4,400 research outputs found

    Global adaptation in networks of selfish components: emergent associative memory at the system scale

    No full text
    In some circumstances complex adaptive systems composed of numerous self-interested agents can self-organise into structures that enhance global adaptation, efficiency or function. However, the general conditions for such an outcome are poorly understood and present a fundamental open question for domains as varied as ecology, sociology, economics, organismic biology and technological infrastructure design. In contrast, sufficient conditions for artificial neural networks to form structures that perform collective computational processes such as associative memory/recall, classification, generalisation and optimisation, are well-understood. Such global functions within a single agent or organism are not wholly surprising since the mechanisms (e.g. Hebbian learning) that create these neural organisations may be selected for this purpose, but agents in a multi-agent system have no obvious reason to adhere to such a structuring protocol or produce such global behaviours when acting from individual self-interest. However, Hebbian learning is actually a very simple and fully-distributed habituation or positive feedback principle. Here we show that when self-interested agents can modify how they are affected by other agents (e.g. when they can influence which other agents they interact with) then, in adapting these inter-agent relationships to maximise their own utility, they will necessarily alter them in a manner homologous with Hebbian learning. Multi-agent systems with adaptable relationships will thereby exhibit the same system-level behaviours as neural networks under Hebbian learning. For example, improved global efficiency in multi-agent systems can be explained by the inherent ability of associative memory to generalise by idealising stored patterns and/or creating new combinations of sub-patterns. Thus distributed multi-agent systems can spontaneously exhibit adaptive global behaviours in the same sense, and by the same mechanism, as the organisational principles familiar in connectionist models of organismic learning

    Associative memory in gene regulation networks

    No full text
    The pattern of gene expression in the phenotype of an organism is determined in part by the dynamical attractors of the organism’s gene regulation network. Changes to the connections in this network over evolutionary time alter the adult gene expression pattern and hence the fitness of the organism. However, the evolution of structure in gene expression networks (potentially reflecting past selective environments) and its affordances and limitations with respect to enhancing evolvability is poorly understood in general. In this paper we model the evolution of a gene regulation network in a controlled scenario. We show that selected changes to connections in the regulation network make the currently selected gene expression pattern more robust to environmental variation. Moreover, such changes to connections are necessarily ‘Hebbian’ – ‘genes that fire together wire together’ – i.e. genes whose expression is selected for in the same selective environments become co-regulated. Accordingly, in a manner formally equivalent to well-understood learning behaviour in artificial neural networks, a gene expression network will therefore develop a generalised associative memory of past selected phenotypes. This theoretical framework helps us to better understand the relationship between homeostasis and evolvability (i.e. selection to reduce variability facilitates structured variability), and shows that, in principle, a gene regulation network has the potential to develop ‘recall’ capabilities normally reserved for cognitive systems

    Cooperation in the iterated prisoner's dilemma is learned by operant conditioning mechanisms

    Get PDF
    The prisoner's dilemma (PD) is the leading metaphor for the evolution of cooperative behavior in populations of selfish agents. Although cooperation in the iterated prisoner's dilemma (IPD) has been studied for over twenty years, most of this research has been focused on strategies that involve nonlearned behavior. Another approach is to suppose that players' selection of the preferred reply might he enforced in the same way as feeding animals track the best way to feed in changing nonstationary environments. Learning mechanisms such as operant conditioning enable animals to acquire relevant characteristics of their environment in order to get reinforcements and to avoid punishments. In this study, the role of operant conditioning in the learning of cooperation was evaluated in the PD. We found that operant mechanisms allow the learning of IPD play against other strategies. When random moves are allowed in the game, the operant learning model showed low sensitivity. On the basis of this evidence, it is suggested that operant learning might be involved in reciprocal altruism.Fil: Gutnisky, D. A.. Universidad de Buenos Aires. Facultad de Ingenieria. Instituto de IngenierĂ­a BiomĂŠdica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂŠcnicas. Instituto de BiologĂ­a y Medicina Experimental. FundaciĂłn de Instituto de BiologĂ­a y Medicina Experimental. Instituto de BiologĂ­a y Medicina Experimental; ArgentinaFil: Zanutto, Bonifacio Silvano. Consejo Nacional de Investigaciones CientĂ­ficas y TĂŠcnicas. Instituto de BiologĂ­a y Medicina Experimental. FundaciĂłn de Instituto de BiologĂ­a y Medicina Experimental. Instituto de BiologĂ­a y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ingenieria. Instituto de IngenierĂ­a BiomĂŠdica; Argentin

    Born to learn: The inspiration, progress, and future of evolved plastic artificial neural networks

    Get PDF
    Biological plastic neural networks are systems of extraordinary computational capabilities shaped by evolution, development, and lifetime learning. The interplay of these elements leads to the emergence of adaptive behavior and intelligence. Inspired by such intricate natural phenomena, Evolved Plastic Artificial Neural Networks (EPANNs) use simulated evolution in-silico to breed plastic neural networks with a large variety of dynamics, architectures, and plasticity rules: these artificial systems are composed of inputs, outputs, and plastic components that change in response to experiences in an environment. These systems may autonomously discover novel adaptive algorithms, and lead to hypotheses on the emergence of biological adaptation. EPANNs have seen considerable progress over the last two decades. Current scientific and technological advances in artificial neural networks are now setting the conditions for radically new approaches and results. In particular, the limitations of hand-designed networks could be overcome by more flexible and innovative solutions. This paper brings together a variety of inspiring ideas that define the field of EPANNs. The main methods and results are reviewed. Finally, new opportunities and developments are presented

    Computational and Robotic Models of Early Language Development: A Review

    Get PDF
    We review computational and robotics models of early language learning and development. We first explain why and how these models are used to understand better how children learn language. We argue that they provide concrete theories of language learning as a complex dynamic system, complementing traditional methods in psychology and linguistics. We review different modeling formalisms, grounded in techniques from machine learning and artificial intelligence such as Bayesian and neural network approaches. We then discuss their role in understanding several key mechanisms of language development: cross-situational statistical learning, embodiment, situated social interaction, intrinsically motivated learning, and cultural evolution. We conclude by discussing future challenges for research, including modeling of large-scale empirical data about language acquisition in real-world environments. Keywords: Early language learning, Computational and robotic models, machine learning, development, embodiment, social interaction, intrinsic motivation, self-organization, dynamical systems, complexity.Comment: to appear in International Handbook on Language Development, ed. J. Horst and J. von Koss Torkildsen, Routledg

    Transformations in the Scale of Behaviour and the Global Optimisation of Constraints in Adaptive Networks

    No full text
    The natural energy minimisation behaviour of a dynamical system can be interpreted as a simple optimisation process, finding a locally optimal resolution of problem constraints. In human problem solving, high-dimensional problems are often made much easier by inferring a low-dimensional model of the system in which search is more effective. But this is an approach that seems to require top-down domain knowledge; not one amenable to the spontaneous energy minimisation behaviour of a natural dynamical system. However, in this paper we investigate the ability of distributed dynamical systems to improve their constraint resolution ability over time by self-organisation. We use a ‘self-modelling’ Hopfield network with a novel type of associative connection to illustrate how slowly changing relationships between system components can result in a transformation into a new system which is a low-dimensional caricature of the original system. The energy minimisation behaviour of this new system is significantly more effective at globally resolving the original system constraints. This model uses only very simple, and fully-distributed positive feedback mechanisms that are relevant to other ‘active linking’ and adaptive networks. We discuss how this neural network model helps us to understand transformations and emergent collective behaviour in various non-neural adaptive networks such as social, genetic and ecological networks

    Adaptive Evolution of Learning and Memory in a Model Lineage

    Get PDF
    Although reductionistic studies of mechanisms of learning in a broad range of model species have advanced our understanding of neural mechanisms, our integrated understanding of mechanisms, behavior, ecology, and evolution of learning remains patchy. A more wholistic research approach in a model lineage of species related to the sea hare, Aplysia californica, has revealed a complete loss of mechanisms of sensitization in one sea-hare genus, Dolabrifera, with concomitant changes in its behavior and ecology. A partial loss of sensitization via different mechanisms in a sister genus, Phyllaplysia, provides further information for our evolving understanding of the evolution of learning and memory. Does a relatively specific “change in diet” hypothesis, or a more universal “generalist versus specialist” hypothesis better predict the patterns? Further analyses of sensitization in a half-dozen additional sea-hare genera will distinguish the predictive powers of these and other synthetic evolutionary theories.https://digitalcommons.chapman.edu/sees_books/1020/thumbnail.jp

    Insect olfactory learning in the context of feeding and oviposition

    Get PDF
    Most organisms rely on learning to be able to adapt to an ever changing environment. Even tiny insects have evolved the ability to learn despite the small size of their brain and their comparably short life spans. But what exactly do insects learn and how do they learn it? The aim of this thesis was to understand more about learning in insects and in specific about olfactory learning during foraging and oviposition. To investigate this topic, I used the tobacco hawkmoth (Manduca sexta) as model organism and conducted behavioral experiments in the wind tunnel of our institute. The first aim of the thesis was to determine whether the proboscis of M. sexta is involved in olfactory learning (Manuscript I). I investigated this question with the help of an artificial flower that I especially designed for the study. The results of Manuscript I suggest that olfactory learning is not possible with the tip of the proboscis and that it might either serve an innate olfactory or gustatory function for the quality assessment of the flower. The second aim of this thesis was to establish whether M. sexta is able to learn host plants for oviposition and will consecutively show “oviposition constancy”. My colleague and I could indeed show that this is the case. Since in both Manuscript I and Manuscript II M. sexta showed surprisingly fast learning skills, this inspired me to run a comprehensive literature search for similar learning abilities in other insect species. The result of this research is Manuscript III, a review about one trial learning in insects
    • …
    corecore