811 research outputs found

    Electrical termination techniques

    Get PDF
    A technical review of high reliability electrical terminations for electronic equipment was made. Seven techniques were selected from this review for further investigation, experimental work, and preliminary testing. From the preliminary test results, four techniques were selected for final testing and evaluation. These four were: (1) induction soldering, (2) wire wrap, (3) percussive arc welding, and (4) resistance welding. Of these four, induction soldering was selected as the best technique in terms of minimizing operator errors, controlling temperature and time, minimizing joint contamination, and ultimately producing a reliable, uniform, and reusable electrical termination

    Application of PoF Based Virtual Qualification Methods for Reliability Assessment of Mission Critical PCBs

    Get PDF
    Reliability is the ability of a product to perform the function for which it was intended for a specified period of time (or cycles) for a given set of life cycle conditions. In today's compressed mission development cycles where designing, building and testing the physical models has to occur in a matter of months not years, Projects don't have the luxury of iteratively building and testing those models. Physics of failure (PoF) is an engineering-based approach to reliability that begins with an understanding of materials, processes, physical interactions, degradation and failure mechanisms, as well as identifying failure models. The PoF approach uses modeling and simulation to qualify a design and manufacturing process, with the ultimate intent of eliminating failures early in the design process by addressing the root cause. The physics-of-failure analysis proactively incorporates reliability into the design process by establishing a scientific basis for evaluating new materials, structures and technologies. Virtual physics-of-failure modeling allows engineers to determine if new technological node can be added to an existing system. This presentation will illustrate an application of a PoF based tool during the initial phases of a printed circuit board assembly development and how the NASA GSFC team was able to dynamically study the effects of electronics parts and printed circuit board material configuration changes under simulated thermal and vibrational stresse

    The design and implementation of a flexible manufacturing system for a surface mounting production line

    Get PDF
    A project report submitted to the Faculty of Engineering, University of the Witwatersrand, Johannesburg, in partial fulfillment of the requirements for the degree of Master of Science in Engineering.The viability of introducing a Surface Mount production line is chiefly determined by the reliability characteristics of the components being used. Surface Mount Technology (SMT) is entirely new and although related to traditional through-hole processes, requires different components, assembly techniques and design methods. The purpose of the literature survey is primarily to determine whether surface mount components meet today's industrial requirements with respect to their manufacturing reliability and availability. A brief review of the evolution of SMT is also presented. This study finds that the implementation of SMT should be given highest priority by manufacturing companies in order to maintain their share of the marketplace. Surface Mount Technology embodies a totally new automated circuit assembly process, using a new generation of electronic comporents: surface mounted devices (SMDs). Smaller than conventional components, SMDs are placed onto the surface of the substrate. From this, the fundamental difference between SMD assembly and convencional through-hole component assembly arises; SMD component positioning is relative, not absolute. When a through-hole component is inserted into a pcb, either the leads go through the hales or they don't. An SMD, however, is placed onto the substrate surface, it's position only relative to the solder lands, and placement accuracy is therefore influenced by variations in the substrate track pattern, component size, and placement machine accuracy. Other factors influence the layout of SMD substrates. For example, will the board be a mixed-print ( a combination of through-hole components and SMDs) or an all-SMD design? Will SMDs be placed on one side of the substrate or both? And there are process considerations like what type of machine will place the components and how will they be soldered? This project describes in detail the processes involved in setting up an SMT facility. A simulation program was developed to verify the viability of these processes. The simulation program was also applied to an existing SMT facility and together with developed optimization software, attempted to identify and resolve some of the major problems. All this was achieved, and the extent to which simulation could be used as an efficient production tool, was highlighted.AC201

    Development of an acoustic measurement system of the Modulus of Elasticity in trees, logs and boards

    Get PDF
    The objective of this Bachelor’s Thesis is to develop a portable electronic device capable of quantifying the stiffness of the wood of standing trees, logs and boards using non-destructive testing (NDT) by means of acoustic wave analysis. As an indicator of stiffness, the Modulus of Elasticity (MOE) is used, a standard figure in the industry. This way, wood from forestry can be characterized and classified for different purposes. This Thesis is part of LIFE Wood For Future, a project of the University of Granada (UGR) financed by the European Union’s LIFE programme. LIFE Wood For Future aims to recover the cultivation of poplar (populus sp.) in the Vega de Granada, by proving the quality of its wood through innovative structural bioproducts. Recovering the poplar groves of Granada would have great benefits for the Metropolitan Area: creation of local and sustainable jobs, improvement of biodiversity, and increase in the absorption of carbon dioxide in the long term, helping to reduce the endemic air pollution of Granada. This Final Degree Project has been developed in collaboration with the ADIME research group of the Higher Technical School of Building Engineering (ETSIE) and the aerospace electronics group GranaSat of the UGR. The goal of the developed device, named Tree Inspection Kit (or TIK), is to be an innovative, portable and easy-to-use tool for non-destructive diagnosis and classification of wood by measuring its MOE. TIK is equipped with the necessary electronics to quantify the Time of Flight (ToF) of an acoustic wave that propagates inside a piece of wood. In order to do this, two piezoelectric probes are used, nailed in the wood and separated a given distance longitudinally. The MOE can be derived from the propagation speed of the longitudinal acoustic wave if the density of the is known. For this reason, this device has the possibility of connecting a load cell for weighing logs or boards to estimate their density. It also has an expansion port reserved for future functionality. A methodology based on the Engineering Design Process (EDP) has been followed. The scope of this project embraces all aspects of the development of an electronic product from start to finish: conceptualization, specification of requirements, design, manufacture and verification. A project of this reach requires planning, advanced knowledge of signal analysis, electronics, design and manufacture of Printed Circuit Boards (PCB) and product design, as well as the development of a firmware for the embedded system, based on a RTOS. Prior to the design of the electronics, a Reverse Engineering process of some similar products of the competition is performed; as well as an exhaustive analysis of the signals coming from the piezoelectric sensors that are going to be used, and the frequency response characterization of the piezoelectric probes themselves. This project has as its ultimate goal the demonstration of the multidisciplinary knowledge of engineering, and the capacity of analysis, design and manufacturing by the author; his skill and professionalism in CAD and EDA software required for these tasks, as well as in the documentation of the entire process.El presente Trabajo de Fin de Grado tiene como objetivo el desarrollo de un dispositivo electrónico portátil capaz de cuantificar la rigidez de la madera de árboles en pie, trozas y tablas usando ensayos no destructivos (Non-Destructive Testing, NDT) por medio del análisis de ondas acústicas. Como indicador de la rigidez se usa el Módulo de Elasticidad (MOE), una figura estándar en la industria. Este TFG forma parte de LIFE Wood For Future, un proyecto de la Universidad de Granada (UGR) financiado por el programa LIFE de la Unión Europea. LIFEWood For Future tiene como objetivo recuperar el cultivo del chopo (populus sp.) en la Vega de Granada demostrando la viabilidad de su madera a través de bioproductos estructurales innovadores. Recuperar las choperas de Granada tendría grandes beneficios para la zona del Área Metropolitana: creación de puestos de trabajo locales y sostenibles, mejora de la biodiversidad, e incremento de la tasa de absorción de dióxido de carbono a largo plazo, contribuyendo a reducir la contaminación endémica del aire en Granada. Este Trabajo de Fin de Grado se ha desarrollado con la colaboración del grupo de investigación ADIME de la Escuela Técnica Superior de Ingeniería de Edificación (ETSIE) y el grupo de electrónica aeroespacial GranaSat de la UGR. El objetivo del dispositivo, denominado Tree Inspection Kit (TIK), es ser una herramienta innovadora, portátil y fácil de usar para el diagnóstico y clasificación no destructiva de la madera por medio de su MOE. TIK está dotado de la electrónica necesaria para medir el tiempo de tránsito (ToF) de una onda acústica que se propaga en el interior de una pieza de madera. Para ello, se utilizan dos sondas piezoeléctricas clavadas en la madera y separadas longitudinalmente una distancia conocida. De la velocidad de propagación de la onda longitudinal se puede derivar el MOE, previo conocimiento de la densidad del material. Por ello, este dispositivo cuenta con la posibilidad de conectarle una célula de carga y pesar trozas o tablas para estimar su densidad. También tiene un puerto de expansión reservado para funcionalidad futura. Se ha seguido una metodología basada en el Proceso de Diseño de Ingeniería (Engineering Design Process, EDP), abarcando todos los aspectos del desarrollo de un producto electrónico de principio a fin: conceptualización, especificación de requisitos, diseño, fabricación y verificación. Un proyecto de este alcance requiere de planificación, conocimientos avanzados de análisis de señales, de electrónica, de diseño y fabricación de Placas de Circuito Impreso (PCB) y de diseño de producto, así como el desarrollo de un firmware para el sistema empotrado, basado en un RTOS. Previo al diseño de la electrónica, se realiza un proceso de Ingeniería Inversa (Reverse Engineering) de algunos productos similares de la competencia; al igual que un exhaustivo análisis de las señales provenientes de los sensores piezoeléctricos que van a utilizarse y la caracterización en frecuencia de las propias sondas piezoeléctricas. Este proyecto tiene como fin último la demostración de los conocimientos multidisciplinares propios de la ingeniería y la capacidad de análisis, diseño y fabricación por parte del autor; su habilidad y profesionalidad en el software CAD y EDA requerido para estas tareas, así como en la documentación de todo el proceso.Unión Europe

    Electronic packaging - A bibliography

    Get PDF
    Annotated bibliography of literature on electronic packaging for use in designing electronic equipmen

    Lead-free piezoceramics - Where to move on?

    Get PDF
    Lead-free piezoceramics aiming at replacing the market-dominant lead-based ones have been extensively searched for more than a decade worldwide. Some noteworthy outcomes such as the advent of commercial products for certain applications have been reported, but the goal, i.e., the invention of a lead-free piezocermic, the performance of which is equivalent or even superior to that of PZT-based piezoceramics, does not seem to be fulfilled yet. Nevertheless, the academic effort already seems to be culminated, waiting for a guideline to a future research direction. We believe that a driving force for a restoration of this research field needs to be found elsewhere, for example, intimate collaborations with related industries. For this to be effectively realized, it would be helpful for academic side to understand the interests and demands of the industry side as well as to provide the industry with new scientific insights that would eventually lead to new applications. Therefore, this review covers some of the issues that are to be studied further and deeper, so-to-speak, lessons from the history of piezoceramics, and some technical issues that could be useful in better understanding the industry demands. As well, the efforts made in the industry side will be briefly introduced for the academic people to catch up with the recent trends and to be guided for setting up their future research direction effectively.ope

    Soldering interconnects through self-propagating reaction process

    Get PDF
    This thesis presents a research into the solder interconnects made through the reactive bonding process based on the self-propagating reaction. A numerical study of soldering conditions in the heat affected zone (HAZ) during bonding was initially carried out in order to understand the self-propagating reactive bonding and the related influencing factors. This was subsequently followed by an extensive experimental work to evaluate the feasibility and reliability of the reactive bonding process to enable the optimisation of processing parameters, which had provided a detailed understanding in terms of interfacial characteristics and bonding strengths. In addition, by focusing on the microstructure of the bonds resulted from the self-propagating reactions, the interfacial reactions and microstructural evolution of the bonded structures and effects of high-temperature aging were studied in details and discussed accordingly. To study the soldering conditions, a 3D time-dependent model is established to describe the temperature and stress field induced during self-propagating reactions. The transient temperature and stress distribution at the critical locations are identified. This thus allows the prediction of the melting status of solder alloys and the stress concentration points (weak points) in the bond under certain soldering conditions, e.g. ambient temperature, pressure, dimension and type of solder materials. Experimentally, the characterisation of interconnects bonded using various materials under different technical conditions is carried out. This ultimately assists the understanding of the feasibility, reliability and failure modes of reactive bonding technique, as well as the criteria and optimisation to form robust joints. The formation of phases such as intermetallic compounds (IMCs) and mechanism of interfacial reactions during reactive bonding and subsequent aging are elaborated. The composition, dimension, distribution of phases have been examined through cross-sectional observations. The underlying temperature and stress profile determining the diffusion, crystallization and growth of phases are defined by numerical predictions. XXI Through the comparative analysis of the experimental and numerical results, the unique phases developed in the self-propagating joints are attributed to the solid-liquid-convective diffusion, directional solidification and non-equilibrium crystallization. The recrystallization and growth of phases during aging are revealed to be resulted from the solid-state diffusion and equilibration induced by the high-temperature heating. In conclusion, the interfacial reactions and microstructural evolution of interconnect developed through self-propagating reactive bonding are studied and correlated with the related influencing factors that has been obtained from these predictions and experiments. The results and findings enable the extensive uses of self-propagating reactive bonding technology for new design and assembly capable of various applications in electronic packaging. It also greatly contributes to the fundamentals of the crystallization and soldering mechanism of materials under the non-equilibrium conditions
    corecore