84,891 research outputs found

    Can Polymer Solar Cells Open the Path to Sustainable and Efficient Photovoltaic Windows Fabrication?

    Get PDF
    Sunlight is among the most abundant energy sources available on our planet. Finding adequate solutions to properly and efficiently harvest it is of major importance to potentially solve the global energy crisis. Polymer solar cells have been introduced in the late 20th century as low‐cost and easily processed alternative to the state‐of‐the‐art silicon photovoltaics. Their power conversion efficiencies, which were initially rather low, are constantly improving and now reach values close to 15 %. As their optical properties can be easily tuned, designing active layer which absorb homogeneously throughout the visible spectrum is relatively simple. These peculiar characteristics enable the possibility to fabricate visibly transparent solar cells with high color rendering indices which can be employed as photovoltaic windows. After reviewing some of the most successful examples of polymer solar cell‐based transparent photovoltaic window fabrication, I will discuss the possibility to produce these devices in a sustainable and/or eco‐friendly manner while maintaining their performances

    Characterization of High Temperature Optocoupler for Power Electronic Systems

    Get PDF
    High-temperature devices have been rapidly increas due to the implementation of new technologies like silicon carbide, high-temperature ceramic, and others. Functionality under elevated temperatures can reduce signal integrity reducing the reliability of power electronic systems. This study presents an ongoing research effort to develop a high-temperature package for optocouplers to operate at higher temperature compared with commercial devices. Low temperature co-fired ceramic (LTCC) was used as the substrate. Bare die commercial LED and photodetectors were attached to the substrate and tested for functionality. Preliminary results show enhanced performance at elevated temperatures compared to a commercial optocoupler device

    Design, fabrication, and characterization of deep-etched waveguide gratings

    Get PDF
    One-dimensional (1-D) deep-etched gratings on a specially grown AlGaAs wafer were designed and fabricated. The gratings were fabricated using state-of-the-art electron beam lithography and high-aspect-ratio reactive ion etching (RIE) in order to achieve the required narrow deep air slots with good accuracy and reproducibility. Since remarkable etch depths (up to 1.5 /spl mu/m), which completely cut through the waveguide core layer, have been attained, gratings composed of only five periods (and, thus, shorter than 6 /spl mu/m) have a bandgap larger than 100 nm. A defect was introduced by increasing the width of the central semiconductor tooth to create microcavities that exhibit a narrow transmission peak (less than 7 nm) around the wavelength of 1530 nm. The transmission spectra between 1460 and 1580 nm have been systematically measured, and the losses have been estimated for a set of gratings, both with and without a defect, for different periods and air slot dimensions. Numerical results obtained via a bidirectional beam propagation code allowed the evaluation of transmissivity, reflectivity, and diffraction losses. By comparing experimental results with the authors' numerical findings, a clear picture of the role of the grating's geometric parameters in determining its spectral features and diffractive losses is illustrated

    High Performance X-Ray Transmission Windows Based on Graphenic Carbon

    Full text link
    A novel x-ray transmission window based on graphenic carbon has been developed with superior performance compared to beryllium transmission windows that are currently used in the field. Graphenic carbon in combination with an integrated silicon frame allows for a window design which does not use a mechanical support grid or additional light blocking layers. Compared to beryllium, the novel x-ray transmission window exhibits an improved transmission in the low energy region (0.1hboxkeV3hboxkeV0.1 hbox{keV}-3 hbox{keV} ) while demonstrating excellent mechanical stability, as well as light and vacuum tightness. Therefore, the newly established graphenic carbon window, can replace beryllium in x-ray transmission windows with a nontoxic and abundant material. Index terms: Beryllium, Carbon, Graphene, Thin films, X-ray applications, X-ray detector

    Dispersion Engineering and Disorder in Photonic Crystals for Accelerator Applications

    Get PDF
    The possibility of achieving higher accelerating gradients at higher frequencies with the reduction of the effect of HOMs, compared to conventional accelerating structures, is increasing interest in the possible use of Photonic Crystals (PC) for accelerator applications. In this paper we analyze how the properties of the lattice of a PC resonator can be engineered to give a specific band structure, and how by tailoring the properties of the lattice specific EM modes can either be confined or moved into the propagation band of the PC. We further go on to discuss the role of disorder in achieving mode confinement and how this can be used to optimize both the Q and the accelerating gradient of a PC based accelerating structure. We also examine the use of high disorder to give rise to Anderson Localization, which gives rise to exponential localization of an EM mode. Discussing the difference between the extended Bloch wave, which extends over the entire PC, and the Anderson localized mode

    Asymmetric gate induced drain leakage and body leakage in vertical MOSFETs with reduced parasitic capacitance

    No full text
    Vertical MOSFETs, unlike conventional planar MOSFETs, do not have identical structures at the source and drain, but have very different gate overlaps and geometric configurations. This paper investigates the effect of the asymmetric source and drain geometries of surround-gate vertical MOSFETs on the drain leakage currents in the OFF-state region of operation. Measurements of gate-induced drain leakage (GIDL) and body leakage are carried out as a function of temperature for transistors connected in the drain-on-top and drain-on-bottom configurations. Asymmetric leakage currents are seen when the source and drain terminals are interchanged, with the GIDL being higher in the drain-on-bottom configuration and the body leakage being higher in the drain-on-top configuration. Band-to-band tunneling is identified as the dominant leakage mechanism for both the GIDL and body leakage from electrical measurements at temperatures ranging from ?50 to 200?C. The asymmetric body leakage is explained by a difference in body doping concentration at the top and bottom drain–body junctions due to the use of a p-well ion implantation. The asymmetric GIDL is explained by the difference in gate oxide thickness on the vertical (110) pillar sidewalls and the horizontal (100) wafer surface

    Design rules for combined label-free and fluorescence Bloch surface wave biosensors

    Get PDF
    We report on the fabrication and physical characterization of optical biosensors implementing simultaneous label-free and fluorescence detection and taking advantage of the excitation of Bloch surface waves at a photonic crystal’s truncation interface. Two types of purposely-designed one dimensional photonic crystals on molded organic substrates with micro-optics were fabricated. These feature either high or low finesse of the Bloch surface wave resonances and were tested on the same optical readout system. The experimental results show that designing biochips with a large resonance quality factor does not necessarily lead in the real case to an improvement of the biosensor performance. Conditions for optimal biochips’ design and operation of the complete bio-sensing platform are established

    Space-based geoengineering: challenges and requirements

    Get PDF
    The prospect of engineering the Earth's climate (geoengineering) raises a multitude of issues associated with climatology, engineering on macroscopic scales, and indeed the ethics of such ventures. Depending on personal views, such large-scale engineering is either an obvious necessity for the deep future, or yet another example of human conceit. In this article a simple climate model will be used to estimate requirements for engineering the Earth's climate, principally using space-based geoengineering. Active cooling of the climate to mitigate anthropogenic climate change due to a doubling of the carbon dioxide concentration in the Earth's atmosphere is considered. This representative scenario will allow the scale of the engineering challenge to be determined. It will be argued that simple occulting discs at the interior Lagrange point may represent a less complex solution than concepts for highly engineered refracting discs proposed recently. While engineering on macroscopic scales can appear formidable, emerging capabilities may allow such ventures to be seriously considered in the long term. This article is not an exhaustive review of geoengineering, but aims to provide a foretaste of the future opportunities, challenges, and requirements for space-based geoengineering ventures
    corecore