THE DESIGN AND TMPLTMENTAMION OF A FIEXIBLE MANUFACTURENG SYSIEM FOR A SURFACE MOUNT INE PRODUCTION TENE.

Mark Steven Chodos

A project report submitted to the Faculty of Engineering, University of the Witwatersrand, Johannesburg, in partial fuifilment of the requirements for the degree of Master of Science in Engineering.

Johannesbung, 1990

DECTARKTION

I declare that this project report is my own, unaided work. It is being submitted for the Degree of Master of Science in Engineering in the University of the Witwatersxand, Johannesburg. It has not been submitted before for any degree or examination in any other University.

31 st day of January 1990.

I would like to thank the following people for their dedicated and unselfish help and guidance:
M. Crouch (STC).
P.W. Van Der Molen (Teltech).

Prof. R. Adams (Wits).
My Father and Sister.
I would aiso like to thank the Management at standard Telephones \& Cables (STC), for allowing me to utilize theix facilities and resources.

ABSTRACT

The viability of introducing a Surface Mount production line is chiefly determined by the reliability characteristics of the components being used. Surface Mount Technology (SMT) is entirely new and although related to traditional through-hole processes, requires different components; assembly techniques and design methods. The purpose af the Iiterature survey is primarily to determine whether surface mount components meet today's industrial requirements with respecit to theif manufacturing reliability and availability. A brief review af the evolution of SMT $i s$ also presented. This study finds that the implemertation of SMT should be given highest priority by manufacturing companies in order to maintain their share of the marketplace.

Surface Mount Technology embodies a totally new automated circuit assembly process; using a new generation of electronic components: surface maunted devices (SMDs). Smaller than conventional components, SMDs are plated onti the surface of the substrate. From this, the fundamental difference between SMD assembly and convencional through-hole component assembly arises; SMD component pasitioning is relative, not absolute.

When a through-hole component is inserted into a PCB, either the leads go through the holes or they don't. An SMD, howerer, is placed onto the substrate surface, it's position oniy relative to the solder iands, and placement accuracy is therefare influenced by variations in the substrate track pattern, component size, and placement machine accuracy.

Gther factors influence the layout of SMD substrates. For example, will the board be a mixed-print (a combiration of through-hole components and SMDs) or an all-Stld design? Will SMDs be placed on one side of the substrate or both? And there are process considerations like what type of machine will place the components and how wili they be soldered?

This project describes in detail the processes involved in setting up an SMT facility, A simulation program was developed to verify the viability of these processes. The simulation program was also applied to an existing SMT waility and together with developed optimization softwarey attempted to identify and resolve some of the major problems. All this was achieved, and the extent to which simulation could be used as an efficient production tool, was highlighted.
CONTENTS PAGE
DECLARATION i
ABSTRACT ij
CONTENTS さまi
LIST OF FIGURES iv
GLDSSARY ，V
L．TTERATURE STRVEY
1 THE STATUS DF SURFACE MOUNTING 1 IN THE SEDPE GF TUDAYS MANUFACTLRIAE ENVIRONMENT．
1．1 introduction 2
1．2 Surface Mount Techmalagy 3
1．3 Development of Silt 4
1.4 Present status of SMT internationally 6
1.5 SMT in South Africa 8
1．6 The Manufacturing Requirements of 9Surface Maunt Packsiges and Compenents
2 COMCLUSIGNS AND RECGMMENDATYONS 10
THEORETICAL SOLUTIDN
3 SETTING UP PRDDUCTIGN OF SLIRFARE 13 ASSEMBLIES
3．1 Introductăan 13
3.2 Assembly Procedures for SMT 13
3.3 Assambly Pracedures 14
4．DESIEN AND LAYGUT GUIDELINES 18
4．1 Introductimn 19
4．2 Printed Circuit Board Dersign 18
4．2．1 Board size and eonstruction 18
4．2．2 Tooling holes and fiducial marks 19
4.2 .3 PCB material 20
4．2．4 PCB Coating 20
4．3 Factors Lifisumaing the PCB Layout 20
4．3．1 Mounting pads 20
4．3．2 Components 21
4．3．3 Saldering tamponents 22
4．3．4 Via holes 23
4．3．5 Test points 23
4．3．6 Ather important factors 25
4．4 Arrangement of SMDs and Tracks 26
on the PCE
4．5 Component Land Patterns 27
5 . COMPONENT PLACEMENT 29
5.1 Introduction 29
5.2 Equipment Characteristics 31.
5.3 Equipment Categorisation 31
5.4 Component Feeding Systems 33
6 SOLDERING IN SURFACE MOUNT 34 TECHNOLOGY
6.1 Introduction 34
6.2 Solder Profiles of SMDs 34
7 AUTOMATIC SOLDERING TECHNIQUES 36
7.1 Introduction 36
7.2 Summary 36
7.3 Wave Soldering 36
7.4 Reflow Solaering 39
7.4.1 Temperature profile 40
7.4.2 Preheating 41
7.4.3 Paste drying 41
7.4.4 Reflow alternatives 42
7.4.5 Comparison of reflow techniques 42
7.5 Post-Solder cleaning 44
8 INSPECTION AND TESTING STRATEGIES 45
AND PROCEDURES FOR SMD ASSEMBLIES
8.1 Introduction 45
8.2 In-Process Inspection 46
8.3 Functional Testing 47
8.4 In-Circuit Testing 47
8.5 Anticirated Falut Profile 47
8.6 Defects in Soldezing SMDs 48
8.6.1 Solderability 48
8.6.2 Misalignments 49
8.6.3 Short Circuits 49
8.6.4 Shadowing and Skips 49.
PRACHICAL IMPLENENTATION
9 SOFTWARE DEVELOPMENT 55
9.1 Introduction 55
9.2 Overall Problem Statement 55
9.3 Proslem Solution 57
THE SIMULATION PROGRAM 59
10.1 Why simulation? 59
10.2 Selection of Simulation Software 60
10.3 The Simulation Model 60
10.3.1 Simulation terminology 60
10.4 The Simscript Program 61
10.4.1 The program structure 43
10.5 Conclusions 67
11 THE DATABASE AND QßTIMIZATION 68 PROGRAMS
11.1 Introduction 68
11.2 The Universal Omniplace 46Z1B 68System
11.3 Software Development 71
11.3.1 The database program 72
11.3.2 The optimization software 75
11.4 Comelusions 79
12 CDNCLUSIONS AND RECOMMENDATIDNS 80
12.1 Summary and Conclusions 80
12.2 Recommendations for Future Nairk 日
APPENDIX 1 THE MANLFACTURING AND RELIABTLITY REGUIREMENTS OF SLIRFACE MGUNT CDPMPDNENTS AND PACKAGES
APPENDIX 2 IN PRICESS INSPECTION
APPENDIX 3 FGDTPRINT SPECIFICATIONS
APPENDIX 4 PLACEMENT ETUIPMENT RHARACTERISTICS
APPENDIX 5 PLACEMENT EGUIPMENT ELASSIFICATIDN
APPENDIX \& COMPDNENT FEEDING SYSTEMS APPENDIX 7 FUNDAMENTALS GF SOLLDERING
APPENDIX 8 SMD SGLDER PROFILES
AFPENDIX 9 WAVE SOLDERING - FLUX DESCRIPTION
APPENDIX 10 WAVE SLLLDERING - BCARD PREHEATING
APPENDIX 11 WAVE GOLDERING - DLAL WAVE SGLDERING
APPENDIX 12 REFLLW SILDERING ALTERNATIVES
APPENDIX 13 SUFTWAR至 LISTING + DISKETTE - SXMLLAATION PRQGRAM
APPENDIX 14 SUFTWARE LISTING + DISKETTE

- DPTIMEZATIEN PRGGRAM
REFERENCES
BIBLIDERAFHY

glossary

DIP Dual-in-line-package
IC Integrated Circuit
SMT Surface Mount Technology
SMD Surface Mount Device
GMS Surface Mount Componant
PCB : Printed Eircuit EDard
sat
viso
PLCC Plastic Leaned Chip Carrier
EIA Electronic Induetries Association
JEDEC

MLC
MELF
LED
SOIC
DFAM
PQF
Plastic Ruad Flatpack
cos
TAB
TTL

Tape Automatic Boncling
Transistor-Transistor Logic

1. The statius of surface mounting in the scope of today's manufacturing environment.
2. The manufacturing and reliability requirements of surface mount packages and devices.

1.1 Introduction

Printed circuit technology first gained widespread acceptance in the 1960s. At that tine electronic circuitry was assembled from discrete components that required relatively sew connections to the boara. Early integrated circuits rarely employed more than 16 leads, and through-hole assembly technology (in which component leads were inserted and soldered into holes through the board) could easily accommodate the demands of the diy. With the advent of the microprocessor and the growth of computer technology, circuit complexity has increased to the point that through-hole component mounting techniques are no longer adequate.

The trand in the semiconductor industry toward increasing circuit integration is being accompanied by advances in packaging techniques, and both are designed to increase the performance and to reduce the size, weight and cost of high package density electronic assemblies. Competitive pressures and advances toward miniaturization for virtually all system designs are some of the motivating factors influencing this revolution. Since the major burden of effective competition lies in significant cost savings, the use of surface mount technology (SMT) is indeed enticing.

The dual-in-Iine-package (DIP) was developed and became standardized at a time when integrated circuits (ICs) were relatively simple, requiring few Input/Output (I/O) connections. The DIP has proven to be a reliable package style that has more than adequately met the demands placed upon it. However, beyond this need for a functional and reliable component is an increasing need for better space efficiency and design flexibility which the DIP is often unable to neet.

As the complexity of the ICs increase and the number of leads increase accordingly, the size of the DIP quickly becomes unmanageable and inefficient. Large DIPs (requiring 40 pins or more) occupy excessive board area which reduces chip performance due to long connections from the internal silicon chip (die) to the external package-to-board terminations, see Figure 4.1. At higher lead counts, the utilization of the DIP begins to diminish the benefits of miniaturization in circuit integration because the packages are utilizing volumes much larger than the chips themselves.

Surface mount technology differs from the customary through-hole assembly of electrical devices by soldering the components directly to metallized pads or footprints on the surface of the printed circuit board (PCB). Comparably, conventional DIP technology consist of inserting the wire leads of components through plated holes which hare been drilled in the board and connected to the sol. er pads by soldering on the reverse side (See Figure $\mathrm{t} \cdot \mathrm{a}$).

a. Through-hole assembly of leaded components
b. Surface mount devices on ceramic substrate c. Leaded and surface mounted devices on the same PCB

FIGURE 1.1 :Stages of development in surface mounting

The solder joint of a surface mount component (SMC), therefore, serves as both an electrical and a physical connection to the PCB. Since surface mounting eliminates the need for hole-drilling to accommodate component leads, these smaller dimensioned components can be placed closer together and on both sides of the board. This contribution releases valuable board space for more component placement or simply reduces overall boarásize.

Surface mount components have been introduced as the solution to accommodating the size constraints and high performance capabilities of todays ICs. SMCs do have Iimitations of their own, however. Even though they have eliminated some of the problems associated with large conventional packages, they have not accomplished the task without introducing some new problems.

1.3 Development of SMT

Early applications of surface-mounting techniques were primarily in areas such as military electronics, but in recent years the consumer electronics portion of the industry has been reshaping the market. Surface mounting has been exploited by the Japanese with great success since the mid 1970 s specifically in their consumer electronics markets, claiming significant cost savings and performance advantages over traditional packaging styles. The Japanese focus has been on discrete chip components and leaded (LSI) devices, directing that concentration toward effective packaging for thin calculators and watches.

The high volume users in the automotive industry have recently been joined by a second wave of users in the areas of telecommunications, instrumentation and peripherals. It is now apparent that a third wave is being composed of small-to-medium size users who are influenced by the space-savings reliability and lower assembly costs.

The vast growth in surface mounted components can be seen as the culmination of the following increases in assembly design:
(1) Initially, the general use of small leaded discrete components (resistors, capacitors and transistors) coupled with a few DTPS could achieve a packirg aensity of 20 components per square inch of board space. The density was derived from close component placement and two-sided PCB application.
(2) The second evolution was achieved through the use of hybrid ceramic modules whereby the component densjety rose to approximately 50 components per square inch. This density was achieved by the direct attachment of the IC die to the hybrid substrate.

State of the art density is accomplished by the utilization of a wide variety of surface mountable passive and active components which increases the range to hurdreds of components per square inch of board area.

Other benefits associated with sMT include less parasitic capacitance, lead zesistance and inductance (due to shorter lead lengths), plus reduced signal noise and crosstalk especially critical in some high-frequency and linear circuits.

From the viewpoint of manufacture, the particular suitability of SMDs to automated assembly is one of their most important criteria. In al. their geometric forms (cuboid or cylindrical) añd in all forms of component package (such as SOT, VSO, PLCC and flat pack) they can be placed automatically with a single application head. Since SMDs are only placed on the circuit substrate, no specific guide tools are required for inserting the component leads, in contrast to the awtomatic placement of leaded components.

The space around the component bodv. Which was previously required for the application tools is thus additionally available as a usable area for components. Farticularly in the placement of small to medivm-sized batches, $S M$ technology results in new possibilities for flexible automation and hence a cost benefit in production. Flexible, automatic placement systems for surface mount devices are a significant element in achieving these objectives. The field of appiication for these automatic systems is considerably greater than for conventional automated lead insertion and extends from a single machines for single-point automation right up to complex system configurations in integrated production automation.

1.4 Present status of SMT internationally

A current profile of the interr"tional electronios industry indicates that the major quipment markets driving this technology are influenced by three basic factions: the military, the high-performance mainframes and consumer electronics. Figure 1.2 describes this relationships involved between the major forces motivating the industry toward SMT.

FIGURE 1.2: The major motivating forces behind SMT
publications on SMT estimated that 30% of all electronic equipment manufactured in Japan during 1985 used SMT and project 50\% usage by that country by 1990. In contrast, about 15\% of US electronic products in 1985 incorporated SMT with only 30% usage projected by $1990^{[2]}$. With the Japanese industry still leading, the European industry could at least keep pace with the U.S. In 1986, surface mount devices worth 660 million US Dollars were purchased in Europe according to a study by Frost and Sulivan ${ }^{[5]}$

Figure 1.3a shows the increasing share of surface mount technology in the international market, and Figure 1.3 b shows the growing number of components that are becoming available.

FIGURE 1.3a: Development of the SMD application from 1980 to 1990

FIGURE 1.3b: SMI Component availability

South African manufacturers trail their overseas counterparts in the introduction of SMT. While overseas electronics manufacturers use SMT on close to 50\% of their PCB assemblies, South Africa fails to approach the $0,5 \%$ mark. So what has happened to the great SMP boom? Why has SMP not taken off in South Africa? Is a flip-over from through-hole to SMT inevitable?
problems of component availability and package standardization have been one of the reasons given to explain the "slow" adoption of surface mount technology. on the other hand however, componert suppliers from the US and Europe are claiming that the most-used functions are availabie and more could be put into surface mount packages, but the demand for then is low.

SMT systems, even at entry level, require a capital investment which is probably discouraging manufacturers who are still amortising the investment in conventional assembly equipment. Concern is also being expressed over the lead times required to imple. ent SMT, particularly for smaller companies, which may have to implement non-automated production lines. This lead time has been put at two to three years.

Unless South African electronics manufacturers give serious consideration to introducing surface mount technology, the country's fledging industry could suffer a major setback as a result of a ilip-over effect when SMT component prices plunge and through-hole devices increase in cost. Alseady in the last three years, surface mount resistors and capacitors have gone from being eight times as expensive as conventional components, to parity.

i.6 THE MANLFACTURING REQUIREMENTS OF SURFACE MDUNT PACKAEES AND TCMPGNENTS

1.6.1 Introduttion

Thex success wf any technology depends on a unifarm LMderstanding of expectations. Specifications are used to define the acceptability of the materials or services bring procured and are an essential part of the agrepment between the purchaser and the supplier.

Mary organisations are active on a national or international basis in developing and promoting Etandardis in all asperts of SMT. Such standards man be divided into three categoriss" those deseribing design requirementw, those concerned with materiale specificationss and those that address manufamturing process tecmoology, The followimg are the major organisations aietive in the fiald of SNT:

\author{

- Institute form Intermonnerting and Fackaging Electrmait Rireuits (IFC)
 - Electronic Industries Association (EJA)
 - International Eiectrotechriaml Commission (IEC)
}

The EiA hag develimped standarda in many areas of elamtmonje tecmoology and of particular interest are theim component standardization activities, One of their commititees is The Fartw Engineering Panel whimh duvelops standards for paseive components and Electromechanical devieers. The Joint Electron Device Engineering Council (JEDEC) is another: which develops standaris for semimonductor devieese

Appendix 1 describes in detail the tharanteritetice of surface motnt comporients, with a particular emphasis on information needed for proper selection of passive companents; semicondumtar and electomechanical devices.

While much of the selentific world has long sinee monverted to the SI system 世f Lmits, the electranims indurtiry montimues to employ a tangle af metric and English tystems. Hary componentss for instances are defined im English units: component lexaj pitches of 0,050 and 0,025 inches have beemme worldwide standards: while in many other cases, metric dimensions govern.

In an attempt to avoid monfusions units of langth are expresesed in both inches and millimetres throughout this documenty with the industry-preferfed unit being spewified firmt.

Surface mount technology has emerged to optimize the high-density, high-speed integrated circuit performance of today's microelectronics. The mature manufacturing processes employed with conventional DIP componentry are taking a back seat to SMP, which is quickiy becoming accepted industry-wide. By challenging the cost, size, weight, and performance characteristics of previous manufacturing methods, surface mounting is better meeting the demands and competitive pressures of advancing microcircuit miniaturization.

Although SMT is gaining momentum rapidly, one area must still be addressed for the technology to be exploited more fully, component standardization. In several areas the surface mount package styles offered by different vendors are not compatible, integrated circuit packaging being of particular concern. For example, joth peXAS Instruments (TI) and Signetics offer a froad line of TwL digital ICs. the Signetics product line, however, is exclusively in soIc packages, while the TI line is offered only in 20-lead plastic chip carriers. At the present time, neither vendor can second-source the other.

Upon initial analysis, a major stumbling block appears to be the large initial capital investment and total commitment needed to venture into SMT. Further investigations, however, indicate that the total life cycle costs will be substantially lower in the long run; consequently, those who falter in the decision to accept SMT may very well be left behind.

Clearly, $S M T$ poses a major challenge to the electronics industry generally, component suppliers, equipment manufacturers and eiectronics manufacturing companies all have to make changes in, not just their technology, but also the management of their operations, SMT frequently requires fundametaliy different approaches to the management of production flow, stock control, quality control, etc. For many companies, the easy solution to these problems is to deciine to be involved at present. The only logical conclusion of such an attitude is for such companies to see a decline in their competitiveness and marketplace, with ultimately disasterous results.

THEOREPICAL SOLOTION

1.

The design of a flexible manufacturing surface mount assembly facility.

3.1 Introduction

Unlike the mature processes used to produce conventional printed circuit assemblies, surface mount technology is not yet well developed. Although certain aspects have recieved much attention throughout the industry, no standard overall process flow has yet emerged.
A. well-designed facility should be capable of accomodating a variety of SMDs. These might include chip resistors, ceramic and electrolytic capacitors, inductors, transistors, diodes and integrated circuits in several package styles. It might also need to handis such varied substrate materials as epoxy-class boards, ceramic thick films, flexible circuits and special purpose boards such as Teflon.

The facility should be analysed as an integrated operation: material flow, process technology, test strategy and compatibility with exsisting operations are some of the areas that must be addressed. once the actual requirements have been specified, the task of selecting the appropriate technology can begin.

3.2 Assembly Procedure For SMT

Surface mount devices can be mounted or printed circuit boards either on the component (top) side or on the solder (bottom) side or on both sides of the board, with or without conventional through-hole components.

For SMDs mounted on the component sidw of the PCB, the standard process is to apply a solier paste (normally by means of a screen printing process) to the pads to which the device is to be soldered. The SMDs are then placed onto the solder paste; the "tackyness" or adhesive quality of the solder paste keeping the SMDs in place for the reflow soldering, where the board is heated to a temperature beyond the melting point of the solder paste. The solder is reflowed by one of several common methods, including infrared (IR), vapour phase, or thexmal conduction. The boards then go through a cleaning step to remove residual flux and any stray solder balls that may be on the board.

For SMDs mounted on the solder side of the PCB, the standard process is to apply one or more dots of adhesive on the board where the body of the SMD will be located. The SMD is then placed with the body of the device displacing some of the adhesive; the "tackynessil of the adhesive keeps the placet components in position during the placing process.

When all the SMDs are placed, the adhesive is cured by means of an ultra viclet light and/or heat, usually infrared. The cured adhesive is of sufficient strength for the board to go through a further automatic or manual insertion of conventional through-hole components, and then go through the wave soldering process, without the SMDs being dislodged from the board. In this approach, the sMDs are actually immersed in the molten solder during the process.

Both adhesive attach/wave solder and solder paste/reflow processes introduce operations that are new to most assembly facilities. Selecting the appropriate method for any given facility requires an understanding of the capabilities and limitations of these processes.

3.3 Assembly Procedures

Figure 3.1 shows the PCB astembly variations possible with SMDs: Assemblies exclusively with SMDs in the top row (a and b), mixed assemblies. i.e. SMDs combined with with leaded components in the middle (c and d), and mixed assembly consisting of dip-solderable components (on solder side) and non-dip-solderable components (on component side) in the last row (e).

Figure 3.1 SMT Assembly variations
The ultimate manufacturing aim is a uniform mounting procedure with the exclusive use of SMDs. Figure 3.2 shows examples for totally surface mounted assemblies with reflow soldering (top) and wave soldering (bottom). However, very few surface mount boards consist entirely of surface mount components. Invariably, a few components will not be available, or if available, cost considerably more than their through-hole equivalents.

As a result, neariy all so-called sMT boards are actually mixed assemblies containing both surface mount and through-hole aevices. Thus manufacturing of mixed boards is inevitable and there are two variations to this approach for SMDs placed on a single side of the board.

Figure $3.2 \quad \mathrm{PCB}$ exclusively with SMDs, reflow soldered or wave soldered

In mixed assemblies (See Figure 3.3) where the leaded components are placed first, the board must then be turned over and the glue applied for the SMDs. The screen printing method for applying the glue cannot be used as the pointed ends of the leaded components get in the way and an alternative method must be used. The SMDs are then placed, the glue cured and after a renewed turn over, the board is wave soldered.

The second variation differs from the first in so far as the glue is applied by screen princing at first and the production steps executed as "ilustrated in Figure 3.4. This procedure has the advantage that the glue can be applied by screen printing, however, because of the already mounted SMDs, vacant board space is required for the mounting tools of the leaded components and therefore high densities cannot be realized.

Figure 3.3 Mixed assembly of SMDs and leaded components.

Figure 3.4 Mixed assembly of SMDs and leaded comporients.

The procedure for double-sided SMD mounting is as follows:

- Screen printing of solder paste
- SMD placement
- Reflow soldering
- Insertion of leaded components
- PCB turn over
- Application of glue
- Placement of SMDs on the reverse side
o Curing the glue
- PCB turn over
o Mounting of components requiring special handling
o Fluxing, wave saldering

Due to their inherent complexity, it is worth investigating the feasibility of a partitioned design before considering "mixed prints". Thus part of the circuit is made on an all-SMD PCB and the remainder on a conventional or mixed print PCB.

The very small dimensicns of an all-SMD circuit often allow such a circuit to be repeated several times on a single substrate (See Section 4.2.1). This further increases production efficiency.

Figure 3.5 is a flow chart for the various assembly and soldering variants.

4.1 Introduction

The first and most important step towards SMT begins with the design of the PCB layout. At this stage it is already neccesary to consider how the PCB assembly will be manufactured, tested, repaired and maintained. Hence, for the layout of the PCB, the designer needs details on permissible component configurations on the circuit board, the minimum spacings between components, and on the size and shape of the pads on the pCB. These "layout rules" reflect the interdependence of the production steps in SMD technology.

Also, since SMDs can be mounted on both sides of the board, it takes considerable experience to draw up layout rules for economic production and they are only valid for a particular range of applications with it's specific requirements. In addition, the rules are subject to continual improvement. Also, the shape and arrangement of the pads or footprints is dependant on many parameters, which might be assesed quite differently by the users. It can therefore be expected that the same layout rules no not apply to all users.

Information in this section covers the SMT PCB layout guidelines and can be used to augment exsisting design guidelines for through-hole boards. It is also applicable for both manual and automatic assembly methods.

4.2 Printed Circuit Board Design

4.2.1 Board size and construction

PCBs are manufactured in panels of various sizes. Several recommended panel sizes have been identified by IPC and published in ANSI/IPC-D-322. The full panel is usually cut into subpanels for assembly processing. A typical panel and subpanel relationship is shown in Figure 4.1.

The $457 \times 610 \mathrm{~mm}$ (18 $\times 24 \mathrm{in}$) panel is widely used, but after allowance for plating and processing, the maximum usable board dimensions for this parel are approximately $405 \times 560 \mathrm{~mm}$. Thus lowest board costs are realized when the individual boar sizes are optimized for full panel utilization and this often forces the designer to deviate from the standards. The board size is also dependant on the capacity capabilities of the different processes; for example the placement machine may only cater for a maximum board size of 400 x 520 mm , and in this case, non-standard board sizes may have to be produced.

Figure 4.1 Typical third-panel dimensions for 475x610-min full panel.

4.2.2 Tooling holes and Fiducial marks

Accurately located tooling holes at the corners of the board (subpanel) are essential features. They are frequently used to align the board at both the screen printing and the component placing operations. At least two tooling holes are required at opposite corners along the longest side of the board.

Because of accuracy limitations, tooling holes should not be used as the primary locating feature for fine-pitch chip sarriers or pLCOs above 44 leads. Vision alignment is recommended for hese devices and fiducial marks should be used, A minimum of three fiducial marks should be employed at three corners of the board as shown in Figure 4.10 above. The actual shape of the fiducials depends on the characteristics of the alignment system. Representative shapes are shown in Figure 4.2.

Figure 4.2 Shapes of fiducial marks used by optical alignment systems.

The best fiducial mark is one that has uniform brightness and high contrast compared to the background.

It must be determined by experiment or otherwise wether the planned PCB material is suitable for the application. A widely used material is epoxy-glass FR4. Other PCB materials vary from FR4, for example in the bonding strength of the copper layer and in the expansion coefficient.

4.2.4 PCB Coating

Coatings which remain on the PCB after manufacture are the protective coating and solder resist layer. The protective coating is a surface protection of the PCB against corrosion and mechanical damage.

With SMD technology, the soldex resist layer performs the following functions:
-to reduce the solder lands tis tive required dimensions
-to prevent soluer accumulation with wave soldering and to stop solder flowing away with reflow soldering
-to minimize the chance of short circuits through loose pieces of solder, e.g. solder balls
-to increase the insulation resistance betwe nn the tracks or between the tracks and the SMDs (insulation coating).

4.3 Factors Influencing The PCE Layout

4.3.1 Mounting pads

The term "pads" refers to the part of the copper layer on the PCB upon which the SMDs are to be soldered. A "footprint" is a set "E pads matcting the lead pattern of the component. The pad dimensions are determined by the solderable metallization area of the component, i.e, the solder terminals (See Figure 4.3).

Figure 4.3 Minimum pad size not taking into account influencing factors.

Under ideal conditions, a good solder connection between a component and the PC board can be obtained with pad dimensions conforming to the SMD terminal area. However, various factors, e.g. the effect of tolerances, neccesitate the enlargement of the pad area (See Figure 4.4).

Figure 4.4 Pad size taking into account tolerances.

4.3.2 Components

Componet tolerances are taken into account by the use of pads larger than than those shown in Figure 4.3. From Figure 4.4 j.t can be seen that the component body as well as the length of the solder terminal determine the pad area.

Therefore, for example in Figure 4.5, upper part, the pads must be enlarged to the right and to the left, beoause the metaliization on the underside of the SMD is almost zero. The solder joint can only be made by using the side areas, on the other hand it is not neccesary that the pads in the lower part of Figure 4.5 cover the entire metallized area of the SMD, because here a small pad area provides a proper solder joint.

Figure 4.5 Influence of component tolerances on pad size.

4.3.3 Soldering components

since pad sizes and the component positioning on the ECB also depend on the soldering method, the techniques to be used for soldering the components must be considered at the layout stage. With regard to soldering techniques SMDs can be divided into two groups:
o suitable for wave soldering and reflow soldering
o only suitable for reflow soldering.
In practice this means that SMDs intended for different soldering processes cannot be located on the same side of the PCB.

Wave soldering can be unsuitable for a number of reasons:
-High temperatures
The packages are not sufticiently sealed to permit complete imnnsion in flux or solder
-The SMD terminals are closely spaced or are arranged inconveniently, so that short circuiting solder bridges may form (See Section 8).

Although reflow soldering is normally regarded as being sultable for SMDs, problems can occur in certain cases:
-The tombstone effect, partly caused by the component (See sEction)
-Insufficient wetting of the solder terminals at the relatively low reflow temperatures.

A detailed analysis of the wave and reflow soldering techniques can be found in section X.

4.3.4 Via holes

Vias are used to connect tracks on different sides of the PCB. In SMD technology vias can be small in diameter (0.3 to 0.5 mm). The via hoie should not be located within or immediately adjacent to a mounting pad because it winl draw soldex into the hole and away from the joint (See Figure 4.6). The via chov be be placed near the pad and joined with a thin tr"

Via hole diameters should be made as large as pi. Dle to obtain highest board yields and lowest costs. Far lowest cost, as-drilled ciameters of 0.75 mm or larger are recomended. The reliability of small holes can be improved by filling the holes with solder.

Figure 4.6 Preffered and non-preffered via hole placement.

4.3.5 Test points

As a rule of thumb, the costs for the correction of defects rise by a factor of 10 with each production stage. This shows how important it is to include a test strategy in the devalopment of PCB assemblies (See Section 8).

There are two methods to be considered:
o Fuctional test
o In-circuit test
When considering testing, the assembly's packing density and the smallest grid spacing to be expected should be included right from the start.

The following recommendations are to ensure adequate testing:
o Seperate test points should be provided for all electrical nodes, if possible; minimum diameter 0.9 mm covered with soldex. Extended pads, tracks and vias can also be used as test points. See Figure 4.6.

- With PCBs having components on both sides, all test points should be brought to the one side of the PCB, preferably the solder side, using vias.
- Miniature test pins for grid spacing $1 / 20$ in. instead of the standard pins for $1 / 10 i n$. should be avoided. This can be achieved by a staggered or fan-like arrangement of test points. See Figure 4.7.
o The test points must have a minimum distance from the pads and components, so that recesses in the bed-of-nails adapter for high components are far enough away from the test pin lecation holes.

It is not recommended that the test pin be applied directly to the SMD for the following reasons:
o Some sMDs cannot be directiy contacied, e.g. pLCCs and MKT capacitors.

- The components, particularly the ceramic ones, can be damaged.
o Defective solder joints may appear acceptable due to the test pin's pressing force.

If the testability of an SMD assembly is considered right at the design stage, automatic testing of the SMD boards will present no serious difficulties.

There are two methods to be considered:

o Fuctional test

- In-circuit test

When considering testing, the assembly's packing density and the smallest grid spacing to be expected should be included right from the start.

The following recommendations are to ensure adequate testing:
o Seperate test points should be provided for all electrical nodes, if possible: minimum diameter 0.9 mm , covered with solder. Extended pads, tracks and vias can also be used as test points. See Figure 4.1
o With PCBs having components on both sides, all test points should be brought to the one side of the PCB, preferably the solder side, using vias.

- Miniature test pins for grid spacing $1 / 20$ in. instead of the standard pins for $1 / 10 i n$. should be avoided. This can be achieved by a staggered or fan-like arrangement of test points. See Figure 4.7.
- The test points must have a minimum distance from the pads and components, so that recesses in the bed-of-nails adapter for high components are far enough away from the test pin location holes.

It is not recommended that the test pin be applied directly to the SMD for the following reasons:

- Some SMDs cannot be directly contacted, e.g. pLCCs and MKY capacitors.
o The components, particularly the ceramic ones, can be damaged.
o Defective solder joints may appear acceptable due to the test pin's pressing force.

If the testability of an SMD assembly is considered right at the design stage, automatic testing of the SMD boards will present no serious difficulties.

Figure 4.6 Test point locations.
4.3.6 $\begin{aligned} & \text { Other important factors influencing pCB } \\ & \text { layout }\end{aligned}$

The high packing density of SMD assemblies generally results in higher power dissipation per unit surface

* area. or volume. overheating must be avoided by an appropriate layout. With SMD technology there is no possibility of mounting resistors with a clearance from the PCB. However, the power can be divided between a number of resistors. As with through-hole assembly the thermal management can be improved by the use of larger and thicker copper lands. fiere, however, more attention must be given to the separation of heat sources.

Another solution is the use of low-power semiconductor circuits, e.g. in CMOS technology. For special applications there are substrates with increased thermai conductivity, e.g. metal substrates or metal-plastic laminates.

However, since these are significantly more expensive than the usual PCB materials, such as FR4, their use is very restricted.

Surface mounting brings about considerable advantages for RF technology. Parasitic inductances and capacitance are reduced and the critical circuit parameters can be reproduced more easily. With regard to the circuit certain components should be closely spaced in order to keep the track inductances and capacitance as low as possible. As these demands collide with the requirements of soldering and testing, the pros and cons have to be carefully weighed up.

With high voltages a suitable separation from the voltage-carrying parts must be maintained. The relevant standards have to be observed in this respect.

The requirements on the bonding strength of the SMDS on the PC board depend on the particular application. With vibration high accelerations can occur in the case of resonance. The pad size must also be checked with regard to this critical case. By their enlargement both the bonding of the SMDs to the pads and the bonding of the pads to the PCB can be increased.

4.4 Arrangement Of SMDs And Tracks on the PCB

SMDs
The most favourable orientation of SMDs on the PCB is rainly determined by the components themselves and the soldering metnod used. While vapour phase soldering does not impose any restrictions, the best solder penetration with wave soldering is only achieved by mounting so packages longitudinally to the direction of the wave.

Figure 4.8 Prefered orientation for some SMDs withwave soldering.

Figure 4.8 gives some of the most favorable orientations for avoiding solder shadows and accumulations during wave soldering.

Unacceptable orientations for wave soldering of SMDs are shown in Figure 4.9. If the components cannot be orientated as recommended, with two-terminal components the lengthening of the pad. in and against the direction of the movement of the PCB can provide an alternative.

Figure 4.9 Unacceptable orientation with wave soldering.

With IR reflow soldering, the infrared radiation can be shadowed by the component. The problem of solder or IR shadow increases with the component height.

Tracks

Track or conductor widths and spacings for SMT boards are generally smaller than for through-hole technology. Highest board yield is obtained by providing generous margins between actual conductor geometries and the process minimums. Thus, small conductors should be employed only in those regions where they are actually needed.

Conductior routing can have a major impact on soldering yields. In general, anything that alters the symmetry of the land pattern is likely to increase the rumber of solder defects. For example, exposed conductors entering the component land pattern can act as solder thieves that araw solder away from the land. Steps must be taken to prevent this happening.

4.5 Component Land Patterns

The relatively loose tolerances associated with many surface mount components have made it difficult to define a single footprint or land pattern that works equally well for components at either end of the tolerance range.

A practical approach is to optimize land patterns for the centre of the range of sizes and accept slightly reduced yields with the components near the size extremes. Tightened component tolerances will eventually be neccesnry to resolve this conflict.

For many component families it is convenient to represent land pattern geometries in terms of standardized formulae. These formulae can then be used to calculate pattern shapes for numerous components, including types for which no previous land patterns have been developed. Appendix 3 contains a detailed guide to using these formulae.

5.1 Introduction

The component-placement operation, often called "pick and place", consists of all steps neccesary to remove a component from its packaging materials and mount it onto the PCB. Because of the extreme accuracy required (± 0.2 ma or less for many component types), automatic equipment is mandatory for all but the smallest production volumes. The basic placement sequence consists of the following eight steps:
a. Board indexing: the positioning of a new loard onto the system.
b. Board registration: alignment of the board to the machines coordinate system.
c. Component set-up: presentation of components to pre-determined locations for pickup by the placement tool. Components are stored in special feeders connected to the machine.
d. Component pickup extraction of the components from the feeders in preparation for placement.
e. Component verification: electrical testing of components.
e. component centering: alignment of the component to the machine's coordinate system.
f. Component placement: actual placement of the component onto the PC board.
g. Board indexing: removal of the fully loaded board from the machine.

A generalized component-placement machine is illustrated in Figure 5.1. The major components are as follows:

Base
This is the structure on which all other remi $\quad \exists$ parts of the machine are mounted. It must be 2 I enough to support the rest of the system without allowing excessive vibra,ion, which would degrade placement accuracy.

Component feeders
Components can be presented to the system from a variety of shipping containers. Comonly available feeders accept components in magazines, tape and reel, waffle trays or bult: packaging. These are discussed in detail in Section 5.4.

Figure 5.1. Generalized component placement machine.

Board support table

The board or conveyor automatically feeds a new board into the machine and removes the populated board for delivery to the next process step. It is usually adjustable on one side to accomodate different board sizes.

Placement head

The head contains everything necessary to pick components from the feeders and place them onto the PC board. It includes the placement tool, centering jaws (if used) and optional features such as adhesive dispenser, Iectrical verification fixturing and optical boar \quad lignment system.

Placement tool

The heart of the placement head is, the tool used to pick components from the feeders and hold them securely during transport to the placement site. A single tool can usually only handle a limited range of part sizes. On machines that must place a wide varlety of component ypes, tools must be changed either manually or under prograin control.

Figure 5.1 Generalized component placement machine.

Board support table

The board or conveyor automatically feeds a new boazd into the machine and removes the populated board for delivery to the next process step. It is usually adjustable on one side to accomodate different board sizes.

Placement head

The head contains everything necessary to rick components from the feeders and place them onto the PC board. It incl: ies the placement tool, centering jaws (if used) ald optional features such as adhesive dispenser, electrical verification fixturing and optical boa a alignment system.

placement tool

The heart of the placement head is. the tool used to pick components from the feeders and hold them securely during transport to the placement site. A single tool can usually only handle a limited range of part sizes. On machines that must place a wide variety of component types, tools must be changed either manually or under program control.

5.2 Equipment Characteristics

The three characteristics of primary importance in component placement equipment are:

```
o accuracy
O speed
- flexibility
```

The accuracy of a machine determines the range of component types that it can place. Its speed sets the capacity of the line and determines how many machines are neccesary to meet anticipated product volumes. Its degree of flexibility determines wether one type of machine can handle all placement needs or wether more snecialized machines are needed.

A detailed discussion of theses concepts can be found in Appendix 6.

Although the most obvious requirements are for accuracy, repeatability, reliability and high speed, the list of user requirements expands to include the following:

- automatic load/unload of PIBs
- Interface to CAD/CAM
- sense missing or wrong components
- expansion to multi.head system
- both "walk-through" and nfe-1ine programming
- PCBs up to 12 in. by 18 in.
- automatic epoxy dispense.

5.3 Equipment Categorisation

Categorizing modern pick-and-place systems is complex, specified either by the control techniques, meth d of operation or type of placement head. control categories are the simplest, consisting of mechanically programmed, microprocessor controlied and computer controlled.

The method of operation categories consist of two groups: maually-ioaded machines with placement rates of 4000 omponents per hour (cph), and fully aut:omatic machines with placement rates between 9000 and 24000 cph. These two groups are further subdivided as to the number of placement heads, PCB X-Y positioning or head $X-Y$ positioning, feeder $X-Y$ positioning and means of PCB transport from load through placement to unload.

Machines having head $X-Y$ movement and placement are considered to be most efficient primarily because the distance between the points of pick and place can be minimized. However, factors such as head travel speed, PCB size, component mix and feedex configuration will affect placement rate.

The fully automatic category of pick-and-place systems has, by definition, automatic PCB loading, transport and unioading. Most are multi-head systems featuring high placement rates, comm features include individual or tandem-head $X-\Psi$ control and programable feeder positioning.

Equipment can be designed to sequentially place individual components. The PC board is positioned below the pick-and-place head using a computer controlled X-Y moving table. (See Figure 5.2a)
simultaneously placement places SMDs in a single operation. (See Figure 5.2b). A placement station with a number of pick-and-place heads, takes an array of SMDs from the packaging medium and simultaneously places them on the PC boara. simultaneous placement systems offer short cycle times and high throughput, but sequential systems provide higher flexibility.

A variation of sequential placement is known as in-line placement. (See Figure 5.2c). In this mode, a board progresses through a series of individual placement heads, each of which places only a single component. As with simultaneous placement systems, in-line systems are used when high production volumes must be achieved.

Fig. 3 (a) In-line placeme ut.

Fig. 3(c) Simultanecus piacement:

Fig, 3(b) Sequential placement.

Fig. I(o) Sequentialsimultanecus placement.

5.4 Component Feeding Systems

The success of the component-placement operation depends on reliable presentation of components. Components that are skewed, inverted or otherwise misorientated cannot readily be picked from their feeders. operator intervention may be neccesary to clear the resulting feeder jams. In some cases, the machine will not detect the error and will attempt to complete the placement. Such defects may not be found until the end of the manufacturing process, when repair is much more difficult and costly.

Component feeding must be viewed as a system consisting of the component shipping containex as well as the actual mechanical feeder. If the componnent cannot easily be extracted from the shipping container, or if it moves so freely as to become misorianted, the placement machine will not be able to compensate. A variety of component shipping containers have been developed. those most commonly used in SMT are:

- tape and reel.
o magazine (stick)
- bulk
- matrix tray

These are discussed in Appendix 10

6.1 Introduction

The size and complexity of electronic assemblies is steadily increasing, which also implies a growing number of solder joints. Today, some hindred solder joints per PCB are not uncommon. Consequently, an economic soldering process can only be achieved by automatic soldering equipment. In addition, exacting demands are made on quality and reliability.

Surface mount with it's special requirements places new demands on the solder joint. Essentially, SMD technology means automated production of PCB assemblies. Minimization of manual work is mandatory. Rework (repairs), however, constitutes a major part of manual work and has to be reduced reduced in SMD to an extent up to now uncommon. The aim is yields of 95\% (Q 95) i.e. at least 95\% of all finished PCB assemblies must be faultiess. In order to achieve this percentage, soldering techniques have to feature extremely low failure rates (10..20dpin).

In conventional PC board production, a number of soldering methods and special soldering equipment were developed which are now used in a modified form for surface mounting. However, the choice of the "correct" soldering technique has not become easier. Each procedure is suited to typical applications and the benefits and drawbacks have to be carefuliy evaluated. With an increasing variety of components to be soldered and with a growing number of special requirements, such as packing density, it will be necessary to use more than one soldering process.

To clearly understand the impact that the soldering proress has on the $P C B$ and components, one must understand some of the soldering fundamentals. This has been detailed in Appendix 4.

6.2 Solder Profiles of SMDs

The soider profiles of different devices are presented in. Appendix 8. The page order of the profile section has been arranged to be similar to the frequency with which the devices are used in industry. profiles are described as:

Unacceptable m none or too little solder
Acceptable (min) - mintmum acceptable amount of solder present to make a successful joint.

Acceptable (max) - maximum amount of solder that would normally be acceptable.

Excessive - too much solder has been used, but it does not necessarily mean the joint is defective. It does however indicate that process parameters should be adjusted.

7.1 Introduction

There is no general answer to the frequently asked question of which soldering technique and which equipment is the most suitable for surface mounting. Each technique and each type of equipment qualifies for specific applications and is consequently less suitable for others. Therefore, the soldering methods and equipment have to be carefully selected, taking into consideration all factors involved in the assembly.
7.2 Summary

Automatic soldering can be divided into bath soldering and reflow soldering techniques.

- Bath soldering
- Conventional wave soldering
- Dual wave soldering
- Drag soldering
- Dip soldering

- Reflow soldering

In reflow soldering all kinds of heat transfer an be used; in practice the different methods are frefuently combined.

- Radiation
* Conduction
- Convection
- Condensation

The heat can be input

- from all directions (simultaneously)
- from above (local, sequential or over the surface simultaneous)
- from below (over the surface, simultaneous)

The most common reflow soldering techniques are listed in Table 7. 3

7.3 Wave Soldering

Conventional wave soldering equipinent can be used for the soldering of surface mount devices, but with increased circuit density and the resulting reduction of space between cmductors, non-wetting and solder bridging can become a problem.

7.1 Introduction

There is no general answex to the frequently asked question of which soldering technique and which equipment is tive most suitable for surface mounting. Each technique and each type of equipment qualifies for specific applications and is consequently less suitable for others. Therefore, the soldering methods and equipment have to be carefully selected, taking into consideration all factors involved in the assembly.
7.2 Sumary

Automatic soldering can se divided into bath soldering and reflow soldering techriques.

- Bath soldering
- Conventional wave soldering
- Dual wave soldering
- Drag soldering
- Dip soldering

- Reflow soldering

In reflow soldering all kinds of heat transfer can be used; in practice the different methods are frequently combined.

- Radiation
- Conduction
- Convection
- Condensation

The heat can be input

- from all directions (simultaneously)
- from above (local, sequential or over the surface simultaneous)
- from below (over the surface, simultaneous)

The most common reflow soldering techniques are listed in Table 7.1

7.3 Wave Soldering

Conventional wave soldering equipment can be used for the soldering of surface mount devices, but with increased circuit density and the resulting reduction of space between conductors, non-wetting and soldex bridging can become a problem.

Table 7.1 Reflow soldering options.

The dual wave method was developed expressly for the soldering of surface mount components and to overcome these problems. The principle of the dual solder wave is that contact with the first wave, usually a turbulent wave with high vertical velocity, consumes or drives out most of the flux and ensures good solder contact with both edges of the device. The second, laminar wave, then completes the formation of the solder fillet and removes bridges.

In the wave solaering phocess, the PCB is transported over a fountain of continuousiy flowing molten solder, as shown in Figure 7.1. The height of the conveyor is adjusted so that as the board passes over the wave, its entire underside is washed by the solder. In the case of throurh-hole components, the solder wets the protruding component leads and is drawn up into the plated through-holes. Surface mount components are solderfd by adhesively attaching them to the underside of the board and immersing them directly in the solder wave.

Figure 7.1 Priciple of wave soldering.

The complete wave soldering process consists of three steps which are normally performed within a single machine, as illustrated in Figure 7.2. The steps are:

- Flux application
- Board preheat
- Wave soldering

In a typical dual-wave soldering process, the preparation of the substrate is followed by the application of flux; usually based on a resin dissolved in an organic solvent such as isopropanol.

This assures good wetting of the soldering surfaces. (see Appendix 3 for a detailed description of fluxes)

Figure 7.2 Schematic of complete wave soldering system.

Next, the board is preheated. This serves several purposes. First, it reduces the flux to the required viscosity, and second, it heats the PCB and components to a predetermined temperature to reduce thermal shock and promote faster wetting. Pre-heating also minimises the time spent at soldering temperature and so prevents dissolution of component metallization (sometimes known as leaching).

A variety of pre-heating systems are available, using forced hot air, juartz lamps, or heated panels. During the pre-heat time, usually lasting about 10 seconds, the temperature of the PCB is raised to approximately $80^{\circ} \mathrm{C}$. These values are approximate and will depend largely upon the composition of the substrate and the nature of the components. (See detailed description in Appendix 8)

After pre-heating, the underside of the substrate is brought into contact with the molten solder, first with the turbulent wave and then with the laminar wave.

Experierec has shown that a contact angle with the solder waves of approximately 7° gives optimum results. Figure 7.3 shows the division of the solder stream into a first and second wave. (See Appendix 7 for detailed description of wave soldering)

Figure 7.3 Division of solder stream into a first and second wave.

After the second and final soldering step, the PCB assembly is allowed to cool down in free air.

7.4 Reflow soldering

Unlike wave soldering, the reflow soldering process requires the deposition of measured quantities of solder directly onto the PCB pad. Components are then placed and the final interconnection is formed by fusing or reflowing the solder by elevating the temperature above the melting point of the solder, at which time it wets to the metallic surfaces. When the temperature is lowered, the soller solidifies, completing the joint.

Reflow soldering offers several benefits. A primary advantage over wave soldering is the fact that solder is applied only where it is needed. This is especially important for components that would be damaged if immersed in molten solder. Another benefit i.s that the temperature profile seen by the assembly can be more precisely controlled. SMDs sensitive to thermal shock are more compatible with a reflow process than a wave process.

To prevent component dartage during exposure to high temperatures, the temperature profile during reflow must be carefully controlled. An ideal profile is shown in Pigure 7.4.

Figure 7.4 Idealized reflow temperature profile.
It consists of a slow rise to an intermediate temperature (the preheat zone), a relatively quick excursion above the liquidus temperature (just long enough to ensure complete melting of all solder), and a gradual cool.ing back to ambient.

The specific nature of the profile can vary depending how it is measured. The profile recorded by a bare thermocouple may be vastly different from that recorded recorded by a similar thermocouple affixed to the PCB. The latter method is preferable using more than one thermocouple at different locations on the board.

An often overlooked fact is that the shape of the reflow temperature profile is more important than the method used to achieve this profile. Vapour phase, infrared, thermal conduction and thermal convection have all been successfuliy used to sclder surface mount assemblies. Most problems attributed to particular processes are a result of large deviations from the ideal profile rather than an inherent defect in the technique.

7.4.2 Preheating

Adequate preheating is important for several reasons. Components such as ceramic ca ritors are sensitive to thermal shock and can be dumaged by too rapid a temperature rise. Rapidly increasing temperatures also disturb the thermal equilibrium of the assembly and cause small components to reach the liquidus temperature more quickly than the larger PCB. When this occurs, tha molten solder will preferentially wet the component lead and may flow along the lead and away from the joint.

This "wicking" phenomenom is observed primarily on J-lead components, such as PLCCs (see Section X (first sec on components)). Finally, preheating is neccesary to achieve proper flux activation. Inadequate preheat time and temperature will prevent the flux from removing surface oxides at the joint prior to reflow.

7.4.3 Paste Drying

Solder paste contains volatile solvents that improve screenability and extend the working life of the paste. If these solvents remain in the paste during reflow, they will boil violently and spatter solder balls across the surface of the board. To prevent spattering, the paste must be thoroughly dried.

The optimum drying profile depends on the nature of the volatile elements contained in the paste. These in turn are determined by the desired screening properties and working Iife of the paste. Pastes with low boiling-point solvents may require only 5-10 minutes of drying time at $60-80^{\circ} \mathrm{C}$. Higher boiling-point solvents may need to be dried for as long as an hour at temperatures as high as $125-150^{\circ} \mathrm{C}$. The paste manufacturer should be consulted for. specific recommendations.

The drying process should always be distinguished from the preheat portion of the reflow process. Drying time and temperature must be selected on the basis of the composition of the solder paste, The preheat profile is governed by the need to minimize thermal shock and maintain thermal equilibrium at all points on the assembly. It is rare that a single process profile can be employed to simultaneously achieve both results.

Several techniques for roflow soldering are in common use. Those most frequently employed in production of SMT applications are:

- thermal conduction
o vapour phase
o infrared
o laser
o thermal convection
One of the oldest renlow techniques is the application of heat via thermal conduction. In its simplest form this consists of nothing more than a hot soldering iron applied to previously deposited solder. The most elaborate equipment of this type employs conveyors to automatically transport the boards across a temperature controlled hot plate and thraugh a cooling section to allow the solder to solid:fy.

Reflow by thermal convection is - \because method which uses heated air as the therma: , redinm An ordinary resistance-heated ove siak.est example of a convection reflow syste

In condensation soldering, commor \perp. ." *apour phase reflow, boards are immersed in. : irated vapor of an inert liquid whose boiling poinc igher than the melting temperature of the solder. m typical reflow temperature is $215^{\circ} \mathrm{C}$. Since the entire process occurs in an inert environment, there is little potential for oxidation of the molten solder.

Solder refiow by direct infrared (IR) radiation is a more recent development. For these ovens, 90% or more of the heat is transferred through dirnct radiation of near-visible IR energy, A special form of direct radiation is laser soldering. In this approach, the energy from a high-power laser is inected onto the joint. Reflow can occur in" a fraction of "a second, but the process is relatively s?ow hecause each joint must be soldered individually.

A detailed look at each of the above mentioned wethods can be folnd in Appendix 5.
7.4.5 Comparison Of Reflow Techniques

Table 7.2 compares the attributes of the various reflow processes. Most mass soldering is performed either with a vapour phase or reflow system.

Reflow method	Advantages	Disadvantages
Vapour phase	Insensitive to variations in board thermal mass. Uniform temperature across entire board. Well control.led maximum temp. Insensitive to variations in board geometry.	High capital equipment cost. High operating cost due to expense of vapour phase fluid Fluid decomposition generates toxic byproducts. Little control over temperature profile
Infrared	precise control of reflow temperature profile. Moderate capltal equipment cost. Moderate operating cost. Improved heating dynamics compared to vapor phase.	Equipment parameters must be readjusted for boards of different thermal mass. Possible to overhat board if the eguipment is mism adjusted. Heating rate depends on colour of surface IR enercy is blocked by tall components.
Laser	Heat is confined to joint region. Compatible with temperaturesensitive devices.	Low throughput due to aach joint having to be reflowed individualiy, Very high equipment cost.
Conductive belt	Low equipment cost simple operation. Moderate control over temperature profile.	Incompatible with organic PC boards. Small maximum boazf size.

Table 7.2: Comparison of rethow meehods.

The quality and reliability of a PCB assembly is a strong function of its initial cleanliness level. Inorganic residues such as flux activators \{See flux sEction cause a reduction in insulation resistance and an increase in current leakage. In combination with atmospheric moisture, they promote corrosion of metaliic surfaces. Organio residues, such as rosin, greases or oils form an insulating film that can prevent proper elestrical contact between mating sirfaces of connectors, switches or relays. For al. but the most benjen operating enviromments, these contaminants must be tharoughly remot ".

CIeaning processes can be divided into two basio categories: aqueous and colvent. Aqueous processes use water as the primary cleaning fluid, while solvent processes use chlowinated or filuorinated hydrocarbon 1.iquids.

For PC boards, the major contaminant is flux residue from the soldering operation, so the choiee of cleaning method depends largely on the type of flux used. Rosirimbased and synthetic fluxes are best removed in a solvent oleaning process, Aqueous processes are employed when water-soluble organic acia fluxes have been used.

Of primary importanae is compatibility with the components to be cleaned. Some types of plastios and marking inks are dissolved by the more aggresive chlorinated solvents, while certain other components are not suitable for water cleaning.

Another concern is the ability to comply with local environmental regulations. Solvent processes release potentialy harmful onlorofluorocarbons into the atxosphere, while aqueous processes discharge heavy metals into the local watex supply.

8.1

Introduction
To avoid the prospect of building large quantities of defective products, immediate feedback on process performance is essential. By understanding the current behaviour of the process, problems can be anticipated and corrective action taken before defects arise.

Within the surface mount factory, there are two primary techniques for obtaining process feedback. The first is by monitoring physical characteristics, such as solder bath temperatures, conveyor speeds, and the like. The second is by examination of the end product through physical inspection and electrical testing. Both approaches are essential in a well-run factory.

Inspection and testing address two different aspects of production performance, The inspection process focuses on physical variations that could lead to mechanical reilability problems. Although often associated with simple visual inspection, several other approaches can be employed. These include machine vision, X-ray, and infrared techiniques.

Electrical testing confirms that the assembiy is electrically functional by comparing the pCB circuit performance against predetermined limits. The two most cemmon approaches are the functional test, which tests the operational characterisitics of the whole assembly, and the in-circuit test, which measures the performance of each component on an individual basis.

Niether inspection or test, by itself, can identify all defects that are likely to occur. Many electrical defects are not manifest as obvious physical anomalies and so would escape detection at a physical inspection point. Conversely, many reliability problems do not show up as immediate electrical problems but are readily apparent when visually inspected. Well run factories make intallegent use or both techniques to efficiently collect the optimum amount of data.

Several systems are currently available to the manufacturer, including shortmoirouit testers, 1n-cirauit testers, in-cirouit analysers and functional testers. Figure 8.J. shows a bar-chart giving a comparison of percent fault detection and programing time for various automatic test equipment (ATE) .

Figure 8.1 Comparison of $\%$ fault detection and programming time for various ATE systems.

8.2 In-Process Inspection

The decision of how and where to inspect must be based on economics. The cost of inspecting must be weighed against the potential cost of not identifying defects until a later process step. Those processes with greatest overall impact on the finished product are the ones most likely to benefit from immediate feedback. The most common inspection points are illustrated in Figure 8.2.

Figure 8.2 Typical in-process inspection points.
In order of priority, they are:

- Final inspection
o Post-solder inspection
- Post-placement inspection

The details of each of the above are given in Appendix 2

8.3 Functional Testing

In this method, the performance of the entire circuit is analyzed on a system that simulates the intended operating environment. All electrical contact is normalily made through the PCB edge connector. A series of input signals serves as stimuli, and the output responses are measured and compared against acceptable limits. The result is a pass/fail indication of board performance.

One disadvantage common to all forms of functional testing is a limited ability to diagnose failuias. iz is usually possible to trace a problem oniy co a particular region of the circuit, rather than to a specific component. Some functional testers have no diagnostic capability at all, but merely indicate wether the board has passed or failed the test. Another concern is with the time required to write the test program for a new board. Complex assemblies may require anywhere from a few weeks to as long as nine months for program development.

8.4 In-Circuit Testing

In-circuit testing does not check the performance of the circuit as a whole but rather of each component individually, The board is accessed by a series of probes (called a bedmofnails fixture) that make contact with all circuit nodes. Test signals are applied across succesive combinations of nodes and the responses measured. Defects can ordinarily be traced to a specific component or small cluster components.

Digital components are tested by applying a series of test patterns, called test vectors, to the component inputs. The outputs are measured and compared to the expeoted truth table for the device, Many digital in-circuit testers can function at clock rates similar to those encountered in actual operation.

8.5 Anticipated Fault Profile

The measure of success for a test technique is how well it detects the types of faults most likely to occur. The distribution of anticipated faults, called a fault profile, varies somewhat depending on the assembly process employed. The precise impact of the various faults depend on the specifics of the board design and the manufacturing facility. For many manufacturers, a fault profile similar to that rin Figure 8.3 has been found to representative.

Figure 8.3 Typical fault profiles for PC boards.
Defects from the printed circuit board production and soldering proresses account for for about half of all defects. Assembly and wiring faults account for another 30%, while defective components are the cause about 13% of the time. Functional failures account for only 7 of all defects.

8.6 Defects in Soldering SMDs

It is recognised that certain defects are more common to specific soldering techniques. These can be categorised into those which the solder is preplaced and then heat is applied, and those where the application of solder and heat are simultaneous. In the latter category are wave soldering, hand soldering and most rework techniques. For the former, the solder is applied as a plating, paste or preform, and heat is applied by one of several methods including vapour phase, hot belt and infra red to reflow the solder.

Each technique is prone to produce certain classes of defects; the reflow methods give rise to misalignment whereas bridging and shadowing are defects more often found when using wave soldering. A brief description of each type of defect is covered in the following sections.

8.6.1 Solderability

Soldering is a process which depends upon the formation of a mettalurgical bond between the component and the substrate (or po board). The formation of these bonds depends critically upon the ability of the solder to wet both the leads and the pads (See Section $X X X$). There are many reasons for poor wetting including excessive growth of the intermetallic layer, dirt, inappropriate flux, and diffusion problems. See Figure 8.4

8.6.2 Misalignments

Misalignments of components with respect to theix pads are associated mainiy with reflow techniques. on reflowing, the component swims in a pool of molten solder, and is finally positioned only when the solder solidifies. Misalignment is caused by different surface tension forces acting at each pad resulting in rotational movement. Anothex type of misalignment occurs when one end of the device lifts from the pad, this is sometimes reffered to as 'Drawbridging', 'Tombstoning' or the 'Manhattan Effect'.
See Figure 8.5
The two maln factors promoting misalignment are:
Improper design of component pads; these must be of the correct size to eshieve gt i joints, and minimise component movement during soldering.

Differential heating will cau:* one end to melt before the other and produce comiseent lifting.

8.6.3 Short Circuits/Bridging

This type of defect occurs particularly with wave soldering. If the wave conditions are not correctly adjusted and the component design has closely spaced leads, then a brigge can occur between two or more leads. See Figure 8.6

8.6.4 Shadowing and skips

Shadowing is caused by ac ponents obstiucting the wave path. Wave soldering can produce these defects and it is neccesary to arientate the surface mount device correctly with respect to the direction of travel of the PC board over the solder wave. See Figure 8.7
a) Substrate exhibiting dewetting.

c) Non-wetting of metallisation.

Figrire 8.4 Defects associated with the solderability of the substrate.
a) Substrate exhibiting dewetting.

c) Non-wetting of metallisation.

Figure 8.4
Defects associated with the solderability of the substrate.
a) Rotational misalignment of a chip component.
b) Rotational misaligrment of a SOIC.
c) Uplifting of chip components (Manhattan effect).
d) Translational misalignment of a soIc causing a mismatch between lead and pad.

a) Bridging of quad pack leads.
b) Bridging of SOIC leads.
c) Bridging on a LCcc.
d) Bridging of two chip capacitors causing a short circuit.

a) Shadowing preventing soldering of one side of the component.

b) Absence of solder from one of the pads due to a skip.

PRACIICAII IMPIEMENHEATION

1.

Software development of simulation program to verify theoretioal implementation.
2. Software development of database and optimization programs to allow the simulation program to be applied to an actual surface mount facility.

9.1 Introduction

During the initial stages of the practical implementation of this dissertation, the sMr line at STC was not yet completely installed . Therefore a software simulation model was developed to verify the theoretical proposals. During the period of the software development, the SMT line was commissioned and test runs started. It was decided to use the simulation model to improve the utilization of some of the machines on the line, in particular the Pick and place machine. This, however, called for an additional optimization and database software program to be written to allow realistic results to be obtained.

This section discusses the development of both the simulation and optimization programs.
9.2 Overall Problem Statement

The SMT plant at the STC premises is shown in Figure 9.1. The line consists of the following workstations:-

1 silkscreen machine
2 Gravity platforms
2 Auto Mayazine Unloaders/Loaders
1 Pick n ylace machine consinting of 2 placement Heads and 2 Extended Input Modules
1 In-Line Reflow oven
2 Inspection Positions
3 Conveyor Belts
1 Repair and Test bay
The simulation model was developed to enable management to answer the following questions about the SMT facility in order to meet production objectives:

1) What is the expected system throughput?
2) How many of the machines, conveyors, operators and queues are needed to keep the facility producing at the required rate?
3) How will random equipment failures affect the facility?
4) What is the impact of the variation in process yiflds in the facility?
5) How wiji the introduction of another product into the production schedule affect the facility?

Figure 9.1 Surface Monne Facility Laveut

Figure 9.1 Surfoce Wome Facility Laycut

A major problem which is highlighted by the use of the simulation program, is that as long as the two heads of the placement machine are not working equal times(i.e. they are not placing the same number of components), stoppages are caused and boards begin to queue at the input of the machine. Thus, the optimization of component feeder placement around the two heads of the placement machine also requires attention.

9.3 Problem Solution

To provide management with the information it requires, a simulation model was developed incorporating real-time graphical animation and statistical analysis using the Simscript II simulation language.

A detabase was created to optimize the Pick n Place component feeder placement. Using a convenient graphical and menu-driven technique factory layout information and production parameters can be entered into the database. Two completely different methods are used to determine the best result and the exact: feeder placement positions for each component.
once the user has accepted the oqcimization results, which can be modified manually, the database is linked to the simulation program to allow for an exchange of relevant data.

Based on the information retrieved from the simulation run, the user has the option to modify one or more of the initial parameters and rerun the model. In this way, various scenarios can pe tested before the actual implementation of the SMT production line.

A graphical representation of the interaction between the user and the software modules is shown in Figure 9.2.

The details of both the optimization and simulation programs are presented in the following sections.

10.1 Why Simulation?

Simulation is the process of developing a mathematical model that describes the functions of a real-world situation called a system. By collecting data on the system's response under various conditions, it is possible to learn how the real system may perform without having to attempt costly experiments with the actual equipment.[2]

Within an operating facility, management must react to a rapidly changing environment to meet production objectives. Decisions on work order release, scheduling and staffing must be made in light of new orders, equipment availability, ubsenteeism and other factors. Simulation has significantly improved the predictability, and therefore reduced the risk of control and scheduling decisions. .In the area of production systems, simulation can be used to identify design flaws and operating problems, verify proposed layouts and pem it management to examine how well a proposed design will meet the production objectives.

The main advantage of simulation is that it permits controlled experimentation on a system with no disruption of the actual process. This is ideally suited to a flexible manufacturing enviromment (F'ME) in that insights into the functioning of such a complex system may be made before any hardware or software is specified.

However, the results of simulation studies are often presented only as pages of values which fail to communicate the understanding gained. Premature action may be taken based on invalid assumptions, or hidden modeling errors. Conversely valid simulation results may not be guickly appreciated.

The best way to represent a dynamic system is often graphically, Animated graphics show clearly the operation of the simulated system, and graphic results are easily evaluated; system operation is better understood, and decision makers have more conridence in the simulation results.

A simulation project incorporates the following activities[3]:

Project formulation and software selection (Approx 25 - 30\%)

Data and infoimation collection (Approx 20 - 30\%)

Statistical modeling of system randomness such as machine breakdowns, validation of the model, and the statistical design and analysis of the simulation runs [1]
(Approx 10 - 25\%)
"Coding" or writing the software and graphical interactions.
(Approx 30 - 40\%)

10.2 Selection of Simulation Software

The selection of software was limited by cost and it was decided to use a package call simscript II which was already in use at the University. The package provided good modeling flexibility, contained a wide variety of statistical capabilities and also allowed for graphical animation to be interfaced with the model. However, ease of model development, output report generation and fast model execution were lacking.
10.3 The Simulation Model
10.3.1 Simulation terminology

The following terminology is fundamental to an understanding of simulation and its capabilities.

A SYSTAM is the collection of all the elements of a process or area to be analysed. The components of a system are divided into two categories:

PERMANENT items the physical components always present in the system.

Transient ENTITIES - the items that flow through or are being poocessed by the system.

Many of the permanent items can be considered to be limited RESOURCES that are necessary to perform a step in the process. Resources can be described by a set of physical conditions called STATES. A machine or worker can be in a BUSY state (working on a part), an IDLE state (waiting for work) or possibly BLOCKED because of a breakdown.

Other permanent parts of a system can also be described by a series of states. A warehouse or buffer area for stock can be EMPTY, FULI or have some intermediatory number of parts stored.

A simulation model records state changes by using a series of variables, sometimes referred to as sTATE VARIABLES, that are constantly updated over the simulation time.

In general, we define a PROCESS to be a time-ordered sequence of interrelated events separated by passages of time, which describes the entire experience of an entity as it flows through a system.

Types of processes: By determining how often the state of the system changes, it can be classified as eitwer DISCRETE or CONTINUOUS. Discrete systems only change states at specific, countable moments in time. Each time a discrete system has a state change, it is called an EVENT. Such a model is called a Discrete Event Rimulation Model and is the type which we will be dealing with.

There are two types of anirtions; post-processed and real-time animations. A po i-processed animation takes the output of a simula'ion run, and graphically displays what happened

The SMT simulation model uses simscripts real-time, interactive animation system, which allows the viewing of the animation WHJix the simulrition is r uning.
10.3.2 Software development

The simulation model was developed by dividing the model building process into two sections or frameworks.

1] Model Frame - used to describe how the entities flow through the system. This includes:

- processing steps
- decision/control logic
- machine failures
- material handling

2] Experiment Frame - contains the parameters for a specific condition or scenario of the system being modelled.

- number of machines
- specific processing times
- part routings
- statistical distributions
- output information to collect

By separating this information, the user can test the same system under various experimental conditions, without changing the model frame.

10.4 The Simscript Program

The Surface Mount facility that is being simulated is shown in Figure 9.1. There aje in total 11 resources (or in this ase workstations and conveyors) which have some form of impact on the total throughput of the line. Thus all of these are treated with the same priority, for example a conveyor belt which is moving too slowly will have a similar effect on the throughput as a magazine loader which is loading too slowiy etc.

The input data requirements for the simulation are definable and fall into each of four areas, namely:

- Workstation characteristics
- Materials handling characteristics
- Job (parts) characteristics
- Production characteristics

Each workstation resource has the following characteristics attributed to it:-

* the types and numbers of each machine
* the types and numbers of the machine queues
* the queue serving protocol
* transfer times between machines and storage points
* failure consequences for each machine and the system
* tool storage at each machine
* tool sharing possibilities
* tool handling and set-up times

The materials handing resources have the following attributes:-

* type of system (conveyors)
* dimensional layout of machines, load stations, queues and buffers
* speed, direction and stopping points for conveyors
* failure rates and repair times for materials handiing systems

Jobs going through the system are represented by permanant entities with the following attrikutes:

* complete manufacturing sequences for each job
* all feasible workstations for each operation on each job
* the working or task time for each operation
* machining and tool changing times for each feasible process
* required tools
* all feasible machining sequences
* type and number of fixtures for each set-up
* times for set-up
* frequency, duration and location of part inspections

Thus each type of job has a unique routing sequence which determines which workstations it requires for completion and how long it will require those specific workstations for.

The overall system or proauction charaateristics include:-

* the number of shifts
* scheduled maintenance
* part batches and number per batch
* manpower requirements
* production scheduling
10.4.1 The program struct are
rhis section gives a brief decription of the subprograms which comprise the sjmscript simulation program.

The program begins with a PREAMBLF, whose statements are declarative in nature. (i.e., the preamble contains no executable statements). The preamble is used to define all the building blocks for the model, such as processes, resources and other structures. The preamble is also used to define the global variables, the basic unit of time for the simulation clock and the desired measuzes of system performance (e.g., statistical variables).

The KAIN program is where the execution of the program takes place. The simulation actually begins with the execution of the sTART SIMULATION statement.

There is a process routine for each process defined in the preamble; the routine and corresponding process having exactly the same name. The routine describes the entire expurienee of a process entity as it moves through its corresponding process.

Both static and dynamic graphical icons have been created. These are simply screen images of program enti :3s, for example, a job moving from process to process. Changes in their position or appearance correspond to changes in the system being simulated.

Simscript has no inherent measurement units. Spaces are thus defined in a model-orientated manner (in real-world coordinate). These are transformed into coordinates suitable for graphics display through viewing transformations.

Each graphical entity displayed on the screen has its own graphics routine which is activated every time the entity changes state.

The program begins by reading the system parameters from the database into its own state variables. All permanent and temporary entities are then created and initialized. The graphic drivers and their corresponding display routines are initialized and the main menu displayed (See Figure 10.1). The user then has the option to alter any of the experimental frame parameters.

Once the RUN option has been selected, the graphics for the simulation are displayed on the screen. The user also has the option to alsable the graphics drivers and then only the simulation time and important status information will be displayed on the screen.

FLEXIBLE MANUFACTURING SMT SIMULATION MODEL

Number per Batch $=15$
Number of Simulations $=4$
Job Interarrival Times $=0.5$ Minutes
Enable/Disable Graphics Display $=\mathrm{E}$
Graphics Timescale Unit $=100$

1) Review Job/Workstation Distribution
2) Review Job Scheduling
3) Alter the Number of Similations/Report Times
4) Enable/Disable Graphics Output
5) Change the Graphics Timescale Unit
R) Rune the simulation
E) Exit to Operating System

Select Option =>

Figure 10.1 Simulation Model main menu.

The simulation begins by initiating all the resources (machines) to the idle state and activates the first batch of jobs, each job being seperated by a uniformiy distributed inter-arrival time. As mentioned before, each job type has a unique routing sequence associated to it, and it now goes through that sequence in the following way:-

A REQUEST is made to the first workstation in its production schedule. If the workstation has any free resources (i,e., if any machines at that workstation are idin), then the request is accepted and the job is WORKED on for the required amount of time. on completion of the work time, the resource is RELINQUISHED and the job requests the following workstation according to the schedule. If on request, the workstation does not have any idle resources, the job is put into the workstation QUEUE and waits until one of the resources is relinquished.

An important point to note is that the simscript software is a multitasking environment. Therefore any number of jobs can be worked on at the same time independent of all others. Also, throughout the simulation, the statistical variables are being recalculated and updated.

Once the batch of jobs is completed, a final report detailing all aspects of the job and the workstations is written to a file, a copy of which is shown in Figure 10.2.

Tie user chould never base decisions on the results of only one run, since being a stochastic simulation, there is no reliable way of determining the accuracy of the results. Therefore, a report is generated after each run to allow for a comparison of the results,

A listing of the program source code and a diskette containing all the files is given in Appendix 13.

Totai maning Time $=1.89$ Hours
Simulation Run time $=1.39$ Hours

3ob Report:

	Average Total Job Type Delay in Quaue	Number Comploted
		.37

Euation	Aversog Ham if au*ut		Frep Time Weking	\because rep Tiftit :214	$\begin{aligned} & 8100 T \\ & 81204=t \end{aligned}$
1	0.	. 000	.001	. 93	-6\%
2	0.	-. 000	. 006	. 994	-. 80
3	0.	.000	$\therefore 6$. $\because 1$	-90
4	0.	. 000	. 010	. 390	-. 00
5	1.611	. 204		. 2.4	3.
8	. 331	. cu 2	.700	. 350	0.
\%	13.	-. 000	. 010	. 930	-. 00
a	0.	-. 000	. 010	. 390	, ${ }_{3}$
s	0.	. 000	. 010	.990	-.6e ${ }^{\text {a }}$
10	0.	$-.000$. 0.09	. 991	. 06

The simulation program is capable of simulating any resource i.e. machine or conveyor belt, in the surface mount facility. Machines can be simulated and results obtained detailing utilization time; queue time for jobs waiting to use the machine and breakdown or setup stoppages. A graphical interface was developed to allow events to be viewed in real-time, on the screen. The flow of a batch of jobs through the system can be traced graphically and graphs showing jobs queueing at machines, displayed on request by the user. The iners interaction with the program is all through a mouse-driven menu system, allowing for simple yet powerful functionality.

Although the simulation program was initially developed to verify the theoretical design of the facility before any speaific machinery was decided on, by the cime it was completed, the machinery has already been purchased and the facility was being commissioned. The simulation was then applied to the existing facility to calculate possible throughput etc, and it was found that the pick in place machine had a overiding effect on the balance of the SMT line. The Pick n Place machine was, in fact, a major bottieneck.

Even though the next part this project falls out of the scope of the dissertation, it was included because sufficient analysis of the facility could not be achieved using the simulation program without rectifying the main bottleneck of the facility, namely the Pick n slace machine.

11. 1 Introduction

Once the simulation program had been completed and tested on the SMT inne, results proved that if the Pick n place machine was not set up correctly, it caused throughput on the line to decrease dramatically. However to understand the complexity of setting up this machine, a closer look at its workings is required.

11.2 The Universal Omniplace 4621B System

The Universal Pick n Place machine is shown in Figure 11.1. The machine has two identical placement heads which pick components from the feeders using a nozzle and place them on the PCB. The placement head requires different nozzles to pick different components and the machine has a facility whereby up to eight nozzles may be utilized by both heads independently.

The front feeder positions are called base feeders and consisc of 20 feeder positions each. The feeders on the two Extended Input Modules are called EIM feeders and there are 43 positions on each. The placement heads can only pick components from the base feeders.

If a component is on the EIM feeders, then a shuttle with two heads only picks the component from the feeder and travels with it to the edge of the EIM. The placement head then picks it oft the shuttle and places it on the board.

Note that the shuttle only has the choice of two nozzles during machine operation. Therefore, the type of components placed on the EIM feeders are limited by the type of nozzles used by the shuttle.

An important factor to consider at this stage is that of placement speed. A component picked and placed from a base feeder is quicker than one. from an EIM feeder (on average, about 0.40 seconds per component). It was initially assumed that a component picked from the first EIM position (that position nearest the placement head) would be substantially faster than one picked from the last position. This was later disproved after exhaustive tests were carried out on the machine. (Refer to Figure 11.2a and b). But we see that it would be preferable to have as many as possible of the components on base positions.

Figure 11.1 Univonal Fick and Pas Man hino

EIM PICK \& PLACE TIMES

Figure 11.2a \quad ¢M pick \& place times. Feeder placements are given in brackets.

BASE PICK \& PLACE TIMES

TIME PER COMPONENT (Sec)

Eliow Run
Kivive Fast Run

Another important factor to be considered is verification. This is the identification of a component to ensure that it is the correct element being placed. Certain components, for example resistors and capacitors, are verifiable and it would obviously be desirable to have as many components veritied as possible. There are two possible methods of verification.

The first is to install a special verifier at the side of the machine. The placement head would then pick a component and would have to take it to get verifled before placing it. This is obviously undesirable, since the extra time needed to verify every component would add a big overhead to the normal working time.

The second method is to place a verifier in the EIM shuttle which could then verify the component "on-the-fly" or while it is taking it to the placement head. This method is obviously more desirable but the selection of components that can be placed on the JIM feeders is going to be further restricted to only verifiable ones.

A further complication to the feeder placement problam is that placement head 1 can be used to apply the adhesive to a board as well as place components. Thus, if we have a board which requires components to be placed on the solder (or bottom) side of the board, adhesive first has to be applied to the board before components can be placed. If the adhesive application can $k e$ done within sufficient time, then head 1 could also be expected to place some of the components. Tests were conducted to calculate adhesive application times and the results are given in Appendix 14.

Because both placement heads can be used to place components, the optimum situation would be for both heads to work equal times thus causing no delays. However, if for example head 2 works longer than head 1, the completed board at head 1 cannot be transferred to head 2 until it has finished it's present board and transferred that to the next station.

The simulation therefore became pointless if the pick n Place machine was not set up correctly and it was decided to develep ar optimization program to solve this problem.

11.3 Software Development

It is very important for the user to have quick and easy access to both the simulation program parameters and the optimization program results, to allow modifications to be made and the programs to be rerun.

Therefore a database was designed that cats:rs for both programs in one environment. It consists of modules which can be modified independently. The database is an integrated program which automatically updates changes made in one module in all other related modules.

The optimization program was also written within this database enviromment because the nature of the database's storing and memory methods facilitated the neccesary computations.

21.3.1 The database program

Using the database program, the user may modify or edit an exisiting datakitse or save the present database to a file and start a new one.

In order to edit an exsisting database, the following funtions are available to the user:
(See Figure 11.3)

- Initialization
- Workstations
- Job Setup and optimization
- Run Times and Reports
- Quit

Initialization

This module enables the user to change the experimental frame parameters (See 10.3.2) which include:

- Total number of workstations
- Job inter-arrival time
- Number of jobs
- Number per batch
- Number of tasks
- Total number of simulations
- Number of components on the Pick n Place machine

On most occasions the user's changes will be automatically updated in other modules. However, if, for example, the user changes the number of components on the Pick n place machine, the components module would be updated with the new number of components but the user is still required to enter the relevant details regarding these new components.

Workstations

In this module the user inputs all relevant details concerning the layout of the plant. Some of the choices include:-

- Conveyor length
- Conveyor direction
- Workstation X and y coordinates
- The number of machines at each workstation

Job Setup and Optimization

The first two options in this module are:-

- Task workstations
- Task work times

Here the user defines the job routing schedule and working times at each workstation.

The next two options are:-

- PnP component setup
- PnP machine optimization

Both these options are discussed in detail in section 11.3.2. However we see here how the cptimization program is considered a module of the database and can there:fore access all the relevant information directly from the database.

Run Times and Reports
The information in this module is purely for simulation purposes and allows the user to define starting times for the simulation runs (up $t=$ o runs are allowed). Apart from the reports that are automatically generated at the end or each simulation run, the user can define times when he would like additional repurts to be generated. This kind of report would give the details of all previous simulations run up until that point in time.

Quit
This option closes all the modified files, releases all activated windows and takes the user back to the main database menu.

The optimization program uses two methods of optimization. The program can either be based on spreading the load between the two placement heads accordirg to the number of components per board or by grouping similar nozzles together and then optimizing their feeder placement positions. The method used to produce the optimum result will depend on the type of component configuration for the PC board.

Each type of component that is used on the Pick n Place machine is entered into the component database with the following attributes:-

Component TYpe X
NAME OR CODE NUMBER
NUMBER PER BOARD
TOPSIDE/BOTMOMSIDE
NOZZLE SIZE REQUIRED
FEEDER TYPE REQUIRED
VERIFIABLE (Y/N)

If, for example, we have eight components as follows:-
Comp Num Per Ba Nozzle Size Verifiable

1	85	0.0420	N
2	45	0.2080	Y
3	35	0.0580	N
4	80	0.0420	N
5	68	0.1090	Y
6	60	0.1090	Y
7	45	0.0580	N
8	69	0.2080	Y

Table i-Component database example 1.
The fin t method soxts the component database on the NOZZIE SIZE field, i.e. all components with the same nozzie size are grouped together. The program then optimizes by first checking if the component is verifiable. If it is, then it places it on an EIM in such a way so as to keep the two EIM's balanced. If both EIM's hay 3 their full quota of components (i,e., two different types of nozzles each), or if the component is not verifiable, it is then placed on a base position in the same way.

The second method sorts the component database on the NUMBER PER BOARD field i.e, sorts the components in a descending order of components per board. The program then optimizes "s sequentially placing the components around the machine based on whether they are verifiable or not. This method dwes have its drawbacks, however. Although it usually gives the better optimization results than the first, it does this at the expense of placing some of the verifiable components on the base feeders thus assuming that optimization is more important than verication. It would be up to the user to decided if those components on the base could do without verification.

The reason why two different methods are necessary, is because of the fact that we have so many parameters with which. to work including component count, verification, EIM nozzle limitation etc. In some cases the first method works better than the second and visa versa. This point is clarified by the following example.

If the configuration in Table 1 is fed into the computer and optimized the following results would be obtained:-

Method 1

Headi Head2

Total No. of Component Types on Base 22
Total No. of Component Types on EIM 2
Optimization Percentage* $=82.8 \%$

Method 2

Head1 Head2
Total No. of Component Types on Base 22.
Total No. of Component Types on EIM 2.2
Optimization Percentage* $=99.7 \%$

* optimization percentage $=$ total working time head x total working time head y

We see that although they both place an even number of components around the machine, the second configuration is defindtely the more desirable.

However, if we chance the component configuration around as in Table ia and make all the components verifiable, we get the following results:

Comp
1 Num Per Bd Noazle Size Verifiable 2 85 0.0420 \mathbf{Y} 3 45 0.2080 \mathbf{Y} 4 35 0.0580 \mathbf{Y} 5 80 0.0420 \mathbf{Y} 6 68 0.1090 \mathbf{Y} 7 60 0.1090 \mathbf{Y} 8 45 0.0580 \mathbf{Y}

Table 2 Component database example 2.

Headi Head2
Total No. of Component Types on Base
1
1
Tiotal No. of Component Types on EIM
2
4
Optimization Percentage* $=91.3 \%$
Method 2
Head1 Head2
Total No. of Component TYpes on Base 1 I
Total No. of Component Types on ETM 4
Optimization Percentage* $=43.6 \%$

* optimization percentage $=\frac{\text { total working time head } x}{\text { total working time head } y}$

The above results justify the need for both methods.
If any of the above two methods do not produce results over and above 95\% optimization AND if they have placed some components on the base feeders, then an additional optimization program called REOPT has been written. This program takes the results of the initial optimization program and attempts, to re-optimize only the base placement feeders, thereby increasing the overall optimization percentage. If, for example, Head 1's total placement time is larger than Head 2's total placement time, the program attempts to transfer one or more of the component feeders from Base 1 to Base 2 until the placement time difference is at it's minimum. However, this optimization is only possible if Headl has components on its Base feeders.

After any of the optimization outines have been run, the user has the option to print out the results of the last run to allow for a comparison of the results at a later stage. The report also gives the exact feader placements for each component neede by the user to set up the machine. An example of an optimization report is shown in F'igure 11.4.

SOT 35		10	1	1	E	0.0430	0.31
CHIP CAPS	0805． 1505	10	1	3	B	0.0420	0.21
CHIP CAPS	0905．1505	10	1	2	B	0.0320	D． 31
CHIP CAPS	1206． 1505	10	2	2	B	0.0530	0.31

Figure 11.4 output report from optimize ion program detailing component and feeder placement around the pick and place machine．

The optimization program not only overcomes many of the problems highlighted by the simulation program, but is to this day aiding the machine operator tremendously. in setting up the machine. To manually calculate component feeder placement for the Pick n place machine previously incurred enormous human error which was only identifiable once the machine was set-up and running. At present, the user enters all the component information into a database which, in turn, generates a detailed feeder placement report.

The integration of the database and simulation programs, allows the user to make small changes to the system parameters and view the results almost simultaneously.

12.1 Summary and Conclusions

A surface mount facility should be capable of flexibility with respect to component variation, board size, soldering processes etc, but without a complete set of standards, this is not possible. However, to wait for a unified set of standards could be just as disasterous from a market-entry point of view. SMT is new and undeveloped and the learning curve is therefore that much greater. The risks are therefore a lot greater, but companies can reap large rewards for persistance.

Due to the high degree of flexibility required for such a facility, and the number of options available to achieve this, no specific theoretical methodology or equipment was recommended throughout this project.
However, a detailed description of component availibility; reliability and availability of standards is presented. Also. a detailed description of each process in the SMT facility is also presented. In this way, the reader has been given all the possible options that are available, and can make his choice depending on what type of facility he requires.

A simulation program was developed to simulate the viability of specific macninery working as a complete production line. Results obtained could determine the individual effect a machine was having on the line as a whole. This machine could then ejther be replaced or modified until a suitable result was obtained.

The simulation program succesfully identified the major bottleneck in the SMI facilitiy, namely the pick n Place machine. Together with the optimization software, an integrated system was developed which allows for real-time simulation of the facility and allows the user to try out different variations without actually incurring any wastage of materials and/or production time.

12.2 Recommendations for future work

On many occasions, a Materials Requirement Package (MRP) having been setup up at a factory, has failed to produce the "promised" results. The reason for this, is that resules could only be verified once the system had been iristalled and was operational for some months, thus causing finacial and inventory losses.

What is needed is the incorporation of the simulation program with an (MRP) program which would provide a foresight into the viability setting up the operation in the actual factory.

The simulation program would be capable of simulating the entire plant and would provide the production manager with the ability to not only have a forward scheduling ability but also to verify that it its a viable one i.e. the simulation program would take into account breakdowns, stoppages, work in progress, finite queue sizes etc. If, according to the simulation program, the production schedule could not meet it's requirements, the MRP program could be easily modified and the simulation rerun, or an alternative method chosen.

Because of its inherent flexibility, the simulation model could easily be adapted from one facility to another within a short time span.

The justification for this proposal is simply "Costs". Thousands of Rands could be saved by analysing the situation before actually impieanerting it.

Appendix 1. The Manufacturing and Reliability Requirements of Surface Mount Components and Packages

A1.1 Passive Components

A passive component is one which does not contain a source of energy. The chief types of passive components in electronics are capacitors, resistors and inductors.

The common nomenclature defining capacitor and resistor sizes employs a four-digit code. The first two digits describe the component length (in hundredths of an inch), and the last two refer to its width:

0,12 in nominal $\square 0,06$ in nominal width length

A1. 2 Capacitors
The two predominant classes of surface mount capacitors are the ceramic and the tantalum dielectric families. A range of multilayer ceramic capacitor (MLC) chips account for the vast bulk of surface mount capacitors, however the capacitance values available ire more limited. By and large MLCs now meet present-day needs without compromise to high-density or high-tolerance requirements.

A1.2.1 Multilayer Ceramic capacitors

Ceramic capacitors were one of the first surface mount components to be widely used. As a result, a high. degree of standardization has been achieved worldwide.

Physical characteristics
The internal construction of a MLC is shown in Figure Al.1. It consists of alternating layers of dielectric and electrode materials printed consecutively and co-fired at a temperature of $1000-4000^{\circ} \mathrm{C}$. The dielectric is usualiy a barium titanate composite, and the electrodes are platinummilver films. Alternate electrodes are connected to opposite end terminations to form a set of parallel-plate capacitors. To prevent dissolution during soldering, a thin barrier layer is applied over it. The barrier consists of a metal, such as nickel or copper, that has a low solubility in tin-lead solder. Finally, a tin coating is applied over the the barrier metal to provide a highly solderable surface.

Electrical characteristics

Electrical performance characteristics of ceramic capacitors depend on the nature of the dielectric material employed. Materials are usually classified according to the definition in EIA-198.

Figure Al. Internal construction of ceramic capacitor.

The three most common dielectric classes are COG (formerly NPO), X7R, and $Z 5 U^{(3)}$. The COG dielectric offers the highest degree of temperature stability due to its low dielectric constant. The X7R dielectric has a higher dielectric constant and is preferred for many general purpose applications.

The $Z 50$ is used in applications requiring high capacitance and small physical volume due to its high dielectric constant. The approximate physical sizes of COG, X7R, and Z5U capacitors are shown in Figure A1.2.

Figure AI. 2
Approximate capacitor ranges for various ceramic capacitor packages.

A1.1.2 Tantalum electrolytic capacitors

The demand for higher capacitance values is usually met with tantalum electrolytic capacitors. Because of their small phvsical sizes, these capacitors are primarily suit, for small-signal and low-voltage applications.

Physical characteristics

The post-molded plastic body construction shown in Figure A1.3 has gained general acceptance, and because of its repeatable body dimensions and flat top surface, this package is ideally suited for automatic assembly. Its non-hermetic construction makes it an attractive low-cost solution for commercial and general industrial applications, but less suitable for high reliability use.

Figure Ai. 3 construction of post-molded tantalum capacitor.

Important features in this design are: a) solid electrolyte capacitor element; b) post molded resin package body; and c) external leads soldered or welded to the capacitor element. The leads fold under the capacitor body to provide a measure of compliance without significantiy increasing the overall package dimensions.

Electrical characteristics

The relationship between size and capacitance value for various voltage ratings is given in Table 1. As with most capacitors, best reliability is obtained when the applied voltage is considerably less than the maximum rating.

Some SMT manufacturers recommend that the applied voltage not exceed $50-60 \%$ of the rated working voltage. Design improvements currentiy in development may eventually eliminate the need for this large derating factor.

Table 1. EIA Standard Capacitance package sizes.

$\begin{gathered} \text { Capacitance } \\ \text { (DF) } \end{gathered}$	Working Voltage (volts)					
	4	6	10	25	35	50
0.1				3216	3216	
0,15					3216	3528
0,22					3216	3258
0,33					3216	3528
0,47				3216	3528	6032
0,68					3528	6032
1,0				3528	6032	
1,5		3216	3528	6032	7243	
2,2	3216			6032	7243	
3,3	3216			6032	7243	
4,7		3528		7243		
6,8	3528		7243			
10,0	3528		6032	7243		
22,0	6032					
33,0	6032		7243			
47,0		7243				
68,0	7243					

Just like capacitors, surface mounted resistor chips are available in both rectangular and cylindrical formulations, each of which has its own resistance, power, and tolerance ratings. The most common are thick film, thin film, talk metal foil, and wirewound. Thick film chips, which are the resistor counterparts to MLCs, represent the bulk of the surface mount market for individual resistor chips.

A1.2.1 Rectangular chip resistios

Physical characteristics

Most rectangular chip resistors are based on thick film process technology. As shown in Figure Al.4, the active element consises $2 \dot{\sin }$ a thick paste, which has been screened and itireai over a ceramic base. The base material is 96% alumina (a composite of 96% aluminium oxide $\mathrm{Al}_{2} \mathrm{O}_{3}$, and 4% other oxides). The resistive element is ruthenium oxide or similar paste. To protect the resistor a glass layer is fired over it.

Figure Al. 4 Construction of thick film rectangular chip resistor.

Electrical contact is made from the ends of the device. A thick film of conductive material is fired to form the electrodes. As with chip capacitors, the end terminatims are protected with a nickel or copper barrier layer to prevent dissolution of the precious metal electrode during soldering. Finally, a tin-lead coating is applied over the barrier metal to provide a highly solderable surface.

The most popular member of the standard family is the 2206 resistor ${ }^{(3)}$. It is rated for $0,125 \mathrm{~W}$ power dissipation or 200 V DC maximum continuous voltage. The 0805 and 2210 meet the lower and higher power requirements respectively. Recommended power derating characteristics for this family are presented in Figure A1.5. These products are comonly available in resistance values from 10 ohms to 1 megaohm and in several tolerance ranges ranging from 0,1\% through to 20\%.

Figure A1. P Power derating characteristics for thick film chip resistors.

Al.2.2 Cylindrical or MELF (Metal Electrode Face) resistor.

Physical characteristics

The MELF resistor shown in Figure Al. 6 is adapted from conventional through-hole resistor technology. Rather than attaching leads for insertion mounting, the electrodes are metallized and solder-coated for surface attachment. The most commonly used MELFs afe of either carbon film or metal film construction (3). Carbon film resistors are low-cost products intended for general purpose use. The somewhat more expensive metal film products offer tighter tolerances, improved temperature stability, and better noise performance.

Figure A1. 6 Construction of MELF resistor.
Both macducts amploy a similar phesical construction. whe resistive element (chramium film or nickel-chromium alloy) is vapor-deposited onto a ceramic core. Metal end caps are welded to the base to form electrodes. An insulating, solvent-resistant resin coating is applied over the element, and colour coding bands are applied.

Electrical charactexistics

Carbon film resistors are typically available in values from 1 ohm to 2 megaohms. Toleranoes of 5\% are easily produced. Metal film rusistors range in value from at least 10 ohms to 1 megaohm with 1% or better tolerance. Several power ratings are presently available from 0,125W/200V to 1 W dissipation.

Surface mount inductors are available in either wirebound or multilayer construction. Several levels of performance can be obtained, but the variety of product offerings does rot yet approach that of through-hole technology. Although the EIA is considering the issue, there are as yet no officially recognized standard sizes for surface mount inductors.

A1.3.1 Wirewound inductors

Wirewound inductors consist of a number of turns of fine wire wrapped around core material. Low inductance values employ a ceramic core, while larger values need the higher permeability of a ferrite core. As shown in Figure A1.7, the vindings may be orientated either vertically or horizontally.

A1.3.2 Multilayer inductors

Alutilayer inductors are similar in construction to multilayer capacitors. They typically consist of alternating layers of ceramic or ferrite paste and conductor paste in a monolithic configuxation. Inductance values extend from about 0,01H to 200 H in body eizes identical to the 1206 and 1210 ceramic capacitors.

Multilayer inductors tend to have somewhat higher selforesonant frequencies, higher series resistances, and lower Q-factors than similar wirewound inductors. common available tolerances are 5% and 10\%, but with no industry standards available.

Other important passives now suitable for SMT (which can survjve virtually any vapor-phase or infrared-soldering techniques) include cEDs, DIN41612 and other connection systems, crystals and oscillators, push button and toggle switches.

a. Vertical windings, b. Morizontal windings.

Figure Al.7 :Construction of wirewound inductors.

A1. 4 , Semiconductor Devices

A1.4.1 Introduction

Surface mount semiconductor devices (transistors, diodes, integrated circuits, and related products) employ the same silicon die as used in their through-hole counterparts. Any change in overall device reliability is strictly due to the difference in package format.

The lack of standardization of package style appears to be limiting the growth potential of this technology. Though there is an eminent need to define package parameters consistent with the philosophy of surface mount techniques, there are some basic requirements which any packaging style must reflect.

First, in the case of ICs, the package is responsible for providing the electrical connection between the internal die and the exterior circuit path. A path must also be provided for heat dissipation. The lack of a good path for the heat to escape cxeates a potentially hazardous operating situation. The package must also be able to provide an interior enviromment compatible with the device's performance and reliability parameters, and also the package must be strong enough to permit the entire structure to withstand stresses occuring during manuiacturing, assembly, test and actual use.

The task of the device designer is to achieve the h.ighest possible reliability at the lowest possible cost. This has led to the development of two major package families. Hermetically sealed packages provide the higher level of reliability, but at a higher cost. plastic encapsulated packages provide a lesser level of protection, but at a much lower cost.

To ensure general acceptance, microcircuit packages must provide the following attributes:

Vexsatility

- Variable lead count
- Compatible with all die attach/interconnect
yethods
- Capable of high spead signal transmission
- Rugged, small and Iightweight

Readily available

- Simple design
- Easy customization
- Fast production turn-around

Cost effective

- Low cost
- Mass handing/automatic handling

High reliability

- Electrical and enviromental characteristics consistent with design requirements
- Compatible package-to-board interconnect thermal coefficients of expansion (TCE) characteristics to eliminate interface effects
- Electrostatic Discharge (ESD) protected

Unlike other facets of surface mounting, converting a chip in a DIP, flatpack, or conventional leaded chip carxier to surface mounted form has proven a pleasant task. Often, no major alterations in the reworked chip or carrier are neccesary, except perhaps for ohips that dissipate power. Minor rerouting of signal leads and various power-tab techniques are then employed, in which case the frame pins of one or two sides of the plastic leaded chip carrier (PLCC) package are tied to the die pad, and an external heat sink is added. Work is under way to bring the power limit to 5 W but at present $2,5 \mathrm{~F}$ is the best available.

As mentioned before, the Joint Electronic Device Engineering council (JEDEC) is a well recognized purveyor of standards for the electronic industry, Standardization is reserved for those package types that meet more stringent requirementc, enjoy widespread support, and are produced by a number of manufacturers. Most of the devices discussed in the following sections have been registered by JEDEC.

A1.4.2 Discrete semiconductor package styles

Most discrete semiconductors (transistors and diodes) are housed in plastionencapsulated packages as per Figure Al.8. The most common packages for discrete semiconductors are the sor (small outline transistor) configurations: SOT-23, SOT-89, and SOT-143. These packages are post-molded plastic outlines that cover small and medium power applicarions to about 500 mW dissipation. Higher power packages are less well defined.

Figure Al. 8 Internal construction of sot-23 package.
Two types of hermetically sealed packages are available: the cylindrical MELF package is often ised for diodes, while transistors are usually packagerd in ceramic chip carriers.

The high power transistor is one area where smos are not being introduced. The specialised requirements of heatsinking these components usually transcend other aspeats of design.

A1.4.3 Selection criteria for discrete semiconductors

Plastic encapsulated devices are recommended for most commercial and industrial applications in which ambient operating temperatures do not exceed $70^{\circ} \mathrm{C}$. For more extreme enviroments, devices should be protected within a hermetically sealed package. \rightarrow
When plastic packages are acceptable, selection .riteria is relatively straightforward. only two significant issues muat be resolved: selection of a specific SOT-23 ourline and decision between SOT and MELF packages for diodes.

The JEDEC outline presently alluws two variations. The To-236AA high profile outline is used for reflow soldering applications. The large clearance between package and board permits cleaning solvents to penetrate and remove flux residues from under the device. The To-236AB low profile outline is used when the component must be adhesively mounted to the board. The minimal standoff height ensures that the adhesive will fill the gap between component and board.

When hermeticity is neccesary, the alternatives are limited. MELF packages are recommended for diodes, but there are few choices for transistors. Although a hermetic version of the SOT-23 has been developed, it is not widely available.

A1.4.4 General integrated circuit (IC) design considerations

The first generation of integrated circuits were constructed as DIPs with $100-\mathrm{mil}$ centres. The second generation ICs were the Small-Out-Line ICs (SOICs) and chip carriers (CC) with 50 -mil contres. Today the industry is considering the third generation of ICs to accomodate pin counts in the 124 to 300 range on diminishing center spacings.

Surface mount ris have either very short leads or no leads at a?1. They are generally produced on 0,050" lead centers. However, designs do exist on 0,040", $0,025^{\prime \prime}$, and 0,020" lead centers. This spacing refers to the center-to-center spacing width between adjacent leads and is reffered to as "pitch". This is a major design change from the traditional 0,100" center spacing of DIPs, a change which allows many more leads to be utilized on a package of similar dimensions.

Issues of general importance in the design of surface mount IC packages include the following:

- pinout configuration
- leadless vs. leaded design
- lead configuration
- lead coplanarity error

1 Pinout configurations

Surface mount packages are produced in two general pinout configurations. For small devices from about 8 to 28 pins, a dual-in-ine approach i.s used. Pins are arranged in two rarallel rows similar to the through-hole DIP. For higher pin counts, a quad configuration is preferred. This style employs pins on all four sides of a square or rectangular package.

The very first surface mount flatpacks were designed with long leads that extended straight out from the package body. Because the leads were fragile and easily deformed, flatpacks could not be automatically placed onto the PCB. Design changes led to the development of leadless ceramic chip carriers. These packages do not employ external leads. Instead, they contact the board through metallized electrodes deposited directly on the ceramic package, thus allowing for automatic placement. The absence of leads reduces the cost of the package and improves the electrical performance due to lower parasitic lead reactances.

However, leadless packages have their own set of problems. The coefficients of thermal expansion between a ceramic chip carrier and the subsrate to which it is being mounted are not well matched. For packages of about 28 pins and above, joint failure can occur after relatively few thermal cycles. Various methods can be employed to overcome this difficulty, but at a considerable increase in cost compared to standard techniques.

Most plastic packages now use a leaded configuration to provide a measure of compliance between package and board. Unlike the old flatpacks, leads are designed for compatibility with automitic assembly equipment.

3 Lead configuration

Three lead configurations are commonly used for surface mount IC packages: gull-wing, J-lead, and I-lead. All are compatible with automated assembly equipment, but each has various advantages and disadvantares. (Refer to Figure Al. 9 below)

Gull-wing
The gull-wing lead stretches down and outward away from the device body, forming a lap joint interconnection Figure Al.9a. A prinary feature of this lead is the ease with which the finished joint can be visually inspected. Another advantage is. that the device can be electrically tested through the use of a relatively simple probe fixture.

a. Gull-wing
b. J-1ead
c. I-lead

Figure A1.9 smi lead configurations

The exposed Lead design also presents problems. It is susceptible to damage during handling, and even slight stresses can deform thin leads beyond specification limits. Leads bent out of the seating plane by as little as $0,12 \mathrm{~mm}$ ($0,005 \mathrm{in}$) may not solder properly at assembly. Another disadvantage is the large package footprint in relation to body size. Although the body is small, the extended leads increase the overall. outline by a considerable amount.

J-1ead
The J-lead was designed to overcome the disadvantages of gull-wing leads in that the lead is rolled under the package for protection against ordinary mechanical damage. Two basic lead styles exist. The first configuration, shown in Figure Al.9b, is considered a compliant-type lead. The lead is bent at a 90-degree angle under the package at the board incerface where it becomes soldered to a metallized footprint. The other type, is considered non-compliant, and describes a lead that bends at the board surface and bends back to be attached to the package's underside. The difference between the two is considered critical due to the inability of the non-compliant lead style to withstand numerous thermal/power cycles, contributing failure characteristios similar to those of leadless chip carriers.

I-lead
The I-lead (or butt joint), is illustarted in Figure A1.9c. It is a relatively new concept that offers the advantages of the $J-l e a d$ without most of the drawbacks. Leads are formed in a simple shearing operation that assures precise palanatiry. once formed, they are very resistant to damage. Even if a lead is slightly bent, there is little risk of soldering problems because it remains in the same plane as all the other leads. The deformation would have to be so severe as to position the lead entirely off the corresponding land before a serious problem would occur. The mechanical strength of a properly formed I-lead has been shown to equal or exceed that of the gull-wing and J-lead configurations.

The primary disadvantage of the I-lead is that leads must be tinned with solder after shearing. otherwise, the exposed base metal at the bottom of the lead will not exhibit acceptable solderability, and solder voids can occur under the lead. Large stress concentration can build up in the solder surrounding the void, increasing the risk of fractures and subsequent mechanical failure of the joint. Solder tinning must be performed by dipping the leads in a solder bath or by use of a wave soldering machine.

A1.5 Integrated circuit package configurations
A multitude of package styles is available for surface mount Ics. These range from relatively inexpensive post-molded plastic packages to hermetic ceramic packages. Characteristics of several of the more prevalent package styles are described below.

A1.5.1 Small Outline Integrated ©ircuit (SOIC)

As illustrated in Figure A1.10, the sOIC emp'oys the dual-in-line lead configuration (DIP) with gull-wing leads spaced on 0,050-in (1.27-ma) centres. Two package outlines have been standardized by JEDEC under the MS-012 and MS-013 drawings. The narrow-body outline has a body width of $0,150-\mathrm{in}(3,81-\mathrm{mm})$ and covers lead counts of 8,14 , and 16 leads. The wide body-outline, sometimescallect the sod (small-outline-large), has a body width of 0,30 in ($7,62 \mathrm{~mm}$) and covers lead counts of $16,18,20,24$, and 28 leads. The package loses its attractiveness above the 28-pin count, at which point (I) the package becomes fragile and hard to handle, (2) lead-inductance problems begin to match those of the DIP and (3) board real estate advantages become insignificant.

Figure A.1. 10 Internal construction of solc device

This product was developed to meet the need for a low-cost plastic package $\rightarrow r$ higher lead-count devices. It employs J-leads on $0,050-$ in ($1,27-\mathrm{mm}$) centers in a quad configuration. In the square outline used for most digital and linear ICs, the lead count is divided equally among all four sides, A rectangular outline is preferred for memory chips because it more closely matches the geometry of the silicon chip.

The JEDEC MO-047 drawing defines outlines for square packages with lead counts of $20,28,44,52,68,84$, 100, and 124 leads. The MO-052 drawing covers rectangular packages with $18,22,28$; and 32 leads. One complication is the exsistance of two sizes of 18-lead rectangular packages. The smaller outiine Figure Al.lla, was developed for 64 k dynamic random access memory (DRAM) chips. When 256 k DRAMs were introduced, they also needed an 18 -pin package but were too large to fit into the outline for the 64 k chip. A package with an extended outline Figure Al.11b was developed to meet this need. The design of the extended version is such that both packages can be accomodated by a single land pattern design with extended land patterns in the long direction.

a: 64K DRAM
b: 256K DRAM
c: Composite land pattern
Pigure A1. 11 Land patterns for rectangular pLCC packages.

A1.5.3 Advanced package configurations

The size of an Ic package is rarely dictated by the size of the internal die. The limiting parameter is usualiy the space necessary to fan out the leads to the required pitch. As lead counts continue to grow, the 0,050-in lead pitch becomes extremely inefficient. Although the PLCC package outlines have been defined for lead counts well above 100 pins, such packages are difficult to manufacture and consume an excessive amount of board space. A practical limit to maximum package size. seens to occur when the length of the packame reaches about $25-32 \mathrm{~mm}$ ($1,0-1,3 \mathrm{in}$) along a side. For a package with $0,050-$ in lead pitch, this limit is reached at about 84 leads. For higher pin counts, package size must be reduced by adopting a finer lead pitch.

The quadpack was the first to exploit the higher density possible with tighter spacing, but its unprotected gull-wing lead format has discouraged widespread use. Several improved outlines are curcently in development, but none are wideiy available and it is uncertain which I evolve into usable standards. It is likely tr one of these packages will undergo considerable \quad 'on betiore being made commercially availal. llex:ag descriptions are intended to ili , dustry trends rather than endorse specific o.

Plastic quad flatpack (PQF)
Using the gull-wing lead format, the existing adpack offers advantages that many users find attractive. Lead pitches of at least $0,60 \mathrm{~mm}$ (0,024 in) are possible, greatly improving packing density compared to the PI sC. Two serious disadvantages, however, have limited its usage: leads are easily damaged, and the thin body outline is prone to cracking.

To avoid the problems of the quadpack while using a similar configuration, a group of us manufacturers has proposed the package shown in Figure A1.12. It has gull-wing leads on a 0,025-in pitch and accomodates lead counts from 44 to 244 leads. A prominent feature is the inclusion of "bumpers" at the corners to protect the leads. This permits packages to be transported in tape-and-reel or tube formats without damage to the leads. Except for the ears, body dimensions are identical to those of the pLCC.

Figure Al. 12 JEDEC-registered plastic quad flatpack Chip-on-Board (COB)
$C O B$ is the placement of the unpackaged semiconductor device, discrete or integrated dircuit, directily onto a substrate. This substrate is usually a conventional PC board and passive components are discrete chip, surfare mount types instead of thick film.

Various techniques have been devised for mounting bare semiconductor die directly onto PCBs. These incluce chip-and-wire bonding, TAB, and flip-chip attachment.

Few standaxds currently exist for devices or mounting processes. CoB technelogy is mainly used in very high volume applications which can justify the effort to develop an emtire manufacturing process.

A1.6 Connectors and Electromechanical Devices

Advances in electromechanical devices such as connectors, relays, sockets, and switches have traditionally followed rather than lead other component technologies. This has again been the case f. the conversion to SMT. Compared to the state of standardization far passive and active components, electromechanical devices lag far behind. As end-users Wholeheartedly convert from through-hole to surface mount, they increasingly discover that the only remaining throughoh re components are the electromechanical devices. saced with the prospects of supporting an entire through-hole arambly line for these few devices, they are strongly lobbying for new surface mountable produot families.

A1.6.1 Connectors

printed oircuit edge connectors epitomize the technical problems of converting electromechanical devices from through-hole to SMT. They are often large, bulky devices that are awkward to handle with automatic equipment, and must sometimes withstand repeated insertions and withdrawals without physical damage. In miny cases they also serve as the sole form of mechanical support fir the PCB. Four factors have been identified as being critical to connector design. These are:

- lead configuration
- plastic molding compound
- mechanical support
-lead finishes
Details of these problems are beyond the scope of this document, but the reader should be aware of their exsistance.

A1.6.2 TC Sockets
Sockets for integrated circuits have many uses. During engineering developmerit, they permit ICs to be rapialy changed so that circuit performance over a large number components can be evaluated. In production, they are often used for custom ROM (read-only memory) chips or AsICs (applidation* wealfic ICs) that must be individually configured based on customer specifications. Wherever les must he rapidly and routinely changed, IC sockets are desirable.

Surface mount sockets come in two styles. The first, deaigned for throughwhole insertion is used to adapt a surface mount IC for through-hole mounting (See Figure A1.13).

Figure Al. 13 Socket to adapt sunface mount ICs for through-hole mounting

This is attractive when the benefits of the surface mount package (such as small size and reduced parasitic reactances) are desired on a board that would otherwise be totally through-hole.

The second type of socket, is itself designed for surface mounting, It fits roughly the same footprint as the original package, so if designed properly, the board can acoept either the $x C$ or the socket interchangeably.
since sockets do not form metallurgical bonds with the component leads but rather depend strictiy on mechanical contact, they are not as reliable as a soldered connection. Contacts can corrode in high humidity environments, and mechanical contact can be interrupted during shock or vibration. They should be used only when their advantages outweigh their disadvantages.

Appendix 2. IN PROCESS INSPECTION

A2.1 Final Inspectian

This iss the last opporturity to Eatch defects before shapping the product and is the most commory incpection point: ft is performed after all proceswing has been tomplethei, ustally in conjunction with a final elewtrifal terta

Final imspection in not an ideal point to monitor process performencen The observed defectu are a composite of the antirce processs finking it difficult to aswribe a spetitic defext to a particular process stepp lafteng final inspemtion im used primarily as a "gate" to preverti defective products from eseaping. In light of fine previous diseuseion, it would sem that this type of inspection is at odds whth wordemeass mant facturing philesophy. Temnicadyy this may be trues but the practitalitien of rea? -wortu mantufatursing often make such an inspection essential. *

Consider a surface mourat manufacturing facilith that achieves defect levels of 100 parts par million on a per-joift basis. Thiss means that out of evary 1 miltion joints produced, it eas be enpectad that about joo of them will te defective. (This defect Ievels while not extraordinardiy low, would be an aggressive gaal for nany factories). This probability that a given joint will be atereptable is thus:

$$
F_{2}=0.999900
$$

and the probebility that any given board will the acceptable is detarmined by the bimomial probability digatrabution :

$$
F^{\prime}(n)=F_{J} m
$$

Where $11=$ number of joints per boardn
The probability of a given board being defective is then just:

$$
\begin{equation*}
P_{m}=2 \cdots P^{2}(m) \tag{1}
\end{equation*}
$$

Figure A2. 1 plots eqn [1] fur varioug process defert levele. For example, if the above protess were used to assemble boarts with 5000 jointe per boamd (typital of a computer: memory boardy, about 40\% of the boards produred would contain at least one defect. The need for a comprehensive fimal inspection is then readily underetood - it is of little comfort to know the processa is in emotrol if nearly half the boards shipped are defective! Until process performance can De improved by several orders of magnitudes a final outgaing inspertion will eontinue to to mantatary.

Figure A2.1 Impact of solder process defect levels on final assembly yield. The ppm defect levels refer to the process yield on a per-joint basis.

A2:2 Post-Solder Inspection

This station is designed to monitor the quality of the SMT soldering process. It tracks solder joint defects, such as inadequate solder volume, poor wetting, solder bridges, solder balls, etc. These types of defects are exceedingly difficult to inspect automatically, BJ human visiorl is most often used. Some success has best reported with X -ray and infrared techniques.

Post-solder inspection suffers from limitations similar to those at final inspection: since it is so far downstream in the process, it is difficult to tell whether a particular defect is due to the soldering operation or a previous process. For example, if a component is missing, did it fall off during the soldering process or was it never mounted by the component-placement machine? To minimize uncertainty, the soldering system should be preceded by a post-placement inspection step. In this way, the quality of the product prior to soldering can readily be determined.

A question that often arises is how to account for defects that are most probably due to problems at previous processes. If a reflow-soldered joint is defective because it apparently never received solder paste, should it be counted as a soldering defect or a screen printing defect? According to one school of thought, the inspector should make an intelligent determination of which process step was the probable cause and ascribe the defect to that process.

Another school of thought argues that regardless of where the defect actualily occurred, since it was first observed at the post-solder inspection step, it should be countra as a post-solder defect.

Process monitoring however, is intended to identify potential process problems, not to place blame on a particular machine or operator. By counting the defect at the point where it was first observed, someone is assured of taking ownership of the problem. Otherwise it is easy for an inspector to dismiss it as being caused by another process step upstream without following up to confirm his suspicion.

A2.3 Post-Placement Inspection

This step provides feedback on the quality of the component-placement grocess. It looks for placement-related errors, such as missing, skewed, and incorrect components, and polarized parts installed backwards. Although often performed manually, it is easier to automate that post-solder inspection.

A2.4 Post-Screen Printing Inspection

The one point in the process where rework is actually easy is immediately after screen printing. If a defect is found, the paste is simply washed away and the board rescreened. The inspection process at this point need not be exotic, Frequently it consists of a straightforward visual examination by the soreen printer operator. If this person doesn't like the results of the print, he or she simply sets the board aside for later washing and reprinting.

It is easy to let this inspection point remain informal and not record the data. However, it is good to consider the possibility of maintainisig a simple control chart to track the process. This might be nothing more than a pn chart that plots the number of consecutive good boards produced before discovering a defect. The advantage of the control chart is that it helps identify evolving problems that may escape the nocice of an operator whose primary concern is to meet the production schedule.

Appensix s. FROTPRINT SPECIFICATIONS

A3. $1 . \quad$ Foutprints for wave suldering

To determine the footprint of an SMD for a wave soldered substrates there are four majn interactice factors to consider:

```
-tive zomponent cimensions plus tolerances - determined by the component man facturery
```

-the substrate metallization - positional tolerance of the suldar land with respect to a raference point on t e mubstra
-the solder resist - positional talerance of the solder resist $p_{i} \quad$ with respect to the same reference pointy 1
-the pacement tolerance - the ability of an automated placement machine to accurately position the SMD on the subrtrate.

The co-ordinates of patterns and SMDs have to meet a number of requirements. Some of these have a general validity, for examplen the mindmum overlap of the SMD matallization and an land, and available space for solder mamiseus. Othe me specifically required to allow success'ful wav. Itering. One has, for example. to take acrount of factore like the "thadow effect" the rimk of solder bridging (see below) and the available mpace for a dot of adtesive.

The "shadow effect"

In wave soldering, the way in which the substrate addresses the wave is important. Unlike wave soldering of conventional printen boards, where there are no component: bodies to restrict the waves freedom to twansverse the whole surface simes there are no components or, the solder aide, wave soldering of SMD substrates is inhitited by the presence of SMDs on the polder side of the board. The solder is foreen around and over the SMDs as shown in Figure A3n1ay and the surface tension uf the molten soider prevents it peaching the far end of the component: resulting in a dry-joint downstream of the solder flow. This is ki own as the "shadow effect".

The shadow effect toecomes critical with high component bodies. However: watting of the Eolder lands during Wave soldering can be improved by enlarging each land as shown in Figure AT.1bn The extended substrate
 it to fluw back and arpund the component metallization ta form the joint.

Figure A3.Ia Surface tension preventing the solder reaching the downstream end of the SMD.

Figure A3.1. Extending the solder land to overcome the shadow effect.

The use of the dual-wave soldering technique also partially alleviates this problem because the first turbulent wave has sufficient upward pressure to force solder onto the component metallization, and the second, smooth wave "washes" the substrate to form good fillets of solder. Similarly, introducing oil on the surface of the solder wave lowers the surface tension which lessens the shadow effect, but this technique introduces problems of contaminants in the solder when the oil decomposes. (See details on soldering later).

Solder bridging
On wave-soldered substrates the orientation of so (small outline) and vso (very small outline) ICs is critical for the prevention of solder brideg formation (See section 8). Optimum solder penetration is achieved when the central axis of the IC is parallel to the flow of the solder as shown in Figure A3.2a. The so package may also be transversely orientated, as shown in Figure A3.2b, but this is totally unacceptable for the VSO package.

Figure A3.2a
Parallel
orientation
for so and
VSO packages.

A3.2b
Transverse orientation for so packages only.

Another major cause of solder bridges on SO ICs and pLCCs is a slight misalignment as shown in Figire A3.3. The close spacing of the leads on these deyioes means that any inaccuracy in placement drastically reduces the space between adjacent IC pins and solder lands, thus increasing the chance of solder bridge formation.

Figure A3.3 Misaligned placement of so package increases the possibility of solder bridging.

Figure A3.2a

Parallel
orientation
for so and
Vso packages.

A3.2b Transyerse orientation for so packages only.

Another major cause of solder bridges on so ICs and PLCCs is a slight misalignment as shown in Figure A3.3. The close spacing of the leads on these devices means that any inaccuracy in placement drastically reduces the space between adjacent IC pins and solder lands, thus increasing the chance of solder bridge formation.

Figure A3.3 Misaligned placement of so package increases the possibility of solder bridging.

For wave soldering, an adhesive is required to affix components to the substrate. This is necessary to hold the components in place between the placement operation and the soldering process (this is discussed in detail in section X). The amount of adhesive applied is critical for two reasons: first, the adhesive dot must be high enough to reach the SMD, and second, there must not be too much adhesive which could foul the solder land and prevent the formation of a solder joint.

The solution to this problem is to place a dummy land under the device as shown in Figure A3.4. This will reduce the effective component standoff height and controls the spread of adhesive. As an alternative, a functional cirouit trace may be routed under the component if the high density of SMD substrates necessitates the routing of normal tracks between solder lands, but where it does not, a short dumy track should be introduced.

Figure A3.4 Adhesive dot height eriteria.

Through-track or dummy track to modify dot height criteria.

A3.2 Footprints For Reflow Soldering

To determine the footprint of an SMD for a reflow soldered substrate, there are five interactive factors to consider. The four that effect wave solder footprints (although solder resist may be omitted), plus an additional factor relating to the solder cream application which is applied using screen printing techniques. That is, the positional tolerance of the screen printed solder cream with respect to the solder lands. The solder cream density combined with the required amount of solder, determines the minimum area of solder land. The footprint dimensions for the solder cream pattern are typically identical to those for the solder lands used in wave soldering.

A convenient technique for specifying component clearances is to define, for each device land pattern, a "clear area" that must be free of components. The clearance between any two types of SMCs is determined by the larger of the two individual ciearances. The recommended land patterns in this section include suggested clear area requirements to accomodate the needs of test and visual inspection, and are denoted by the "A" and "B" dimensions.

A3.3.1 Passive component land patterns

Land patterns for passive components can be found from the following formulae:

```
X = Wmax - K (wave soldered)
X = Wmax +K (reflow soldered)
Y = H max 
G}=\mp@subsup{I}{min}{m}-2\mp@subsup{T}{max}{}-
where }\mp@subsup{X}{}{*}= land width
            Y = land leng'th
            G = gap between lands
            W = componerit width
            H = component height
            I}=\mathrm{ component length
            T = termination lenggth
            K}=0,25\textrm{mm}\mathrm{ for reflow soldered components
                        0,50mm for wave soldered components
```


Figure. A3.1: Land pattern relationships for two-terminal passive devices

The approximate formulae described above break down for extremely small components, such as 0805 cripacitors and resistors.

The recomended land pattern relationships for chip resistors and ceramic. capacitors are shown below.

Dimensions (min)

	Dimensions (mm)					
Package Style	A	B	G	X	Y	
0805	4.0	2.0	0.8	1.4	1.3	
1206	7.0	2.5	1.8	2.0	1.3	
1210	7.0	3.5	1.8	3.0	1.3	
Table 1	Land pattern relationships soldered ohip resistors.					
	Dimensions (mm)					
Package cryle	A	B	G	X	Y	
0805	4.5	2.0	0.8	1.0	1.5	
1206	7.0	2.5	1.8	2.0	1.6	
1210	7.0	3.	1.8	3.0	1.6	

Table 2 Land pattarn relationships for wave soldered c. p resistors.

Dimensior. (mm)

Package Style	\mathbf{A}	B	G	\mathbf{X}	\mathbf{Y}
0805	4.0	2.0	0.8	1.4	1.3
1206	7.0	2.5	1.8	2.0	1.7
1210	7.0	3.5	1.8	3.0	1.8
1812	8.5	5.0	3.2	3.7	1.8

Table 3 Land pattern relationships for refiow soldered chip capacitors.

	Dimensions (imm)				
Package Style	A	B	G	X	Y
0805	4.5	2.0	0.6	1.0	1.5
1206	7.5	2.5	1.8	1.3	2.0
12.10	7.5	3.5	1.8	2.2	2.0
1812	Not recomaended for wave soldering				

It is recommended that tantalum capacitors and wirewound inductors be attached exclusively by reflow soldering. While it is possible to safaly wave solder these devices, their tall outlines and protected leads are Iikely to promote solder shadowing.

Cylindrical MELF components can be wave soldered or reflow soldered. If reflow soldered, they should be adhesively attached to the board to prevent unwanted rolling of the parts. Recommended Misf land patterns are illusirated in Figure A3.2.

A

B
Figure. A3.2: Land pattern dimensions for cylindrical components.

Dimensions (mm)

Package Style	A	B	G	X	Y
Resistor 0.125W	6.5	3.0	2.0	0.9	1.6
Resistor 0.250W	8.5	4.0	4.1	1.5	1.7
Diode DO-213AA	6.5	3.5	2.0	1.1	1.6
Diode DO-213AB	1.8	2.1	3.5	8.5	4.5

Table 5 Land pattern dimensions for cyllndrical components.

A3.3.2 Discrete semiconductor land paれterns

Although no formulae are available to calculate generalized land patterns for these devices, the recommended dimensions are given in Figures A3.4, A3.5, A3.6.

Package Style	A	B	C	D	E	F	G	
TO-236	1.2	0.9	2.8	0.5	3.6	5.0	5.0	
SC-59	1.3	0.9	2.8	0.5	3.6			

Fig. A3.4: Land patterns for sot-2.3 packages (dimension in mm).

Fig A3.5: Land pattern for sot-89 package (dimensions in ma).

Fig. A3.6: Land pattern for sor-143 package (dimensions in mm).

A3.3.3 SOIC packaye land patterns

The land pattern geometry for soIc components is shown in Figure A3.7 and can be calculated from the following formulae:

```
X=0,60 mm (0,024 in)
Y = 1,80 mam (0,070 in)
G}=\mp@subsup{A}{\mathrm{ min}}{
where }\quad\mathbf{X}=\mathrm{ land width
Y = land length
G = gap between the two rows of lands
A = component body width
```


Fig. A3.6: Land pattern for SOT-143 package (dimensions in mm).

A3.3.3 SoIC package: land patterns

The land pattern geometry for SOIC components is shown in Figure $A 3.7$ and can be calculated from the following formulae:

$$
\begin{aligned}
& X=0,60 \mathrm{~mm} \quad(0,024 \mathrm{in}) \\
& \mathrm{X}=1,80 \mathrm{~mm} \quad(0,070 \mathrm{in}) \\
& G=A_{\text {min }} \\
& \text { where } \quad \begin{aligned}
\mathrm{X} & =\text { land width } \\
\mathrm{Y} & =\text { land length } \\
\mathrm{G} & =\text { gap between the two rows of Iands } \\
\mathrm{A} & =\text { component body width }
\end{aligned}
\end{aligned}
$$

Figure A3.7 Footprints for SOICs.

A3.3.4 PLCC package land patterns
Land patterns for PLCC componerits can be calculated from the followirg formulae and are shown in Figgure A3.8:

```
X=0,60 mm (0,024 in)
Y = 1,80 mm (0,070 in)
W = Emax
where }\quadX=\mathrm{ land width
    Y = land length
    W = distance between outer edges of opposing
                        lands
    E}=\mathrm{ distance between outer edges of opposing
                component leads
    K = 0,75 mm (0,030 in)
```


Figure A3.8 Footprints for PLCCs.

A3.3.5 LCCC package land patterns

Land patterns for 0,050 -in lead pitch LCCCs are the same as for PLCC packages. Since an LCCC is about 1,0-mm (0,040-in) smaller than a corresponding PLCC, the value for K is larger. When using sccc outer dimensions, we use the value $K=1,75 \mathrm{~mm}(0,070 \mathrm{in})$.

A3.3.6 Gull-wing quadpacks
Land patterns for gull-wing quadpacks can genexally be found from the following formulae and are shown in Figure A3.9:
$\mathrm{X}=\mathrm{B}_{\mathrm{max}}+\mathrm{S}$
$\mathrm{Y}=\mathrm{F}_{\text {max }}+\mathrm{K}$
$W=E_{\max }+2 K$
where $\quad X=$ land width
$Y=$ land length
$\mathcal{W}=$ distance between outer edges of opposing lands
B $=$ component lead width
F = length of component foot
$E=$ distance between outer edges of opposing component leads
$\mathrm{K}=0,4 \mathrm{~mm} \quad(0,016 \mathrm{in})$
$s=0,1 \mathrm{~mm}(0,004 \mathrm{in})$

Figure A3.9 Generalized land pattern relationships for gull-wing quadpacks.

The following is a detailed discussion of the three characteristics of primary importance in component plucement equipment, nainely:

```
* accuracy
* speed
* flexibility
```


A4.1 Accuracy

Many definitions of machine accuracy have been sised by equipment manufacturers. When comparing equipment it is essential that the definition used in the product date sheet be fully understood. Some of the terns in common use are:

* Placement accuracy.
* Resolution.
* Repeatability.

A4.1.1 placement accuracy

Figure A4. T Placement accuracy error components: a. Translational error, b: Rotational error.

The term "placement accuracy" describes how accurately a component can be positioned with respect to its target location on the board. It is defined as the position error of the component termination whose deviation from target position is largest. It consists of the two error components in Figure A4.1:

11 Translation error (misalignment of component (entroid).

2] Fotational error (angular displacement of component axes).

Translation error

Translation error primarily results from inaccuracies in the $x-Y$ positionimg system amo includes offset, scaling, and anis orthogonality errors. The component centering mechanism is also a factor if it does not accurately align the component centroid to the placement of tocl axis.

Iteally, translational error shoulc be specified as a "True Powition Radius" [TFR] about the design contre" Many equipment manufacturers however, specify simple X-Y tolerances. Although this gives the appearance of an improved specification, the gratest deviation from debign location can be greater than the implied specificiation by as muctios a factor of 1.7.

If only X and Y tolerances are specified, TPR error can be found from the equation:

$$
T=t X_{t}=+Y_{t}{ }^{2}
$$

where $T=$ true position radius error due to translation errors.

x_{t}		error component along $x \rightarrow$ axis.
Y_{t}		error component along Y-axis.

Rotational error
Rotational error results from inaccuracy in the component centering mechanism and from the rotational precision of the placement tool. It is specified as an angular tolerance about the target placement oriantation.

Rotational error is greatest on those termimations farthest from the component centroid. To simplify the analysis, this error is commonly approximated by calculating the displamement of the pakkage correr. Feferring to Figure A4.2, displacement can be found from the equ ation:

$$
R=2 L \min (\pm / 2)
$$

where $R=$ true position displacement due te rotational error.
$L=$ distance from centre af component to package cornar.

$$
\begin{aligned}
\theta= & \text { maximum anqular deviation from } \\
& \text { target oriencation. }
\end{aligned}
$$

Calculating the components of rotational error along the X and Y axis:-

$$
\begin{aligned}
& X_{r}=2 L \operatorname{Lin}(\theta / 2) \sin \phi \\
& X_{r}=2 L \sin (\theta / 2) \cos \phi
\end{aligned}
$$

```
where Xf = X-axis error due to
rotational error.
Yr = Y-axis error due to
rotational error.
= angle from the cantre of
the component to the lead,
referenced to the component
X-axis per Figure A4.2.
```


Figure A\&.2 Package corner dispiacement due to rotational error.

Tatal error

Rotational error combines with translation error to produce a cumulative effect. Total TPR error is found by the vector addition of the two components. The X-axis and Y-axis error are found from:

$$
\begin{aligned}
& T_{x}=X_{t}+X_{r} \\
& Y_{y}=Y_{t}+Y_{r}
\end{aligned}
$$

where \begin{tabular}{rl}

T_{x} \& $=$| X-axis component of total |
| :--- |

$T_{y} \quad$ \& $=\frac{Y \text {-axis }}{} \quad$ error.
\end{tabular}

Total error is then found from:

$$
T P R=\sqrt{T_{x}^{2}+T_{y}^{2}}
$$

Since the effect of rotational error depends on component size, it is not possible to define a single number to represent overall machine performance. Instead, translational error and rotational error must be specified separately. Knowing the types of components to be placed, overall placement accuracy can be calculated from these two numbers.

Placement accuracy requirements

The accuracy requirement for a component is a function of such factors as component type, design criteria, and reliability requirements. The factors of greatest importance are:

* COMPONENT TYPES

The effects of rotational errors are seldom significant for small chip components but can become the dominant error source for the corner leads of large plgccs or ceramic chip carriers. As a result, equipment designed to place integrated ciruits must be more accurate than equipment that places only chip components.

ACCEPTABLE LEAD-TO-LAND MISALIGNMENT
The extent to which the component termination is allowed to overhang the edge of the land has a major impact on required equipment accuracy. Some specifications define that a component is acceptably located if ro more than one-half of the termination width extends beyond the circuit land. Others restrict this to one quarter of the width, and still others do not allow any of the termination to extend off the pad. Acceptance criteria are driven exclusively by product requirements - a high-reliability life-support system would permit less deviation than an inexpensive consumer product.

IAND PATMERN DESIGN

[^0]However, this approach can only be a partial solution. Lands that are too wide can cause increased soldering defects due to component skewing and tombstoning.

Larger solder fillets also have lower ductility and degrade the reliability of noncompliant joints. Finally, large circuit lands reduce the amount of space available for conductor rout ing on the board. Generally, lands should be kept small enough to permit at least one trare to be routed between IC leads and under chip components.

Large lead-count integrated circuits demand the highest placfment accuracy. Since translational and rotational urrors combine to produce the total error, some tradeoff is possible. For a given component type, a machine with small rotational inaccuracy can tolerate greater translational error than one with larger rotational inaccuracy.

A4:1.2 Resolution
Any real machine has a finite ability to resolve successive points in space. Machine resolution is fixed by the resolution of stepping motors and the rotary or linear encoders on the axis drive mechanisms. When the axes are progranmed to travel to a particular point, they will actually go to the nearest point capable of being resolved. This can result in a position error (called "quantization error") or up to one-half of the machine resolution.

While resolution defines the ultimate precision of the machine, it does not necessarily have a direct relationship of total placement accuracy. Resolution is simply a measure of the finest increments the machine can move. Accuracy includes all other error contributions, some of which can be far larger than quantization error. In fact, it is possible for one machine with high resolution to have worse total accuracy than a different machine with lower resolution.

Although resolution can be important in certain special cases, it is much less useful as an overall measure of machine performance. It should never be the sole specification of machine accuracy.

A4.1.3 Repeatability

This term describes the ability of the placement tool to repeatedly return to a target point. Bidirectional repeatability is defined by the National Machine Tool Builders' Assōciation as the "expected dispersion from the mean resulting when the approach to any given point is programed from both directions in a series of trials".

It is normally specified as a 3-signal limit, as shown in Figure A4.3.

Figure A4.3 Definition of bidirectional repeatability.

The relationship between repeatability, resolution, and placement accuracy should be clearly understood. standard practice is to include repeatability within the placement accuracy specification, as shown in Figure 44.4.

Figure A4.4 Relationship between various accuracy-related terms.

For example, a machine with an accuracy specification of $0,1 \mathrm{~mm}$ true position radius and repeatability of $0,05 \mathrm{~mm}$ true pasition radius can be expected to place the component termination within $0,1 m m$ of the design location $99,7 \%$ of the time (if specified to a 3-sigma limit). Over a large number of placements to the same location, the deviation of any single placement will not exceed $0,5 \mathrm{~mm}$ of the centre of the distribution. Not every machine manufacturer uses this convention, so it is wise to review published specifications carefully.

A4.2 Speed
In most surface mount factories, the component-placement operation is the slowest element in the process. The speed of the placement machine is thus the limiting factor in overall line capacity. Since faster machines do not incur proportionally higher overhead expenses, they are capable of achieving lower factory operating costs.

Unfortunately, comparing the speed of one machine to that of another similar machine is not an easy task. No standard methods have yet been developed. Data pubiished by equipment manufacturers tends to present their own machines in the most favourable light. Some users have been unpleasantly surprised when they discovered, after purchasing a specific machine, that actual production throughputs were considerably less than projections based on data-sheet information.

The problem arises because actual speeds are heavily dependent on a number of factors outside the control of the equipment manufacturer. Board design, number and location of component feeders, production lot sizes, setup complexity, and the efficiency of the board loading program all heavily influence the volume of product that can be produced in a given day. Equipment specifications can only represent the perfomance achieved on some "average" board that may have jittle relation to actual customer designs. Few manufacturers adequately define how published data was taken or how users can extrapolate that information to their own boards.

Several of the more commonly used definitions of machine speed are presented below:

A4.2.1 Equipment placement rate

This is the most common data-sheet specification, defined p. the speed at which an average placement cycle is completed excluding any external factors. A placement cycle consists of a complete round trip from pickup site to placement site and return, during which a component is actually placed.

On machines with multiple heads it is defined as the effective rate of placement when all heads are included in the calculation. . a amount of head travel permitted during the cycle is restricted, either by specifying a maximum aistance of travel, a maximum distance between successive feeders, or both. A typical specification reads as follows:

> Placement rate is measured as cycles from pickup point to placement point and return. Feeder travel is not to exceed i2 locations between consecutive 8 mm tape feeders. Under these conditions, placement rate is at least 4500 components per hour.

A4.2.2 Cycle rate

This is the most basic measure of machine speed. It is similar to placement rate except that the machine is operated in a dry cycle mode in which no parts are actually placed. This number thus excludes the effects of component pickup, centering, and placement, and so is somewhat higher than the equivalent placement rate. Although cycle rate can be useful in comparing machines, it shou, d be used carefully. Unless information is provided describing how to derate this number for actual component placement, it cannot be used to predict production throughput. some manufacturers use the term test rate instead of cycle rate.

A4.2.3 Production throughput

This is the most important parameter to the equipment user. It is defined as the number of components placed per hour over an entire production shift. For example, if a certain machine places 50,000 components during an 8 -hour day, the hourly production throughput is $50,000 / 8=6,250$ components per hour.
production throughput is derived by applying a number of derating factors to the placement cycle rate. The most significant are:

Board load/unload time

Before the placement sequence can begin, the board must be loaded onto the machine; upon completion, it must be removed. This loading and unloading period is "dead" time during which the machine cannot place components. Board load/unload time can vary from as little as 5 or 10 seconds for an automated system to a minute or more if boards must be loaded manually.

In factories that must handle a large number of board types, the number of different components might exceed the machine's feeder capacity. It is then necessary to periodically stop production to change the feeder setup. For boards of different physical sizes, the board support system must also be readjusted. These factors contribute dead time that is beyond the control of the equipment manufacturer.

Machine configuration

The feeders on sequential placement machines are generally arranged in rows at the sides of the machine. The time required to pick a component depends on the distance the head must travel to access the feeder. It may take twice as long to access feeders near the end of the row compared to those near the center.

It is usually possible to optimize feeder placement for any particular board, but if several board types are built with a fixed setup, speed will inevitably be compromised.

Ccmponent mix

Machine cycle time is a function of component type. Integrated circuits must be positioned more precisely than small. chip coinponents, so a board with large numbers of ICs will generally take longer to populate than a board with a similar number of resistors and capacitors.

Available hours

In most cases, an eight-hour shift does not represent eight full hours of production. Lunch periods, coffee breaks, and miscellaneous other time off can reduce the actual time available for production to as little as six or seven hours. Factories with highly automated equipment that can be left running during these periods are less sensitive than factories that depend on the presence of operators.

Unscheduled downtime

This is potentially the most significant factor but the one least frecuently discussed. Unscheduled downtime can result from such varied factors as poorly designed boards, components that do not meet specification, or poor placement-machine design. It is virtually certain to occur at least occasionally, so the machine should be designed to facilitate problem diagnosis and repair.

Because production throughput depends on many factors beyond the control of the equipment manufacturer, it cannot be specified on equipment data sheets. The ideal data sheet would list equipment placement rate and provide derating factors that can be used to estimate production throughput. Although rare, some manufactuxers do provide this derating data. Table 4.1 lists the factors that must be considered for one such machine.

A4.3 Flexibility

Flexibility measures the ability of a machine to accommodate varying placement requirements. The factors that contribute to machine flexibility include:

* Component variety

Number of feeders
Ease of setup
I. MINIMUM CYCIE TIME
$0,600 s e c$ (this yields a maximum throughput of 6000 components per hour).

II MACHINE CYCLE ADDED FACTORS
a. Component Spacing

Up to 1 in: no increase in run time over 1 in: add $0,056 \mathrm{sec} /$ in
b. Feeder Spacing

Up to 2.5 in: no increase in run time over 2.5 in: add $0,170 \mathrm{sec} / \mathrm{in}$
c. Rotation

Up to 90° : no increase in run time Over 90° : add $0,002 \mathrm{sec} /$ degree
d. Tweezering

Normal : no increase in run time Alternate : add 0,460sec

III COMPLETE RUN ADDED FACTORS
a. Tool Change

Add 2,800sec PLUS:
Add $0,170 \mathrm{sec} / \mathrm{in}$ in excess of 2,5 in of feeder movement
b. Manual Load/Unload

Operator dependent : estimate 40 seconds
c. Automatic Feed

Add 1.5 seconds
IV OVERAIJ RUN TIME
Calculated by taking a minimum cycle time times number of machine cycles pLus the largest time from section II for each machine cycle PLUS each addition from Section III.

THBLE 4.1 Placement cycle derating factors for the Dynapert/Precima MPS-500 sequential placement machine.

A4.3.1 Component variety

A machine that can place a wide variety of components is more versatile than one that accepts only small chip devices. Although the fundamental limit on component variety is set by machine placement accuracy, this is not the only influence. The placement tool and centering mechanism must be compatible with the components, and appropriate component feeders must be available.

Most placement tools can accommodate only a limited range of component sizes. Increased flexibility is obtained through the use of two or more interchangeable tools. ordinarily, both the top tip and centering jaws (if present) are changed as a unit. To be most effective, the machine should be able to change tools automatically under program control.

The most common component feeders include tape-and-reel, magazine, bulk, and waffle tray. Some equipment, especially high-speed machines, can accept orily limited feeder styles. Most versatile equipment is able to handle all or most types of feeders, generally at some sacrifice in speed.

A4.3.2 Number of feeders

Changing feeders on a placement machine is a slow process that increases cost and reduces production throughput. On small machines with limited feeder capacity, it might be necessary to reconfigure the machine with every change in board type. Larger machines require less setup. When feeder capacity increases to about 120-150 feeders, it might be possible tn permanently store all components on line. No time is then consumed in feeder setup when changing from one production run to another.

The feeder capacity of a machine is usually expressed in terms of the maximum number of $8-\mathrm{mm}$ tape feeders that can be mounted onto the machine. some manufacturers instead specify the number of inches of feeder space. This can be converted to"the equivalent number of 8 -mm tape ferders by knowing the width of the feeder. This is of cen 1 in (25 mm) wide, although some machines house twrs tapes on one feeder.

Not all parts can be packaged in 8 -mm tape, so the actual capacity of the machine will always vary from the specification. Feeders for wider tapes consume more space and diminish the total capacity. Magazine feeders consume less space and diminish the total capacity. However, magazine feeders hold far fewer parts than tapes and must be replenished more often. Feeder designs vary by manufacturer, so it is not possible to define space requirements in a general way.

With some machines, feeders can be positioned only at fixed locations, typically in 1-in increments. In this case, a feeder that is 1.5 in wide will actually consume two full inches of feeder space. other machines permit feeder compacting. This makes it possible to compress all feeders together and increase the effective capacity of the machine. For this feature to be realizable, the equipment firmware must be capable of accessing any point along the feeder axis.

It is important to compare similar numbers when studying the capabilities of several machines. Some manufacturers have been known to emphasize the absolute maximum feeder capacity in their data sheets. This number, obtainable only when using magazine feeders exclusively, can be triple the $8-m m$ tape feeder capacity.

A4.3.3 Ease of setup

The steps necessary to change from building one type of board to another combine to determine machine setup time. E? ents that contribute to setup time can include a. or all of the following:

* Machine reprogramming
* Feeder changeover
* Board support system adjustment
* Placement head adjustment/changeover

Machine reorograming

Programaing the placement machine to load a new board can be as simple as downloading a file from a computer or as complex as manually teaching the machine by stepping it through the desired placement sequence. Simple machines generally use teach-mode programming, while more sophisticated equipment offers several options.

Most production-grade machines now use magnetic floppy disks for program storage and have the ability to receive programs from an external computer system. A few machines still use magnetic tape as the program storage medium, but this is rapidly becoming obsolete. In either case, these machines are generally programmed in an off-line mode, Design coordinates for each component are entered into a separate computer, from which the actual placement program is generated. This approach is fast and does not take the machine out of production during the programing process. With boards designed on a CAD system, automatic program generation is possible by downloading the CAD data directly to the program-generating computer.

Lower-volume machines for prototyping and small-volume production are usualiy less flexible. placement programs often must be generated by manually stepping the machine through the placement sequence. once programmed, the data can usually be stored electronically for future recall. This teach-mode programing is more time-consuming and less precise than off-iine programming. However, it has the advantage of inherently compensating for any systematic inaccuracy in the placement machine. (The machine accuracy on the least expensive equipment is frequently very poor. Accurate placement cannot be guaranteed if design coordinates are used to determine placement location).

Feeder changeover
Unless all components can be stored on line, it will be necessary to change at least some of the component feeders when setting up for a new production run. Most equipment manufacturers have given special consideration to this problem and have attempted to reduce the time required for setup.

The most common solution is the "quick-release" feeder, which allows single feeders to be inserted and removed by simply operating a lever. An even faster method involves changing entire banks of feeders in one operation. Using this approach, separate feeder banks can be maintained for each product or group of products to be built on the line. Changeover then becomes a simple task of removing one feeder bank and installing another.

Board support system adjustment

If the new board is smaller or larger than the machine can currently accomodate, the board support system must be adjusted. On automated machines, boaras are transported on conveyor rails that contact only the edges of the board. Rail width is adjusted either manually or automaticially under program control. Less expensive machines frequently make use of a dedicated tooling plate. In this case, setup consists of. removing the old plate and installing a new one.

Setup can be eliminated by using workpiece holders to transport boards of all sizes. However, the benefit obtained by this technique must be balanced against the added tooling cost incurred in the holders and the extra labour necessary to install and remove boards from holders.

placement head adjustment/changeover

The placement head must be changed or adjusted if it is not currently able to handle all components in the new production run, In many machines, this happens automatically under program control, but less expensive machines require manual adjustment.

Appendix 5.n PLACIMENT ERUIPMENT CLASSIFICATIGN

A5-1 Sequential Placement

Most Eurface mount manhines employ a sequential plaremment technique. Individual components are pieked from faederm and placed subaessively by the placmment head. Unlike through-hole technologys sequeneing and placement are pertommed on the same equipmenty so no meparate component sequencer (or sequanced tape) is rmquir"ed.

Equipment is usually ciangified into one of four ■ategoriess depening on its intended posjuion in the marketplace:

* Entry-level
* General-purpose
* High-speed
* Frecision

A5.1.1 Entry-level

This category consists of mall, relativaly inexpensive equipment with limited iapability. Machimes in this category are primarily intended for prototype or very low volume production use. They have 11mited feeder capacitiess small manimum board eizes, and relatively low placement rates. They are not usually designed for the heavy, continuous usage as would oceur an a valume production floor.

A5.1.2 General-purpose

Flaeement systems suitable for cortinuous produetion usage can cost hundreds of thousands of rands. With such a significant investments, there is strong incentive to purchase a single machine capable of meeting all placement needs. General-purpose machines are targeted for this market. They are highty flexible with moderate production throughput. The majority of all installed systems fall into this classification.

Mawhines designed for general-purpose applications often employ a single placement tool that accesses a linear row of component feeders. To increase feeder capacity, feederss can be mounted in two rows - one at the front and the other at the rear of the machine. Speed can be increased by mounting two tools on the heads one to pick components from the front row and the other ta piek from the back row. This allows one tool to be picking a component while the other is placing, cutting cycle time approximately in half.

Typical general-purpose equipment places 3000 to 6000 components per hour. Parts are placed sequentially using a programmable placement head. Feeder capacity is at least one hundred $8-m$ tape feeders and exceeds two hundred in some designs. The range of compatible components extends froia small chip capacitors to large plastic leaded chip carriers in tape, magazine, or bulk packages. Some machines also accept matrix trays and bare semiconductor die. Accuracy is sufficient to permit placement of $0,050-i n$ lead pitch devices to at least 84 leads, and finer pitch devices can frequently be accommodated. The typical maximum board size exceeds $300 \times 450 \mathrm{~mm}$ (12 $\times 18$ inches), and some equipment is able to handle 450 x 600 mm (18 x 24 inches) boards.

This high flexibility invariably leads to compromises. Gene :al-purpose machines are slower than equipment optimized for a more limited range of components. They are also less accurate than machines designed for precision placement. These compromises, however, are what make this class of equipment so useful. Although not providing exceptional performance in any single area, general-purpose machines offer a range of performance that is often sufficient to satisfy the entire demand of a given factory.

A5.1.3 High-speed

This category consists of machines similar to general-purpcse equipment but optimized for rapid placement of fewer component types. Because the earliest machines were only able to place small passive devices fed from $8-\mathrm{mm}$ tape, they have commonly been called "chip shooters". More recent products can also accommodate larger components in wider tape sizes, but still cannot place the full range of components handled by general-purpose equipment.

Typical high-speed machines are capable of sequentially placing components at rates between 9000 and 24,000 per hour. Feeder capacities extend from under sixty to over one hundred twenty 8 -mm .tapes. Neariy all machines in this categary accept only tape-fed parts. One exception is equipment for placing cylindrical MELF resistors, these parts are loaded onto the machine from bulk.

A5.1.4 Precision

High lead-count integrated circuits, especially those with lead pitches below 0,050in, present special challenges during placement. Because of their large bodies and closeiy spaced leads, they must be placed extremely accurately. Moreover, their fragile leads are easily damaged and are not compatible with mechanical centering tools. general-purpose machines are not usually adequate for these complex parts.

A relatively new class of equipment has emerged ta address this more specialized need. Precision placement equipment is designed to place complex parts to accuracies of $\pm 0,05$ to $\pm 0,1 \mathrm{~mm}$ at rates of 500 to 1000 components per hour. Parts are fed from magazines, waffle packs, or in some instances, tape-and-reel packaging. Several design approaches exist; but certain similarities are usually present. Vision systems are essential, joth for board alignment and optical component centering. Robotic arms are frequently used to achieve the required level of accuracy.

The following is a detailed discussion of the following component feeding systems:

* tape anu reel
* magazine (stick)
* bulk
* matrix tray.

A6.1 Tape-And-Reel Feeding

For most component types, tape-and-reel containers are preferred. Tape feeders are extremely reliable, and large quantities of components can be held in a single reel: Tape packaging also provides individual protection for each component. The main drawback is the somewhat higher painaging cost over other formats. This is usualiy more than ofrset by the improvad feeder reliability during placement.

A6.1.1 Tape-and-reel specifications

A typical component tape is shown in Figure A6.1. It consists of tio parts: a carrier tape that holds the components and a cover tape that prevents them from falling out of the carrier. The carrier tape can be made from any of several materials. Embossed tapes made from plastic or aluminium are most common. Funched paper or plastic is also used, principally in the smaller tape widths. The cover tape is usually a transparent polyester that has been glued or seam welded to the carrier tape. opaque covers are sometimes used, but this makes visual inspection of the parts more difficult.

Figure A6.1 Typical component tape.

Antistatic or electrically conductive materials to prevent electrostatic damage are gaining popularity for both carrier and cover tapes.

Both EIA and IEC have prepared standards for component tapes and reels. In most areas, these document are in agreement, but a few specifications are different. Most notable is the range of allowable variations in cover tape peel strength The EIA specification permits peel strength to vary from 0,1 to 0,7 Newtons (10 to 70 grams). The IEC document permitis an even greater variation, from 0,2 to 1,3 Newtons (20 to 130 grams). The wide, latitude allowed by either standard has made feeder design extremely difficult for equipment manufacturers.

A6.1.2 Tape feeders

A typical tape feeder is illustrated in Figure A6.2. The feeder must accurately index the part for pickup while simultaneously removing the cover tape. It must operate smoothly at all times so that parts are not jarred out of their sockets prior to being picked by the placement tool.

Figure A6.2 Typical tape feeder.
No feeder is totally ir uune to vibration, and the longer the part is exposed, the more chance that it will vibrate out of position. Therefore, feeders that do not remove the cover tape until the final indexing step are preferred over those that expose several components at a time. Some feeders even employ a shutter that further covers the exposed part, retracting only after the indexing step is complete and the tool is ready to pick the part.

Magazines, also called sticks or tubes, are frequently used for integrated circuits and other large parts Figure A6.3. Typical magazines consist of a semitransparent polyvinyl chloride (PVC) extrusion that has been treated with an antistatic coating.

Figure A6.3 Components in magazines.
Magazines are less expensive than tape-and-reel packaging but hold far fewer parts. For larger components where tape-and-reel packaging is not readily arailable, they are a popular substitute. They are also preferred for lesser-used parts where the tape-and-reel format would represent a sizable inventory. Perhaps their most important advantage is the reduction in feeder space they offer when compared to tape feeders. This allows a significant increase in the maximum feeder capacity of the placement machine. This benefit, however, must be weighed against the disadvantage of having to replace empty feeders much more often.

Wide variations exist in magazines from different manufacturers. This has made feeder design extremely difficult. A specific feeder may work well with magazines from one manufacturer and not at all with those from a second manufacturer. This situation is unlikely to change until widely disseminated international standards can be developed and implemented.

A6.2.2 Magazine feeders

Typical magazine feeders are shown in Figures 10.31 and 10.32. They can hold several independent magazines in separate parallel tracks. Although the magazines are usually held at an angle to take advantage of gravity, feeders do not generally rely strictiy on gravity to feed the parts. Most designs incorporate a mechanical vibratory action to insure relioble component movement. The amplitude of this vibration must be adjusted to match the weight of the parts being delivered. If insufficient, the part may not move into position by the time the head is ready to pick. If excessive, the part may vibrate all the way out of the track, causing a feedex jam.

Figure A6.4 Vibratory module for stick magazines.
In some designs, the vibratory action operates continuously. In others, it is turned on only long enough to position a new part. The best approach incorporates several features to insure reliable delivery of parts without allowing them to vibrate out of the track. The feeder track should be designed to totally capture all components except the one being picked. A shutter should be employed over this part so that it cannot be accidentally dislodged. Finally, the vibratory action should operate intermittently and be turned off when the shutter is opened for part pickup.

Certain newly introduced magazine feeders cmploy a conveyor system to move parts into location for pickup. Feeder reliability should be improved because of the more positive action this approach provides.

A6.3 Bulk Feeding

The packaging cost of bulk parts is lower than that of any other format, so there has been considerable interest in this type of feeder. Unfortunately, the low reliability of bulk feeders usually increasos assembly costs far beyond the savings realized in packaging.

The typical bulk feeder (See Figure A6.5a b b) consists of a linear vibratory track that includes a series of baffles to prevent any part not correctly oriented from reaching the front of the feeder. Rejected parts are automatically dropped back into the parts reservoir and sent through the sequence repeatediy until they ilnally achieve the correct orientation. Bulk feeders can accommodate rectangular and cylindrical chip devices, as well as various small outifne semiconductors. They cannot be used with polarized devices unless the part includes a distinct mechanical feature indicating polarity.

Figures A6.5a and A6.5b
Vibratories for cylindrical and cubic bulk.

Bulk feeders suffer problems similar to those of magazine feeders. Vibration amplitude is extremely critical and must be matched to this mass of the part. The optimum setting becomes a compromise between insuring reliable feeding and preventing parts from jumping out of the track. In addition bulk feeders are sensitive to exact part mechanical dimensions. The baffles must be adjusted to permit corxectly oriented parts to pass without accepting those that are incerrectly oriented. Unfortunately, the dimensiunal tolerances of many chip components are so wide that a single baffle setting will not work across the entire range of the specification. It may therefore be necessary to readjust the baffles for each new lot of parts. Even then the feeder reliability depends on a certain amoint of similarity within the lot.

A6.4 Matrix Tray Feeding
Natrix trays have traditionally been employed to hold bare semiconductor die for hybrid assembly. They have also been adapted for use with large quadpacks that are not compatible with other feeding methods. They have not been widely utilized in surface mount assembly but are useful in certain situations.

Unlike all the previous feeders, the matrix tray feeder does not deliver all parts to the same location for pickup. Instead, a grid of indented pockets in the tray holds the parts to be placed, and the placement head must be able to access each pocket. Parts are accessed in a regular pattern, left to right, front to rear. The placement machine firmware keeps track of which part to pick next and when the tray must be replenished with parts.

A7.1 Particular Demands on The SMD Solder Joint

A7.1.1 Mechanical strength

The solder joint of an SMD establishes both the eleotrical and the mechanical connection to the board. In contrast to through-hole technology, where the component leads are locked to the board and thus relieve the soldex joint from mechanical stress (Figure A7.1), the SMD solder joint also has to hold the component on the board. Both compressive and tensile forces act on the smb solder joint (Figure A7.2) Apart from cases of extreme acceleration, the tensile strengeh is usually sufficient. Shear strength may be more critical. Due to difterent expansion coefficients of board and SMD, tempexature changes lead to changes in length and thus create shear forces. These forces have to \therefore kept low in order to avoid destruction of the $s: 3 r$ joint. With smaller SMDs the strength of the fier joint becomes less important.

Figure A7.1 Typical solder joint in through-hole assembly and surface mounting.

Figure A7.2 Mechanical forces acting on surface mounted components.

A7.1.2 Solders In Use

The most cominon solders in the production of electronic assemblies are the eutectic solders ($\mathrm{L}-\mathrm{Sn} 63 \mathrm{~Pb}$ or $\mathrm{L}-\mathrm{Sn} 60 \mathrm{~Pb}$), which have a melting point of approximately $183^{\circ} \mathrm{C}$. Solder pastes usually contain a certain percentage of silver, e.g. L-Sn63PbAg. Other solders, e.g. solders with lower or higher melting points, are insignificant. The purity of the solder is far more important than the exact tin/lead ratio (see below).

A7.1.3 Wetting And Surface Tension of The Solder

When a drop of liquid solder rests on a solderable surface, several forces act on the drop. Cohesive forces tend to minimize the surface of the solder. The surface energies resulting from the cohesive forces would draw the liquid solder into a sphere (surface tension). Adhesive forces, on the other hand, tend to spread the liquid on the solid. In other words, wetting of the solid surface by solder will occur, with the degree depending on the material used. Besides the material, the cleaniiness of the surface is a decisive factor for wettability. contamination, e.g. by oxides, has a detrimental effect on wetting. Generally, fluxes are used to remove contamination. (see Appendix 9 or Flux Description).

The typical degrees of wetting are illustrated in Figure A7.3.

Figure A7.3 Degrees of wetting.
Various contaminants such as oxides may reduce the surface tension of the solder. For this reason, in wave soldering, excessive solder cannot sufficiently recede and forms bridges and icicles.

The surface tension of the solder is not only important for wetting, but also for reflow soldering. Here the surface tension acts on both the soider and the component itself; the positive effect will be self-alignment of the component, the negative effect misalignment.

The surface tension may be influenced by the flux, the soldering atmosphere, and alloy adaitives. These conditions, in turn, lead to different soldering results.

The surface tension is highly dependent on temperature. The solder always tends to flow in the direction of the higher temperature (Marangoni effect). For conventional soldering techniques the temperature gradients are usually unfavourable, e.g. in case of multi-layer boards, where the solder must rise from the hot solder side to the cooler component side. In SMD technolngy, reflow soldering enables the board to be heated from both sides, which has a favourable influence on the flow properties of the solder.

A7.1.4 Solderability

It is not enough to carefully specify and maintain the soldering process; strict control must also be exercised over the quality of the incoming material.

The term solderability is used to describe the ability of a component termination to be wet by solder during a specific soldering operation. It is a function of the exact process and materials employed; a termination may exhibit acceptable solderibility for some processes but not for others.

The solderability of a surface is characterized by the degree to which it wets and forms a mettalurgical bond with the solder. The degrees of wetting can be classified as follows:
o Non-Fetting. In this case, no metallurgical bond is formed and the interface between the solder and the surface remains distinct.
o Wetting. The surface energy of a clean mettalic sujface is higher than that of molten solder. Under these circumstances, the solder will wet the surface and form a metallurgical bond at the interface. As wetting proceeds, a thin intermettalic layer grows at the interface, forming the basis of a reliable joint.

Dewetting. The intermetaliics that grow at the interface are tin-rich compounds that draw their tin from the tin-lead solder. As tin is consumed from the solder, it leaves behind lead-rich regions with relatively poor solderability. If left at this temperature long enough, the extent of these regions will be sufficient to cause the solder to recede from previously wetted regions, a phenomenon called dewetting.

Poor component solderability is a major cause of defects in reflow solderec surface mount assemblies. In the wave soldering process, the joint is washed by an essentially infinite supply of solder. small amounts of contamination are quickly diluted and carried away, The reflow process does not provide this cleansing operation; contaminants that are present on the component terminations will remain in the completed joint.
a) Unacceptable
b) Acceptable
c) Excessive

毛中

a) Unacceptable
b) Minimum acceptable
c) Maximum acceptable
d) Excessive

Figure A8,1 Solder volume profiles of MEIFS.
a) Unacc ?evable
b) Minimum acceptable
c) Naximum acceptable
d) Excessive

a) Unacceptable

b) Minimum acceptable

C) Maximum acceptable

d) Excessive

a) Unacceptable

c) Maximum acceptabie
d) Excessive

Figure A8.4 Soldex volume profiles of soICs, (Gull wings).
a) Unacceptable
b)
c)

Naximum acceptable

Figure A8.4 Solder volume profiles of LCCCs.

A9.1 FIux - Description And Application
Populating a substrate involves the soldering of a variety of terminations simultaneously. In one operation, a mixture of timned copper, tin/lead or gold plated nickel-iron, palladium-silver, tin/lead plated nickel-barrier, and even materials like Kovar, each possessing varying degrees of solderability, must be attached to a common substrate using a single solder alloy.

It is for this reason that the choice of fluy is so important. The correct flux will remove surface oxides, prevent reoxidization, help transfer heat from the source to the joint area, and leave non-corrosive, or easily removable corrosive residues on the substrate. It will also improve the wattability of t"ee solder joint surfaces.

The wettability of a metal surface is its ability to promote the formation of an alloy at its interface with the solder to ersure a strong, low-resistance joint.

However, the use of Elux does not eliminate the need for adequate surface preparation. This is very important in the soldering of CMD substrates, where any temptation to use a highly-active flux in order to promate rapid wetting of ill-prepared surfaces should be avoided because it can cause serious problems later when the corrosive flux residues have to be removed. Consequently, optimum solderability is an essential factor for SMD substrate assembly.

Flux is applied before the wave soldering process, and during the reflow soldering process (where flux and solder are combined in a solder crearn. By coating both bare metal and solder, flux retards atmospheric oxidization which would otherwise be intensifled at soldering temperature. In the areas where the oxide film has been removed, a direct metal-towetal contact is established with one, low energy interface. It is from this point of contact that the solder will flow,

A9.2 types of plux

There are two main characteristics of flux. The first is efficacy - its ability to promote wetting of surfaces by solder within a specified time. Closely related to this is the activity of the flux, that is its ability to chemically clean the surfaces. (See Appendix 7)

The second is the corrosivity of the flux, or rather the corrosivity of its residues remaining on the substrate after soldering. This is agein linked to the activity; the more active the flux, the more corrosive are its residues.

Although there are many different fluxes available, and many more are being developed, they fall into two basic categories. Those with residues soluble in organic liquids, and those with residues soluble in water.

A9.2.1 Organic soluble fluxes

Most of the fluxes soluble in organic liquids are based on colophony or rosin (a natural product obtained from pine sap that has been distilled to remove the turpentine content). Solid colophony is difficult to apply to a substrate during machine soldering, so it is dissolved in a thinning agent, usualiy an alcohol. It has a very low efficacy and hence limited cleaning power, so activators are added in varying quantities to increase it. These take the form of organic salts that are chemically active at soldering temperatures. It is therefore, convenient to classify the colophony-based fluxes by their activator content.

A9.2.2 Water soluble fluxes

The water soluble fluxes are generally used to provide high fluxing activity, Their residues are more corrosive and more conductive than the rosin-based fluxes, and consequently must always be removed from the finished substrate. Although termed water soluble, this does not necessarily imply that they contain water, they may also contain alcohol or glycols. It is the flux residues that are water soluble.

The usual composition of a water soluble flux is as follows:
(1) A chemically active component for cleaning the surfaces.
(2) A wetting agent to promote the spreading of flux constituents.
(3) A solvent to provide even distribution.
(4) Substances such as glycols or water soluble polymers to keep the activator in close contact with the metal surfaces.

Although these substances can be aissolved in water, other solvents are generaly used, as water hast a tendency to spatter during soldering.

Solvents with higher boiling points, such as ethylene glycol or polyethylene glycol are preferred.

Regardless of the type of flux used, it must be applied in a uniform layer priox to soldering. For wave soldering, liquid flux is normally used and the most comon application methods are foam fluxing, wave fluxing and spray sluxing.

A10.1 Board Preheating

The three primary reasons for preheating are:
o solvent evaporation
o reduction of thermal shock
o activation of rosin fluxes

A10.1.1 Solvent evaporation (flux drying)

Solvent that remains in the flux at the soldering step will boil violently, spattering solder balls across the board. It also consumes heat from the wave, altering the heating dynamics and possibly delaying the onset of wetting.

Rosin fluxes use solvents with low vapour pressures and are easily dried. Fluxes containing water require longer drying times. It is virtually impossible to completely evaporate all moisture, and the small amount that remains causes a certain amount of spattering during soldering. For this reason, most water-soluble fluxes do not actually contain water but instead use alcohols or glycols, which are more easily dried.

A10.1.2 Reduction of thermal shock
Molten solder has an extremely high heat capacity, and thermal shock of the assembly is always a concern. With through-hole technology, the primary concern is the PC board. If a board at room temperature is exposed directly to the soleer wave, it can suffer excessive warpage and possible delamination.

Surface mount components introduce an additional concern because they are immersed directly in the wave. Excessive temperature gradients can damage chip components or plastic-encapsulated semiconductors. Preheating reduces this risk by lowering the temperature difference between the solder and the peB.

The preheat temperature is defined as being measured on the top side of the board. It can be measured with either a thermocouple or temperature-sensitive paint. Preheat temperatures for through-hole boards range fstween $80^{\circ} \mathrm{C}$ for simple singlemsided boards to as 11 gh as $125^{\circ} \mathrm{C}$ for thick multilayer boards. The preheat profile for surface mount boards must be more tightly controlled than has been neccesary for through-hole boards: besides controliing the maximum temperature, the rate of temperature increase must also be controlled.

Al0.1.3 Activation of rosin fluxes
Rosin fluxes (Refer to Appendix 9) do not become fully active until they reach temperatures of about $80^{\circ} \mathrm{C}$. preheating assures that they remain at this temperature long enough to remove surface oxides and other contaminants.

Al1 WAVE SOLDERING - DUAL WAVE SOLDERING

All. 1 Wave Soldering
The problems of shadowing and capillary depression gave rise to the concept of dual wave soldering, i.e. the division of the soldering process into two steps:

* : Primary wetting
* Final soldering

The first, turbulent wave has a higher energy of flow than the second wave. It ensures good wetting of all areas that would not be reached by a normal wave. Due to the turbulence of the first wave the point of solder separation from the PCB bottom, i.e. from the component terminations, cannot be defined. The result would be solder accumulation and bridging; the second wave, however, corrects these irregularities. Yet, improvement of the soldering results implies longer dwell times.

Figure Al1.1 shows the procedures used at present for the generation of turbulent pre-waves. With the first and most popular method the solder stream contacts the PCB bottom tangentially (hollow waves). With the second method the solder impinges on the PCB vertically. For generation of a hollow wave the liquid solder is pumped into a nozzle with a slot-rhaped porture. When ejected from the nozzle, the solder scream assumes the shape of a trajectory parabola. The solder moves in the same direction as the PCB, but with higher speed, the board cuts the wave crest with its bottom dipping into the solder.

Figure All.1 Two methods of genferating turbulent waves.

This kind of solder movement ensures reliable wetting of the metalilization areas at the SMD rear, thereby preventing the shadow efrect. The hollow wave's high velocity of flow creates a dynamic impact pressure also acting in vertical direction and thus compensating capillaxy depression. Even fCBs with openings and milied apertures, e.g. PCB clusters, can be reliably soldered in the hollow wave, since the tangential contact virtually eliminates the risk of solder rising to the PCB top.

The second principle is implemented by a staggered arrangement of the nozzles. The soider is pumped up at high pressure and forms ripples with turbulent motion, mainly in the vertical direction. This method also enables compensation of the shadow effect and capillary depression. Due to the high pressure of flow it is, however, necessary to provide appropriate covers for PCBs with large apertures to prevent the solder from rising to the top.

The two waves can be produced from one common tank or from two separate tanks. In any case, the two pumps should be separately adjustable.

Soldering in the second wave follows the same pattern as single wave soldering. The separation of the solder from the $P C B$ is determined by the interaction of cohesive and adhesive forces between the solder and the wave and between the solder and the board, respectively Fiyure Ali.2. The line of solder peel-back is not constant. It depends on the soldering parameters, the PCB layout and the component configuration on the PCB bottom.

Figure All. 2 Solder peel-back of laminar main wave.
The inciination of the conveyor system towards the wave usually is adjustable. Small angles produce voluminous fillets, whereas steeper angles produce lean fillets. Extremely small angles increase the risk of icicling.

Appropriate adjustment of the transport velocity ensure that the solder peel-back is uniform and reproducible. The maximum possible transport velocity is determined by the PCB layout, the component configuration, and the lead spacing of multi-terminal components. If these factors are not taken into consideration, higher transport velocity leads to a disproportionate increase of solder bridging.

After the second and final soldering step the PCB assemblies are allowed to cool down. During the phase transition from liquid to solid, the solder alloy is in a "pasty" phase, the length of which d. ands on the composition of the solder. In this pasty phase the assembly must not be subjected to mechanical shock or vibration before the solidus temperature is reached, since any motion is liable to cause micro-cracks. In some cases the solidification process is accelerated by cooling with forced air.

A11.2 Solderin Temperature Profile

The temperature of the solder wave is a trade-off between two competing factors. On the one hand, it should be much higher than the solder melting temperature to reduce the potential for bridging. On the other hand, it should be as low as possible to minimize the potential of thermal damage to the components and board.

Solder wave temperatures for through-hole technology commonly range between 245-280 ${ }^{\circ} \mathrm{C}$. At lower temperatures, an increase in bridging is often noted. As the differential between the actual solder temperature and the melting temperature decreases, the solder is more likely to solidify before it can peel cleanly away from the board. In fact, a common solution to the problem of excess bridging is to increase the temperature of the solder wave.

The temperature sensitivity of surface mount components sets a practical limit for the overall wave soldering thermal profile. For most applications, wave temperatיres should be in the range $235-250^{\circ} \mathrm{C}$. At temperatures near the low end of this range, it may be necessary to use a supplementary technique, such as hot air knife, to remove solder bridges.

Preheating is essential for minimizing thermal shock. In many appl,ications, ceramic capacitors are the most thermally sensitive parts. Because the barium-titanate dielectric used in these capacitors undergoes a change in crystal structure at the curie point temperature of about $120^{\circ} \mathrm{C}$, the temperature gradient through this region must be carefully controlled. The board temperature should be gradually elevated to a point well above the curie temperature, generally to within $100-125^{\circ} \mathrm{C}$ of the soldering temperature.

As with reflow soldering, the speed of this ramp should be $2-4^{\circ} \mathrm{C} / \mathrm{sec}$. A suggested temperature profile for the total wave soldering process is shown in Figure All.3.

Figure All.3 Idealized temperature profile for single-wave soldering system.

The actual temperature profile for a dual-wave system is slightiy more complicated than the ideal profile. As the board makes the transition between the first and second waves, it cools slightiy, causing a characteristic "double peak" profile (see Figure All.4).

It has been suggested that this rapid temperature fluctuation increases the risk of cracking ceramic capacitors. In this regard, a system such as the omega wave that combines both tux' ulent and laminar waves into a single wave may have an advantage over a system in which the two waves are physically separated. Much more experimental work needs to be performed to confirm this hypothesis.

Figure All. 4 Idealized temperature profile for dual-wave soldering system.

A12.1 Reflow By Thermal Conduction

A12.1.1, Conveyoriaed production systems

Conveyorized systems for production use are are similar to thatin Figure Al2.1. Comercial machines include at least two heating zones, one for preheating and. the second for reflow. Additional preheat zones are sometimes included to permit custom tailoring of the reflow protile. The cooling zone normally consists of a metal heat sink over which cool aix is blown.

Figure 12.1 Conveyorized thermal conduction reflow system.

Two types of conveyors can be used. one type is solid belt made of Tefion-coated fibreglass. The assembly rides on top of the belt while progressing through the heating zones, The other type of conveyor does not use a belt but instead employs a series of sweeper bars attached to a drive chain. The assembly is positioned so that a sweeper bar pushes it from behind. Improved heat transfer can be achieved with this technique because the substrate is in direct contact with the hot plates. However, interfacing the system to a component placement machine is more difficult; assemblies must be sequenced to enter the system between successive bars. Sequencing is not necessary when using a solid belt. The solid belt is also better suited for transporting odd-shaped assemblies.

Because heat must be transferred through the substrate, conveyorized systems are best suited for flat substrates with high thermal conductivity. Ceramic or porcelain-enamel steel substrates are ideal materials. Glass-epoxy printed wiring boards are less compatible because of their relatively low thermal conductivity.

To elevate the top of the board to reflow temperature, the hot-plate temperature must be increased above $250^{\circ} \mathrm{C}$. At such high temperatures, a certain amount of board charring and delamination is inevitable, and the flame retardancy properties of the board can be degraded. A typical temperature profile for a two-stage system is illustarated in Figure Al2.2.

Figure Al2.2 Typical tempera. . , le for ceramic PC board on conve,u. two-stage hot plate system.

Al2.2 Vapor Phase Reflow

612.2.1 Vapor phase theory

A basic vapor phase system consists of a container that holds a quantity of fluid. The fluid temperature is raised to its boiling point by a suitable heater. Above the boiling fluid is a saturated vapor zone that provides the heat for solrering. At the top of the container is a set of condensing coils. The voils reduce vapor loss due to evaporation into the enviromment.

In operation, the assembly to be soldered is lowered jnto the saturated vapor zone. The vapors condense on the relatively cool assembly, transferring the lacent heat of vaporization to the part. Heat con"inues to be transferred until the assembly reaches thermal equilibrium with the vapor. By employing a fluid that boils at a temperatsire above the melting point of the solder, reflow can ioe achieved.

The vapor phase process has several advantages over other reflow methods. These include:

* Well-controlled maximum temperature.
* Excellent temperature uniformity across the assembiy.

Soldering occurs in a virtually oxygen-free environment.

Heating is relatively independent of the geometry of the assembly.

A12.2.2 Jarge temperature gradient
The inherent design of the vapor phase system causes the assembly to make the transition from room temperature to reflow temperature at a rate limjted onay by its thermal mass. Typical temperature gradients of $15-20^{\circ} \mathrm{C} / \mathrm{sec}$ can damage certain types of components.

Thermal shock can be reduced by including a separate preheat stage in the process. Some in-line equipment can be purchased with an integral preheater at the inlet to the system. When this is not avallable, a separate IR preheater can be installed in line with the vapox phase system. When using a separate preheater, care must be taken to minimize the tinperature drop between the outlet of the preheater and the inlet of the vapor phase system.

A12. 3 Infrared Reflow

Solder reflew by application of direct infrarad energy ("IR reflow") has recentiy gained widespread popularity. A system is illustrated schematicaliy in Figure Al2.3. It is comprised of a conveyor belt that carries the assembiy through a series of heating zones, Each aone consists of a set of infrared einitters positioned above and below the belt. The temperature profile seen by the board is controlied by adjusting the emitter temperatures, the distanoes between the emitters and conveyor, and the speed of the belt.

Figure Al2.3 Construction of IR reflow system.
The advantages of IR reflow are:

* The temperature profile seen by the boare can be precisely controlled.
* Enexgy transfer by direct radiation is faster than by thermal conduction or convention.

Radiated energy penetrates inside the joint, whereas conducted or convected energy heats only the surface of the joint.

A12.3.1 Temperature control
Precise temperature control is achieved by employing several heating zones. Each zone can be individually adjusted to tailor the temperature gradient seen by the board. Commercial systems employ as few as 3 or as many as 20 zones to control the profile. (The ixiterpretation of what constitutes a "zone" is ciecided by each manufacturer. Some manufacturers count both top and bottom elements as a single zone, while others consider them as separate zones).

A12.3.2 Heat transfer rate
Heat transfer by direct radiation follows the Stefan-Boltzman law:

$$
E=K\left(T_{1}^{4}-T_{2}^{4}\right)
$$

where: $E=$ amount of energy transferred
$T_{4}=$ temperature of emitter
$T_{2}=$ temperature of assembly
$\mathrm{K}=\mathrm{a}$ constant

As can be seen, energy is transferred at a rate proportional to the fourth power of the temperature difference between emitter and assembly. This is a much higher rate than transfer by conduction or convection, which is proportional to the siuple difference in temperature.

A12.3.3 Heat penetration

While convective and conductive reflow approaches are surface-heating phenomena, direct radiation penetrates more deeply into the joint. This has several potential benefits. Solvents in the solder paste are more easily driven off without spattering, so a separate preheat step is not necessary. In addition, the entire joint heats up as a unit, reducing the possibility of ?on smential solder wicking up the leads of PLCC तovices. The combination of gradual temperature rise and penetrating heat virtually eliminates the possibility of chip component tombstoning.

Infrared reflow has several potential disadvantages. These include:

* For any given equipment setting, the actual temperature profile seen by board is highly dependent on its thermal mass.
* Energy absorption is sensitive to the absorptivity (color) of the components and printed wiring board.
*

Direct infrared energy is blocked by tail components.

A12.3.4 Thermal mass sensitivity

Infrared reflow is a non-equilibrium process. Because the emitters do not operate efficiently at the relatively low reflow temperature, they must be operated at much higher temperatures. The actuai temperature of the board as it passes through any zone is a function of the board thermal mass and the speed of the beit, Figure A12.4 shows the relationship between the emitted temperaturas and the board surface temperature for a board of given thermal mass.

When the machine settings are not optimized for the particular board being reflowed, several things can happen. If the boaxd has a low thermal mass, it will become overheated, causing discoloration or charring. overheated components can be irreparably damaged. In extreme cases the board material can even catch fire. On the other hand, if the board has a high thermal mass, it may not reach reflow temperature, Even iff the temperature does reach the reflow point, it may not remain their long enough for all joints to fully form.

Figure A12.4 Typical temperature profile for area source infrared reflow system.

A12.3.5 Temperature profiling

Because IR reflow is a non-equilibrium process, a specific temperature profile must be developed for each board type. This step is necessary regardless of whether a lamp or a panel emitter system is employed. The objective in profiling is to determine the specific emitter temperatures, emitter-conveyor spacings, and belt speed that produce the temperature profile nearest the iadal.

Profiling is accomplished by attaching a set of thermocouples to a representative sample board and monitoring board temperature as it progresses through the oven. The thermocouples are attached to long lengths of heatresistant wire. Since a number of runs may be needed to determine the optimum profile, the test is considered destructive to the sample board,

For best results, the board should be populated with components, although they need not be electrically functional. The number of thermocouples should be sufficient to measure the temperature uniformity across the board surface and to monitor any local areas of unusinally small or large thermal mass.

From a practical standpoint, it is desirable to adjust only those parameters that can easily be adjusted in production. Emitter-conveyor distance, for example, is usually difficult to change. Every attempt should be made to leave this parameter fixed for all roard types. Belt speed is usually easiest to adjust, followed by enitter temperatire.

A recommended profiling sequence is as follows:

1. Attempt to identify the optinum profile by adjusting only the speed of the conveyor belt. Maintain the emitter heights and temperatures at some nominal value.
2. If an acceptable profile cannot be achieved by adjusting belt speed alone, adjust emitter temperatures as necessary. Keep the temperature changes as small as possible and use belt speed to make gross adjustments.
3. If the profile cannot be optimized through use of emitter temperature and belt speed adjustments, adjust emitter heights as necessary.

In the interest of maintaining a just-in-time manufacturing capability, consider using a single setting for a number of different boards. Although for some boards this compromise profile may deviate from ideal; the difference may not have a practical impact on product quality. All board types should still be profiled per the above procedure to assure compatibility with the standard settings.

A12.4 Iaser Reflow

All the refilow methods described thus far subject the entire assembly to the reflow temperature for as long as 30-60 seconds. Some types of components are damaged by exposure to these temperature extremes. Many hybrid circuits, for example, employ components that have therselves been soldered with eutectic tin-lead solder. The lid seal on some hermetic devices is also made with eutectic tin-lead. obvioukiy, subjecting these devices to a second reflow operation is detrimental.

Laser reflow soldering was developed to address this concern. Unlike the previous methods, heat energy is directed only onto the joints being soldered and each joint must be formed individually, temperature sensitive components san more readily be soldered without fear of damage.

A typical system utilizes a CO_{2} or Nd:YAG laser, a mechanical $X-Y$ positioning stage, and a computer controller. The controller moves the board undex the laser as necessary to reflow all the jotnts sequentially.

The benefits of laser soldering include:

* Heating is highly localized, reducing the potentiul for damage to thermally sensitive devices.

Joints are formed very rapidly, reducing the potential for intermetallic growth.

Stresses in the joint are reduced compared to mass reflow methods.

A12.4.1. Slow soldering speed

The effective rate at whtoh joints can be formed includes both the actual soldering time and the time required to position the laser beam. Measured throughputs range from 4-10 joints per second or about 15,000-35,000 joints per hour. Depending on the nature of the board, this can be an order of magnitude less than the capacity of a vapor phase system.

A2. 5 Reflow By Thermal Convection

Convention ovens are rarely used to reflow solder paste. Compared to vapor phase or IR methods, the rate of heat transfer is much less. They are normalir used only in low-volume applications where equipment cost is a primary concern and throughput is not. Two exceptions are the IR-heated convection oven and the hot gas repair stations

Appendix 13

Figure A3.1a Surface tension preventing the solder reaching the downstream end of the SMD.

Figure A3.1b Extending the solder land to overcome the shadow effect.

The use of the dual-wave soldering technique also partially alleviates this problem because the first turbulent wave has sufficient upward pressure to force solder onto the component metallization, and the second, smooth wave "washes" the substrate to form good fillets of solder. Similarly, introducing oil on the surface of the solder wave lowers the surface tension which lessens the shadow effect, but this technique introduces problems of contaminants in the solder when the oil decomposes. (See details on soldering later).

Solder bridging

On wave-soldered substrates the orientation of so (small outline) and Vso (very small outline) ICs is critical for the prevention of solder bridge formation (See section 8). Optimum solder penetration is achieved when the central axis of the IC is parallel to the flow of the solder as shown in Figure A3.2a. The so package may also be transversely orientated, as shown in Figure A3.2b, but this is totally unacceptable for the VSO package.

DEFTNE Distribution as AN INTEGER, stream 9 VARIABLE DEFINE Mean.interarrival.time and sim.length as REAL VARIABLES

DEFINE Delay.in.queue and Days.run as REAL VARIABLES
DEFINE Total.run.time and Workday.length as REAL VARIABLES
DEFINE First.report, Second.report, Third.report, and Fourth. report as REAL VARIABLES

DEFINE First.run, Secondirun, Third.run, and Fourth.run

as REAL VARIABLES

DEFINE Total.no.of.sim and Rep as INTEGER VARIABLES
DEFINE Total.Head1.worktime and Total.Head2.worktime as REAL VARIABLES
DEFINE Layout and Man as pointer variables
DEFINE Number, Number1, Number2, Number3, Number:4, measer5, Numbex6, and Number7 as INTEGER vesinBIES

DEFINE Clocktime as a Double Variable
DEFINE Description and Position as TEXT VARIABLES
DEFINE .Right to mean 0
DEFINE . Left to mean -PI.C
DEFINE UU to mean PI.C/2
DEFINE . Down to mean -PI.C/2
DEFINE Field.id as a text variable DEFINE Form as a pointer variable
DEFINE Fleld as a pointer variable
DEFINE Device.id as a pointer variable
Define names as a 1 -dim text array
TALIX Mean.ws.delay.in.q AS THE MEAN OF Ws.delay.in. queue
TALLY Mean.jb.delay.in.q AS THE MEAN OF Jb.delay.in.queue
ACCUMULATE AVg.num.mach, working AS THE AVERAGE OF Ws.num.machine.working
ACCUMULLATE Avg.num.in.station.q AS THE AVERAGE OF N.q.work.station
ACCUMUIATE AVg.num.mach.occupied AS THE AVERAGE OF N.x.work.station
DISPLAY Variables include Clocktime and N.Q.Work.station
GRAPHIC Entities include Status1, s'atus2, status3, Status4, Status5, Status6, Status7, Status8, Status9, Status10, Statusil, Queue1, Queue2, Queue3, Queue4, Queue5, Queue6, Queue7, Queue8, queue9, queue.10, Queue11, and Load

DYNAMIC Graphjc Entities include Job

DEFINE Distribution as AN INTEGER, stream 9 VARIABLE DEFINE Mean.interarrival.time and sim.length as REAL VARIABLES

DEFINE Delay.in.queue and Days.run as REAL VARIABIES
DEFINE Total.xun.time and workday.length as REAL VARIABLES
DEFINE First.report, second.report, Third.report, and Fourth.report as REAL VARIABLES

DEFINE First.run, second.run, Third.run, and Fourth.run

as REAL VARIABLES

DEFINE Total.no.of.sim and Rep as INTEGER VARIABLES
DEFINE Total. Headi.worktime and Total.Head2. orktime as REAL VARIABLES
DEFINE Layout and Man as pointer variables
DEFINE Number, Number1; Number2, Number3, Number*, Numer5, Number6, and Number7 as INTVGen Vancibles

DEFINE Clocktime as a Double Variable
DERTNE Description and Position as TEXT VARIABLES
DEFINE . Rignt to mean 0
DEFINE . Left to mean -PI.C
DEFINE .Up to mean PI.C/2
DEFINE . Down to mean -PI.C/2
DEFINE Field.id as a text variable
DEFINE Form as a pointer variable
DEFINE Field as a pointer variable
DEFINE Device.id as a pointer variable
Define names as a 1-dim text array
TALLY Mean. $\underset{\text { S. }}{ }$ delay.in.q AS THE MEAN OF Ws.delay.in. queue
TATLY Mean.jb.delay.in.q AS THE MEAN OF Jb.delay.in. queue
ACCUMUIATE AVg.num.mach.working AS THE AVERAGE OF Ws.num.machine.working
ACCUMULATE AVg.num.in.station. q AS THE AVERAGE OF N.q.work.station
ACCUMULATE AVg, num.mach. occupied AS THE AVERAGE OF N.x. work.station
DISPIAY Variables incluaje Clocktime and N.Q.Work.station
GRAPHIC Entities include Status, Status2, Status3, Status4, Status5, status6, status7, Status8, status9, status10, Status11, Queuel, Queue2, Queue3, Queue4, Queue5, Queue6, Queue7, queues, queue9, Queue10, queue11, and Load

DYNAMIC Graphic Entities include Joi
END "'PREAMBLE

CALL Initialize
CALL Menu
CALL setvt. $\mathrm{r}(7,0)$
CALL vclears.r
CALI Vgotoxy. $r(20,2)$
PRINT 1 line thus
Simulation Running, Hours completed
OPEN unit 2 for output, file name is "SMTOUTI"
Activate an Arrival.generator in First. run Minutes
Àctivate an Arrival. generator in Second. run Minutes
Activate an Arrival.generator in Third.run Minutes
Activate an Arrival. generator in Fourth.run Minutes
Activate a fieldtest now
START SIMULATION
Close Unit 2
END " MAIN

PROCESS ARRIVAI.GENERATOR
CALL VGOTOXY.R(0,0)
LET Number $3=0$
LET Location.a(Queue10) $=$ Losation.f(50,9)
Display Queue10
LET Total.run.time $=0$
FOR $I=1$ to N work. station
DO
IF N.X.work.station(I) $=0$
IET X.coord $=$ St.Xlocation (I)
LET X.coord = St.Ylocation(I)
Print 2 LINES WITH I,X, coord, and Y.coord THUS
STATION ** $\mathrm{X}=* * *$ AND $\mathrm{Y}=* * *$
LET Description $=$ "Ide"
Select case I

case 5

LET Location.a(Status5) $=$ Location.f(X.coord, Y.ccurd)
Display status5
case 6
LET Location.a(Status6) = Location.f(X.coord, Y. coord) Display status6

case 10

LET Location.a(Status10) $=$ Tocation.f(X.coord,Y.coord) Display statusio

DEFAULT
Endselect
ENDIF
LOOP
LETY Description = "Busy"
FOR $I=1$ to Rep
DO
Call vgotoxy. $x(0,3)$
Let Job.type $=1$
FOR $J=1$ to number.of,jobs (job,type)
DO
WAIT Uniform.f(0, Mean.Interarrival.Time, 3) Minutes
Aotivate a Job giving Job.type NOW

- IET VXFORM.V $=1$

Display JOB with "Job,icn" at (20,200)
LOOP
LOOP
END " Arrival. Generator

PROCESS FIELDTEST

define field.id as text variable define menu as pointer variable

SHOW menu WITH "PNPMENU. FRM"
LET Field.ID = ACCEPT.F (menu, 'MENUBAR.CTI')
LET Field. ID = Field.ID
END * Fieldtant.

PROCESS FINAL.REPORT
Cal. vfcolox. r (1.5)
Cali vgotoxy, $x(2,1)$
IF Time. $v<$ Second. Run
Print 2 lines $\mathrm{Fith}^{\text {rime, }} \mathrm{V} / 60$ thus
First Run completed and Report Logged at Time ***.** Hours
LET Total, run.Time $=$ Time.v - First.Run
ELSE
IF Time.v < Third. rin
Call vgotoxy. i $(5,7)$
Print 2 lines with Time.v/60 thus
Second Run Completec and Report Logged at Time ***.** Hours
TET Total. run.time $=$ Time $* V-$ Second.Run
ELSE
IF Time. v \& Fourth. un
Call vgotoxy, r (8,1)
Print 2 ines with Time.v/60 thus
Thised Run Completed and Report hogged at Time ****** Hours
TET Total.run.Time $=$ Time.v - Third.run
FLSE
Cal1 vgotoxy.r $(11,1)$
Print 2 jines with Time.v/60 thus
Last Run Completed and Report Logged at Time ***.** Hours
EET Total. run.Time $=$ Time.v m Fourth. mun
Endif
Endif
Endif

IF Time, $v<$ second, run
USE unit 2 for output
PRINT 2 IInes thus
SIMULATION RFRULTS - FIRST RUN
SKIP 2 lines
ELSE
IF Time.v < Third, run
USE unit 2 for output
PRINT 2 lines thus
STMUJITITON RESULTS - SHCOND RUN

GKIP 2 Iines
ELSE

IF Tims.v < Fourth. run
USE unit 2 for output
PRINT 2 lines thus
SIMULATION RESULTS - THIRD RUN
SKIP 2 lines

ELSE

USE unit 2 for output PRINT 2 lines thus

SIMULATION RESULIS - FOURIH RUN
SKIP 2 lines

ENDIF

ENDIF
ENDIF
Print 3 Iines with Time.v/60 and total.run.Time/60 thus Total running Time $=$ ***.** Hours

Simulation Run rime $=$ ***.** Hours
Skip 1 line
LET Total.run.rime $=0$
Print 6 lines thus
Job Report:

Average Total
Job Type Delay in Queue Number Completed
skip 2 lines
FOR each job.type
do
print 2 lines with Job.type, Mean.jb.delay.in.q(job.type)/60, and Num. completed (job.type) thus
** ***.** ****

LET Num.completed(job.type) $=0$
LOOP
SKIP 2 lines
PRINT 5 lines thus
Station Report:

	Average Num	Average Delay	Prop Time	Prop Time	Prop Time
station	in queue	in Queue	Worixing	Idle	Blocked

FOR each Work.,station DO

Lew Prop.working $=$ Avg. num.mach.working (Work.station)/
Ws.num.machines (Wurk. station)
LET Prop.idle $=1.0$ - (Avg.num. mach.occupied(Work.station)/ Ws. num. machines (Work. station))
LET Prop.blocked = 1.0 - Prop.working - Prop.idle
print 3 lines with Work.station, Avg.num.in.station. q(work.station) Mean.ws.delay.in. $9 / 60$, Prop.working, Prop.ide, and Prop.blocked th

Skip 2 lines
USE Unit 6 FOR OUTPUT
FOR Each Work.station DO

RESET the Totals of Ws.delay.in.queue(work. station), Ws num. machine working (work. station), N.q.work.station(work.station) and N.X.work.station(work.station)
LOOP
RESET Totals of Jb.delay.in. queue (1)
END '/Report

PROCESS JOB given job.number
DEFINE job.number as an INTEGER VARTABLE
DEFINE time.of.arrival and total.delay.in. queue as REAL VARIABLES DEFINE current.station, current.machine, and task as INTEGER VARIABLES

LET delay,in.queue $=0$
LET Total. delay.in.queue $=0$
LET Total.run.time $=0$
LET Velocity.a(Job) $=0$
FOR each task in routing(job.number)
DO
CALL vfcolor.r(14)
CALL vgotoxy.r $(20,22)$
PRINT 1 line with time.v/60 thus

LET current.station $=$ task.work.station(task)
LET time.of.arrival $=$ time. v
SELECT Case current.station
Case 1
IF U.Work.station(current.station) $=0$
IET X.coord = Display. X (current.station)
LET Y.coord = Display, Y (current.station)
LET Number $=$ N.Q. Work ${ }^{\text {station (current.station) }+1}$
LET Location.a(QueueJ.) = Location.f(X.coord, Y.coord)
Display Queuel
ENDIF
Case 3
IF U.Work.station(current.station) $=0$
LET X.coord $=$ Display. X (current.station)
LET Y.coord = Display.Y(current.station)
LET Number $=\mathrm{N} . \mathrm{Q}$. work.station(current.station) +1
LET Location.a(Queue3) $=$ Location. $f(X$. coord, Y. coord)
Display queue3
ENDIF

Case 5

IF U.Work.station(current.station) $=0$

```
USE Unit 6 FOR OUTPUT
FOR Each Work.station
DO
    RESET the Totals of Ws.allay.in.queue(work.station),
                                    Ws.num.machine, working (work.station),
                                    N.q.work.station(work.station),
                                    and N.x.work.station(work.station)
LOOP
RESET Totals of Jb.delay.in.queue(1)
END "'Report
```

PROCESS JOB given job. number
DEFINE job.number as an INTEGER VARIABLE
DEFINE time.of.arrival and totaldelay.in.queue as REAL VARIABLES DEFINE current.station, surrent,machine, and task as INTEGER VARIABLES

LET delay.in.queue $=0$
LET Total.delay.in.queue $=0$
LET Total. run.time $=0$
LET Velocity.a(Job) $=0$
FOR each task in routing (job. number)
DO
CALI vfcolor.r(14)
CALL vgotoxy.r $\{20,22$)
PRINT 1 IIne with time.v/60 thus

LEN current. station $=$ task. work. station(task)
LET time.of.arrival \Rightarrow time. v
SELECT Case Current.station
Case 1
IF U.Work. station (current, station) $\Rightarrow 0$
LIT X.coord = Display.X(current.station)
IET Y.coord = Display'Y(current.station)
LET Number $=$ N.Q.work.station(current.station) +1
LET location.a(Queue?) = Location.f(X.coord,Y.coord) Display Rueuel ENDIF

Case 3

IF U.Work.station(current.station) $=0$
LET X.coord = Display.X (current.station)
LET Y.coord = Display.Y (current.station)
LET Number $=$ N.Q. work.station(current.station) +1 LET location.a(Queue3) = Location.f(X.coord, X.coord) Display Queue3 ENDIF

Case 5

IF U. Work. station(current.station) $=0$

LET X.coord = Display.X(current.station)
LET Y.coord = Display.Y(current.station)
LET Numberl $=$ N.Q.work.station(current.station) +1 LET location.a(Queues) $=$ Location.f(X.coord, Y, coora) Display queue5 ENDIF

Case 6
IF U.Work.station(curient.station) $=0$
LET X.coord = Display.X(current.station)
LET Y.coord $=$ Display.y(current.station)
LET Number2 $=$ N. Q.work.station(current.station) +1
IET location.a(Queue6) $=$ Location.f(X.coord,Y. Loord) Display queue6 ENDIF

Case 10
IF U.Work.station(current.station) $=0$ LET X.coord $=$ Display.X(current.station) LET Y.cooxd = Display.Y(current.station) ENDIF

DEFALTT
ENDSELECT
REQUEST 3 unit of work.station(current.station)
HET current.machine $=$ current.station
LET X.coord $=$ St.Xlocation (current.station)
IET Y.coord $=$ St. Ylocation(current.station)
Select case current.station
care 1
LET lcoation.a(Statusi) $=$ Location. $f(X$. coord, Y.coord)
Display Statusi
case 3
LFT location.a(Status3) = Location.f(X.coord,Y.coord) Display Status3
case 5
LET location.a(Status5) $=$ Location.f(X.coord, Y.coord)
Display status5
LET Current.head = Total.Headi.worktime
case 6
rer location.áa (Status6) $=$ Location. f(X.coord, y. coord)
Display Status6
LsT Current.head = Total. Head2.worktime
case 10
LET location.a(Status10) = Location.f(X.coord,Y.coord) Display Statusio

DEFAULT
Endselect
LET delay.in.queue \approx Time.v - Time.of.Arrival
LETI Ws.delay.in, Queue (current.station) delay,in.queue
ADD delay.in.queue to total. delay.in. queue
ADD 1 to ws. num.machine, working (current.station)
LET Stream current.station
IF Stream > 9
LET Stream $=9$ - Stream

ENDIF
IF Current.station $=5$ OR Current.station $=6$

ELSE

WORK Gamma.f(task.work.time(task),2,Stream) Minutes ENDIF
SUBTRACT 1 from ws.num.machine.working (current.station)
RELINQUISH 1 unit of work.station(current.station)
Select case current.station
case 1
IF N.X.work.station(current.machine) $=0$
Description = "Idle"
LET X.coord = St. Xlocation (current.station
LET Y.coord $=$ St. Ylocation(current.station)
LET location.a(Statusi) $=$ Location.f(X.coord, $\mathrm{X}_{\text {(soord) }}$
Display Statusi
ENDIF
LETY X.coord = Display.X(current.station)
IET Y.coord = Display.Y (current.station)
LRT location.a(Queuel) = Location.f(X.coord,Y.coord)
LET Number = N.Q.work.station(current.station)
Display Queuel
Case 3
IF N.X.work.station(current. nachine) $=0$
Description = "Idle"
LETT X.coord = St.Xlocation (current.station)
LET Y.coord = St. Ylocation(current.station)
LET location.a(Status3) = Location.f(X.coord,Y.coord)
Display status3
ENDIF
IET X.coord = Display.X(current.station)
LET Y.coord = Display, Y (current.station)
LET Iocation.a(Queue3) = Location.f(X.coord, Y.coord)
LET Number $=$ N.Q. work.station(current.station)
Display queue3
case 5
IF N.X.work.station(current.machine) $=0$
Description $=$ "Idle"
LET X.coord $=$ St. Xlocation (current.station)
LE's Y.coora $=$ St. Ylocation(current. station)
LET location.a(Status5) = Location.f(X.coord, Y.coord)
Display Status5
ENDIF
LET X.coord = Display.X(current.station)
LET Y.coord = Display, Y (current.station)
LET location.a(Queue5) $=$ Location.f(X.coord, Y. coord)
LET Numberl $=$ N.Q.work.station(current.station)
Display Queue5
case 6
IF N.x.work.station(current.machine) $=0$
Description $=$ "Idle"
LET X.coord $=$ St.Xlocation (current.station)
LET Y.coord = St.Ylocation(current.station)
LET location.a(status6) $=$ Location.f(X.coord, Y.coord)
Display status6
ENDIF
LET X.coord = Display.X(current.station)
L®T Y.coord = Display.Y (current.station)
LET location. a (Queue6) = Location, f(X.coord, y. coord)
LET Number2 = N.Q.work.station(current.station)

Display Queue6

case 10

IF N．X．work．station（current．machine）$=0$
Description \Rightarrow＂Idle＂
LET X．coord＝st．Xlocation（current．station）
LET Y．coord $=$ St．Ylocation（current，station）
LET Location．a（Statusio）＝Location．f（X．coord；Y．coord）
Display statusio
ENDTF
LET X．coord＝Misplay．X（current．station）
IET Y．coord $=$ Display．Y（current．station）
DEFAUTM
Endselect
LEW Description $=$＂Busy＂
Ler X．coord＝Conveyor．Xlocation（current．station）
LET Y．coord＝Conveyor．Ylocation（current．station）
I区＇i Direction＝Conveyor．direction（warant．station）
LET Length＝Conveyor．Iength（curnent．今tation）
IET Speed $=12$
LES VXform，$=1$
Display JOB with＂Job．ion＂at（X．coord，Y．coord）
Wir Velocity．a（Job）＝Velocity．f（Speed，Direction）
WORK Length／speed Minutes
IWI Velocity．a（Job）$=0$
CALL Vfcolor．r（14）
CAL工 vgotoxy．r $(20,22)$
PRINT 1 line with time．v／60 thus

LOOP

ADD 1 to num．compLETed（job．number）
INET Number3＝Num．completed（job．number）
LET location．a（Queuel 0 ）Location． $5(50,9)$
Display Queuelo
LeT jb．delay．in．queue（job．number）$=$ total．delay．in．queue
call vfcolor．r（7）
IET Total．run．time $=$ Time．v - Total．run，time
IF Num．completed（job．number）＝Number．of．Jobs（job．numiser）
Activate a Final．Report Now
ALWAYS
END
c $/$ JOB

Routine GRAPHICS.INIT
Define Devptr as a POINTER VARIABLE
create Status 1
create Status 3
Create Status5
Create Status6
Create Statusio
Create queuel
Create Queue3
Create Queue5
Create queueG
Create Queueio
LET Timesync.v = 'Clock. Update'
"Create a Graphic display using 2 new I/O units
Call devinit.r giving "vt,graphics" yielding devptr Open 7 for input, device is devptr open 8 for output, device is devptr, recordsize is 1024 Use 8 for graphic output
"Select a viewing transform and establish its mapping
JET: VXFORM.V $=2$ " For Text Display
mall Setworld.r(1.0, 80.0, 1.0, 25.0)
Let VXFORM.V =1 " For Graphics output
Call SETWORLD.R giving $0.0,250.0,0.0,250.0$
ISET VXFORM.V $=3$. $/$ For Text Display
Call Setworla.r(1.0, 79.0, 1.0, 24.0)
EET Drtn.a(Status5) = 'V.Status5'
LET Drtn.a(Status6) $=$ 'V.Status6'
LET Drtn.a (Queue5) $=$ 'V.Quelue5'
LET Drtn.a(Queue6) $=$ 'V.Quelue6'
LET Drtn.a(Queuelo) $=$ 'V.Queuelo'
Let $V X F O R M, V=1$
Show layout with "layout. firm"
Display layout
Display Clocktime with "Clock.grf"

End "GRAPHTCS.INIT

ROUTINE INITIALIZE
CALL Vbcolor.r(1)
CALI VECOOLOR.r(15)
call vClimars. R
CALL Setvt.r (7,0)
CALI Vgotoxy.r (5,10)
OPEN UNIT 2 FCR INPUT, FILE NAME IS "GMTTEST.TXT" \quad "SMTIN.DAT" USE 2 FOR INPLT

READ N. Work.station
CREATE every Work.station
FOR each Work.station
DO
READ Ws.num.machines (work.station)
LET U.Work.station(work.station) = Ws.num.machines (work.station)
READ Conveyor. Length (work.station)
READ Conveyor. Direction (work.station)
READ Conveyor.Xlocation(work.station)
READ Conveyor. Ylocation(work.station)
READ Ws.Xlocation(work.station)
READ Ws.Ylocation(work.station)
READ St.Xlocation(work.station)
READ St. Ylocation(work.station)
READ Q.XIocation(work.station)
READ Q.Ylocation(work, station)
READ Display.X(work.station)
READ Display.y (work.station)
LOOP
READ Mean.interarrival.time
READ N.job.type
CREATE every Job.type
FOR eawh Job.type
DO
READ Number. of.jobs (job.type)
. READ Num.tasks
FOR I = I to Num.tasks
DO
CREATE a Task
READ Task. work.station(task)
READ Task.work.time (task)
FIIE this task in Routing (job.type)
LOOP
LOOP
READ Rep
READ Total.no.of.sim
FOR $I=1$ to Total.no.of.sim DO
$I F I=1$
READ First.run
READ First.report
ELSE
IF I = 2
READ Second. run
READ Second.report ELSE

IF $I=3$
READ Third.run
READ Third.report
ELSE
$I F I=4$
READ Fourth.run
READ Fourth. report ENDIF
ENDIF
ENDIF
ENDIF
LOOP
READ Total.headl.worktime
READ Total.head2.worktime

CLOSE unit 2
LET Timescale.v $=100$

END " INITIALIZE

ROUIINE TOB.SCHEDULE
Define DONE as a text variable
Define choice as an alpha variable
Call vclears.r
Call vbcolor."(1)
Call vfcolor.:(15)
UNTIL Done $=$ "Y"
Do
Call vgotoxy.r(0,0$)$
print 3 lines thus
DISTRIBUTION FUNCTION OF JOB TYPES
skip 1 line
IF.n.job.type $=0$
Print 1 Ilne thus
No data in the system yet.
Else
FOR Each random.e in distribution
Print 2 lines with ivalue.a(random.e) and prob.a(random.e) thus
Type ** Cumulative probability = *.**

Endif
Call vgotoxy,r(15,0)
Write as "Alter values (Y / N) $=>1$,+ Call rer.r
Read Choice as A 1
Call vgotoxy.r(15,0)
Call vclearl.r
Select case Choice
case "y", "Y"
print 1 line thus
Enter the number of jobs to be sent through the line
Read n.job.type
Call vgotoxy.r(16,0)
Call vclearl.r
Call vgotoxy.r(15,0)
Call vcleari.r

Print 1 line thus
Enter the cumulative probability of each job [end with an asterix]
Read distribution
Call vgetxy. r yielding row, column
LETT Column $=0$
FOR increment $=15$ to row Do

Call vgotoxy.r (increment, 3)
Call vcleari.r Loop
Call vclears.r
case "N", "n"
Done = "Y"
Endse? ect
Loop
END " Job.schedule

ROUTINE MENT

DEFINE Choice as an ALPHA VARIABLE
DEFINE Done and Graphics as TEXT VARIABLES

```
IET DONE = "n"
LET Graphics = "E"
Call vbcolox.r(1) ", set text background to blue
Call vfcolor.r(15) ,' set text fckeground to white
LET Iines.v = 0 ", turm off 55 lines/page
```

 Until Done \(=\) " \(y\) "
 Do
 Call vclears.r
 PRINT 7 LINES THUS
 \% FLEXIBLE MANUFACTURING SMT LINE MODEL \quad

Default values
PRINT 1 LINE WITH Number.of.jobs(1) THUS Number Per Batch $=$ ***

PRINT 4 LINES WIIH Total.no.of.sim, MEAN.INTERARRIVAL.TIME, Graphics, and Timescale.v THUS
Number of Simulations $=* * *$ Job Interarrival Times are Exponential With a Mean of ***.** Hour Enable/Disable Graphics Display $=$ * Graphics Timescale Unit $=* * *$
print 10 lines thus

1) Review the Job-Workstation Distribution
2) Review Job Scheduling
3) Change the Number of Simulation Runs and Report Times
4) Enable/Disable Graphics Output
5) Charge the Graphics Timescale Unit
R) Run the simulation
E) Exit the simulation

C2I1 vgotoxy. $\quad(22,0)$

Write as "Enter your choice \Rightarrow ", +
Call rer.r
Read CHOTCE as A 1
Call vgotoxy. $\boldsymbol{r}(22,0)$
Call vclearl.r
Select case CHOICE
case "1"
Call ws.task.setup
case "2"
Call job.schedule
case "3"
Write as "Enter new Number of Workstations => ", +
Read N. WORK.STATION
IF N.WORK. STATION < 0
LET N. WORK.STATION $=1$
Always
Create every work.station
FOR each Work.station
DO
Call vgotoxy.r $(22,0)$
Call vclearl.r
Write as "Enter the Number of Machines at each Workstation => ", + Read Ws.num.machines (work. station)
LET U.work.station(work.station) = ws.num.machines (work.station) LOOP
case "4"
Call vgotoxy.r $(22,0)$
Call veleari.r
Write as "Graphics Diplay Enabled/Disabled (E/D)? \Rightarrow ", + Read Graphics
case "5"
Write as "Enter new Graphics Timescale \Rightarrow ", + Read Timescale.v
case "R", "r", "G", "g"
DONE $=$ "y" " choice made. . . now leave the menu
case "E", "e", "X"; "x", "Q", "q" Stop
pefaillt
Endselect
LOOP
IF Graphics <> "1" call Graphics.init Endif

ROUTINE MENUBAR.CTH GIVEN FIELD.ID AND FORM YIELDTNG STATUS
DEFTNE DLalog as a POINTER VARIABLE
DEFTNE fiela.id as a TEXT VARIABLE
DEFINE field, ptr and form as POINTER.VARIABLES
DEFINE icons as a 1-DIM TEXT ARRAY
DEFINE status as an INTEGER VARIABLE
DEFINE Ploti and Plot2 as TEXT VARIABLES
IF Field.id eq "MENU" IET field.id = dtval.a(dfield.f("menu", form))
ENDIF
SELECP CASE Field.id
Case "INITIALIZE"
Case "BACKGROUND"
LET field.ptr = dfield.f("menu", form)
LET dival.a(field.ptr) $=0$
Display Field.ptr
Case "QUIT"
LET status $=1$
Case "ICONS"
Case "PNP HEAD1"
Show dialog with "ICON.FRM"
Reserve Icons as 2
LET Icons(1) = "Level Metex"
LET Icons (2) = "Irine Graph"
IET field.ptr = dfield.f("PICK",dialog)
IET Dary.a(Field.ptr) =Icons(*)
IF Accept.f(dialog, 0) ne "cancel: AND Ddval.a(field.ptr) ne 0 LET Icons (*) = Dary.a(Field.ptr)
IET Plotl $=$ Icons (Ddval.a(Field.ptr))
ENDIF
IF Plot1 $=$ "Level Meter"
Call Gpriority.r'giving segid.a(Dfikid.f("Block2", layout)), 1 Display $\mathrm{H} . \mathrm{Q}$. work.station(5) with "levell.grf" Call Gpriority. x giving segid. a(Dfield.f("Blocke", layout)), 0

ELSE Call Gpriority.r giving segid.a(Dfield.f("Block2", layout)), 1 Display N.q.work.station(5) with "tracel.grf" Cali Gprlority, r giving segid.a(Dfield.f("Blrgk2", layout)), 0 LEN Plot1 = "T"
ENDIF
Case MPNP HEAD2"
Show dialog with "ICON. FRM"
Reserve Icons as 2
LET Icons (1) \Rightarrow "Level Meter"
LET Icons (2) $=$ "Line Graph"

LET field.per = dfield.f."PICK", dialog)
LET Dary.a(Fiela.ptr) $=$ Icons(*)
IF Accept.f(dialog, o) ne "cancel" AND Ddval.a(field.ptr) ne 0 LET Icons(*) = Dary.a(Field.ptr)
LET Plot2 = Icons(Ddval.a(Field.ptr))
ENDIF
IF Plot2 = "Level Meter"
Call Gpriority.r giving segid.a(Dfield.f("Block2", layout)), 1 Display n.Q.work.station(6) with "level2.grf"
Call Gpriority.r giving segid.a(Dfield.f("Block2",layout)), 0
ELSE IF Plot1 = "Tp:
Erase N.q.work.station(5)
ENDIF
Call Gpriority.r giving segid.a(Dfield.f("Block2", layout)), 1 Display N.q. work.station(6) with "trace2.grf"
Call Gprioxity.r giving segia.a(Dfield.f("Block.2",layout)), 0 ENDIF

Case "ERASE"
Show Dialog with "ICON.FRM"
LET ICons $(1)=$ "Head Display"
LET Icons(2) $=$ "Head2 Display"
LET field.ptr = dfield.f("PICK",dialog)
LET Dary.a(Field.ptr) $=$ Icons (*)
IF Accept.f(dialog, 0) ne "cancel" AND Ddval.a(field.ptr) ne 0 IET Icons(*) = Dary.a(Field.ptr)
LET Plot2 $=$ Icons(Ddyal.a(Field.ptr))
ENDIF
Default
Endselect
END *' Menuproc

ROUTINE REPORT.SETUP
' DEFINE Ans as an ALPHA VARIABLE
call vclears. x
Print 10 lines thus
Run Time and Report Setup
call vgotoxy.r(21,1)
Write as "Enter the Number of SAmulations (Max 4) $\Rightarrow \mathrm{H}$, + Read Total.no.of.sim
call vgotoxy.r(21,1)
Call velearl.r
CAT工 VGOTOXY.R $(3,0)$
print 1 Lime with gotal. no.of.sim thus
Number of Simulations $=*$
call vgotoxy. $x(21,1)$
Write as "Enter the Number of Repitions $\Rightarrow>$ " +
Read Rep
call vgotoxy.r $(21,1)$
Call vclear1.r
call vgotoxy, r(5,0)
Print 1 line with rep thus
The Number of Batch Reptitions $=* *$
Let line $=9$
For $I=1$ to Total.no.of.sim
DO
call vgotoxy. I (21,1)
Print 1 inne with I thus
Enter the Starting Time of Rus No. **
Call vgotoxy.r(21,40)
Read runtime
call vgotoxy.r $(21,1)$
Print 1 Iine with I thus
Enter the Logging Time of Report No. **
Call vgotoxy.r(21, 40)
Read logtime
call vgotoxy.r(21,1)
Call vclear].x
call vgotoxy.r(line $+i ; 0)$
print 1 line with RUNTIMP AND logtime thus **** ***

If $I=1$
Let First.run $=$ runtime Let First.report $=$ logtime ELSE If $i=2$
Let Second.run $=$ runtime Let Second. report $=$ logtime ELSE IE $\mathfrak{j}=3$
Let Third. report $=$ logtime Let Third.run $=$ runtime Else
Let fourth. xun $=$ runtime
Let Fourth. report logtime endif endif endif

LOOP

```
* call vgotoxy.r(15,0)
write as "Alter values (Y/N) #> N,+
read ANS
```

End

ROUTINE RESET

USE 2 FOR INPUT
READ N.Work.station
FOR each Work.station
DO
READ Ws. num.machines (work, station)
LET U. Work.station(work.station) = Ws.num.machines (work.station)
READ Conveyor. Length (work.station)
READ Conveyor. Direction(work.station)
READ Conveyor.Xlocation (work, station)
READ Conveyor. Ylocation(work.station)
READ Ws.Xlocation(work.station)
READ Ws.Ylocation(work.station)
READ St.Xlocation(work.station)
READ St, Ylocation(work.station)
READ Q.Xlocation(work.station)
READ Q.Ylocation(work.station)
READ Display. X(work.station)
READ Display.Y(work.station)
IOOP
READ Mean. interarrival.time
READ N.job.type
FOR each Job.type
DO
READ Number.of.jobs (job.type)
READ Num,tasks
FOR $I=1$ to Num.tasks
DO
READ Task.work.station(task)
READ Task. work.time(task)
FILE this task in Routing (job.type)
LOOP
LOOP
READ Rep
READ Total.mo.of.sim
FOR $I=1$ to Total.no.óf.sim DO

IF $I=1$
READ First.run
RBAD First.report
ELSE
IFIE2
READ Second.run
READ Second.report
ELSE
IF I = 3
READ Third.run
READ Third.report ELSE

IF $I=4$
READ Fourth.run READ Fourth.report ENDIF

ENDIF
ENTIF
LOOP
READ N. Component
FOR EACH Component
DO
READ Head (Component)
READ Mounting. pos (Component)
READ Feeder.pos (Component)
READ Num.per.board (Component)
READ Nozzle.size(Component)
LOOP

CLOSE unit 2

END 's Reset

Display ROJTINE queuel Given queuel
Define queuel as a POINTER Variable
Define string as a TEXT VARIABLE
Lee VXFORM.V $=3$
Let String = CONCAT.F("Q = ",ITOT.F(Number)) "/"qrstuvxyz"
Call Textcolor.r(15)
Call Textsize.r giving 7
Call WGtext.r(string, 0,0)

END ;' V.STATUS

Display ROUTINE queue1.0 Given queuelo
Define queuelo as a POINTER Variable
Define string as a TEXT VARIABLE
Let VXFORM.V = 3
Iet String = CONCAT.F(" Part Count = ",ITOT.F(Number3))
call Textcolor. i! 15)
call Textsize.r giving 75
Call WGtext.r(string, 0,0)

Display RouTINE Queue3 Given Queue3
Define queue3 as a POINTER Variable
Define string as a rext VARIABLE
Let VXFORM.V $=3$
Let string = CONCAT.F("Q = ";ITOT.F(Number))
Call Textcolor.r(15)
Call Textsize.r giving 586
Call wGtext.r(string, 0,0)

END "! V.STATUS

Display ROUTINE Queue5 Given Queue5
Define Queue5 as a POINTTR Variable
Define String as a TEXT VARIABLE
Let VXFORM. V $=3$
Let string $=$ CONCAT. F (" $Q=1$,ITOT.F(Number1))
Call Textcolor.r(15)
Call Textsize.r giving 575 /'86
Call WGtext.r(string, 0,0)

END " V.STATUS

Display ROUTINE queue6 Given queue6
Define queue6 as a PoINTHR Variable
Define string as a TtXT VARIABLE
Let. $\mathrm{VXFCRM} . \mathrm{V}=3$
Let String $=$ CONCAT. $F^{\prime}\left({ }^{\prime \prime} Q=1, I T O T . F(N u m b e r 2)\right)$
Call Textcolor.r(15)

Call Textsize. x giving $575 \quad 186$
Call WGtext.r(string, 0,0)

END !' V.STATUS

Display ROUTINE Statusi Given STATUS1
Define statusi as a POINTER Variable
Define string as a TEXP VARIABLE
Let VXFORM.V $=2$
IF Description = "Idle"
Let string $=$ "I"
ELSE
Let String $=$ "B"
ENDIF
Call Textcolor.r(15)
Call Textsize.r giving 586
Call WGtext.r(string, 0,0)

END " V.STATUS

Display kourine status10 Given STATUS10
Define Status10 as a POINTER Variable
Define String as a TEXT VARIABLE
Let VXFOKM.V $=2$
IF Description $=$ "Idle"
LET String = "I"
ELSE
Let String $=$ "B"
ENDIF
Call Textcolor.r(15)
Call Textsize,r giving 586
Call WGtext,r(string, 0,0$)$

END... ' V. STATUS

Display RoUTINE Status3 Given status
Define Status3 as a POINTER Variable Define string as a TEXT VARIABLE

Let VXFORM.V $=2$
IF Description $=$ "Idle"
LET String = "I"
ELSE
Let String $=$ "B"
ENDIF
Call Textcolor.r(15)
Call Textsize.r giving 586
Call WGtext.r(string, 0,0)

END " V.STATUS

Display ROUTINE Status5 Given STATUS5
Define Starus5 as a POINTER Variable
Define String as a TEXT VARIABLE
Let VXFORM.V $=2$
IF Description $=$ "Idle"
LET String = "Idle"
ELSE
Let String = "Busy"
ENDIF
Call Textcolor.r(15)
Call Textsize.r giving 586
Call Wetext.r(string, 0,0)

END ' ' V.STATUS

```
Display ROUTTNE status6 Given STATUS6
Define Status6 as a POINTER Variable
Define String as a TEXY VARIABLE
Let VXFORM.V =2
IF Description = "Idle"
INT String = "Idle"
ELSE
Let string = "Busy"
ENDIF
Cal1 Textcolor.z'(15)
Call Textsize.r giving 586
Call WGtext.x(string,0,0)
END */ V.SMATUS
```

ROUTINE WS.TASK.SETUP
define Done and Display as text variables
define Choice as an alpha variable
Let done $={ }^{n} n^{n}$
until Done $=$ " Y "
do
call velears.r
If task > 0
Let display = "T"
FOR EACH JOB.TYPE
DO
PRINT 5 IINES WITH JOB.TYPE THUS
JOB TYPE ** ROUTING
Station Mean Service Time (in Hours)
FOR EACH TASK IN ROUTING (JOB.TYPE)
PRINT 2 LINES WITH TASK.WORK.STATION (TASK) AND
TASK, WORK.TTME (TASK) THUS
**
LOOP
endif
If Display $=$ "m"
call vgetxy.r yielding row, column
call vgotoxy, r(row $+2,0$)
Endif
write as "Alter data values (M / N) \Rightarrow ", +
call rcr.r
read choice as a 1
select case Choice
case "Y", "Y"
call vclears.r
/TCREATE EVERY JOB.TYPE
FOR EACH JOB.TYPE
DO
PRINT 1 IINE WITH JOB.TYPE THUS
Enter the number of tasks for job type No ***
READ NUM.TASKS ''Number of tasks for a particular job type FOR $I=1$ TO NUM.TASKS \quad, Declared locally
DO
CREATE A TASK
call vgetxy.r yielding row, column
if row > 23
call vclears.r
endif
PRINT 1 LINE WIMH I THUS
For task No ***, enter the work station number and the mean service time READ TASK. WORK. STATION(TASK) and TASK.WORK.TIME (TASK)

FILE THIS TASK IN ROUTING (JOB.TYPE)
LOOP
IOOP
case "N", "n"
Done $=$ " y "
endselect
100p
END

Appendix 14

```
SET HEADING OFF
SET SAEFTY OFF
SET TALK OFF
CEgAR ATLL
SET CONSOLE ON
SET DEVICE TO SCREEN
SET PRINT OFF
SEN DELIMITERS ON
SET DELIMITERS TO "[]"
SET SJATUS OFF
SET BEL工 OFF
close all
CLEAR
DEFINE WINDOW PARAMETER FROM 6,5 TO 14,73 DOUBLE
ACTIVATE WINDOW PAM NETER
@ 2,8 SAY 'FIEEXIBLE WANUFACTURING SIMUIANION AND ORTIMIZATION'
e 4,8 SAY ' Copyright 1989, Standard Telephones & Cables'
@ 6,8 say ' Written By M. Chodos'
WA工TM '!
RELEASE WINDOW PARAMETER
DO MAIN
```

PARAMETERS NAME,NOZZLE
SETECT 6
DEFINE POPUP MAINMENU FROM 7, 45 MESSAGE "Place Highlighted Bar Over Choice an
DEFINE BAR I OF MAINMENU PROMPT "STANDARD SMAIL TOOLING SET"
DEFINE BAR 2 OF MAINMENU PROMPT "SPECIAL TOOLING SET I"
DEFINE BAR 3 OF MAINMENU PROMPT "SPECIAL TOOLING SET II"
DEFINE BAR 4 OF MAINMENU PROMPT "

ON SEILECIION POPUP MAINMENU DO MAINMEN

```
DEFINE POPUP COMPONENT FROM 7,45 MESSAGE "Place Highlighted Bar Over Choice a
DEFINE BAR I OF COMPONENT PROMPT "SOT 23"
DEFINE BAR 2 OF COMPONENT PROMPT "SOT 89, SOT143"
DEFINE BAR 3 OF COMPONENT PROMPT "CHIP CAPS - 0805,0504,1005,1505"
DEFINE BAR 4 OF COMPONENT PROMPT "CHIP CAPS - 1206,1210,1505"
DEFINE BAR 5 OF COMPONENT PROMPT "CHIP CAPS - 1825, 2225"
DEFINE BAR 6 OF COMPONENT PROMPT "SOIC's - 8, 14, 14L, 16"
DEFINE BAR 7 OF COMPONENT PROMPT "SOIC'S - 16L, 18, 18L, 20, 20L, 24"
DEFINE BAR 8 OF COMPONENT PROMPT "DIP (4 PIN)"
DEFINE EAR 9 OF COMPONENT PROMPT "PLCC - 18; 20, 28, د2"
DEFINE BAR 10 OF COMPONENT PROMPT "LCC - 16, 20, 24, 28, 32, 36, 40"
DEFINE BAR 11 OF COMPONENT PROMPT "CYLINDRICALS"
DEFINE BAR 12 OF COMPONENT PROMPT "MELF - 14, 18, TYPE"
DEFINE BAR 13 OF COMPONEN' PROMPT "SOD 80"
DEFINE BAR 14 OF COMPONENT PROMPT "MLL 34, 41"
DEFINE BAR 15 OF COMPONENT PROMPT "TO 92"
DEFINE EKR 16 OF COMPONENT PROMPT HLED HLMP 6000/6001"
DEFINE BAR 17 OF COMPONENT PROMPT "POT 10K433B"
DEFINE BAR 18 OF COMPONENT PROMPT "EXIT TO MAIN MENU"
ON SELECTION POPUP COMPONENT DO COMP
```

```
DEFINE POPUP COMPI FROM 7,45 MESSAGE "Place Highlighted Bar over Choice and II
DEFINE BAR 1 OF COMPI PROMPT "SOIC's - 14, 16, 18"
DEFINE BAR 2 OF COMPI PROMPT "SOIC's - 18L,20,20L,24,28,28L"
DEFINE BAR 3 OF COMPI PROM&N "PLCC - 18"
DEFINE BAR 4 OF COMPI PROMPT "SOT - 136A, 190"
DEFINE BAR 5 OF COMPI FROMPT "SOL - 24, 28, 40"
DEFINE BAR 6 OF COMPI PROMPT "SOW - 24, 56"
DEFINE BAR 7 OF COMPI PROMPT "PLCC - 28, 32"
DEFINE BAR 8 OF COMPI PROMPT "LCC - 32"
DEFINE BAR 9 OF COMPI PROMPT "EXIT TO MAIN MENU"
ON SELECTION POPUP COMPI DO COMPONENTI .
```

DEFINE POPUP COMPII FROM 7,45 MESSAGE "Place Highlighted Bar over Choice and
DEFINE BAR 1 OF COMPII PKOMPT "PLCC - 28, 32, 44"
DEFINE BAR 2 OF COMPII PROMPT "PLCC - 68, 84"
DEFINE BAR 3 OF COMPII PROMPT "SOL - 24, 40"
DEFINE BAR 4 OF COMPII PROMPT "SOW - 24"
DEFINE BAR 5 OF COMPII PROMPT "LCC - 36, 40, 44, 48"
DEFINE BAR 6 OF COMPII FROMPT "TINY BELL IC"
DEFINE BAR 7 OF COMPII PROMPT "EXIT TO MAIN MENU"
ON SELLECTION POPUP COMPII DO COMPII

ACTIVATE POPUP MAINMENU

```
RELEASE POPUPS MAINMENU
RELEASE POPUPS COMPONENT
RELEASE POPUPS COMPI
RELEASE POPUPS COMPII
RETURN
```

```
    CASE BAR() = 1
    ACTIVATE QOPUP COMPONENT
    CASE BAR() = 2
    ACTIVATE POPUP COMPI
    CASE BAR()=3
    ACIIVATE POPUP COMPII
    CASE BAR() = 4
    DEACTIVATE POPUP
ENDCASE
RETURN
PROCEDURE COMP
DO CASE
    CASE BAR() = 1
    STORE 'SOT 23' TO NAME
    STORE 0.042 TO NOZZLE
    CASE BAR() = 2
    STORE 'SOT 89/SOT 143' TO NAME
    STORE 0.042 TO NOZZLE
    CASE BAR() = 3
STORE 'CHIP CAPS 0805..1505' TO NAME
STORE 0.042 TO NOZZIE
CASE BAR() = 4
STORE 'CHIP CAPS 1206..1505' TO NAME
STORE 0.058 TO NOZZIE
CASE BAR() = 5
STORE 'CHIP CAPS 1825/2225' TO NAME
STORE 0.148 TO NOZZIE
CASE BAR() = 6
STORE 'SOICs 8/14/14L/16' TO NAME
STORE 0.109 TO NOZZIE
CASE BAR() = 7
STORE 'SOICs 16L..24' TO NAME
STORE ). }148\mathrm{ TO NOZZLE
CASF BAR() = 8
STORE 'DIP (4 PIN)' TO NAME
STORE 0.148 TO NOZZLE
CASE BAR() = 9
STORE 'PLCC 18/20/28/32' TO NAME
STORE 0.148 TO NOZZLE
CASE BAR() = 10
STORE 'LCC 16..40' TO NAME
STORE 0.148 TO NOZZTE
CASE BAR() = 11
STORE 'CYLINDRICALS' TO NAME
STORE 0.042 TO NOZZLE
CASE BAR() = 1*
STORE 'MELF 14/18' NO NAME
```

STORE 0.042 TO NOZZLE
CASE $\operatorname{BAR}()=14$
STORE 'MLL 34/41' TO NAME
STORE 0.04: TO NOZZLE
CASE $\operatorname{BAR}()=15$
STORE 'TO 92' TO NAME
STORE 0.109 TO NOZZLE
CASE $\operatorname{BAR}()=16$
STORE 'IED HLMP 6000/6001' TO NAME
STORE 0.109 TO NOZZLE
CASE $\operatorname{BAR}()=17$
STORE 'POT 10K4338' TO NAME
STORE 0.109 TO NOZZLE
CASE $\operatorname{BAR}()=18$
DEACTIVATE PODTJP
ENDCASE

```
(4,35 SAY '['+(NAME)+1' COLOR R+
    IF BAR() <> 18
        DEACTIVATE POPUP
    ENDIF
```

RETURN

PROCEDURE COMPONENTI
DO CASE
$\operatorname{CASE} \operatorname{BAR}()=1$
STORE 'SOICs 14/16/18' TO NAME
STORE 0.085 TO NOZZLE
CASE $\operatorname{BAR}()=2$
STORE 'SOICS 18L. .28L' TO NAMF
STORE 0.225 TO NOZZLE
$\operatorname{CASE} \operatorname{BAR}()=3$
STORE 'PLCC - 18' TO NAME
STORE 0.109 TO NOZZLE
CASE BAR() ≈ 4
STORE 'SOT 136A,190' TO NAME
STORE 0. 148 TY NOZZLE
CASE $\operatorname{BAR}()=5$
STORE 'SOL 24/28/40' TO NAME
STORE 0.109 TO NOZZLE
CASE $\operatorname{BAR}()=6$
STORE 'SOW 24/56' TO NAME
STORE 0.109 TO NOZZLE
CASE BAR() $=7$
STORE 'PLCCC 28/32' TO NAME
STORE 0.148 TO NOZZLE
CASE BAR() $=8$
STORE 'LCC - 32' mn NAME
STORE 0.109 TO NCZZLE
CASE BAR $)=9$

```
IF BAR() <> 9
    DEACTIVATE POPUP
ENDIF
```

RETURN

PROCEDURE COMPII
DO CASE
CASE BAR() $=1$
STORE 'PLCC 28/32/44' TO NAME
STORE 0.208 TO NOZZLE
CASE BAR() $=2$
STORE 'PLCK 68/84' TO NAME
STORE 0.208 TO NOZZLE
CASE BAR() $=3$
STORE ${ }^{1}$ SOI $24,40^{1}$ TO NAME
STORE 0.148 TO NOZZLE
CASE BAR() $=4$
STORE 'SOW 24' TO NAME
STORE 0.148 TO NOZZLE
CASE BAR ($)=5$
STORE 'LCC 36/40/44/48' TO NAME
STORE 0.148 TO NOZZLE
CASE BAR() $=6$
STORE 'TINY BELI TC' TO NAME
STORE 0.148 TO NOZZIE
CASE BAR() $=7$
DEACTIVATE POPUP
ENDCASE
(4,35 SAY ${ }^{\prime}\left[{ }^{1}+(\mathrm{NAME})+{ }^{\prime \prime}\right.$ COLOR R+

IF BAR() <> 7
DEACI'IVATE POPUP
ENDIF
EHOKN

```
PROCEDURE DELETE
close al1
SET DELETE ON
SELECT 1
USE PARAMETTE
SEYECT 2
USE REPORT
SELECT 3
USE TASK
SELECT 4
USE HEAD
SELECT 5
USE COMP
select a
DEFINE WINDOW PARAMETER FROM 4,3 5O 15,73 DOUBLE
ACIIVATE WINDOW PARAMETER
```

```
DEFTNE POPUP FTLE FROM 1,50 MESSAGE HPlace Highlighted Bax Over Choice and Hi
```

DEFTNE POPUP FTLE FROM 1,50 MESSAGE HPlace Highlighted Bax Over Choice and Hi
DEFINE BAR I OF FI工E PROMPT "COMPONENTS"
DEFINE BAR I OF FI工E PROMPT "COMPONENTS"
DEFINE BAR 2 OF FILE PROMPT "PLAACEMENT HEADS"
DEFINE BAR 2 OF FILE PROMPT "PLAACEMENT HEADS"
DEFINE BAR 3 OF FILE PROMPT "CEN PARAMETERS"
DEFINE BAR 3 OF FILE PROMPT "CEN PARAMETERS"
DEFINE BAR 4 OF FILE PROMPT "REPORTS"
DEFINE BAR 4 OF FILE PROMPT "REPORTS"
DEFTNE BAR 5 OF FIJE PROMPT "JOB TASKS"
DEFTNE BAR 5 OF FIJE PROMPT "JOB TASKS"
DLFINE BAR 6 OF FILE PROMPT | EXIT"

```
DLFINE BAR 6 OF FILE PROMPT | EXIT"
```

ON SEIECTION POPUP FIIE DO FITESEL
© 4,2 SAY 'SELECT DATABASE TO DETETE:'
ACTIVANE POPUP FITE
RELEASE POPUPS NOZZLE
RELEASE NLNDOW PARAMETER
SET DELERE OFF
RETURN
PROCEDURE FI工ESEI
STORE : TO BASE
DO CASE
CASE BAR $\left.{ }^{(}\right)=1$
SELECT COMP
CASE BAR() $=2$
SELECT HEAD
CASE BAR () = 3
SELECT PARAMETN
CASE BAR() 4
SELECT REPORT
CASE BAR $)=5$
SELECT TASR'
CASE BAR () $=6$
DEACITVATE POPUP
ENDCASE
-GO TOP

```
& 6,2 CTIEAR
STORE 'N' TO MSELECT
A 4,2 SAY 'ARE YOU SURE YOU WANT TC DELERE DATABASE (Y/N):' GET MSELECT PICTY
READ
IF MSELECT = 'Y'
PACK
@ 6,1 SAY "DATABASE DELETED"
ENDIF
```

* NOZSELECT PROCEDURE

PARAMEMER FTEEDER

STLACT 6
DEFINE POPUP NOZZLE FROM 5,50 MESSAGE "Place Highlighted Bar Over Choice and
DEFINE BAR 1 OF NOZZLE PROMPT "MATRIX TRAY"
DEFINE BAR 2 OF NOZZLE PROMPT "TAPE FEEDER"
DEFINE BAR 3 OF NOZZL PROMPT "MAGAZINE FEEDER'
DEFINE BAR 4 OF NOZZLE PROMPT " EXIT"
ON SELRCPTON POPUP NOZZIE DO TEST
ACTIVATE POPUP NOZZLE
RELEASE POPUPS NOZZLE RETURN

PROCEDURE TEST
DO CASE
$\operatorname{CASE} \operatorname{BAR}()=1$
STORE 'MATRIX TRAY' TO FEEDER
CASE BAR () $=2$
STORE 'TAPE FEEDER' TO FEEDER

CASE BAR ()$=3$
STORZ 'MAGAZINE FEF'NER' TO FEEDER
CASE BAR() $=4$
DEACTIVATE POPUP
ENDCASE
(4,28 SAY ' $\left[\right.$ ' + (FEEDER) $\left.{ }^{\prime}{ }^{\prime}\right]$ ' COLOR R+
IF BAR () 〈> 4
DEACTIVATE POPUP
ENDTF
REIURN
\qquad

```
* 05/01/90
*
SHORE 'F' TO LEFM,DONE
STORE 'F' TO COMPCHECK, PNPFULL
STORE I TO BICOUNT, B2COUNT, EICOUNT, E2COUNT
STORE 'F' TO BASE1, BASE2, ETM1, EIM2
STORE 'F' TO FIRST_FIND, SECOND_FIND, THIRD_FIND, FOURTH_FIND
STORE 'F' TO EIM1FULL, EIM2FULI, BASE3FULL
STORE O TO HEAD1WK, HEAD2WIK, HD, PERCENT,CONPNUM1, COMPNUM2, GLUETIME
STORE 0.03455 TO EIMTIME
STORE 0.03083 TO BASETIME
CLOSE ALL
SELECT 7
USE COMP
SELECT }
USE HEAD
```


CALCULATE GLUEING TTMES

```
CLEAR
DEFINE WINDOW PARAMETER FROM 7,1 TO 14,75 DOUBIE COLOR Rt* ACTIVATE WINDOW PARAMEIER
\& 3,8 SAY 'CALCULATING GLUEING TIMES.. PLEASE WAIT' COLOR W+
SELECT COMP
STORE 'F' TO DONE
INDEX ON SIDE TO NEW
GO TOP
SEEK 'BOTTIOM.
DO WHILE DONE = 'F'
```

```
DO CASE
```

DO CASE
CASE COMP NAME = 'SOT 23'
STORE 0.0\overline{4}2 TO GLUETIME
CASE COMP_NAME = 'SOT 89/SOT 143'
STORE 0.0\overline{4}2 TO GLUETIME
CASE COMP NAME = 'CHIP CAPS 0805..1505'
STORE 0.042 TO GLUETIME
CASE COMP NAME = 'CHIP CAPS 1206..1505'
STORE 0.058 TO GLUETIME
CASE COMP NAME = 'CHIP CAPS 1825/2225'
STORE 0.143 TO GLUETIME
CASE COMP_NAME = 'SOICs 8/14/14L/16'
STORE 0.109 TO SLUEITME
CASE COMP NAME = ISOICS 16L.. 24'
STORE 0.148 TO GLUETIME
CASE COMP_NAME = 'DIP (4 PIN)'
STORE 0.14̆8 TO GLUETIME
CASE COMP_NAME = 'PLCC 18/20/28/32'
STORE 0.14}8 TO GLUETTME
CASE COMP_NAME = 'LCC 16..40'
STORE 0.1\overline{4}8 TO GLUETIME

```

STORE 0.042 TO GLJETIME
```

CASE COMP NAME = 'SOD 80'
STORE 0.042 TO GLUETIME

```
CASE COMP NAME \(=\) 'MLI 34/41'
STORE 0,0 \(\overline{4} 2\) TO GLUETIME
CASE COMP NAME \(=\) 'TO 92'
STORE 0.109 TO GLUETIME
CASE COMP_NAME = 'LED HLMP 6000/6001'
STORE 0.109 TO GLUETIME
CASE COMP NAME \(=\) 'POT 10K4338'
STORE 0.109 TO GLJETIME
CASE COMP_NAME = 'SOICs 14/16/18'
STORE 0.085 TO GLUETIME
CASE COMP NAME \(=\) 'SOICs 18L. 28 L '
STORE \(0.2 \overline{2} 5\) TO GLUETIME
CASE COMP_NAME = 'PLCC - 18'
STORE 0.109 TO GLUETIME
CASE COMP NAME = 'SOT 136A,190'
STORE 0.148 TO GLUETIME
CASE COMP NAME \(=\) 'SOL 24/28/40'.
STORE \(0.1 \overline{0} 9\) TO GLUETIME
CASE COMP_NAME = 'SOW 24/56'
STORE 0.109 TO GLUETIME
CASE COMP NAME \(=\) 'PLACC 28/32'
STORE 0.148 TO GLUETIMR
CASE COMP_NAME = 'LCC - 32 '
STORE \(0.1 \overline{0} 9\) TO GLUETIME
CASE COMP_NAME \(=\) 'PLCC 28/32/44'
STORE \(0.2 \overline{0} 8\) TO GLUETTME
CASE COMP_NAME = 'PLCC 68/84'
STORE \(0.2 \overline{0} 8\) TO GLUETIME
CASE COMP NAME \(=1\) SOL \(24,40^{\prime}\)
STORE \(0.1 \overline{4} 8\) TO GLUETTME
CASE COMP NAME \(=1\) SOW 241
STORE \(0.1 \overline{4} 8\) TO GLUETIME
CASE COMP_NAME \(={ }^{\prime}\) ICC \(36 / 40 / 44 / 48^{\prime}\)
STORE 0.148 TO GIUETIME
CASE COMP NAME \(=\) MTINX BELL IC'
STORE \(0.1 \overline{4} 8\) TO GLUETIME

ENDDO
STORE GLUETIME/BASETIME TO COMPNUMI
* STORE GLUETIME TO HEADIWK

\section*{e 3,0 CLIEAR \\ RELEASE WINDOW PARAMETER}

DEFINE WINDOW PARAMETER FROM 7,1 TO 17,75
ACTIVATE WINDOW PARAMETER
© 3,2 SAY 'GLUE-TIME CALCULATION COMPLETE!
(2, 5, SAY 'TOTAL GLUEING TIME REQUIRED FOR BOARD \(=1+S T R(G L U E T I M E, 4,2)+1\) SECO WAIT 11


\section*{CLEAR}

STORE 1 TO MSELECT
( 2,2 SAY 'OPTIMIZATION METHOD 1- BASED ON NUMBER OF COMPONENTS PER BOARD'
@ 4,2 SAY 'OPTIMIZATION METHOD 2 - BASED ON PRIORITIZED NOZZIE PLACEMENT'
(6,2 SAY 'SELECT OPTION => 'GET MSELECT PICTURE "9"
READ
IF MSELECT \(=1\)
RELEASE WINDOW PARAMETER DO METHOU1
ELSE
RELEASE WINDOW PARAMETER
DO METHOD2
ENDIF
CLOSE ALL
RETURN

PROCEDURE METHOD1
* SELECT 6
clear
DEFINE WINDOW PARAMETER FROM 7,3 TO 14,73 DOUBLE COLOR R+* ACTIVATE WINDOW PARAMETER
© 3,18 SAY 'OPTIMIZATION IN PROGRESS' COLOR W+
© 4,18 SAY 1 - DO NOT INTERRUPT --' COLOR W+
SET FLAG MARKERS
SELECTI COMP
GO TOP
DO WHILE .NOT. EOF ()
REPLACE MARKER WITH 'F'
SKIP
ENDDO
STARIING OPTIMIZATION ROUTINE
INDEX ON NOZZ_SIZE TO NEW STORE O TO COUNT GO TOP

DO WHILE .NOT. EOF()
STORE NOZZ_SIZE TO X
```

 STORE 'F'T TO EIMI
 STORE 'T' TO EIM2
 DO CHECKEIMI
 STORE COMPNUMI + NUM PER BD TO COMPNUML
 IF .NOT. EOF()
 SKIP
 ENDIE
 ENDDO
 STORE 'T' TO FIRST_FIND
 ELSE
 IF SECOND_FIND = 'F'
 DO WHILE NOZZ_SIZE = X
 STORE "TM TO ETM1
 STORE 'F'T TO EIM2
 DO CHECKETM2
 STORE COMPNUM2 + NUM_PER_BD TO COMPNUM2
 IF .NOT. EOF()
 SKIP
 ENDIF
 ENDDO
 STORE 'T' TO SECOND_FIND
 ELSE
 * NB !!!! HEAD1WK < HEAD2WK
DO WHILE NOZZ_SIZE = X
STORE 'F' TO EIM1
STORE' 'T' TO EIM2
DO CHECKETM1
IF .NOT. EOF()
SKIP
ENDIF
ENDDO
STORE 'T' TO EIMIFUZL
STORE 'T' TO THIRD_FIND
ELSE
IF.FOURITH_FIND = 'F'
DO WHILE NOZZ_SIZE = X
STORE 'T' TO ETM1
STORE 'F' TO EIM2
DO CHECKEIM2
IF .NOT. EOF()
SKIP
ENDIF
ENDDO
STORE 'TI TO EIM2FULT
STORE 'T'TO FOURTH_FIND
ELSE
DO CHECKBASE1
IF .NOT. EOF()
SKIP
ENDIF
ENDIF
ENDTF
ENDIF
ENDIF
ELSE
DO CHECKBASEI
IF . NOT. EOF

SKIP
ENDIF
ENDIF
ETSE
SKIP
ENDIF
MNDDO

```

REPLACE HEAD2_TIME WITH HEAD2WK

\section*{CLOSE ALL}

STORE 4 TO X
DO DELAY WITH X
DO OPTREPORT
IF PERCENT < 95
STORE PERCENT TO NEWPERCENT
DEFINE WINDOW PARAMETER FROM 8,1 TO 14,75 DOUBLE
ACTIVATR WINDOW PARAMETER
CLEAR
STORE 'N' TO MSELECT
( 1,2 SAY 'OPTIMIZATTON PERCENTAGE LESS THAN 95\%'
© 3,2 SAY 'RE-OPTIMIZE TO IMPROVE OPTIMIZZIION PERCENTAGE (Y/N) \(\Rightarrow\) ' GET MSEL READ
CLEAR
STORE 'N TO SELECT
e 2,2 SAY 'PRINT OUT RESULTS FROM INITIAL OPTIMIZATION ( \(\mathrm{Y} / \mathrm{N}\) ) => ' GET SELECT READ
IF SELECT := \({ }^{1} \mathrm{Y}^{\prime}\)
DO PRINTOPT
ENDIF
RELEASE WINDOW PARAMETER
ENDIF
IF MSELECT = 'Y'
DO REOPT
ENDIF
RETURN

PROCEDURE CHECKBASE1
PROCEDURE CHECKBASE1
IF BASEI = 'F'
\begin{tabular}{ll} 
IF BICOUNTI & 20 \\
ELSE & DO SETBASE1 \\
ENDIF & DO CHKBAS2.
\end{tabular}

ELSE
"DO CHKBAS2
ENDIF
RETURN
\(\qquad\)

PROCEDURE CHKBAS2
IF BASE2 \(=\quad{ }^{\prime} \mathrm{F}^{\prime}\)
IF B2COUNT <m 20
DO SETBASE2
ELSE
STORE 'TY TO COMPCHECK DO CHECKEIM1
\(\because\) ENDIF
ELSE
STORE 'TI' TO COMPCHECK

\section*{RETURN}

```

*------------------- PROCEDURE CHECKEIM1
PROCEDURE CHECKEIM1
IF EIM2 = 'F'
IF ElCOUNT <: 43
DO BETEIM1
ELSE
DO CHECKEIM2
ENDIF
ELSE
DO CHECKEIM2
ENDIF
REIURN

```

```

*---m----m--------- PROCEDURE CHECKEIM2
PROCEDURE CHECKEIM2

```
```

TF EIM2 = 'F'

```
TF EIM2 = 'F'
    IF E2COUNT <=43
    IF E2COUNT <=43
        DO SETEIM2
        DO SETEIM2
    EISE
        IF COMPCHECK = 'T'
                STORE 'T' TO PNPFULL
            ELSE
                        DO CHECKBASE1
        ENDIF
    ENDIF
ELSE
    DO CHECKBASE1
ENDIF
RETURN
```



```
PROCEDURE SETEIM1
    REPLACE FEEDER_POS WITH EICOUNT
    REPLACE MARKER WITH 'T'
    REPLACE MOUNT POST WIT'H 'E'
    REPLACE PNP HEAD WITH }
    STORE 'T' TO EIM1
    STORE EICOUNT + I TO EICOUNT
    STORE (NUM_PER_BD * EIMTIME) TO WORKTIME
    REPLLACE WK TIME WITH WORKTIME
    STORE WORKTIME + HEADIWK TO HEADIWK
RETURN
```

RROCEDURE SETETM2
REPLACE FEEDER_POS WITH E2COUNT
REPLACE MARKER WITH 'T'
REPLACE MOUNT POST WITH EE'
REPLACE PNP_HEAD WITH 2

PROCEDURE SETBASE1
REPLACE FEEDIR_POS WITH B1COUNT
REPLACE MARKT.? WITH 'T' REPLACE MOUNI POST WITH 'B' REPLACE PNP_HEAD WITH 1 STORE 'T' TO BASEI
STORE BICOUNT + 1 TO BICOUNT STORE (NUM_PER BD * BASETIME) TO WORKTIME REPLACE WK_TIME WITH WORKTIME STORE WORKTTME + HEADIWK TO HEADIWK

RETURN

\qquad

PROCEDURE SETBASE4

```
REPLACF FEEDER POS WITH B2COUNT
REPLACE MARKER WITH 'T'
REPLACE MOUNT POST WITH 'B'
REPLACE PNP HEAD WITH 2
STORE 'F' TO BASE1
STORE B2COUNT + 1 TO B2COUNT
STORE (NOM_PER_BD * BASETIME) TO WORKTIME
REPIACE WK TIME WITH WORKTIME
STORE WORKTIME + HEAD2WK TO HEAD2WK
```

RETURN
PROCEDURE DELAY
PARAMETER TIME
START_TIME $=$ TIME ()
TIME1 $=$ VAL (SUBSTR (START_TIME, 1,2)) *3600+;
VAL (SUBSTR(START_TIME, 4,2))*60+;
VAL(SUBSTR(START_TIME,7,2))
TIME $2=0$
DO WHILE TIME2 - TIME1 < X
STORE TIME() TO END TIME
TIME2 $=\operatorname{VAL}\left(S U B S T R\left(E N D _T I M E, 1,2\right)\right) * 3600+;$
$\operatorname{VAL}(S U B S T R(E N D$ TIME $, 4,2)) * 60+:$
VAL (SUBSTR (END_TIME, 7, $\overline{2}$))
ENDDO
RETURN
PROCEDURE OPTREPORT

PROCEDURE OPTREPORT

```
DEFTNE WINDOW PARAMSTER FROM 8,1 TO 14,75 DOUBLE
..ACTIVATE WINDOW PARAMETER
```

STORE 0 TO TOTCOMP, BASEICOUNT, BASE2COUNT, EIMICOUNT, EIM2COUNT STORE O TO HD

REILEASE WINDOW PARAMETER

USE COMP
INDEX ON NOZZ_SIZE TO NUM
CIEAR
\& 1,0
TEXT
DESCRIPTION QUNTY HEAD FEEDER POS. BASE/EIM NOZZIE W.TIME
ENDTEXT
GO TOP
DO WHILE NOT, EOF ()
a $X, 0$ SAY COMP NAME
e X, 18 SAY NTM_PER_BD
@ X,28 SAY PNP_HEAD
(6. X,36 SAY FEEDER POS

C X, 49 SAY MOUNT POST
0 X,55 SAY NOZZ_SIZE
(X X,63 SAY WK_TIME
STORE TOTCOMP + NUM PER BD TO TOTCOMP
IF MOUNT POST $=1 B^{\prime}$. AND. PNP HEAD $=1$
STORE BASEICOUNT + 1 TO BASE1COUNT
ELSE
IF (MOUNT POST $={ }^{\prime} B^{\prime}$) .AND. (PNP HEAD $=2$)
STORE BASE2COUNT +1 TO BASE2COUNT ENDIF
ENDIF
IF (MOUNT_POST = ${ }^{\prime} E^{\prime}$) AND. (PNE_HEAD = I) STORE EIMICOUNT +1 TO EIMLCOUNT
ELSE IF (MOUNT_POST $=E^{\prime} E^{\prime}$) .AND. (PNP_HEAD $=2$) ENDIF
ENDIF
SKIP
STORE X + 1 TO X
IF $X=18$
STORE 5 TO X
ENDIF
ENDDO
e. 18, 1

WAIT "Fitt any key to continue"
REIEASE WINDOW PARAMETER
DEFINE WINDOW PARAMETER FROM 2,1 TO 22,75 DOUBTE
ACTIVATIS WINDOW PARAMETER

CLEAR
IF HEADIWK $>$ HEAD2WK
STORE (HEAD2WK/HEADIWK)*100 TO PERCENT STORE 1 TO HD
ELSE
STORE (HEADIWK/HEAD2WK)*100 TO PERCENT STORE 2 TO HD
ENDIF.

```
0 4,56 GET EIM2COUNT PICIURE "999*
@ 6,1 SAY "TOTAJ NUMBER OF COMPONENTS = GET TOTCOMP PICIURE "9999"
a 8,2 SAY 'TOTAL PLACEMENT TIME FOR HEAD1 = ' GET HEAD1WK PICTURE "999.99"
0 8,44 SAY MMinutes'
@ 10.1 SAY 'TOTAL PLACEMENT TIME FOR HEAD2 = ' GET HEAD2WK PICTURE "999.99"
& 10.44 SAY 'Minutes'
@ 12,1. SAY 'OPTIMIZATION PERCENTAGE = GET PERCENT PICTURE "999.9"
(12,36 SAY 1%1
e 16,1
WAIT "Hit any key to continue"
REIEASE WINDOW PARAMETER
REMURN
```



```
PROCEDURE REOPT
```

```
IFHD=1
```

IFHD=1
STORE O TO HD
DO REOPT1
DO OPTRREPORT
DEFINE WINDOW PARAMETER FROM 6,1 TG 14,75 DOUBLE
ACMIVAI'E WINDOW PARAMETER
CLEAR
IF NEWPERCENT > PERCENT
(2,2 SAY 'NO IMLRUVEMENT IN OPTIMIZATION PERCENTAGE '
ENDIF
STORE 'N' TO MSELECT
@ 4,2 SAY 'PRINT OUT RE*OPTIMIZATION RESULTS (Y/N) =>' GET MSELECT PI
READ
IF MSELECT = 'Y'
DO PRINTOPN
FNDIF
RELEASE WINDOW PARAMETER
ELSE
IF HD = 2
STORE O TO HD
DO RFOHMI2
DO OPTREPORT
DEFTNE WINDOW RARANETER FROM 6,1 TO 14,75 DOUBLE
ACTIVATE WINDOW PARAMETER
CIEAR
IF NEWPERCENT > PFRCENT
@ 2,2 SAY 'NO IMPROVEMENT IN OPTIMIZATION PERCENTAGE '
ENDIF
STORE 'N' TO MSELECT
@ 4,2 SAY 'PRINT OUT RE-OPTIMIZATION RESULTS (Y/N) \#>' GEN MSELECT MI
READ
IF MSEILECT = 'Y'
DO PRINTOPT
ENDIF
RELEASE WINDOW PARAMETER

```
ENDIF
ENDIF
RETURN

ACTIVATE WINDOW PARAMETER
8 3,18 SAY 'RE-OPTIMIZATION IN PRUGRESS' COLOR W+ © 4,18 SAY (- DO NOT INTERRUPT -' COLOR W+

SELECT COMP
STORE 'F' TO DONE,FOUND ,FLAG,EF
SORT TO ASCEHD ON NUM PER BD
* INDEX ON MOUNT_POST TO NUM

USE ASCEND
GO TOP
DO WHILE FOUND \(=1 \mathrm{~F}{ }^{\prime}\)
IF MOUNT POST \(=1 \mathrm{~B}\) ' .AND. PNP_HEAD \(=1\)
REPLACE FEEDER POS WITH B2COUNT
REPLACE MARKER WITH 'T'
REPLACE MOUNT POST WITH 'B'
REPLACE PNP HEAD WITH 2
STORE BICOUNTT - 1 TO BICOUNT
STORE B2COUNT + 1 TO B2COUNT
STORE (NUM_PER BD * BASETIME) TO WORKTIME
REPLACE WK TIME WITH WORKTIME
STORE WORKTIME + HEAD2WK TO HEAD2WK
STORE HEADIWK - WORKTIIME TO HEADIWK
* FORCE RE-OPTIMIZING UNLESS THE FOLLOWING CONDITION IS SATISFIED IF HEADIWK \(=<\) HEAD2WK

STORE 'T' TO FOUND
ENDIF
ELSE
SKIP
ENDIF
IF EOF ()
STORE 'm' TO FOUNE
ENDIF
ENDDO
* RESTORING DATABASE TO ORIGINAL POSITTION

COPY COMP
STORE 6 TO X
DO DELAY WITH X
RELEASE WINDOW PARAMETER
RETURN

PROCEDURE REOPT2
SELECT 6
CLEAR
DEFINE WINDOW PARAMETER FROM 7,3 TO 1.4,73 DOUBLE COLOR R+* ACTIVATE WINDOW PARAMETCER
\& 3,18 SAY 'RE-OPIIMIZATION IN PROGRESS' COLOR W+
(8) 4,18 SAY 1 - DO NOT INMERRUPT -' COLOR W+

SELECT COMP
```

STORE ":" TO DONE,FOUND ,FTAG,EF

```
STURE ' I TO TEMP, NAM
STORE O TO COUNT
```

DO WHILE FOUND = 'F'
IF MOUNT_POST = 'B'.AND. FNP_HEAD =2
REPLACE FEEDER POS WITH BICOUNT
REPIACE NARKER WITH 'T'
REPLACE MOUNT POST WITH 'B'
REPLACE PNP HEAD WITH 1
STORE B2COUNT - I TO BLCOUNT
STORE BICOUNT + 1 TO BICOUNY
STORE (NUM PER_BD * BASETIME) TO WORKTIME
REPLACE WKITIME WITH WQRKTIME
STORE WORKTIME + HITAD1WK TO HEADIWK
STORE HEAD2WK - WORKTIME TO HEAD2WK

* FORCE REOPPTMIZATION UNTII OPT SOLUTION OBMAINED
IF HEADAWK \#< HEADIWK
STORE 'T\ TO FOUND
ENDIF
ELSE
SKIP
ENDIF
IF EOF()
STORE 'TI TO FOUND
ENDIF
ENDDO
* RFGTORING DATABASE TO ORIGINAI POSITION
COPY TO COMP
STORE 6 TO X
DO DELAY WIMH X
RELEASE WINDOW PARAMETER
RETURN

```
PROCEDURE METHOD2
PROCEDURE METHOD2
```

SELECT}
CHEAR
DEFINE WJNDOW PARAMETER FROM 7,3 TO 14,73 DOUBLE COLOR R+*
ACTIVATE WINDOW PARAMETER

```
0 3, 18 SAY 'OPTTMTAATION IN PROGRESS' COLOR W+
( 4,18 SAY - DO NOT INTERRUPY - 1 COLOR W+
SELECT COMP
GO TOP
DO WHILE .NOT, ROF ()
REPTACE MARKER WITH 'F!
SKIP
ENDDO
*-ルーーー STARTING OPMIMIZATION ROUTINE
SORT TO DESC ON NUM_PER BD/D
USE DESC
STORE O TO COUNH
GO TOP
DO WHI工E .NOT. EOF ()
```

CLOSE ALI
STORE 4 TO X
DO DELAY WITH X
RELEASE WINDOW PARAMETER
DO OPMREPORT
IF PERCENT < 95
STORE PERCENT TO NEWPERCENT
DEFINE WINDOW PARAMETER FROM 8,1 TO 14,75 DOUBLE
ACTIVATE WINDOW PARAMETTER
CTNAR
STORE 'N' TO MSELECT
a 1,2 SAY 'OPTIMTZATION PERCENTAGE IESS THAN 95%'
@ 3,2 SAY 'RE-OPTIMTZE TO IMPROVE OPTIMIZATION PERCENTAGE (Y/N) => ' GET MSEL
READ
CLEFR
STORE 'N' HO SELEC',
@ 2,2 SAY 'PRINT OUT RESUETS FROM INITIAI OPTIMIZATION (Y/N) => GET SENECT
READ
IF SELECT = 'Y'
DO PRINTOPT
ENDIF
IF MSELECT \& 'Y'
DO REOPI
ENDIF
*RELEASE WINDOW PARAMETER
ENDIF
RETURN

```

PROCEDURE PRINTOPT
STORE 0 TO TOTCOMP, BASEICOUNT; BASE2COUNT, EIMLCOUNT, EIM2COUNT
*CLOSE ALL
SELECT COMP
CLEAR
E 2,2 SAY HKTT ANY KEY TO START PRINTING =>
WATT UH
SET DEVTCE TO PRTNT
STQRE 'T' TO PRINT
( 1,0 SAY \({ }^{1}\) DESCRIPTION QUNTY HEAD FEEDER POS. BASE/EIM NQZZLE
(0) \(2,0 \mathrm{SAY}\)

GO TOP
DO WHITE NOT. EOF ()
E X,O SAY COMP_NAME
© X, 18 SAY NUM—PER_BD
© X, 28 SAY PNP HEAD.
(0 \(X, 36\) SAX FEEDER_POS
\& X, 49 SAX MOUNT POST
a X,55 SAX NOZZ, SIZE
Q X;63 SAY WK TIME
STORE TOTCOMP + NUM PFR BD TO TOTCOMP
TF MOUNT_POST \(=\) 'B' .AND. PNP_HEAD \(=1\)

ENDIF
ENDIF
IF (MOUNT POST \(=\) 'E') AND. (PNP HEAD = 1)
ELSE
IF (MOUNT_POST = 'E') .AND. (PNP_HEAD = 2) STIORE EIM2COUNT +1 TO EIM2COUNT ENDIF
ENDIF
SKIP
STORE X + I TO X
ENDDO
IF HEAD1WK > HEAD2WK
STORE (HEAD2WK/HEAD2WK)*100 TO PERCENT
STORE 1 TO HD
ELSE
STORE (HEADIWK/HEAD2WK)*100 TO PERCENT
STORE 2 TO HD
ENDIF
SKIP
© \(\mathrm{X}-1,0 \mathrm{SE}\), HEAD1
( X, 0 SAY
© \(X+1,1\) SAY ITOTAL NO, OF COMFONENTS ON BASE \(=1\)
a X+1,35 SAX BASE1COUNT PICTUFE "999"
© X+1,56 SAY BASE2COUNT RTCTURE "999"
© \(X+2,1\) SAY 'TOTAL NO. OF COMPONENTS ON EIM \(=1\)
a \(\mathrm{X}+2,35\) SRY EIM1COUNT PICTURE "999"
a \(\mathrm{X}+2,56\) SAY EIM2COUNT PICTURE "999"
a \(X+4\), \(\operatorname{I}\) SAY \({ }^{\prime}\) TOTAL NUMBER OF COMPONENTS \(=\) '
X \(\mathrm{X}+4,29\) SAY TOTCOMP PICTURE "9999"
© X 6,3 SAY TOMAL PLACEMENT TIME FOR HEADI \(=1\)
(6 X \(\mathrm{X}+6,34\) SAY HEADIWK PICTURE "999.99"
© \(\mathrm{X}+6,44 \mathrm{SAY}\) 'Minutes'
@ \(X+8,1\) SAY "TOTAL PLACEMENT TITNE FOR HEAD2 \(=1\)
© \(\mathrm{X}+8,34\) SAY HEAD2WK PICTURE "999.99"
8 \(\mathrm{X}+8,44\) SAY 'Minutes'
\(0 \mathrm{X}+10,1\) SAY 'OPTIMIZATION PERGENTAGE \(=\) '
© X+1.0,27 SAY PERCENT PICTURE "999.9"
( \(\mathrm{X}+10,36 \mathrm{SAY}\) 1名1
* 16,1

SET DEVICE TO SCREEN
RETURN

\section*{MAIN PROCEDURE}

DO WHITE .T.
CLEAR ALI
DEFINE WINDOW PARAMETER FROM 3,5 TO 19,73 DOUBLE
ACTIVATE WINDOW PARAMETER
STORE 1 TO MSELECT
CLEAR
TEXT
SIMULATION AND OPXIMIZATION DATA BASE MAIN MENU
[1] - Edit Database
[2] - Delete Existing Databases
[3] - Print optimization Report
[88] - Exit to DRaseIV Command Level
[99] - Exit to Dos
ENDIEXT
a 14,3 SAY 'Enter Selection \(\Rightarrow\) ( GET MSELECT PICTURE "99" READ

DO CASE
CASE MSELECT \(=1\)
REIEASE WINDOW PARAMETER
DO MAINPROC
CASE MSELECT = 2
REIEASE WINDOW PARAMETER
DO DELETE
DO MAIN
CASE MSELECT \(=3\)
RELEASE WINDOW PARAMETER
CASE MSELECTM = 88
RELEASE WINDOW PARAMETER SET STATUS ON
CANCEI
CASE MSELECY \(=99\)
RELEASE WINDOW PARAMETER
* CANCEL

QUIT
OTHERWISE
( 14,3
© 14,3 SAY 'ERROR GO10 - ILIEGRI OPTION' *DO DELAY WITH 2
ENDCASE
ENDDO

EROCEDURE MATNPROC
DO MENUDEF
SET CLOCK TO 1,69
ACTIVARE MENU SMTMENU
RELEASE MENU SMTMENU
-RELEASE POPUPS TMENU

RETURN

PROCEDURE MENUDEF


DEFINE POPU IMENU FROM 10,30 MESSAGE "Setup INITIALIZATION Parameters"
DEFINE BAR 1 OF IMENU PROMPT "Setup Parameters" skip
DEFINE BAR 3 OF TMENU PROMPT "New Production Plan"
DEFINE BAR 4 OF IMENU PROMPT "Initialization"
DEFINE BAR 5 OF IMENU PROMPT "Exit to Main Menu"
ON SELLECTION POPUP IMENU DO SELINI WITH BAR()
DEFINE POPU WMENU FROM 6,30 MESSAGE "Setup WORKSTATION Parameters"
DEFINE BAR 1 OF WMENU PROMPT "Setup WS Parameters" skip
DEFINE BAR 3 OF WMENU PROMPT "Conveyor Length"
DEFINE EAR 4 OF WMENU PROMPT "Conveyor Direction"
DEFINE BAR 5 OF WMENU PROMPT "Conveyor Xcoord"
DEFINE BAR 6 OF WMENU PROMPT "Conveyor Ycoord"
DEFINS BAR 7 OF WMENU PROMPT "Ws XCoord"
DEFINE BAR 8 OF WMENU PROMPT "Ws Ycoord"
DEFINE BAR 9 OF WMENU PROMPT "Status Xcoord"
DEFINE BAR 10 OF WMENU PROMPT "status Ycoord"
DEFINE BAR 11 OF WMENU PROMPT "Quene Xcoord"
DEFINE BAR 12 OF WMENU PROMPI "Queue Ycoord"
DEFINE BAR 13 OF WMENU PROMPD "Display Xcoord"
DEFINE BAR 14 OF WMENU PROMPT "Display Ycoord"
DEFINE BAR 15 OF WMENU PROMPT "Number of Machines"
DEFINE BAR 16 OF WMENU PROMPT "Exit to Main Menu"
ON SELECTION POPUP WMENU DO SELWS WITH BAR()
DEFINE POPU TMENU FROM 10,30 MESSAGE "Setup rASK Parameters"
DEFINE BAR 1 OF TMENU PROMPT "Setup TASK Parameters" skip
DEFINE BAR 3 OF TMENU PROMPT "Task Workstations"
DEFINE BAR 4 OF TMENU PROMPT "Task WOrk-Time"
DEFINE BAR 5 OF TMENU PROMPT "PnP Component setup"
DEFINE BAR 6 OF TMENU PROMPT "PnP Marinine Optimization"
DEFINE BAR 7 OF TMENU PROMPT "Exit to Main Menu"
ON SELECTION POPUP TMENU DO SELMENUTASK
DEFINE POPU RMENU FROM 10,30 MESSAGE "Setup REPORT Parameters"
DEFINE BAR 1 OF RMENU PROMPN "Setup REPORT Parameters" skip
DEFINE BAR 3 OF RMENU PROMPT "Run-Time Setup"
DEEINE BAR 4 OF RMENU PROMPN "Report-Time Setup"
DEFINE BAR 5 OF RMENU RROMPT "Print/Save Data"
DEFINE BAR 6 OF RMENU PROMPT "Exit to Main Menu"
ON SELECTION POPUP RMENU̇ DO SELMENUTEP

\footnotetext{

}

DO CASE
CASE TEMP \(=3\)
CLEAR
DEFINE WINDOW PARAMETER FROM 8,5 TO 20,73 DOUBLE ACTIVATE WINDOW PARAMETER
USE PRODUCT
IF EOF ()
APPEND BLAANK
ENDIF
GO TOP
TEXT
NEW PRODUCTION INFORMATION
JOB NAME/CODE =
WAVE SOLDERING REQUIRED (Y/N) \(=\)
SOLDER REFLOW REQUIRED (Y/N) =
ENDTEXT
(a) 3,23 SAY '' GET JOB NAME
(1) 5,38 SAY \(' 1\) GET SOLDER
@ 7,38 SAY \(1!\) GET REFLOW
READ
REJEASE WINDOW PARAMETER
CASE TEMP \(=4\)
DEFINE WINDOW PARAMETER FROM 6,5 TO 23,73 DOUBLE ACTIVATE WINDOW PARAMETER
USE PARAMETE
GO TOP
TEXT
JARAMETER INFORMATION
```

NUMBER OF WORKSTATIONS = INTERARRIVAL TIME =
NUMBER OF JOBS = NUMBER PER BATCH =
NUMBER OF TASKS = TOTAL NUMBER OF SIMULATIONS =
NUMBER OF REPITITIONS PER SIMULATION =
NUMBER OF DIFFERENT COMPONENT TYPES FOR THE PnP MACHINE =
ENDTEXT
\& 3,26 SAY I' GET NUM MACHINE
a 3,57 SAY '' GET INTERTIIME
\& 5,18 SAY ': GET NUM JOBS
@ 5,52 SAY "' GET NUM_PER BA
0 7,19 SAY 1: GET NUM TASKS
@ 7,57 SAY % GET NO OF_SIMS
@ 9,42 SAY if GETM REPS
0 11,60 SAY 'I GET C`m_TYPES
READ
RELEASE WINDOW PARAMETER
CASE TEMP = 5
DEACTIVATE POPUP
ENDCASE
close all

```
PROCEDURE SELWS
PARAMETERS TEMP
    select 4
    clear
    IF TEMP <> 16
    DEFINE WINDOW PARA FROM 1,5 TO 12,73 DOUBLE
    ACTIVATE WINDOW PARA
    @ 1,1 SAY 'MACHINE 1 = SOLDER PASTE MACHINE'
    @ 2,1 SAY 'MACHINE 2 = GRAVITY PLATFORM 1'
    a 3,1 SAY 'MACHINE 3 = INPUT ELEVATOR'
    (0) 4,1 SAY 'MACHINE 4 = CONVEYOR BEIT'
    & 5,1 SAY 'MACHINE 5 = HEADI OF PNP'
    a 6,1 SAY 'MACHINE 6 = HEAD2 OF PNP!
    @ 1,35 SAY 'MACHINE 7 = CONVEYOR WITH INSPCT'
    @ 2,35 SAY 'MACHINE 8 = CUREFLOW OVEN'
    @ 3,35 SAY 'MACHINE 9 = CONVEYOR WITH INSPCT'
    @ 4,35 SAY 'MACHINE 10 = OUTPUT ELEVATOR'
    @ 5,35 SAX 'MACHINE 11 = GRAVITY PIATFORM'
    ENDIF
```

DO CASE
CASE TEEMP $=3$
LEFINE WT DOW PARAMETER FPU, 4 15,5 TO 23,73 DOUBLE
ACIIVATE WINDOW PARAMETER
USE PARAMETE
GO TOP
STORE NUM_MACHINE TO TEMP
STORE 1 TO COUNT
USE WORKSTAT
GO TOP
DO WHILE COUNT $<>$ (TEMP + 1)
IF EOF ()
APPEND HIANK
ENDIF
(2,0
(2,6 SAY ${ }^{1}$ CONVEYOR LENCTH FOLLOWING MACHINE $\left[{ }^{1+S T R}(C O U N T, 2,0)+1\right]=$
@ 2,48 SAY CONVEY_TNG
@ 4,4
ACCEPT "ALTER VALUES (Y / N) ? :" TO ANS
IF ANS = "Y"
e 2,52 GET CONVEY_LNG
READ
ENDIF
STORE "N" TO ANS
@ 4,4
STORE COUNT + 2 TO COUNT
IF EOF ()
APPEND BLANK
ELSE
SKIP
ENDIF
ENDDO
REIEASE WINDOW PARAMETER
CASE TEMP $=4$
DEFINE WINDOW PARAMETER FROM 15,5 TO 23,73 DOUBLE
ACIIVATE WINDOW PARAMETER
USE PARAMETE
GO TOP
STORE NUM MACHINE TO TEMP
STORE 1 TO COUNT
USE WORKSTAT
GO TOP

```
ENDIF
a 2,0
A 2,6 SAY 'CONVEYOR DIRECTION FOLIOWING MACHINE ['+SMR(COUNT, 2,0)+' ]
(2,51 SAY CONVEY_DIR
(a) 4,4
ACCEPT "ALTTER VALUES (Y/N)? :" TO ANS
IF ANFS = "Y"
    @ 2,55 GET CONVEY_DIR
    READ
ENDIF
STORE COUNT + 1 TO COUNT
IF EOF()
APPEND BLANK
ELSE
SKIP
ENDIF
ENDDO
RELEASE WINDOW PARAMETER
CASE TEMP = 5
DFFINE WINDOW PARAMETER FROM 15,5 TO 23,73 DOUBLE
ACTIVATE WINDOW PARAMETER
USE PARAMETE
co TOP
STORE NUM MACHINE TO TEMP
STORE 1 TO COUNT,
USE WORKSTAT
GO TOP
DO WHILE COUNT <> (TEMP + 1)
IF EOF()
APPEND BLANK
ENDIF
(e 2,0
(2,6 SAY 'CONVEYOR X-LOCATION FOR MACHINE ['+STR(COUNT,2,0)+' ] = '
@ 2,46 SAY CONVEYXLOC
@ 4,4
ACCEPT "ALTER VALUES (Y/N)? :" TO ANS
IF ANS = "Y"
    @ 2,50 GES CONVEYXIOC
    READ
ENDIF
STORE COUNT + 1 TO COUNT
IF EOF()
APPEND BLANK
ELSE
SKIP
ENDIF
ENDDO
REIEASE WINDOW PARAMETER
CASE TEMP = 6
DEFINE WINDOW PARAMETER FROM 15,5 TO 23,73 DOUBLE
ACTIVATE WINDOW PARAMETER
USE PARAMETE
GO TOP
STORE NUM MACHINE TO TEMP
STORE 1 TO COUNT
USE WORKSTAT
GO TOP
DO WHILE COUNT <> (NEMP + 1)
IF EOF()
APPEND BLANK
ENDIF
(e) 2,0
E 2,6 SAY 'CONVEYOR Y-LOCATION FOR MACHINE ['+STR(CCONM,2,0)+' ]=1
```

```
IF ANS = "Y"
    A 2,50 GET CONVEYYLOC
    READ
ENDIF
SHORE COUNM + 1 TO COUNT
IF EOF()
APPEND BLANK
ELSE
SKIP
ENDIF
ENDDO
RELEASE WINDOW PARAMETER
CASE TEMP =7
DEFINE WINDOW PARAMETER FROM 15,5 TO 23,73 DOUBLE
ACTIVATE WINTJOW PARAMETER
USE PARAMETA
GO TOP
STORE NUM MACHINE TO TEMP
STORE I TO COUNT
USE WORKSTAT
GO TOP
DO WHILE COUNT <> (TEMP + 1)
IF EOF()
APPEND BLANK
ENDIF
(a) 2,0
@ 2,6 SAY 'MACHINE ['+STR(COUNT,2,0)+' ] X COORD = '
a 2,35 SAY WSXLOCATN
@ 4,4
ACCEPT "ALTER VALUES (Y/N)? :" TO ANS
TF ANS = "Y"
    Q 2,39 GET WSXLOCATN
    READ
ENDIF
STORE COUNT + 1 TO COUNT
IF EOF!
APPEND BTANK
ELSE
SKIP
ENDIF
ENDDO
RELEASE WINDOW PARAMETER
CASE TEMP = 8
DEFINE WINDOW PARAMETER FRON 15,5 TO 2'3,73 DOUBLE*
ACTLVATE WINDOW PARAMLTTER
USE PARAMETE
GO TOP
STORE NUM MACHINE TO TEMP
STORE 1 TO COUNT
USE WORKSTAT
GO TOP
DO WHILE COWNT <> (TEMP + 1)
IF EOF()
APPEND BLANK
ENDIF
@ 2,0
Q 2,6 SAY TMACHINE ['+STRR(COUNT,2,0)+'] Y-COCRD = '
@ 2,35 SAX WSYLOCATN
(4,4
ACCEPT "AIMER VALUES (Y/N)? :" TO ANS
IF ANS = "Y"
    0 2,39 GEN WSYLOCATN
    READ
```

ELSE
SKIP
ENDIF
ENDDO
RELEASE WINDOW PARAMETFR
CASE TEMP $=9$

DEFINE WINDOW PARAMETER FROM 15,5 TO 23,73 DOUBLE
ACTIVATE WINDOW EARAMETER
USE PARAMETE
GO TOP
STORE NUM Mis DHINE TO TEMP
STORE 1 TO COUNT
USE WORKSTAT
GO TOP
DO WHILE COUNT <> (TEMP + 1)
IF EOF ()
APPEND BLANK
ENDIF
© 2,0
e $2,6 \mathrm{SAY}$ 'STATUS UISPLAY X-COORD FOR MACHINE $[1+S T R(C O U N T, 2,0)+1]=$ e 2,51 SAY STATUSXIOC
a 4,4
ACCEPT "ALTER VALUES (Y/N)? :" TO ANS
$I F$ ANS $=$ "Y"
@ 2,55 GET STATUSXLOC
READ
ENDIF
STORE COUNT +1 TO COUNT
IF EOF ()
APPEND BLִANK
ELSE
SKIP
ENDIF
ENDDO
RELEASE WINDOW PARAMETER
CASE TEMP $=10$

DEFINE WINDOW PARAMENER FROM 15,5 TO 23,73 DOUBLE
ACIIVATE WINDOW PARAMETER
USE PARAMETE
GO TOP
STORE NUM MACHINE TO TEMP
STORE 1 TO COUNT
USE WORKSTAT
GO TOP
DO WHILE COUNF <> (TEMP + 1) \because
IF EOF ()
APPEND BLANK
ENDIF
(2,0
@ 2,6 SAY 'STATUS DISPLAY Y-COORD FOR MACHINE ['+STR (COUNT, 2,0$)+1]=$
(2,51 SAY STATUSYLOC
(e 4,4
ACCEPT MALTER VALUES (Y/N)? : " TO ANS
IF ANS = "Y"
© 2,55 GET STATUSYLOC
READ
ENDIF
STORE COUNT + 1 TO COUNT
IF EOF ()
APPEND BLANK
ELSE
SKIP

```
CASE TEMP = 11
DEFINE WINDOW PARAMETER FROM 25,5 TO 23,73 DOUBLE
ACTIVATE WINDOW PARAMETER
USE PARAMETTE
GO TOP
STORE NUM_MACHINE TO TEMP
JTORE I TO COUNT
USE WORKSTAT
GO TOP
DO WHILLE COUNT <> (TEMP + 1)
IF EOF()
APPEND BLANK
ENDIF
@ 2,0
a 2,6 SAY 'QUEUE X-COORD FOR MACHINE ['+STR(COUNT,2,0)+' ] = '
& 2,40 SAY QUEUEXLOC
[ 4,4
ACCEFP "ALTER VAXNES (Y/N)? :" TO ANS
IF ANS = "Y"
    @ 2,44 EET QUEUEXIOC
    READ
ENDIF
STCRE COUNT + 1 TO COUNT
IF EOF()
APPEND BLANK
ELSE
SKIP
ENDIF
ENDDO
RELEASE WINDOW PARAMEMER
CASE TEMP = 12
DEFINE WINDOW PARAMETER FROM 15,5 TL 
ACTIVATE WINDOW PARAMETER
USE PARAMETE
GO TOP
STORE NUM MACHINE TO TEMP
STOPE 1 TO COUNT
USE \thereforeORKSTAT
GO TOP
DO WHILE COUNT <> (TEMP + 1)
IF EOF()
APPEND BLANK
ENDIF
e 2,0
@ 2,6 SAY 'QUEUE Y-COORD FOR MACHINE ['+STR(COUNT,2,C)+' ] = '
e 2,40 SAY QUEUEYLOC
@ 4,4
ACCEPT "ALTER VALUES (Y/N)? :" TO ANS
IF ANS = "Y"
    @ 2,44 GET QUEUEYLOC
    READ
ENDIF
STORE COUNT + 1 TO COUNT
IF EOF()
APPEND BLANK
ELSE
SKIP
ENDIF
ENDDO
RELEASE WINDOW PARAMETER
```

CASE TEMP = 13

```
STORE NTM MACHINE TO TEMP
STORE I TO COUNT
USE WORKSTAT
GO. TOP
DO WHILS COUNT <> (TEMP + 1)
IF EOF()
APPEND BLANK
ENDIF
& 2,0
@ 2,6 SAY 'OUEUE VALUE DISPLAY X-COORD FOR MACHINE ['+STR(COUNT,2,0)+
@ 2,54 SAY DISPLAYXLC
@ 4,4
ACCEPT "ALTER VALUES (Y/N)? :" TO ANS
IF ANS = "Y"
                @ 2,56 GET DISPLAYXIC
        READ
ENDIF
STORE COUNT + I TO COUNT
IF EOF()
APPEND BLANK
ELSE
SKIP
ENDIF
ENDDO
RELEASE WINDON RARAMETER
CASE TEMP = 14
DEFINE WINDOW PARAMETER TROM 15,5 TO 23,73 DOUBLE
ACIIVATE WINDOW PARAMETER
USE PARAMETE
GO TOP
SIORE NUM MACHINZ TO TEMP
STORE 1 TO COUNT
USE WORKSTAT
GO TOP
DO WHILTE COUNTL <> (TEMP + 1)
IF EOF()
APPEND BLANKK
ENDIF
@ 2,0
& 2,6 SAY 'QUEUE VALUE DISPLAY Y-COORD FOR MACHINE ['+STR(COUNT,2,0)+
@ 2,52 SAY DISPLAYYLC
(g) 4,4
ACCEPT "ALMEER VALUSS (X/N)? :" TO ANS
IF ANS = "Y"
        @ 2,56 GET DISPLAYYLC
        EEAD
ENDIF
STORE COUNT + 1 TO COUNT
IF EOF()
APPEND BLANK
EuSE
SKIP
ENDIF
ENDDO
RELEASE WINDOW PARAMETER
CASE TEMP = 15
DEFINE WINDOW PARAMETER FROM 15,5 TO 23,73 DOUBLE
ACTIVATE WINDOW PARAMETER
USE PARAMETE
GO TOP
STORL NUM MACHINE TO TEMP
STORE 1 TO COUNT
```

APPEND BLANK
ENDIF
(1) 2,0
\& 2,6 SAY 'NUMBER OF MACHINES AT MACHINE ['+STR(COUNT,2;0)+*] ='
@ 2,41 SAX NUM_MACHIN
@ 4,4
ACCEPT "ALTEK VALUES (Y/N)? :" TO ANS
IF ANS m "Y"
@ 2,45 GEN NUM MACHIN
READ
ENDIF
STORE COUNT + i TO COUNT
IF EOF()
APPEND BLANK
E゙工SE
SKIP
ENDIF
ENDDO
RELEASE WINDOW PARAMENER
CASE TEMP =16
DEACTIVATE POPUP
OTHERWISE
DEACTIVAME POPUP

```
ENDCASE
RELEASE WINDOW RARA
CLOSE ALL
RETURN
```

CASE BAM() = 3
select 4
clear
DEFINE WINDOW PARA FROM 1,5 TO 12,73 DOUBLE
ACITVATE WLTNDOW PARA
a 1,1 SAY 'MACHINE 1 = SOLDER RASTE MACHINE'
0,1 SAY 'MACHINE 2 = GRAVITY PLATFORM 1'
(0 3,1 SAY "MACHINE 3 = INPUT ELEVATOR'
0 4,1 SAY 'MACHINE 4 CONVEYOR EELI'
0 5,1 SAY 'MACHINE 5 = HEADD OF PNP'
@ 6,1 SAY 'MACHINE 6 = HEAD2 OF PnP'
0 1,35 SAY 'MACHTNE 7 = CONVEYOR WITH INSPCT'
0 2,35 SAY 'MACHINE 8 = CUREFLOW OVEN"
@ 3,35 SAY 'MACHINE 9 E CONVEYOR WITH INSPCT'
@ 4,35 SAY 'MACHINE 10 = OUTPOTT ELLEVATOR'
@ 5,35 SAY 'MACHINE 11 = GRAVITY PLATFORM'

```
DEFINE WINDOW PARAMETER FROM 15,5 TO 23,73 DOUBI工
ACTIVATE WINDOW PARAMETER
USE PARAMETE
GO TOP
STORE NUM TASKS TO TASKS
STORE I TO COUNT
```

IF EOF()
APPEND BLANK
ENDIF
e 2,0
(2 2,6 SAY 'ENTER THE MACHINE NO. FOR TASK NUMBER ['+STR(COUNT, 2,0)+1
(2 2,52 SAY '['+STR(TASK WS,2,0)+']'
(0)4,4
ACCEPRT "ALTER VALUES (Y/N)? ;" TO ANS
IF ANS = "Y%
0 2,56 GET TASK_WS
READ

```
ENDIF
STORE COUNT + 3 TO COUNT
IF EOF (
APPEND BLANK
ELSE
SKI?
ENDIT
ENDDO
RELEASE WINDOW PARA
RELEASE WINDOW PARAMETER
CASE BAR() \(=4\)
select 4
clear
DEFINE NINDOW PARA FROM 1,5 TO 12,73 DOUBLE
ACTTVZTE WINDOW PARA
© 1,1 SAY MACHINE \(1=\) SOLDER PASTE MACHINE'
( 2,1 SAY 'MACHINE \(2=\) GRAVITY PLATFORM 1'
(a,2 SAX \({ }^{1}\) MACHINE \(3=I N P U N\) EIEVATOR'
@ 4,1 SAY 'MACHINE \(4=\) CONVEYOR BELT'
(6,2 SAY MACHINE \(5=\) HEAD1 OF PMP'
G 6,1 SAY MACHINE 6 HEAD2 OF PnP'
G \(1,35 \mathrm{SAY}{ }^{\prime}\) MACHINE \(7=\) CONVEYOR WITH INSPCT'
(a \(2,35 \mathrm{SAY}\) "MACHINE \(8=\) CUREFLOW OVEN"
© \(3,35 \mathrm{SAX}\) 'MACHINE \(9=\) CONVEYOR WITH INSPCT'
@ \(4,35 \mathrm{SAX}\) 'MACHJNE \(10=\) OUTPUT ELEVATOR'
(2 5,35 SAY 'MACHINE \(21=\) GRAVIMY PLATFORM'
DEFTNE WINDOW RARAMETER FROM 15,5 TO 23,73 DOUBIE
ACTIVATE WINDOW PARAMETER
USE paramete
GO TOP
STORE NUM TASKS TO TASKS
STORE I TO COUNT
USE TASK
GO TOP
DO WHILE COUAT \(\langle\) (TASKS +1 )
IF BOF (
APPEND BLANK
"NDIF
(2,0
(2,6 SAY \({ }^{1}\) ENTER MHE TASK TIME FOR MACHINE NUMBER \([1+S T R(C O U N T, 2,0)+1\)
(2,52 SAY ' [! +STR (TASK TIME, 2,0\()+1]^{\prime}\)
(a) 4,4
ACCEPT "AITER VALUES (Y/N)? :" TO ANS
TF ANS = "Y゙
                        (2,56 GET TASY TIME
                        READ
ENDTF
STORE COUNT + 1 TO COUNT
IF EOF ()
APPEND BLANK
ELSE
SKIP
ENDIF
```

CASE BAR() = 5
SELECT 4
CLEAR
DEFINE WINDOW PARAMETER FROM 3,3 TO 17,77 DOUBLE
ACTIVATE WINDOW PARAMETER
STORE ' ' TO ANS
USF PARAMETE
GO TOP
STORE COMP_TYPES TO COMPONENTS
STORE 1 TO COUNT
USE COMP
GO TOP
DO WHILE COUNT <> (COMPONENTS + 1)
IF EOF()
APPEND BLANK
ENDIF
@ 2,3 SAY 'FOR COMPONENT TYPE [] ENTER THE FOLLOWING INFO:'
(2, 23 SAY !1+STR(COUNT,2,0)+1' COLOR R+*
@ 4,3 SAY 'COMPONENT NAME OR CODE NUMBER: '
@ 4,35 SAY '['+(COMP_NAME) + ']' COLOR R+
(0 6,0 CLEAR
ACCEPT "<ENTER> TO ACCEPT, 'A" TO ALTER VALUES :" TO ANS
IF ANS = "A"
STORE COMP_NAME TO NAME
STORE NOZZSSIZE TO NOZZLE
DO COMPSELE WITH NAME, NOZZLE
SELECT 4
REPLACE NOZZ_SIZE WITH NOZZLE
REPLACE COMP_NAME WITH NAME
ENDIF
@ 4;0
06,0 CLEAR
IF ANS = "2."
0 2, 23 SAY 1'+STRR(COUNT,2,0)+1' COLOR R+*
8 4,3 SAY 'COMPONENT NAME OR CODE NUMBER: '
0 \&,35 SAY '['+(COMP_NAME)+ ']' COIOR R+*
@ 6,0 ClNEAR
ACCEPT "<ENTER> YO ACCEPT, `A' TO ALTER VALUES :" TO ANS
IF ANS = "A"
@ 4,35 GET COMP NAME
READ
ENDIF
(a. 4,0
@ 6,0
ENDIF
@ 4,3 SAY 'IS THE COMPONENT ON THE SOLDER OR COMPONENT SIDE: '
@ 4,53 SAY '[1 +(SIDE)+ ']'COLOR R+
@ 6,0 CLEAR
ACCEPT "<ENTER> TO ACCEPY, 'A' TO ALIER VALUES ;" TO ANS
IF ANS = "A"
SMORE SIDE TO PLACE
DO PCBSELEC WITH PLACE
SELECT }
REPLACE SIDE WITH PLACE

```
ENDIF
e 4,4
e 4,42 GETY NOM_PER_BD READ
ENDIF
(0) 4,4
© 4,3 SAY 'RECOMMENDED NOZULE REQUTRED : '
© 4,31 SAY ' [ '+STR(NOZZ_SIZE, 6,4) + ']' COLOR R+ ( 6,0 CLEAR
ACCEPT "<ENTER> TO.ACCEPT; 'A' TO ALTER VALUES :" TO ANS IF ANS \(=\) "A" STORE NOZZ_SIZE TO NOZZLE DO NOZSELEC WITH NOZZLE SELECT 4 REPLACE NOZZ_SIZE WITH NOZZLE
ENDIF
4,0 CLEAR
6,0 CLEAR
IF ANS \(=\) "A"
e 2,23 SAY \({ }^{11+S T R(C O U N T, 2,0)+11}\) COLOR R+*
e 4,3 SAY 1 SELECTED NOZZLE SIZE:
© 4,31 SAY '['+STR(NOZZ_SIZE, 6,4)+ ']' COLOR R+*
@ 6.0 CLEEAR
ACCEPT "<ENTER> TO ACCEPT, 'A' TO ALTPR VALUES :" TO ANS IF ANS \(=\) "A" @ 4,35 GET NOZZ_SIZE READ
ENDIF
ENDIF
- 4,0 clear
©6,0 CLEAR
```

@ 4,3 SAY 'TYYPE OF FEEDER REQUIRED:1
@ 4,28 SAY '' ' + (FEED_TYPE) + ']'COLOR R+
@ 6,0 CLEAR
ACCEPT "<ENTER> TO ACCEPT, 'A' TO ALTER VALUES ;" TO ANS
IF ANS = "A"
STORE FEED TYPE TO FEEDER
DO FEEDSELE WITH FEEDER
SELECT 4
REPLACE FEED_TYPE WITH FEEDER

```
ENDIF
(4) 4,4
IF ANS = "A"
( 2,23 SAY \({ }^{1}+\operatorname{STRR}(C O U N T, 2,0)+1 "\) COLOR R+*
( 4,3 SAY 'SELECTED FEEDER TYPE: '
( 4,28 SAY ' [ \({ }^{1}+(\) FRED_TYPE \(\left.)+{ }^{\prime}\right]\) ' COLOR R+*
@ 6,0 CLEAR
ACCEPT "<ENTER> TO ACCEPT, 'A' TO ALTER VALUES : ! TO ANS
IF ANS = "A"
                        © 4,35 GET FEEDTTYPS
        READ
ENDIF

ENDIF
a 4,0 CLEAR
06,0 CLEAR
© 4,3 SAY 'IS THE COMPONENT VERIFIABLE?'
@ 4,33 SAY '[' +(VERIFICAT) + ']'COLOR R+
STORE COUNT + 1 TO COUNT
IF EOF ()
APPEND BLANK
ELSE
SKIP
ENDIF
ENDDO
RELEASE WINDOW PARAMETER
CASE BAR () \(=6\)
SELECT 4
USE COMP
INDEX ON SIDE TO NUM
SEEK 'BOTHOM'
IF FOUND()
                                    DO GLUEOPT
ELSE
                                DO OPTIMIZE
ENDIF
CASE BAR() \(=7\)
DEACTIVATE POPUP
ENDCASE
CLOSE ALL
RETURN

PROCF' RE SELMENUKep DO CF
```

CASE BAR() = 3
DEFINE WINDOW PARAMETER FROM 10,5 TO 23,73 DOUBLE
ACIIVATE WINDOW PARAMETER
USE REPORT
GO TOP
STORE 1 TO COUNT
DO WHILE COUNT <> 5
IF EOF()
APPEND BLANK
ENDIF
(2,0
0 2,6 SAY UENTER RUN TIME NUMBER ['+STRR(COUNT,;2,0)+1]:1
DO CASE
CASE COUNT = = 1
\& 2,36 SAX '['+STR(RUN1,7,2)+']'
(c) 4,4
ACCEPT "ALTTER VALUES (Y/N)? :" TO ANS
IF ANS = "Y"

```
```

 CASE COUNT = 2
 @ 2,36 SAY '['+STR(RUN2,7,2)+']'
 © 4,4
 ACCEPT "ALTER VALUES (Y/N)? :" TO ANS
 IF ANS = "Y"
 @ 2,36 GEJ RUN2
 READ
 ENDIF
STORE COUNT + 1 TO COUNT
CASE COUNT = 3
(2,36 SAY '['+STR(RUN3,7,2)+']'
[4,4
ACCEPT "ALTER VALUES (Y/N)? :" TO ANS
IF ANS = "Y"
@ 2,36 GET RUN3
READ
ENDIF
STORE COUNT + 1 TO COUNT
CASE COUNT = 4
@ 2,36 SP.Y '['+STR(RUN4,7,2)+']'
\& 4,4
ACCEPT "ALTER VALUES (Y/N)? :" TO ANS
IF ANS = "Y"
(2,36 GET RUN4
READ
ENDIF
STORE COUNT + 1 TO COUNT
ENDCASE
ENDDO
RELEASE WINDOW PARAMETER
CASE BAR() = 4
DEFINE WINDOW PARAMETER FROM 10,5 TO 21,73 DOUBIE
ACTIVATE WINDOW PARAMETER
USE REPORT
GO TOP
STORE 1 TO COUNT
DO WHILE COUNT <> 5
IF EOF()
APPEND BLANK
ENDIF
(a)2,0
@ 2,6 SAY 'ENTER REPORT MIME NUMBER ['+STR(COUNT,2,0)+1]: '
DO CASE
CASE COUNT = I
@ 2,39 SAY '['+STR(REPORT1,7,2)+']'
(4,4
ACCEPT "ALTER VALUES (Y/N)? :" TO ANS
IF ANS = "Y"
(2 2,39 GET REPORT1
READ
ENDIF
STORE COUNT + }1\mathrm{ %o cerast
CASE COUNT = 2
e 2,39 SAY '['+STRR(REPORT2,7,2)+']'
(4,4

```
```

CASE COUNT = 3
e 2,39 SAY '['+STR(REPORT'3,7,2)+']'

- 4,4
ACCEPT "ALIER VALUES (Y/N)? :" TO ANS
IF ANS = "Y"
@ 2,39 GET REPORT3
READ
ENDIF
STORE COUNT + 1 TO COUNT
CASE COUNT = 4
A 2,39 SAY '['+STR(REPORT4,7,2)+']'
\& 4,4
ACCEPT HALTER VALUES (Y/N)? :" TO ANS
IF ANS = "Y"
(2,39 GET REPORT4
READ
ENDIF
STORE COUNT + 1 TO COUNT

```

ENDCASE
ENDDO
RELEASE WINDOW PARAMETER

CASE BAR () \(=5\)
SELECT 1
USE PARAMETE
SELECT 2
USE WORKSTAT
DEFINE WINDOW PARAMETER FROM 10,5 TO 21,73 DOUBLE ACTIVATE WINDOW PARAMETER
STORE "P" TO SEL
© 4,6 SAY 'SEND OUTPUT TO PRINTER, SCREEN OR FILE (P/S/F)?:' GET SEL READ
IF SEL \(=\) "P"
( 4,6
a 6,6 SAY 'Printing, please wait..... '
SEI DEVICE TO PRINT
SEL: ©T PARAMETE
GO TOP
STORE NUM MACHINE TO MACHINES
SELECT WORKSTAT
GO TOP
STORE O TO COUNT
DO WHILLE COUNT <> (12*MACHINES)
\begin{tabular}{|c|c|c|}
\hline & (COUNT), 0 SAY CCNVEY ING & \\
\hline Q & (COUNT+1),0 SAY CONVEY DIR & \\
\hline a & (COUNT+2),0 SAY CONVEYXILOC & \\
\hline 0 & (COUNT+3),0 SAY CONVEYYLOC & \\
\hline c & (COUNT+4),0 SAY WSXLOCATN & \\
\hline 0 & (COUNT+5), 0 SAY WSYLOCATN & , \\
\hline 8 & (COUNT+6), 0 SAY STATUSXLOC & \\
\hline C & ( COUNT+7), 0 SAY STATUSYLOC & \\
\hline 0 & (COUNT+8), 0 SAY QUEUEXLOC & \\
\hline 0 & (COUNY+9), 0 SAY QUEUEYLOC & \\
\hline @ & (COUNT+10), 0 SAY DISPTAYXLC & \\
\hline a & (COUNT+11), 0 SAY DISPLAYYLC & \\
\hline
\end{tabular}

\section*{ELSE}

IF SEL = "F"
\& 4,6
( 4,6 SAY 'Saving to file: <SMTIN>.<DAT> ' COLOR R+* SET CONSOLE OFF
SELECT 1
USE PARAMETE
SELECT 2
USE REPORT
SELECT 3
USE WORKSTAT
SELECT 4
USE TASK
SELECT 5
USE COMP
SELECT 6
USE HEAD
SELECT PARAMETE
GO TOP
SET AITERNATE TO C: \SIM \(\backslash\) PNP
SET ALTERNATE ON
3 NUM_MACHINE
STORE NUM MACHINE TO MACHINES
SET ALTERNATE OFF
GELECT WORKSTAT
GO TOP
STORE O TO CC JNT
- DO WHILE COUNT <> MACHINES

SET ALTERNATE ON
? NUM MACHINE
? CONVEY_ING
? CONVEY DIR
? CONVEYXILOC
? CONVEYYLOC
? WSXLOCATN
? WSYIOCATN
? STATUSXLOC
? STATUSYLOC
? QUEUEXLOC
? QUEUEYLOC
? DISPLAYXLC
? DISPLAYYIC
SET ALTERNATE OFF
SKIF
STORE COUNT + 2 TO COUNT
ENDDO
SELECT PARAMETE
SET ALTERNATE ON
? TNTERTIME
? NUM JOBS
? NUM PER BA
? NUM TASKS
SET' AITERNATE OFF
STORE O TO COUNT
STORE NUM TASKS TO TASKS
SEJECT TASK
TNDEX ON TASK_WS TO NUM1
go top
seek 1
DO WHILE COUNT <> TASKS
SET AITERNATE ON
? TASK_WS
? TASK TIME
SET ALTERNATE OFF
```

 SELECT PARAMETE
 SET ALTERNATE ON
 ? REPS
 ? NO OF SIMS
 SET ALTERNATE OFF
 SELECT REPORT
 GO TOP
 SET ALTERNATE ON
 ? RUNI
 ? REPORT1
 ? RUN2
 ? REPORT2
 ? RUN3
 ? REPORT3
 ? RUN4
 ? REPORT4
 SET ALTERNATE OFF
 SELECT HEAD
 SET ALTERNATE ON
 ? HEADI_TIME
 ? HEAD2_TIME
 ?
 SET ALTERNATE OFF
 CLOSE DATABASES
 SET CONSOLE ON
 ELSE
 IF SEL = "S"
0 4,6
SELECT WORKSTAT
GO TOF
BROWSE
ENDIF
ENDIF
ENDIF
RELEASE WINDOW RARAMETER

```
CASE BRR() \(=6\)
```DEACTIVATE POPUP
```

DEFTNE POPUP NOZZLE FROM 1,61. MESSAGE DEFINE BAR 1 OF NOZZLE PROMPT "0.042" DEFINE BAR 2 OF NOZZLE PROMPT "0.058" DEFTNE BAR 3 OF NOZZEE PROMPN "0.148" DEFINE BAR 4 OF NOZZTE PROMPT "0.109" DEFINE BAR 5 OF NOZZLE PROMPT "O.085" DEFINE BAR 6 OF NOZZLE PROMPT ${ }^{14} 0.225^{11}$ DEFINE BAR 7 OF NOZZTE PROMPT $110.208^{* 1}$ DEFINE BAR 8 OF NOZZLE PROMPT "EXIT"

ON SELECTION POPUP NOZZLE DO TEST
ACTIVATE POPUP NOZZLE
RELJEASE POPUPS NOZZLE RETURN

HPlace Highlighted Bar Over Choice and

PROCEDURE TEST
DO CASE
CASE BAR() $=1$
STORE 0.042 TO NOZLE
$\operatorname{CASE} \operatorname{BAR}()=2$
STORE 0.058 TO NOZLE
CASE $\operatorname{BAR}()=3$
STORE 0.148 TO NOZLE
CASE BAR () $=4$
STORE 0.109 TO NOZLE
CASE BAR() $=5$
STORE 0.085 TO NOZLE
CASE BAR () $=6$
STORE 0.225 TO NOZLE
CASE BAR () $=7$
STORE 0.208 TO NOZLE
CASE $\operatorname{BAR}()=8$
DEACTIVATE POPUP
ENDCASE
( $4,31 \mathrm{SAY}$ ' $[$ '+STR (NOZLE $, 6,4)+1]$ ' COLOR R+
IF $\operatorname{BAR}$ () <> 8
DEACTIVATE POPUP
ENDIF
RETURN

```
＊21／12／89
```

＊
STORE＇F＇TO LEFTI
STORE＇F＇TO COMPCHECK，PNPFULL
STORE 1 TO B1COUNT，B2COUNY，E1COUNT，EZCOUNT
STORE＇F＇TO BASE1，BASE2，EIM1，EIM2
STORE＇$F$＇TO FIRST＿FIND，SECOND＿FTND，THIRD＿FIND，FOURTI＿FIND
STORE＇F＇TO EIMIFULL，EIMZFULI，BASE1FULL
STORE O TO HEADIWK，HEAD2WK，HD，PERCENT，COMPNUM1，COMPNUM2
STORE 0.03455 TO EIMTIME
STORE 0．03083 TO BASETTME
＊SELECT 7
＊USE COMP
SELECT 8
USE HEAD
CLEAR
DEFINE WINDOW PARAMETER FROM 6，1 TO 16,75 DOUBLE
ACTIVATE WINDOW PARAMETER
CTEAR
STORE 1 TO MSELECT
Q 2，2 SAY OOPTIMIZATION METHOD 1 －BASED ON NUMBER OF COMPONENTS PER BOARD＇
＠ 4,2 SAY＇OPFIMIZATION METHOD 2 －BASED ON PRIORITIZED NOZZIE PLACEMENT＇
（6．2 SAY＇SELECT OPTION $\Rightarrow$＇GET MSELECT PTCIUTE＂g＂
READ
IF MSELECT $=1$
RELEASE WINDOW PARAMETER DO METHODZ
ELSE
RELEASE WINDOW PARAMETER DO METHOD2
ENDIF：
CLOSE AIL
RETURN

PROCEDURE METHOD1．
SELECT 6
CLEAR
DEFTNE WINDOW RARAMETER FROM 7，3 TO 14，73 DOUBI正 COLOR R＋＊ AETIVATE WINDOW PARAMEIER
© 3,18 SAY＇OPTIMTZATYON TN PROGRESS＇COLCR W＋
4， 48 SAY＇－DO NOT INTERRUPT－ 1 COLOR $2+$
SELECT COMP
GO TOP
DO WHILE NOT．EOF（）
REPLACE MARKER WITH＇F！
SKIP
ENDDO
＊－ーーーー STARIING OPTIMIZATION ROUTINE
INDEX ON NOZZ＿STZE TO NEW
STORE 0 TO COUNT
GO TOP
DO WHILE NOT．EOF（）
STORE NOZZ＿SIZE IO X
IF MARKER $=F^{\prime}$

```
 STORE 'F' TO EIMI
 STORE 'T'4 TO ETM2
 DO CHECKEIM1
 STORE COMPNUM1 + NUM_PER_BD TO COMPNUM1
 IF.NOT. EOF()
 SKIP
 ENDIF
 ENDDO
 STORE 'T' TO FIRST_FIND
 ELSE
 IF SECOND_FIND = 'FI
 DO}\mathrm{ WHILE NOZZ SIZE = X
 STORE 'T' TO EIMJ.
 STORE 'F' TO EIM2
 DO CHECKEIMM2
 STORE COMPNUM2 + NUM_PER ED TO COMPNUM2
 IF .NOT. EOF()
 SKIP
 ENDIF
 ENDDO
 STORE 'IT' TO SECOND_FINU
 ELSF
 IF THIRD_FIND = 'FY . AND. CONPNUM1 < COMPNUM2
 DO WHLLE NOZZ_SIZE = X
 STORE 'F' TO EIMI
 STORE 'T' TO EIM2
 DO CHECKEIMI
 IF NOT. EOF()
 SKIP
 ENDIF
 EMDDO
 S.CRE 'T' TO EIMLFULT
 STORE 'T' TO THIRD_F'T'\
 ELSE
 IF FOURTH FIND = 'F'
 DO WHIIE NOZZ SIZE = X
 STORE 'T' I'O ETMI
 STORE 'F' TO ETM2
 DO CHECKETM?
 TF .NOT. EOF()
 SKIP
 ENDIF
 ENDDO
 STORE 'T' TO EIMZFUUNL
 STORE 'T' TO FOURTH_LITND
 ELSE
 DO CHECKBASEI
 IF .NOT. EOF()
 SKJP
 ENDIF
 ENDIF
 ENDIF
 ENDIF
 ENDIF
 ELSE
 DO CHECKBASEI
 IF .NOT. EOF()
 SKIP
 ENDIF
 ENDIF
 ELSE
 SKIP
 ENDIF
 ENDDO
 SELECT HEAD
```

```
CLOSE ALL.
STORE 4 TO X
DO DELAY WIMH X
DO OPIREPORT
IF rERCENT < }9
STORE PERCENT TO NEWPERCENT
DEFINE WINDOW PARAMETER FRON 8,1 TO 14,75 DOUBLE
ACTIVATE WINDOW PARAMETEF
CIEAR
STORE 'N' TO MSETECT
@ 1,2 SAY 'OPTIMIZATION PERCENTAGE LESS THAN 95%'
@ 3,2 SAY 'REOOPTIMIZE TO IMPROVE OPTIMIZATION PERCENTAGE (Y/N) => ' GET MSEL
READ
CLEAR
STORE 'N' TO SELECT
@ 2,2 SAY 'PRINT OUT RESULTS FROM INITIAL OPTIMIZATION (Y/N) # G GET SELECR
READ
IF SEIECT = 'Y'
 DO PRINTOPI
ENDIF
REIEASE WINDOW PARAMETER
ENDIF
IF MSELECT = 'Y'
 DO REOPT
ENDIF
RETURN
```




```
PROCEDURE CHECKBASE1
IL BASE1 = 'F'
 IF B1COUNT <= 20
 DO SETBASEI
 ELSE
 DO CHKBAS2
 ENDIF'
ELSE
 DO CHKBAS2
ENDIF
PETURN
```




```
PROCEDURE CHFBAS2
IF EASE2 = 'F'
 IF. B2COUNT <= 20
 DO SETBASE2
 ELSE
 STORE 'N' TO COMPCHECK
 DO CHECKETM1
 ENDIF
ELSE
..... STORE 'T' TO COMPCHECK
 DO CHECKEIMI
```



```
*-ェー-ー----------m- PROCEDURE CHECKEIM1
PROCEDURE CHECKEIMI
IF EIM1 = 'F'
 IF E1COUNT <= 43
 DO SETEIMI
 ELSE
 DO CHECKETM2
 ENDIF
ELSE
 DO CHECKEIM2
ENDIF
REIURN
```




```
PROCEDURE CHECKEIM2
IF EIM2 = 'F'
 IF E2COUNT <= 43
 DO SETEIM2
 ELSE
 IF COMPCHECK = 'T'
 STORE 'T' TO PNPFUJJ,
 ELSE
 DO CHECKBASE1
 ENDIF
 ENDIF
ELSE
 DO CHECKBASE1
ENDIF
REIURN
```



```
PROCEDURE SETETM1
 REPLACE FEEDER_POS WITH EICOUNT
 REPLACE MARKER WITH 'T'
 REPLACE MOUNH POST WITH 'E',
 REPLACE FNP HEAD WITH 1
 STORE 'TI TO EIM1
 STORE EICOUNT + 1 TO EICOUNT
 STORE (NUM PER BD * EIMTTME) TO WORKT'IME
 REPLACE WRKTTME WITM WORKTIME
 STORE WORKTIME + HEAD1WK TO HEAD1WK
REIURN
```



```
--m-m--------a--- PROCFiDOVE SETETM2
PROCEDURE BETEIM2
```

```
 REPLACE FEEDER_YOS WITH E2COUNT
```

    REPLACE FEEDER_YOS WITH E2COUNT
    REPLACE MARKER WITH 'TN!
    REPLACE MARKER WITH 'TN!
    REPIAACE MOUNT POSTN WI'TH 'E'
    REPIAACE MOUNT POSTN WI'TH 'E'
    REPLACE PNP HEAD WITH 2
    REPLACE PNP HEAD WITH 2
    STORE 'F' TO EIMI
    ```
 STORE 'F' TO EIMI
```


## PROCEDURE SETBASE1

```
 REPLACE FEEDER_POS WITH BICOUNY
 REPLACE MARKER WITH 'T''
 REPLACE MOUNT POST WITH 'B'
 REPLACE PNP HEAD WITH 1
 STORE 'T' TC BASEI
 STORE BICOUNT + 1 TO BICOUNT
 STORE (NTM_PER_BD * BASETIME) TO WORKTIME
 REPLACE WK TIME WITH WORKTIME
 STORE WORKTIME + HEADIWK TO HEADIWK
```

RETURN

## PROCEDURE SETBASE2

```
```

    REPLACE FEEDER_POS WITH B2COUNT
    ```
```

    REPLACE FEEDER_POS WITH B2COUNT
    REPLACE MAR:ER WITH 'T'
    REPLACE MAR:ER WITH 'T'
    REPLACE MOCNT POST WITH 'B'
    REPLACE MOCNT POST WITH 'B'
    REPLACE PNP HEAD WITH }
    REPLACE PNP HEAD WITH }
    STORE 'F' TO BASEI
    STORE 'F' TO BASEI
    STORE B2COUNT + 1 TO B2́COUNT
    STORE B2COUNT + 1 TO B2́COUNT
    STORE (NUM PER BD * BASETIME) TO WORKTIME
    STORE (NUM PER BD * BASETIME) TO WORKTIME
    REPLACE WKTTME WITH WORKMIME
    REPLACE WKTTME WITH WORKMIME
    STORE WORKTTME + HEAD2WK TO HEAD2WK
    ```
```

    STORE WORKTTME + HEAD2WK TO HEAD2WK
    ```
```

RETURN

PROCEDURE DELAY
PARAMETER TIME
START_TIME $=$ TIME ()
TIME1 $=$ VAL(SUBSTR (START_TIME, 1,2))*3600+;
VAL (SUBSTR (START-TIME, 4,2))*60+;
VAL(SUBSTR (STARTITIME, 7,2))
TTME2 $=0$
DO WHILE TIME2 - TIME1 $<\mathrm{x}$
STORE TIME () TO END_TIME
TIME2 $=\operatorname{VAL}\left(S U B S T R\left(E N D \_T I M F, 1,2\right)\right) * 3600+$;
VAL (SUBSTR (END TIME, 4, 2)) *60+;
VAL (SUBSTR (END_TIME, $7, \overline{2}$ ) )
EMDDO
RETURN

PROCEDURE OPTREPORT
DEFINE WINDOW PARAMETER FROM 8,1 TO 14,75 DOUBLE
ACTIVATE WINDOW PARAMETER
STORE O TO TOTCOMP, BASE1COTNT, BASE2COUNT, EIM1COUNT, EIM2COUNT
STORE O TO HD
RELEASE WINDOW PARAMETER
DEFINE WINDOW PARAMETER FROM 1,1 TO 22,75 DOUBLE

```
USE COMP
INDEX ON NOZZ_SIZE TO NUM
CLEAR
@ 1,0
TEXT
DESCRIPTION QUNTY HEAD FEEDER POS. BASE/EIM NOZZLE W.TIME
ENDTEXT
GO TOP
DO WHILE .NOT. EOF()
@ X,O SAY COMP NAME
X,1.8 SAY NUMPER BD
@ X,28 SAX PNP_HEAD
e X,36 SAY FEEDER_POS
@ X,49 SAY MOUNT POST
@ X,55 SAY NOZZ_SIZE
@ X,63 SAY WK_TIME
STCE2 TOTCOMP + NUM PER_BD TO TOTCOMP
IF MOUTM FOST = 'B' AND. PNP HEAD = 1
 STORE BASEICOUNT + 1 TO BASEICOUNT
ELSE
 IF (MOUNT POST = 'B') .AND. (PNP HEAD = 2)
 STORE BASE2COUNT + I TO BASE2COUNT
 ENDIF
ENDIF
IF (MOUNT POST = 'E') .AND. (PNP_HEAD = I)
 STORE EIM1COUNT + 1 TO ENMICOUNT
ELSE
 IF: (MOUNT_POST = 'E'). .AND. (PNP_HEAD = 2)
 STORE EIM2COUNT + 1 TO EIM2COUNT
 ENDIF
ENDIF
SKIP
STORE X + 1 TO X
IF X = 18
 STORE 5 TO X
ENDIF
ENDDO
(e) 18,1
WAIT "Hit any key to continue"
RELEASE WINDOW PARAMETER
DEFINE WINDOW PARAMETER FROM 2,1 TO 22,75 DOUBLE
ACTIVATE WINDOW PARAMETER
CLEAR
IF HEAD1WK > HEAD2WK
 STORE (HEAD2WK/HEAD1WK)*100 TO PERCENT
 STORE I TO HD
ELSE
 STORE (HEADIWK/HEAD2WK)*100 TO PERCENT
 STORE 2 TO HD
ENDIF
USE PRODUCT
@ 1,1 SAV ' OPTIMIZATION RESULIS FOR '+(#OB_NAME)+' DCB BOARD'
TEXT
```

\& 3+2,1 SAY 'TOTAL NO, OF COMPONENTSS ON BASE = '
8 3+2,35 GET BASE1COUNT PICTURE "999"
[ 3+2,56 GET BASE2COUNT PICTUURE "999"
\& 4+2,1 SAY 'TOTAL NO. OF COMPONENTS ON EIM = '
\& 4+2,35 GET ETM1COUNN PICTIJEE "999"
@ 4+2,56 GET EIM2COUNT PICTURE "%99"
@ 6+2,1 SAY 'TOTAL NUMBER OF COMPONENTS = ' GET TOTCOMP PICITURE "9999"
8 8+2,1 SAY 'TOTAL PLACEMENT TTME FOR IEADL = ' GET HEADIWK PICTURE "999.99"
@ 8+2,44 SAY 'Minutes'
@ 10+2,1 SAY 'TOTAL PLACEMENT TIME FOR HEAD2 = ' GET HEAD2WK PICTURE "999.99"
@ 10+2,44 SAY 'Minutes'
@ 12+2,1 SAY 'OPTIMIZATION PERCENTAGE = ' GET PERCENT PICTURE "999.9"
a 1.2+2,36 SAY '\&'
e 16,1
WAIT "Hit any key to continue"

```
RELEASE WINDOW PARAMETER
REIURN
PROCEDURE REOPT

PROCEDURE REOPT
```

IF HD = ?
STORE O TO HD
DO REOPT%.
DO OPTREPORT
DEFINE WINDOW PARAMETER FROM 6,1 TO 14,75 DOUBLE
ACTIVATE WINDOW PARAMETER
CTEAR
IF NEWPERCENT > PERCENT
@ 2,2 SAY 'NO IMPROVEMENT IN OPTIMIZATION PERCENTAAGE '
ENDIF
STORE 'N' TO MSELECT
(c) 4,2 SAY 'PRINT OUT RE-OPTIMMIZATION RESULTS (Y/N) =>' GET MSELECT PI
READ
IF MSELECT = 'Y'
DO PRINTOPT
ENDIF
RELEASE WINDOW PARAMETER
ELSE
IF HD = 2
STORE O TO HD
- DO REOPT2
DO OPTREPORT
DEFINE WINDOW PARAMETER FROM 6,1 TO 14,75 DOUBLE
ACTIVATE WINDOW PARAMETER
CLEAR
IF NEWPERCENT > PERCENT
\& 2,2 SAY 'NO IMPROVEMENT IN OPTIMIZATION PERCENTAGE !
ENDIF
STORE 'N' TO MSELECT
@ 4.2 SAY 'PRINT OUT RE-OPTIMIZATION RESULTS (Y/N) =>' GET MSELECT PI
READ
IF MSELECT = 'Y'
DO PRINTOPT
ENDIF
RELEASE WINDOW PARAMETER

```

\section*{SELECT 6}

CIEAR
DEFINE WINDOW RARAMETER FROM 7,3 TO 14,73 DOUBLE COLOR R+*
ACITVATE WINDOW PARAMETER
e 3,18 SAY 'RE-OPMIMIZATION IN PROGRESS' COLOR Wh \(0.4,18\) SAY - DO NOT INTERRUPT -I COLOR W+

SELECT COMP
STORE 'FY TO DONE,FOUND,FLAG,EF
SORTI TO ASCEND ON NUM_PER_BD
USE ASCEND
*INDEX ON MOUNT_POST TO NUM
GO TOP
DO WHILE FOUND = \({ }^{\text {FI }}\)
IF MOUNT POST \(={ }^{\prime} B^{\prime}\). AND. PNP HEAD \(=1\) REPLACE FEEDER POS WITH B2COUNT REPLACE MARKER WITH TTI REPLACE MOUNT POST WITTH 'B' REPLACE PNP_HEAD WITH 2 STORE BICOUNI - 1 TO BLCOUNT STORE B2COIJN +1 TO B2COUNT STORE (NUM PER BD * BASETIME) TO WORKTIME REPLACE WK TIME WITH WORKTIME STORE WORKPTME + HEAD2WK TO HEAD2WK STORE HEADIWK - WORKYTME TO HEAD1WK IF HEAD1WK \(=<~ H E A D 2 W K *\) STORE 'TI TO FOUND ENDIF
ELSE
SKIP
ENDIF
IF EOF ()
STORE 'TI TO FOUND
ENDIE
ENDDO
COPY TO COMP
STORE 6 TO X
DO DEIAY WITH X
RETEASE WINDOW PARAMETER

RETURN

PROCEDURE REOPT2
* TRANSFERRING FEEDER FROM HEAD 2 TO HEAD I

SETAECT 6
CTNAR
DEFINE WINDOW RARAMETER FROM 7,3 TO 14,73 DOUBIE COLOR R+*
ACTJVATE WINDOW PARAMETER
A 3,48 SAY RE-OPTIMIZAIION IN PROGRESS' COLOR W+ © 4,18 SAY - DO MOT INTERRUPT - -1 COLOR W+

SELECT COMP
- STORE PF' TO DONE, FOUND, FLAG,EF
```

SORT TO ASCEND ON NUM_PER_BD
OSE ASCEND
GO TOP
DO WHIIE FOUND = 'F
IF MOUNT_POST = 'B' .AND. PNP_HEAD = 2
REPLACE FEEDER POS WITH BICOUNT
REPLACE MARKER WITH 'T'
REPLACE MOUNT POST WITH 'R'
REPLACE PNP_HEAD WITH 1
STORE B2COUNT - 1 TO B2COUNT
STORE BICOUNT + 1 TO BICOUNT
STORE (NUM_PER BD * BASETIME) TO WORKIIME
REPLACE WK TIME WITH WORKTIME
STORE WORKTITME + HEADIWK TO HEADIWK
STCRE HEAD2WK - WORKMIME TO HEAD2WK
IF HEAD2WK =< HEAD1WK
STORE 'T' TO FOUND
ENDIF
ELSE
SKIP
ENDIF
IF EOF()
STORE 'T' TO FOUND
ENDIF
ENDDO
COPY TO COMP
STORE 6 TO X
DO DELAY WITH X
RELEASE WINDOW PARAMETER

```

REIURN

PROCEDURE METHOD2

\section*{SELECT 6}

\section*{CLIEAR}

DEFINE WINDOW PARAMETER FROM 7,3 TO. 14,73 DOUBLE COLOR R+* ACIIVATE WINDOW PARAMETEER
```

@ 3,18 SAY 'OPTIMIZATION IN PROGRESS' COLOR W+
(8 4,18 SAY ' - DO NOT INTERRUPT -' COLOR W+
SELEC% COMP
GO TOP
DO WHILE .NOT. EOF()
REPLACE MARKER WITH 'F'
SKIP
ENDDO
STARIING OPTIMIZATION ROUTINE
SORT TO DESC ON NUM_PER_BD/D
USE DESC
STORE O TO COUNT
GO TOP
DO WHILE .NOT. EOF()

```

DO WHILE NOZZ SIZE \(=\mathrm{X}\)
STORE 'F' TO EIMA STORE 'T' TO EIM2 DO CHECKEIMI
IF .NOT. EOF () SKIP
ENDIF
ENDDO
STORE 'T' TO FIRST_FIND
ELSE
IF SFCOND_FIND = 'F'
DO WHILE NOZZ_SIZE \(=\mathrm{X}\)
STORE 'TI TO EIM1 STORE 'F' TO ETM2
DO CHECKEIM2
IF .NOT. EOF()
SKIP
ENDIF
ENDDO
STORE 'T' TO SECOND_FIND
ELSE
IF THIRD_ITND \(=\) 'F'. AND. HEAD1WK \(<\) HEAD2WK.
DO WHILES NOZZ_SIZE \(=\mathrm{X}\)
STORE ' \(F\) ' TO EIMI
STORE 'TI TO EIM2
DO CHECKFIMI
IF .NOT. EOF ()
SKIP
ENDIF
ENDDO
STORE 'T' TO EIMIFULL
STORE 'T' TO THIRD_FIND
ELSE
IF FOURTH FIND \(={ }^{\prime}{ }^{\prime}{ }^{\prime}\)
DO WHILE NOZZ_SIZE \(=\) K
STORE 'T' TO EIMI
STORE 'F' TO EIM2
DO CHECKEIM2
IF .NOT. EOF ()
SKIP
ENDIF
ENDDO
STORE 'T' TO EIM2FULL STORE 'T'I TO FOURTH_FIND
ELSE
DO CHECKBASEI
IF .NOT. EOF ()
SKIP
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ELSE
DO CHECKBASEI
IF .NOT. EOF ()
SKIP
ENDIF

\section*{ELSE}

ENDIF

ENDIF
SKIP
```

CLOSE ALL
STORE 4 TO X
DO DELAY WITH X
RELEAST WINDOW PARAMETER
DO OPTREPORT
IF PERCENT < }9
STORE PERCENT TO NEWPERCENT
DEFINE WINDOW PARAMETER FROM 8,1 TO 14,75 DOUBLE
ACTIVATE WINDOW PARAMETER
CLEAR
STORE 'N' TO MSELECT
a 1,2 SAY 'OPTIMIZATION PERCENTAGE LESS THAN 95%'
@ 3,2 SAY 'RE-OPTIMIZE TO IMPROVE OPTTMIZATION PERCENTAGE (Y/N') => : GET MSEL
READ
CLEAR
STORE 'N' TO SELECT
A 2,2 SAY 'PRINT OUT RESULIS FROM INITIAL OPTIMIZATION (Y/N) $\Rightarrow$ ' GET SELECT READ
IF SELECT = 'Y'
DO PRINTOPT
ENDIF
IF MSELECT $=1 Y '$
DO REOPT
ENDIF
*RELEASE WINDOW PARAMETER
ENDIF

```

RETURN

PROCEDURE PRINTOPT
```

STORE O TO TOTCOMP,BASE1COUNT, BASE2COUNT, EIM1COUNT, EIM2COUNT
*CLOSE ALL
SELECT COMP
CLEAR
e 2,2 SAY 'HiTT ANY KEY TO START PRINTING =>'
WAIT ""
SET DEVICE TO PRINT
STORE 'T' TO PRINT
@ 1,0 SAY 'DESCRIPTION QUNTY HEAD FEEDER POS. BASE/EIM NOZZLE
0 2,0 SAY
GO TOP
DO WHILE .NOT. EOF()
@ X,O SAY COMP_NAME
@ X,18 SAY NUM_PER_BD
X X,28 SAY PNP HEAD
Z X,36 SAY FEEDER_POS
0 X,49 SAY MOUNT POST
a X,55 SAY NOZZ_SIZE
(0) X,63 SAY WK_TIME

```

IF (MOUNT_POST = \(=B^{\prime}\)) .AND. (PNP_HEAD \(=2\))
ST̃ORE BASE2COUNT + 1 TO BASE2COUNT ENDIF
ENDIF
IF (MOUNT_POST = 'E'), AND. (\(\mathrm{PNP}^{\prime} \mathrm{HEAD}=1\))
ST̄ORE ELMICOUNT + 1 TO ETMICOUNT
ELSE IF (MOUNT POST \(=\) 'E') AND. (PNP HEAD \(=2\)) STORE EIM2COUNT +1 TO EIM2COUNT ENDIF
ENDIF
SKIP
STORE X + 1 TO X
ENDDO
IF HEAD1WK > HEAD2WK
STORE (HEAD2WK/HEAD1WK)*100 TO PERCENT
STORE 1 TO HD
ELSE
STORE (HEAD1WK/HEAD2WK)*100.TO PERCENT
STORE 2 TO HD

\section*{ENDIF}

\section*{SKIP}

e \(X, 0\) SAY
© \(X+1,1\) SAY 'TOTAL NO. OF COMPONENTS ON BASE \(=1\)
(\(X+1,35\) SAY BASEICOUNT PTCTURE "990"
e \(x+1,56\) SAY BASE2COUNT PICTURE "999"
© X+2,1 SAY 'TOTAL NO. OF COMPONENTS ON EIM \(=\)
(\(\mathrm{X}+2,35\) SAY EIMICOUNT PICTURE "999"
© X+2,56 SAY EIM2COUNT PICTURE \(1999{ }^{\prime \prime}\)
a \(X+4,1\) SAY \({ }^{2} T O T A L\) NUMBER OF COMPONENTS \(=1\)
© X+4,29 SAY TOTCOMP PICTURE "9999"
(\(\mathrm{X}+6,1\) SAY 'TOTAL PLACEMENT TINE FOR HEAD1 = '
(0 X+6,34 SAY HEADIWK PICTURE "999.99"
a \(X+6,44\) SAY 'Minutes'
© \(\mathrm{X}+8,1 \mathrm{SAY}\) TOTAL PLACEMENT TINE FOR HEAD2 \(=1\)
(X \(+8,34\) SAY HEAD2WK PICTURE "999.99"
a \(\mathrm{X}+8,44\) SAY 'Minutes'
© \(X+10,1\) SAY 'OPTIMIZATION PERCENTAGE \(=1\)
(a X+10,27 SAY PERCENT PICTURE "999.9"
a \(\mathrm{X}+10,36 \mathrm{SAY}\) ? .
*@ 16,1
SET DEVICE TO SCREEN RETURN

Author: Chodos Mark Steven.
Name of thesis: The Design And Implementation Of A Flexible Manufacturing System For A Surface Mounting Production Line.

\section*{PUBLISHER:}

University of the Witwatersrand, Johannesburg ©2015

\section*{LEGALNOTICES:}

Copyright Notice: All materials on the University of the Witwatersrand, Johannesburg Library website are protected by South African copyright law and may not be distributed, transmitted, displayed or otherwise published in any format, without the prior written permission of the copyright owner.
Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you may download material (one machine readable copy and one print copy per page)for your personal and/or educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any and all liability for any errors in or omissions from the information on the Library website.```

[^0]: One way to reduce overhang is to widen the lands so that greater misalignment can occur berore exceeding the lead-to-land registration specification.

