsic characteristic of the 

representation.

The B-spline basis, on the other hand, is nonnegative, local, and can be refined without 

increasing the polynomial degree. However, the canonical mapping to the sphere generates 

unacceptable distortions near the poles. Hence, we introduce a new, low-distortion mapping of 

the plane to the sphere that can be quickly evaluated. The tensor-product representation has two 

traditional drawbacks: square domains and nonlocal refinement. We address the former concern 

by extending our radiance representation to trimmed surfaces. In answer to the latter concern, we 

generalize the basic approach to a hierarchical B-spline representation of radiance.

7.3 Summary of Contributions
Our approach to the GI problem is to approximate the integrand with a tensor-product spline. 

This can be interpreted as low-pass filtering the incident radiance function. Mitchell and Ne- 

travali [138] found that B-spline filters were those filters that best preserved edge fidelity while 

eliminating noise. Our extension of the technique to hierarchical splines (H-splines) allows us to 

selectively band limit the signal, affording greater precision where necessary. It also allows the 

incorporation of arbitrary sampling schemes (such as density estimation and importance), without 

an explosion in memory and computation. Once the integrand is approximated, the integral itself 

is computed exactly, due to special properties of the B-spline basis. The resulting 4D radiance 

function is view-independent, fast to evaluate (because of the tensor product approach), and 

smoothly interpolates as the view changes (due to the variation diminishing property of splines).
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In summary, we:

• Introduce a 4D B-spline representation of radiance that

-  unifies the representation of both angular and spatial variation of radiance over gen

eral parametric surfaces,

-  is fast to evaluate because it is over low-degree polynomials,

-  is capable of representing complex local variations in texture and lighting because the 

basis functions are local,

-  implicitly maintains continuity across surface elements,

-  reduces unwanted undulations due to the variation diminishing property,

-  requires very few basis function evaluations,

-  does not exhibit ringing because the basis functions are nonnegative and low-degree,

-  encodes both local and distant lighting effects,

-  is suitable for both the incremental gather and final rendering,

-  is a function over rectangular textures and therefore easily encoded in hardware;

• Develop a fast, low-distortion mapping from the plane to the sphere;

• Introduce a technique for numerically integrating the global illumination equation by ap

proximating the integrand with a spline;

• Extend the representation of radiance to trimmed surfaces;

• Extend the technique to a multiresolution spline scheme.

7.4 Mathematical Problem Formulation
In this section, we present a mathematical formulation of the problem of representing and 

computing surface radiance. Additionally, we recall some relevant properties of B-splines.

We assume the scene environment E consists of a collection of surfaces E =  {S1, . . . ,  Sp} in 

3-space, each Si having a regular parametric representation si (u, v), where the parameter domain
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is a connected subset of [0,1] x [0, 1]. At each surface point s(u, v) of some S € E, there is a 

local coordinate system, or local frame, the coordinate axes of which are given by

Su Su X Sv „
x s  =  ti— rr> zs =  Ti- - - - f p  ys = %s x *s,||Su|| ||Su X Sv II

where || ■ || denotes Euclidean distance. Note that the local coordinate axes are functions of the 

parameters u and v and that the vector ZS is the unit surface normal. The local frame coordinates 

of a vector d at the surface point s(u, v) are given by (d ■ x S, d ■ y S, d ■ ZS). The local frame also 

induces a coordinate system in (0, 0) for the local unit hemisphere above the surface, used to 

specify a direction on the surface. If r  is a point in space different from the surface point s(u, v), 

then the spherical coordinates of the direction d =  r  — s(u, v) are given by

0 =  arccos ^  f  f , 0 =  arctan (d-ys, d-x^)
| d|

where the function arctan(a, b) denotes the two-dimensional inverse tangent function. Note the 

spherical coordinates are dependent on the local frame, which in turn varies with surface position.

7.5 Radiance Integrals
At a fixed wavelength, each surface S in the environment has an intrinsic emissive radiance 

function LSmit(u, v, 0 ,0), which is zero except for the scene light sources, and a Bi-directional 

Reflectance Distribution Function (BRDF) pS(u, v, 0, 0, 0in, 0 in). The outgoing radiance LS on 

a surface is determined by integrating the incoming radiance L™ against the BRDF p over the 

hemisphere above the surface and adding the result to the emitted radiance,

LS(u, v ,0 ,0 ) =  LSmit(u, v, 0,0) +  /  LSn(u ,v ,0 ,0 )p (u ,v ,0 ,0 ,0 in,0 in)cos 0in dw (7.1)
Jn

where dw =  sin 0ind0ind0in. Note that the outgoing radiance LS(u, v, 0,0) is a function of 

surface position (u, v) and direction (0, 0) in the local frame. In general, S can be illuminated by 

radiance from all the other surfaces in the scene, including itself. Our goal is to approximate LS 

with a tensor product B-spline.

When Equation (7.1) is written for each S € E, a system of coupled integral equations results. 

The global illumination problem is the problem of solving this system of integral equations. We
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need to compute the final, or steady-state, surface radiance after reflected light is sufficiently 

attenuated.

First, consider the case where the scene consists of only two objects R and E, and reformulate 

the contribution to the receiving surface R from the emitting surface E  as illustrated in Figure 7.1. 

Suppose E  is parameterized by e(s,t), with derivatives and local frame coordinates as above, 

and that E  has an outgoing radiance function LE(s, t, 0, 0). If there is no attenuation along an 

unobstructed ray path, a change of variables can be applied to the integral of Equation (7.1), to 

obtain the surface integral

LR(u, v, 0, 0) =  LRnit(u, v, 0, 0)

+  f  vis(r, e ) L E ( s ,  t ,  9 e ,  4 > e ) p ( u ,  v ,  9 , <fi, 9 m , ( f ) m ) C ° S  ^  ^°S d E  

Je  d

where vis(r, e) =  1 if the point e(s,t) is visible from r(u, v) and 0 otherwise. The surface 

integral can be expressed directly in terms of the surface function e over

L R  =  L e£ l l t +  f  j  XevisL E p — — 7 \ , Z R  ^ | | 4  ^  Z E  ||es x et || d s d t  (7 .2 ) 
Jo Jo — e h

where %e denotes the characteristic function of the parameter domain of e(s,t): %e(s,t) is 1

Figure 7.1: Geometry for surface radiance and light transport. The outgoing surface radiance 
along a ray LR is a function of both surface position as well as the angle the ray makes with the 
local coordinate axes. LR can be computed by integrating incoming radiance over the hemisphere 
Q above the surface, or from a surface integral over all emitting surfaces E .
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if (s, t) is in the parameter domain of e(s, t), and 0 otherwise. For the sake of brevity, we have

omitted the function parameters in Equation (7.2). In general, a surface integral over every surface 

in the environment must be added to Equation (7.2), including one for R itself.

The use of B-spline curves and surfaces has been well established in the graphics community 

since they were introduced by Riesenfeld as modeling primitives [3]. However, B-splines were 

studied by Schoenberg many years earlier as a technique for approximating functions [139]. Out

side of graphics, they have found a solid place in numerical analysis as a powerful approximation 

technique, and have numerous applications to industrial problems.

Because every spline can be written as a linear combination of B-splines, a spline-space Sd,T 

of splines of degree d with knots t is defined as

where Bi (x) =  Bi;d,T(x) is the i th B-spline of degree d on the knot vector t =  ( tq, . . . ,  Tn+d) 

of nondecreasing real values. The B-spline Bi is a nonnegative piecewise polynomial, is zero 

outside the interval \ri , Ti+d+1], and ^ i Bi (x) =  1 for all x € [rd, Tn). Moreover Bi has d — m 

continuous derivatives at a knot x =  Tj which occurs m-times among Ti , . . . ,  Ti+d+1. If f  (x) =  

S n —)1 aiBi (x) is a spline of degree d and x € [ti , t i+1), then f  (x) is a sum of only d +  1 terms

Because splines are piecewise polynomials, they are easily differentiated and integrated and there 

are stable and efficient algorithms for computing with them [5]. We will make use of the formula 

for integrating a spline of degree d on t

7.6 A Review of B-Spline Approximation

I
(7.3)

i= I—d

n-  1 n—1
(7.4)
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7.6.1 B-Spline Approximation
Approximating a function f  entails two tasks: a choice of a suitable spline space Sd;X (i.e., 

knot vector) and a way of computing the B-spline coefficients aj of a spline g € T so that g =  

EITo1 ajBj is a good approximation to f . Existing methods for computing spline approximations 

can be divided into two classes, local and global methods. A method is local if the value of the 

approximation g(x) at a point x depends only on values of f  in a neighborhood of x and global 

otherwise. A global method generally requires solving an n- by -n linear system of equations 

for the unknown B-spline coefficients. Examples of global methods are spline interpolation and 

least squares methods. In a local method, the coefficients are given explicitly. For example, in 

Schoenberg’s variation diminishing spline approximation method, the i th B-spline coefficient is 

given by aj =  f  (t*), with the evaluation node t* an average of contiguous knot values

+ * _  Ti+1 +  ' ' ' +  Ti+d 
d '

The Schoenberg method belongs to a class of methods known as quasi-interpolants [140,141]. 

We obtain an example of a quadratic quasi-interpolant by choosing the B-spline coefficient of the 

ithquadratic B-spline B i>2 as

a i =  +  2 / ( ^ * )  “  ~ ^ f { n + 2 ) ,

where t* =  (ri+1 +  r i+2)/2. This method has approximation order O(h3), while the Schoenberg 

method is O (h2) for all degrees d. O(h4) cubic quasi-interpolants exist as well [141]. Conver

gence of B-spline approximation is well established (e.g., [142]).

7.6.2 Tensor Product B-spline Functions
There are several natural ways of generalizing univariate B-spline functions to multivariate 

functions. Since speed is an issue in this chapter, the tensor product form of B-splines is a natural 

choice.

Tensor product spline functions are defined on a rectangular grid using a knot vector in each 

spatial dimension. In the two-dimensional case, there are two knot vectors t x and Ty, two degrees 

dx and dy, and two dimensions m and n. The coefficients a j  can be stored in a m x n  matrix,
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and the tensor product spline function is written as the double summation

m—1n—1
/  (x ,y) =  Bj dy ,Ty (y)Bi;dx,Tx (x)-

i=0 j =0

Higher-dimensional tensor product B-spline functions follow naturally. The coefficient matrix 

becomes a general tensor. A k-dimensional tensor product spline function is the k-fold sum

ni —1 nk — 1
/  (x1, . . . , x fc) =  ••• aii-ifc B ik (xfc) ••• Bii (X1), 

ii=0 ik=0

where the coefficients form a k thorder tensor. Notice the knot vector and degree subscripts on the 

basis functions have been omitted for brevity. In general, we will use an even simpler notation, 

omitting variable dependence and summation limits: for a 4D tensor product B-spline, we write 

simply

'y '  aij ki b i B k B j B '. 
ijkl

7.6.3 Evaluation of Tensor Product B-Spline Functions
Evaluating a tensor product spline is fast because for a spline of degree d, at most d +  1 

B-splines are nonzero at any parameter value. For example, a two-dimensional cubic spline has 

only four nonzero basis functions in each variable, and the summation in this case can be written 

as the matrix product

[Bj—3 ••• B i  ]
aJ—3,J—3 • • • aJ—3,J

1
3—J

.
B

l

a j , j—3 • • • a j , j B J

where I  and J  are determined by the knot intervals as in Equation (7.3). This 4 x 4 matrix product 

is amenable to hardware vectorization.

Higher-order evaluations require a more involved formulation, but the idea is the same. It 

is worth noting that if fast computation of 1D and 2D B-splines is available (e.g., in hardware) 

a simple re-association of the tensor product summations shows how 3D and 4D splines can be
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quickly evaluated:

, a
ijk i \ jk

] [ > j k i BiBk Bj Bi = E  E  aijklB lB k \  B j B i 
ijkl ij \ kl /

and of course higher-dimensional extensions follow.

7.7 Surface Radiance Textures
This section is concerned with the approximation of the radiance on the surface, assuming 

that the actual value of LS is available at each point. As LS(u, v,  d, 4>) is a four-variate function, 

a four-dimensional tensor product B-spline is indicated. We need to construct an appropriate 

spline space and approximation method.

7.8 Lambertian Surfaces
To develop the B-spline approximation technique, we first assume that the surface is Lam

bertian, that is, the reflected or scattered radiance is independent of the direction. The surface 

radiance reduces to a function L(u, v) of only two variables. To construct an approximation 

L( u , v )  to L involves choosing the degrees and the knot vectors in u and v, and applying an 

approximation method (Schoenberg or quasi-interpolation).

For knot vectors, we can for example use uniform knots with multiple knots at each end:

[a, . . .  , a , a  +  h , a  +  2 h , . . .  ,b — h , b , . . . , b ]  (7.5)
d+1 d+1

where d is the degree, m > 0 is the number of internal knots, h =  (b — a ) / ( m  +  1) and the 

domain of the parameter (u or v) is the closed interval [a, b]. Normally, the domain [a, b] is the 

unit interval [0, 1], but for practical reasons, the radiance function might not be defined on the 

edge of a surface patch, so we use instead [e, 1 — e] for some small e, this having the effect of 

pulling evaluation points away from the edges. This makes parameter values less than e or greater 

than 1 — e technically outside the domain of the B-spline function, but in practice, this causes 

little difficulty due to the continuous dependence of a spline as a function of its knots.
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7.8.1 Nonuniform Domains; Trims
The knot vectors need not be uniform. If there is extra detail on one part of the surface, 

for example, the knots can be clustered there. However, because we are using tensor products, 

knot lines extend through the entire domain, as illustrated in Figure 7.2. An obvious problem 

arises when the parameter domain for the surface is not rectangular, such as is the case for a 

trimmed B-spline surface [5,121], because the evaluation nodes (Section 7.6.1) may lie outside 

the domain. A simple and remarkably effective solution is to move such nodes just inside the 

boundary. If done in a consistent manner, this effectively extends the function being approximated 

to the entire rectangle. Again, Figure 7.2 provides an illustration.

7.9 View-Dependent Radiance
We now turn to the problem of approximating directionally dependent surface radiance, which 

is intrinsically a four-dimensional function and thus requires a 4D tensor product B-spline. The 

spherical coordinate parameterization for the hemisphere given by (0, 0) above is a candidate for 

the directional spline parameters, as the domain is rectangular. The periodicity required in the 0- 

variable can be handled by a simple periodic extension of the corresponding knot vector. A more 

serious difficulty, however, is that the standard spherical parameterization is highly nonuniform: 

knot values in 0 get pinched together near the pole (Figure 7.3).

7.9.1 Mapping to the Sphere
What is needed is a smooth, low distortion mapping of the unit square to the unit hemi

sphere that is fast to evaluate because the inverse mapping must be computed at every radiance 

evaluation. Shirley and Chiu [143] present a fast square to hemisphere mapping, but it contains

Figure 7.2: Tensor product knots and knot lines. (Left) uniform knot spacing. For nonuniform 
spacing (middle), the knots can be chosen independently in each dimension, but not arbitrarily 
over the domain. In the case of a nonrectangular domain (right), evaluation nodes can be moved 
inside the domain.

v v v

u u
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Figure 7.3: Angular parameters on the hemisphere. The standard 9 ,0  spherical parameterization 
results in poor knot spacing (left). Our trimmed square-to-sphere mapping is much more uniform 
(middle). Nonuniform knot spacing can be used with our mapping, to better approximate a 
highlight for example (right).

derivative discontinuities that result in visible artifacts when we apply it to the B-spline represen

tation.

Instead, we apply the equal area projection of the disc to the hemisphere, trimming away 

points in parameter space outside the disc. Accordingly, we use a different set of local parameters

a, S, with —1 < a  < 1, —1 < S < 1, for the angular parameters in the spline approximation. If

r  =  v  a 2 +  S2, then the rectangular coordinates (in the local frame) of the corresponding point 

on the hemisphere are given by

z =  1 — r

x = V l —
r

V l —

-a

-13.

(7.6)

(7.7)

(7.8)

2z

2z
y

Notice the mapping is undefined outside the unit disc, so we “pull in” node values outside the 

disc: if r  > R then a  and S are scaled by R /r. Thus, every point in the plane outside the unit disc 

is moved radially to the disc of radius R. Normally, R would be set to 1, but radiances are properly 

zero (otherwise undefined) at normal angle n / 2, and this could cause unwanted darkening at 

grazing angles—the opposite of the Fresnel effect exhibited by many reflective materials. If the 

maximum normal angle 9 is to be n /2  — 5, then R V71 — 5. We denote by 0 =  0(a,  j3) and 

0 =  0(a, S) the local spherical coordinates of the point (x, y, z) given by Equations (7.6)-(7.8). 

In terms of the spline parameters a  and S,

9(a, S) =  arccos(1 — m in(a2 +  S2, 1 — 5)) 

0(a, S) =  arctan(S ,a)
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In practice, often only the rectangular coordinates are needed, because BRDF models are often 

expressed in terms of the incoming and outgoing vectors.

7.10 Approximation
Given the mappings 0(a, 5) and 0(a, 5) of the previous section, we can approximate the 

radiance L(u, v, 0,0) for a given surface by a 4-dimensional tensor product spline in the variables

(u, v, a , 5). Thus,

L(u, v, 0(a, 5 ), 0(a, 5 )) ~  L(u, v, a , 5 ),

where

L(u, v, a , 5 ) =  £  aijklB l Bk Bj Bi • (7.9)
i,j,k,l

For the variables u and v, we use the knot vector given by Equation (7.5), while for a  and 5, we

use

[—-R, • • •, —-R, — R  +  h, —R  +  2 h , . . . ,  R  — h, R , . . . ,  R\,  

d+1 d+1

where h =  2R /(m  +  1), and m is the number of internal knots.

The coefficients are computed using the Schoenberg method, the surface radiance evaluated 

at the Schoenberg node values

aijkl =  ,v*,0 (a k , 5D ,0 K  , ^ r )) .

For notational convenience, we write 0* and 0*kl for 0(ak,5*) and 0 (ak ,5*), respectively. 

Figure 7.4 gives pseudocode for rendering surface points using the B-spline approximation. We 

note that the coefficients could also be constructed using a quasi-interpolation method.
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B-Spline Shading Functions

radiance BSPLINE_SHADE (surface S,  real u, real v, point eye) 
// Returns the B-spline radiance at u, v, as viewed from eye.

{
r  ^  S(u, v)
d  ^  (eye — r ) / || eye — r||
compute the surface frame x S, y S, zS at u, v.
compute w , the direction of d  in the local frame at u,v
map w to spline parameters a, ft
return S.L(u, v, a, ft)

}

radiance BSPLINE_SHADE (surface S,  point x, unit.vector d ) 
// Returns the B-spline radiance function at x, situated on the 
// surface S as viewed from the direction d

{
compute the u , v parameter values of x  on the surface S  
compute the surface frame x S, y S, zS at u, v. 
compute w , the direction of d  in the local frame at u,v 
map w to spline parameters a, ft 
return S.L(u, v, a, ft)

}

Figure 7.4: Functions to render a surface point using a B-spline radiance function. The first is 
more suited to hardware rasterization; the second, to ray tracing.

7.11 Global Illumination
In this section, we consider solving the integral equations for global illumination. The global 

(hemispherical) formulation of Equation (7.1) as well as the surface integral formulation of 

Equation (7.2) form a coupled system of integral equations. Our solution method is based on 

an iterative gathering approach, where an approximate radiance is stored on each surface, and an 

updated approximate radiance is computed by direct evaluation of the radiance integrals from the 

earlier approximation.

The goal is to construct a B-spline radiance approximation in the form of Equation (7.9) on 

each surface by evaluating the radiance integrals. Consider first the hemispherical integral for

mulation Equation (7.1). For the radiance approximation, the B-spline coefficients are computed 

by evaluating the equation at the Schoenberg evaluation nodes

aijki = LRmit(u*,v*, e*kh 4>*kl) + / LR(u* vj  ein, ^m)p(u* vj  e;d, 4>*kh ein, ^m) c o s (7.10)
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Assuming that Lin can be computed (in our implementation, it is done with ray tracing 

from the previous radiance approximation), the integral of Equation (7.10) over 0in, 0 in could 

be evaluated using any numerical method that uses point sampling. For example, the integral can 

be computed using an importance sampling method based on the shape of the BRDF.

Our approach to evaluating the integral is to perform a B-spline approximation to the inte

grand, then evaluate this exactly using existing techniques. The B-spline approximation to the 

integrand of Equation (7.10) has the form

p p2n pn/2
/ LRp cos 0in dw — LRo cos 0in sin 0in d0in d^in

JQ J0 J 0
/  r- 2-K r- n/2 \

~  E  /  /  Y,°ijkipq Bq Bp d0in d^in B, Bk Bj Bi. (7.11)
i j k l \  0 pq J

Applying the B-spline integration formula from Equation (7.4) yields a formula for the surface 

radiance coefficients

aijkl — LR (ui , v
pq

where the Cjklpq are the integrand of Equation (7.11) evaluated at node values u*, vk, 0*i, 

*̂ki, 0pn*, and 0qn*. Note that the choice of the first four evaluation nodes is fixed by the knot 

vectors for the B-spline radiance representation on R, but the knot vectors in 0in and 0 in for the 

integration can be chosen arbitrarily, and could even be different for each integral evaluation.

The surface integral formulation can be approximated in the same way:

1 f l ■ T (e -  r)  ̂ZR (r -  e) • ZE|| || j j,Xevis LEp -------- ------- r-j-------- ||es x et || dsdt
10 J0 yr -  ey

f 1 r 1

n f  (u, v, 0, s, t) dsdt
0 0

c 1 r 1
E  /  /  E f  (u*W ,0*1,4>h, s*,t* )Bq Bp dsdt B, Bk Bj Bi
ijkl 0 0 pq

=  E  Tggp+4 ++ !  ap )  BiBkBjB i  (7.13)
ijkl \  pq S /

and thus gives the explicit formula for the B-spline coefficients for the outgoing radiance L R 

reflected off of R from E. Summing the corresponding coefficients for all other surfaces in the 

scene, including R itself if it is nonconvex, results in the coefficients of the radiance B-spline on 

R.
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7.12 A Gathering Algorithm
In this section, we describe a gathering approach for global illumination similar to that used 

in classical radiosity. The algorithm uses the data structures of Figure 7.5. A B s p l i n e 4 D  

object contains the knot vectors as well as the tensor of coefficients. A s u r f a c e  . r a d i a n c e  

object stores three B s p l i n e 4 D  objects: one for the cumulative gathered radiance, one for an 

incremental radiance from the most recent gather, and one temporary value for the gathered 

radiance. There is one s u r f a c e _ r a d i a n c e  object for each scene surface, and initially, the 

Le field contains the emissive radiance for the surface if that surface is a light source. Figure 7.5

struct Bsp l i n e 4 D  { 
radiance_tensor4D C 
real knots[4][]
int degree[4]

}
struct surface_radiance {

Bsp l i n e 4 D  Le
Bsp l i n e 4 D  L
Bsp l i n e 4 D  Ltmp

}

Gathering Algorithm
// Direct Lighting Phase 
for each surface S do 

S.L ^  0
for each emitting surface E  do

gather from E  to S, store the radiance in S.L 
end for
// add the gathered radiance to the cumulative radiance
S.Le ^  S.Le + S.L 

end for

// Indirect Lighting Phase 
while each .L is too large do 

for each surface S do
gather globally from the scene to S.Ltmp 
// the emission is taken from the .L fields on other surfaces 

end for
for each surface S do

add the gathered radiance S.Ltmp to S.Le 
replace the incremental radiance S.L with S.Ltmp 

end for 
end while

// B-spline coefficients 
// knot vectors 
// B-spline degrees

// cumulative radiance 
// incremental radiance 
// temporary radiance

Figure 7.5: The global illumination gathering algorithm, and the associated data structures.
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outlines the method.

The first iteration is the “direct lighting” stage, where surfaces are only illuminated by light 

sources. Generally, there are only a few light sources, and each source subtends only a small 

solid angle as from most receiver points. It is therefore more efficient to use the surface integral 

formulation for this computation.

After the direct lighting computation, the L field for each surface contains the radiance due to 

direct illumination. From these, we gather to each surface from the entire environment, using the 

hemispherical integral, and the resulting radiance (the indirect lighting after a single reflection) 

is placed into the Ltmp field. Then we add Ltmp to the cumulative radiance Le, replace L with 

Ltmp, and repeat. Notice that after iteration n, the L fields contain the indirect lighting after 

exactly n reflections, while the cumulative radiance Le stores the total illumination. After a 

sufficient number of indirect iterations, determined either visually or by a convergence criterion 

on the incremental radiances, the algorithm terminates and Le contains the GI solution. We 

emphasize that at the end of the algorithm, Le is valid for all views and is used directly for our 

renderings. There is no need for a final gather.

It might seem more natural to gather from the cumulative radiance Le, and indeed this 

would require only two B-spline representations for each surface during the global illumination 

computation. However, working with the incremental radiance has some important advantages. 

First, it allows the direct lighting computation to be handled separately, and this is advantageous 

because frequently, this must be done more accurately than the indirect lighting computations. In 

fact, we can usually get away with a much coarser representation for the subsequent incremental 

radiances. Figure 7.6 shows how our algorithm performs with respect to glossy interreflections.

7.13 Transmission
The discussion thus far has assumed the surfaces are only reflective. If a surface also has a Bi

directional Transmission Distribution Function (BTDF), the radiance function must be extended 

to directions below the local surface tangent plane, i.e., having normal angle 0 > n/2. We do 

this by adding a second radiance B-spline for the transmitted radiance. The gathering algorithm 

must be modified accordingly. Figure 7.7 demonstrates our approach applied to transmitted 

illumination.

7.14 Hierarchical Radiance Textures
Figure 7.8 illustrates the behavior of our radiance model with respect to sharp features as the 

number of samples and the spline degree are increased. These are global changes to the spline
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Figure 7.6: A demonstration of glossy interreflections (ray traced using the B-spline shader).

Figure 7.7: An anisotropic sphere, a transmissive rectangle, and a glass with a Phong-like 
transmission (the images are ray traced, using the B-spline shader).



137

Figure 7.8: 2D B-splines for a diffuse surface with varying degree and knot density. Note the 
degree 1 case reduces to linear interpolation. The tensor product nature is most noticeable on 
shadow edges diagonal to the knot lines.

representation. For the sake of memory efficiency and speed of computation, we would like to 

add the facility for making localized adjustments to the radiance function. The standard approach 

to adding detail to tensor product splines is via knot refinement. However, because knot lines 

extend to the patch boundary, refinement is a nonlocal operation. Obtaining local control with 

tensor product splines can therefore lead to an explosion in coefficients. In our case, it can also 

lead to unnecessary gathers in locations where the radiance is already well represented by the 

coarser mesh.

The desire to preserve the advantages of the tensor product approach while allowing for detail 

at multiple scales has led to a number of multiresolution approaches. To extend our notion of 

radiance textures, we have chosen hierarchical splines (H-splines) [137], but we note that spline 

wavelets [144] might be equally well suited. The chief observation of the H-spline approach is 

that while refinement is a global operation, the impact of editing a control point is localized to 

a small number of patches. The remainder of the refined surface is identical to the coarse level 

surface. Forsey and Bartels introduce the concept of an overlay, which represents just that part 

of the surface impacted by editing the refined control mesh. The coefficients of the overlay patch 

are the offsets representing the modifications to the refined mesh. Naturally, overlays can possess 

overlays, which are offsets from offsets, and so on.
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The H-spline is represented in a tree data structure. In order to evaluate the H-spline at a 

particular parameter ( u o , un), we traverse the associated overlays Li until we reach a leaf, and 

the radiance L is given by

To allow for isolated refinements of the GI integrals (Equations (7.12) and (7.13)) over both the 

spatial and directional domains, we assume that the integrands can be represented as an H-spline. 

The resulting gather algorithm is compatible with our basic approach. Suppose we have a patch 

P  that we determine has not been sufficiently refined. We insert some knots into the patch to add 

local detail, and this results in a new overlay at level l. The radiance function is represented by 

Equation (7.14), and the incremental gather for the overlay is calculated as an integral

This last equation is not useful for evaluation, because we never explicitly generate F . 

However, we note that so long as we adjust vertices within overlay l, the coarser level terms 

will cancel, leaving us with the overlay solely, and we can calculate the coefficients for new 

samples of the global illumination integral using the formula

In other words, the leaf nodes represent the residual with respect to the coarse and refined 

approximations. This final equation enables direct use of the gathering algorithms from Sec

tion 7.11.

Figure 7.9 demonstrates the application of the H-spline approach to the floor of the Cornell 

Box. For this example, the H-spline approach results in an order of magnitude decrease both in

1-1
L(u0, • • • , un) — L0(u0, • • • , un) I ^  ' L i (u0, • • • , un) (7.14)

i=1

Li (u,v,e,^) — v,e, <£, ein ,^ m )dein
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Figure 7.9: A comparison of tensor product and hierarchical splines. To meet the same error 
metric (< 1 intensity level change under refined gather), the uniform subdivision tensor product 
patch (left) requires 264,196 coefficients. The uniformly refined hierarchical representation 
requires only 17, 781 coefficients. Furthermore, the gather step is roughly an order of magnitude 
faster for the H-spline. The bottom figure shows knot lines for each.
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the number of coefficients and in compute time. Note that the image accurately reproduces the 

shadow discontinuity on the floor of the box.

7.15 Implementation
We have implemented the 4D B-spline techniques presented here in the context of a standard 

ray tracer for both rendering and global illumination computation. Each coefficient is stored 

as four floats (RGB with a pad to 16 bytes), although for better spectral representation, we 

could use a 5D tensor product B-spline, with the extra variable for the wavelength. Our scenes 

consist of triangles, parallelograms, Bezier patches, and trimmed NURBS surfaces. For the 

global illumination computation, ray tracing is required for evaluating the visibility function in 

the surface integral formulation, and for evaluating the Lin value in the hemispherical integral. 

Therefore, our ray tracer must be able to compute ray intersections with these surfaces and the 

corresponding parameter values as well as surface derivatives to compute the local frame [121].

Regardless of how a surface radiance B-spline is computed (or captured), it can be treated as 

a general surface shader (Figure 7.4) that is dependent on surface position and view direction. 

Virtually any rendering system that can render the scene surfaces can render the scene using the 

B-spline radiances. We incorporated the B-spline shader into a GL-based renderer. We divide 

each surface into microfaceted polygons and render each using smooth shading. The vertex 

colors are computed per-frame in software using our B-spline surface function, with the eye point 

corresponding to the center of projection. Figure 7.10 shows a simple scene rendered in this way.

Figure 7.10: OpenGL renderings of a simple scene (global illumination computed offline). Each 
object is rendered with 1282 Gouraud shaded micropolygons, with vertex colors from the B-spline 
shader. The framerate is about 10 Hz.
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7.16 Results
Figures 7 .6-7 .12 , Table 7.1, and Figure 7.13 show some results of our method. Figures 7.8 

and 7.10 are rendered using OpenGL as discussed above; Figures 7.6-7.7, 7.9, and 7.11-7.13 

are ray traced using the B-spline shader. In Table 7.1, we outline the configuration used in the 

table scene of Figure 7.13. The surfaces are polygons, Bezier patches, and trimmed NURBS. 

For non-Lambertian surfaces, we generally used the anisotropic Ashikhmin-Shirley BRDF [145], 

because it is energy conserving and exhibits the Fresnel behavior of increased specularity at 

glancing angles. The specular exponents were limited to be under 100.

Figure 7.11: Indirect lighting in a mug and a cup. The blue mug radiance B-spline has 10 knots 
in each angular parameter and 41 in the spatial parameters. The green cup exhibiting a caustic 
has 17 knots in each parameter. The mug is modeled with only two NURBS surfaces; the cup, 
only one.
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Figure 7.12: Our (nonhierarchical) method applied to the Cornell Box. The left images, which 
have untrimmed surfaces, exhibit artifacts where surfaces meet. Trimming has been applied to 
correct this in the middle images, with essentially no performance penalty. The right images have 
the knot lines shown in blue. The GI solution, with 3 indirect iterations, was coarsely computed 
with 15 knots in each of 0 and 0 for the hemispherical integration. The GI computation time was 
about 15 seconds on a single processor. Note: our hierarchical approach addresses the problem 
of representing sharp shadows. Please see Figure 7.9.

Table 7.1: Details of the B-spline radiance representations used for the table scene (Figure 7.13), 
giving the degrees in the spatial and angular dimensions, the number of coefficients, and the total 
memory required for each object. These numbers are for the basic (nonhierarchical) approach 
with uniform knot lines.

Object Type Degrees
(spat/ang)

Coefficients
(■u,v,a,(3)

Memory
(kB)

lamp body NURBS (1) 2,2 14,14,10,10 314
lamp socket NURBS (1) 2,2 14,14,3,3 56
lamp shade NURBS (1) 2,2 3,3,3,3 1
mug NURBS (2) 2,2 14,14,10,10 627
teapot Bezier (32) 2,2 8,8,14,14 6423
metal sphere sphere 2,2 10,10,10,10 320
glass sphere sphere 2,2 20,20,20,20 5120
table top rectangle 2,0 183,183,1,1 535
table bottom rectangle 2,0 4,4,1,1 1
table sides rectangle 2,0 4,10,1,1 1
table legs rectangle 0,0 1,1,1,1 1
walls rectangle 2,0 24,24,1,1 9
floor rectangle 2,0 24,24,1,1 9
TOTAL 13 416
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Figure 7.13: A more complex scene, with Bezier patches, NURBS, anisotropic reflection, 
transmission, and caustics. The source inside the lamp is in the shape of a light bulb, and there is 
an area source on the ceiling. The Lambertian table top has 180 x 180 coefficients to faithfully 
represent the shadow edges. The full GI solution is very finely sampled, with 35 x 35 knots for 
the integration, and required about 20 hours on a single processor. Table 7.1 gives knot vector 
sizes and memory statistics.
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7.17 Representation and Global Illumination
B-spline approximations have established convergence properties, so the representation should 

be effective provided enough knots are chosen. However, a memory explosion can result: for 

example, a modest 100 coefficients in each dimension requires 1.6 GB of memory. We have 

extended our basic approach to hierarchies so that the sample budget can be utilized where it is 

most needed.

In general, we use quadratic (degree 2) splines in all four variables, because quadratic splines 

tend to represent the shape of the approximated function better than higher-order splines, and 

they are faster to evaluate. Quadratic splines are a great improvement over linear interpolation 

because they have C 1 continuity. Theoretically, the C 2 discontinuities might be noticeable, but 

we have not found this to be a problem. In some cases, however, it appears that cubic splines 

work better in areas of fine detail.

We have found that using 16 coefficients in each of the four dimensions is sufficient to 

represent radiance for a typical surface patch — note this amounts to as many coefficients as 

there are pixels in a 256 x 256 (nondirectional) texture map. Glossy surfaces with a small diffuse 

component tend to require fewer spatial knots and more angular knots, while diffuse surfaces 

require more spatial knots. Surfaces that exhibit near mirror reflection, however, can require 

many knots in both directions.

For the gathering algorithm, the primary question is what knot vectors to use for the in

tegrations. We have found that 10 knots in each dimension for the direct lighting phase is 

usually sufficient. For the hemispherical gather, 15 knots in d and 30 knots in 0 usually avoids 

undersampling, although as few as 7 knots in each is sometimes enough. Again, our hierarchical 

extension allows for more sophisticated sampling schemes. Undersampling artifacts from the 

hemispherical integration can occur when there is a bright surface of small solid angle. A simple 

workaround is to treat such a surface as having no emission in the hemispherical integration, then 

separately compute the contribution from the bright surface using the surface integral formulation.

7.18 Performance
(N. B.: The results in this section were generated in 2002 [146] on hardware that was state-of- 

the-art at that time.) The most important performance consideration is the evaluation of the 4D 

tensor product B-spline functions, which we do in software. Figure 7.14 shows a graph of some 

benchmarks. The general upward trend of evaluation time with larger dimension is primarily 

due to degrading cache coherence. Quadratic 4D splines of modest dimensions can generally be
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Figure 7.14: Benchmarks for 4D tensor product B-spline evaluation (single MIPS R12K, 400 
MHz). The thick lines show the total computation time per evaluation, including the hemispher
ical mapping. The thin lines show the time of computing the B-spline basis functions. Three 
different degree combinations are shown, with degree in u and v first. The horizontal labels 
indicate the number of knots in each parametric direction.

evaluated at rates of better than 200 kHz.

In our ray tracer, the cost of finding the surface intersections generally outweighs the cost of 

evaluating the surface B-splines, particularly when there are many NURBS surfaces in the scene. 

For the GL implementation, this is not the case. In both implementations though, the B-spline 

evaluation time dominates the sphere mapping and conversion to the local frame. The simple 

scene illustrated in Figure 7.10 runs at roughly 10 frames per second on a 1.8 GHz Pentium 3 PC.

A scene with only a few surfaces and modest sampling (a coarse solution uses 7 x 7 knots 

points for the surface integration and 10 x 10 points on the hemispherical integration) and only 

one or two indirect gathers takes from a few seconds to a few minutes. We did not attempt to 

accelerate the GI computation for this work because we view it as a preprocess.
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7.19 Conclusion and Future Work
In this chapter, we have demonstrated that surface radiance can be effectively approximated 

using a suitably crafted tensor product spline combined with an appropriate spherical mapping. 

The representation is compact, fast to evaluate, and as the examples illustrate, the representation 

is useful for a wide variety of phenomena. Furthermore, we have used the representation for a 

global illumination algorithm, and the representation computed by the algorithm can be directly 

rendered at interactive rates.

For this work, we have taken a rather direct approach to the approximation and integral 

evaluation. Knot clustering, for example, could improve the representation on a surface with 

nonuniformly distributed detail. Our approach to evaluating the illumination integrals is also 

very straightforward and could be improved. For example, the hemispherical integral could be 

importance sampled according to the BRDF. Also, hierarchical or clustering methods [13,147, 

148] would almost certainly improve performance. The former follow directly from our H-spline 

extension.

Finally, we note some natural extensions. Time varying radiance is a relatively simple exten

sion, as is the representation of volumetric phenomena, including scattering.



CHAPTER 8

CONCLUSION

The main thrust of this dissertation was to demonstrate the utility of splines and remove 

barriers to their use in engineering applications. To this end, we have developed a suite of tools 

and techniques which includes

1. Efficient methods for evaluating NURBS functions and their derivatives.

2. Ray tracing techniques for NURBS surfaces and volumes, suitable for inclusion in an 

interactive parallel rendering system.

3. A novel representation based on NURBS curves, surfaces, and volumes which encodes 

attributes decoupled from geometry.

4. Extensions of traditional modeling operators to facilitate intuitive design of heterogeneous 

solids.

5. Nodal interpolation techniques to support data fitting for engineering applications.

6. An extension of traditional visualization techniques to trivariate models in order to increase 

intuition about these high-dimensional representations. These methods include isosurfac- 

ing, planar slicing, direct volume rendering, and optical path tracing.

7. A novel modeling operator which upgrades a boundary representation to a volumetric 

representation to facilitate simulation and analysis.

8. An original algorithm for characterizing radiance and solving the global illumination prob

lem by leveraging the innate properties of splines.
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APPENDIX B

SINGULAR JACOBIANS AND THE RAY 

INTERSECTION FUNCTION

In this section, we show that for regular surfaces, singular Jacobian matrices of the inter

section function F  (Section 3.3.3) evaluated at (u0, v0) are encountered only for rays which are 

parallel to silhouette rays at (u0, v0).

Definition Suppose we are given a parametric surface S(u, v) and a ray formulated as r(t) =

o +  d * t. r(t) is called a silhouette ray of S(u0,v0) if F (u0,v0) =  0 and (Su(u0,v0) x 

Sv(u0, v0)) ■ d =  0 — that is, if the ray both intersects S at (u0, v0) and lies in the tangent plane 

of S at (u0, v0). The point S(u0, v0) where the silhouette ray contacts the surface S is called a 

silhouette point.

We wish to relate a zero of det(J) to rays parallel to silhouettes.

Theorem Let S(u, v) be a parametric surface such that Su x Sv =  0 (i.e., S is a regular 

parameterization). Let F  be the function

N i ■ S(u, v) +  d1
F (« .v ) =  (  N 2 : S(U, V)+ d 2 )

whose roots at (u0,v0) determine the intersection o f a ray described by the intersection o f two 

planes with the surface S at (u0, v0). The Jacobian o f  F (u0, v0) is singular if, and only if, the ray 

is parallel to a silhouette ray at that point.

Proof. Consider a ray o +  d * t, which lies along the intersection of two planes P 1 and P 2, 

with normals N 1 and N 2, respectively, so that N 1 x N 2 is parallel to d . The derivative of F  is 

the Jacobian matrix

T( ) , N i ■ Su N i ■ Sv 
J(u ,v ) ( n 2 ■ Su N 2 ■ Sv
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Suppose first that J  (u0, v0) is singular. Thus, the columns of J  (u0, v0) are linearly dependent:

a f N i ■ Su(u0,v0) A +  b f N i ■ Sv(U0,V0) J _  0 
a V N 2 ■ Su(U0,V0̂ +  ^  N 2 ■ Sv(U0,V0̂  0

with a, b not both zero. This gives us

/  a N i ■ Su(^0,^ 0) +  bNi ■ Sv(u0,V0) \  _
\  a N 2 ■ Su(^0,^0) +  bN2 ■ Sv(u0,V0) J _

/  N i ■ (aSu(u0,V0) +  bSv (u0 ,V0)) \  _  (  N i ■ A \  _ 0 
^ N 2 ■ (aSu(u0,V0) +  bSv(U0,V0) ) /  _  \  N 2 ■ A )  _

where A  _  aSu(u0, v0)+bSv(u0, v0) is in the tangent plane. Since N i and N 2 are perpendicular 

to both d and A, d is parallel to A  and is therefore parallel to the tangent plane. Then, d is parallel 

to a silhouette ray at S(u0, v0).

Now, suppose that d is parallel to a silhouette ray at S(u0,v0). Thus, d ■ (Su(u0,v0) x 

Sv(u0, v0)) _  0, and d can be written as the linear combination d _  aSu(u0, v0) +  bSv(u0, v0). 

Recalling that d is perpendicular to both N i and N 2, we have

N i ■ d _  N i ■ (aSu(u0, V0) +  bSv(^0,^0)) _  a N i ■ Su(u0,v0) +  bNi ■ Sv(u0,V0 ) _ 0  

N 2 ■ d _  N 2 ■ (aSu(u0,V0) +  bSv(^0,^0)) _  aN 2 ■ Su(u0,v0) +  bN2 ■ Sv(u0,V0 ) _ 0

which implies linear dependence of the columns of J (u 0, v0). Thus, J (u 0, v0) is singular. □



APPENDIX C

DERIVATION OF POTENTIAL EQUATIONS IN 

THE PLANE

The potential for a charged boundary can be summarized using

f  d7  

A  \ \ p - i ( m m

If the boundary is piecewise linear, then the generalized Newtonian potential due to each segment

Yi(t) — Pi +  t(Pi+i -  Pi) is given by

r 1 HAP-11
$ (P) =  TTTT---- /“Til—dt

v ; Jo i i p - 7 W i r
f 1 11 A PI I 

=  ----------------——----------—— dt (C.l)
j 0 n p - p , - t ( p m - p , ) i r

where A Pi =  P i+ 1 — Pi . Since

IIP — Y(t)|| — <(P — Pi) — tAPi, (P  — Pi) — tA P i)1/2

— (<P — Pi, P  — Pi) — 2t<P — Pi, APi) +  t 2<APi, APi ))1/2

— (IIP — PiII2 — 2t<P — Pi, APi) +  t211 APi 112)1/2,
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| |P  -  Y(t)llm =  ( ||P  -  Pill2 -  2t(P  -  Pi, A Pz) +  t 2||A P i||2)m/2

=  - 2 , 1’ r : ; A h  - / > v w *
l|A Pi||2 | |  A P i ||2

=  iiAPiir

=  iiAPiir

t  ( p - P i , A P i ) y  ( p  — P i , A P j ) 2 | u p - p , i i 2
iiAPi ii2

iiAPi ii2

iiAPi ii4
m/2

iiAPi ii2

iiAPi ii4

11 A P | | "M m/2
112m

IIAPH4 ( t  (P  — Pi, APj )  t + i
A iiAPi ii2

m/2

Am/2

IIAPH"
/iiA P iii2 (P  -  P i, APi)
V A1/2

-t - A1/2 +  1
m/2

m/2

(C.2)

where A =  HP -  Pi ii2 iiAPi ii2 -  (P  -  Pi, APi )2.

Returning to the original integral in Equation (C.1), if we apply the substitution

_ _  | |A P ||2+ (P  — Pi, A P i)
U — — 7—7-—T — •A 1/2 A1/2

and the result Equation (C.2), we obtain

1
$ (P ) = iiAPiii

/0 iiP -  Pi -  t(P i+1 -  Pi)ii? 
f 1 iiAPiii

-dt

/0 'lAfill^C1 + ^ 2)m/2 

iiAPi ii

dt
I I A P i l l "

(■Ui{P) A1/2

Am/2 (1 + u 2)™/2 I |A P ||2
du

II A P | l̂ " 1 du
a (™ -1)/2 y (P) (1 + u 2)™/2

iiAPi iim—1
A(m—1)/2 ' ^ ( P )

«i(P)

2
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where

y . i ( P )  —  ~

Ui(P) =

( P - P t , A P t ) 
A 1 / 2

+  Ui(P)
APijj2
A1/2

(C.3)

(C.4)

and

E

’

E

’

n— 1 j i  2(n—j)
fc=0 ( l + u 2 ) " - fc- 1/ 2 n ^ = 0 2 ( n - j ) - l

m =  2n +  1 (odd)

n —2 j i  2(n—j ) —1
fc=° (l+«2)" - fc- i n .i=02(»»-J-1) n"=o 2(™ -i-!)

+  n g ^ H arctan(u) m =  2n(even)

So there is a closed, albeit somewhat complicated closed form for the generalized potential 

due to a polygonal boundary. The force exerted on a point in space due to the charged boundary 

is given by V<J>(P) =  (^3>(P), ^<J>(P)). Applying the chain rule, we have

jAPij jm—1

d

du
^ 4 ( p )  (^2 +  i )m/2

Ui(P) du

+

_ y ^ (l-m )/2
dx )  . L (p) (u2 +  I )"1/2

dy
jAP.jj™- 1

d

du

_ y ^ (l-m )/2
dy

dyJu^p)  (u2 +  i ) m/ \

'^(p ) du 

;i(P) (w2 + 1)"1/2

+
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Taking these terms componentwise, we have

du
dx J ^ P )  (u2 +  l ) m/ 2

r«i(P) du
dy Jû p) (u2 + I)™/2

dudu d
dx du 4 (p) (u2 +  i )™/2

du 
dx (1 +  u 2 )m/2_ 

_ du,; dUj
(1 +  U2)™/2 dx  (1 +  U2)™/2 dx  

du d du
dy du Ju.(p) (u2 +  l ) m/ 2

du 1
dy  |_(1 +-u2)m/2_

1 dm 1 dut
( l + u 2)m/ 2 dy ( l + u 2)m/ 2 dy

We can simplify A as well

d

1

d

A =  ||P  -  P i||2||A P ,||2 - ( P  -  P i, A Pi)2

=  [(x -  x i)2 +  (y -  yi)2] [Ax2 +  Ay2] -  [(x -  Xi)Axi +  (y -  yi)Ayi]2

=  (x -  x i)2Ay2 +  (y -  yi)Ax2 -  2(x -  xi)(y -  yi)AxiAyi

=  [(x -  xi)Ayi -  (y -  yi)Axi]2

=  [((P -  Pi), N i)]2

The final statement gives some measure of geometric interpretation to A. Recalling the definitions 

of n., (Equation (C.3)) and u, (Equation (C.4)), substituting for A,  we have

_ ( P - P i ,  A ^ )
—* 4̂1/2

_  (x -  Xj )Axj  +  (y -  yi)Ayi
\{x -  Xi )Ayi  -  (y -  yi )Axi \

=  (P  — Pi, Tj)
\ { P - ^ , N t )\

=  -  cos 0i
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and

|AP;|
Ui _

|(x -  Xi)Ayi -  (y -  yi)Axi | 
( A P , , A P , ) - ( P - P t ,A P t) 
|(a; -  x^Ay* -  (y -  yi )Axi \  
(Pi+i -  P,Ti)

+  Mi

|(P  -  P i,N i)|
-  cos 0i+i

If we define B  =  { P  — Pi, Ni) ,  then A 1/ 2 =  sgn ( B) B ,  =  A  y it and =  —A  Xi. Taking

derivatives of u, and we have

d,Ui
dx

d
dx

(x -  xi)Axi +  (y -  yi)Ayi
B sgn(B)

B s g n ( B ) A x j  -  [(x -  x^A xj +  (y -  yj)Ayi]Ayisgn(B)
B 2

sgn(B)[(x -  xi)AyiAxi -  (y -  yi)Ax2 -  (x -  xi)AxiAyi -  (y -  yi)Ay2]
B 2

sgn(B)(y -  ( A x 2 +  Ay2) 
B 2

2

<kk _  d_ \ (x - X j ) A x j  +  (y - y ^ A y j
dy dy Bsgn(B)

_  Bsgn(B)Ayi -  ^ sg n (B )[(x  -  x*)Axi +  (y -  y^Ay*]
_  B 2
=  [(x -  Xj)Ayj  -  (y -  yi)Axi]sgn(B)Ayi

B 2
[(x -  Xi)Axi  +  (y -  yi)Ayi]sgn(B)Axi 

B 2
_  sgn(B)[(x -  Xj)Ay2 -  (y -  y ^ A x j A y j  +  (x -  Xj )Ax2 +  (y -  y^AxjAyj] 
“  B 2
_  sgn(B)(xj -  x)(A x2 +  A y 2)
~  B 2
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dui d (  ||APj||2 \  
dx dx \Bsgn(B) Jr—%J

=  sgn(B)Ayi\\APi\\2 d^
B 2 dx

sgn(JB )[-A yi ||APi ||2 +  (y - yj)(Ax2 +  A y2)]
B 2

=  sgn (P )[(-y i+i +  yi)(Ax2 +  Ay2) +  (y - yi)(Ax2 +  Ay2)]
B 2

sgn(B)(y - yi+l)(Ax2 +  Ay2)

B 2

dui d /  | |A Pj||2 \  
dy dy \Bsgn ( B)  Jr—%j

||A Pt ||2 f s g n ( I? )  d y L .

~  B 2 +  dy
_  | |APj||2(-Aa;i)sgn(B) sgn(£)(xj -  x)(A x2 +  Ay2) 
-  B 2 B 2

= sgn(B)[(xi+i -  Xj ) (Ax2 +  A y 2) +  (x* -  x)(A x2 +  Ay2)]
B 2

sgn{B){xi+i -  x)(A x2 +  A y 2)
B 2

—  =  2[(x-xi)Ayi- (y- yi)Axi}Ayi

— sgn(B)2AyiA1/2
dAm 1dA
—— =  r n A m  i —  

dx dx
— mAm -1sgn(B)2AyiA1/2

— sgn(B)2mAyiAm-1/2
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Putting it all together, we have

i^p)
=  jjAPi ||

d

m— 1 du
d x  J M i { P )  ( U 2  +  I ) ™ / 2

Ui(P) du

+

a 4(1—to) / 2
d x  J  ./ (P) (u 2  +  I ) " 1/ 2

=  IIAPi ||m—1 A(1—m)/2 1 dui dut
( 1  +  u 2 ) ™ / 2  d x  ( 1  +  u 2 ) ™ / 2  d x

+

sgn(B)2Ay, ( ) A“m/2 F (P ) |*

=  11 APi ||m—1 

1

, * ( l- m ) / 2

' (1 + U 2)™/2
sgn(B)(y -  y i )  ( A x 2  +  Ay2) ^

sgn(B)(y -  yi+1)(Ax2 +  Ay2)
B 2

( 1  +  u 2 ) ™ / 2  B 2

S g n ( B ) ( l - m ) A y i A - m / 2  F ( P ) \ l  

l |A P , |r +1 /  ( y - y i + i )

+

=  sgn(B)

(1 -  m )Ay 

=  sgn(B)

+ (v% -  y)
A(™-i ) /2A \ ( l + u 2)m/ 2 ' (1 +  y 2)m/ 2

F { P )  i;

+

||A P i||m—1
Am/2

j|A Pi||m+ V  (y - yi+1) +
(yi -  y)

_ A ("i+i)/2 V (1 +  u 2)™/2 (1 +  u2)™/2
+  (1 -  m)AyiA—1/2$ (P )

1
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t h p )dy

_  l|APi ||

d

m— 1 '^ (1— ,/-2 ( A  '" • (p) dU

dy

_  ||A P i||m—1 

1

u  /^( l —m ) / 2

A(1—m)/2

dy Ju^p) (u2 + 1)™/2 

Ui(P) du

+

(P) Cu2 +  l )m/2 

1 sgn(B)(A x2 +  Ay2)(xi+i -  x)
(1 +  u 2)m/ 2 

sgn(B)(Ax2 +  A y 2)(xi  -  x)  
(1 +  u 2)m/ 2 B 2

sgn(B)(1 -  m )A xiA—m/2F ( P )

| |A P , | r + 1 /  x t + 1 - x

B 2

_  sgn(B) +

( l - m ) A x J |Af f l/7  ' f ( P )

_  sgn(B)

Am/2

i iA P ,ir+ i /  x - ^ + i
+

The Jacobian of V $  is given by

cl d  ^  d d  ^

dx dx dy  dx
cl cl (y> a d ^

dx dy  dy  dy

+  (1 -  m )A xiA 1/2$ ( P )

We need only to calculate and , and J ;dy dy ■

d d  ------- $
dx dx

_  sgn(B) II a p . l im + 1  ( _ ^ _ A ~ { m + l ) / 2 \  f JV_____ Vi+1_____ ,

" \ d x  J \ ( l + U 2)m/ 2 (1 +  u 2)m/ 2

|| a p  \ \ m + l  A - { m + l ) / 2  (  V ~  Vi+ 1 , Vi  ~  V , ,

11 tN dx v ( i+ u2r /2 + ( i+ u2)m/2 1 +

(1 -  m )Ayi $ (P ) +

yi -  y
+

(1 — m ) A y i A ~ 1/ 2 ( ^ $ ( P )
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We have that

d
-£-[(y - y i+i)(l +  u2)~m/2 +  (yi -  y)(l +  u2)~m/2} =dx

i i A P i i m+ 1 ( — A-(m+i )/2\  (  y  y i+l i yj y  \  i 
11 *" \ d y  J V ( l + u ? ) - /2 +  ( l + y * ) ™ / * J  +

d (  y -  yi+1 , y i -  y
||A P - | |m + 1 4 - ( m + 1) / 2 —  ^  y i + 1  4- "  | 4.

1 tN dy  V (1 +  u2)™/2 +  (1 +  u 2)™/2 ' +

(1 -  m ) A Vi $(-P) +

(1 - m ) A y i A - 1/ 2

Here, we have

d
^ [ ( y  -  2/i+i)(i +  « f ) -ro/2 +  (yi - y ) ( i +  « f ) -”*/2] =

(1 + u f ) - m/ 2 +  m(y,+i - y ) ^ ( l  +  u f)-(m+2)/2^  +  

(1 + M 2)“m/2 +  m(y - y%)u%{ l + l £ ) - {m+2)/2(^

Finally,

d /i-(m+l)/2A * *i+l | x i x  | _|_| |A P .||m+ 1 ( j L JA-(m+ l )/‘2 \  (
*" \ d y  A ( l + « ? ) m/2 ' (1 + u 2)m/ 2

11 A  p  I p + 1  A — (‘m + 1)/2  d  (  X  ^ i + 1  ______ X j  X  \

11 dy  \ ( l  +  w2)m/2 ( l + u 2)"1/2/

(1 -  m )A xi  ^ ^ ~ 1 /2 ^) $ ( p ) +

(1 — m)Aa;iA - 1 /2
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where

d
^ [ { x  -  x i +1 ) ( l  +  u 2) ~ m / 2 +  {Xi  - x ) { l  +  u 2) ~ m / 2} =

m(Xi+ 1 — x)Hi{ 1 +  u f ) - (m+ 2)/2^1 _|_ m (x _  Xi)Ui( 1 + (ra+2)/2

dy
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