47 research outputs found

    Wireless extension to the existing SystemC design methodology

    Get PDF
    This research uses a SystemC design methodology to model and design complex wireless communication systems, because in the recent years, the complexity of wireless communication systems has increased and the modelling and design of such systems has become inefficient and challenging. The most important aspect of modelling wireless communication systems is that system design choices may affect the communication behaviour and also communication design choices may impact on the system design. Whilst, the SystemC modelling language shows great promise in the modelling of complex hardware/software systems, it still lacks a standard framework that supports modelling of wireless communication systems (particularly the use of wireless communication channels). SystemC lacks elements and components that can be used to express and simulate wireless systems. It does not support noise links natively. To fill this gap, this research proposes to extend the existing SystemC design methodology to include an efficient simulation of wireless systems. It proposes to achieve this by employing a system-level model of a noisy wireless communication channel, along with a small repertoire of standard components (which of course can be replaced on a per application basis). Finally, to validate our developed methodology, a flocking behaviour system is selected as a demonstration (case study). This is a very complex system modelled based on the developed methodology and partitioned along different parameters. By applying our developed methodology to model this system as a case study, we can prove that incorporating and fixing the wireless channel, wireless protocol, noise or all of these elements early in the design methodology is very advantageous. The modelled system is introduced to simulate the behaviour of the particles (mobile units) that form a mobile ad-hoc communication network. Wireless communication between particles is addressed with two scenarios: the first is created using a wireless channel model to link each pair of particles, which means the wireless communication between particles is addressed using a Point-to-Point (P2P) channel; the other scenario is created using a shared channel (broadcast link). Therefore, incorporating wireless features into existing SystemC design methodology, as done in this research, is a very important task, because by developing SystemC as a design tool to support wireless systems, hardware aspects, software parts and communication can be modelled, refined and validated simultaneously on the same platform, and the design space expanded into a two-dimensional design space comprising system and communication

    A Holistic Approach to Functional Safety for Networked Cyber-Physical Systems

    Get PDF
    Functional safety is a significant concern in today's networked cyber-physical systems such as connected machines, autonomous vehicles, and intelligent environments. Simulation is a well-known methodology for the assessment of functional safety. Simulation models of networked cyber-physical systems are very heterogeneous relying on digital hardware, analog hardware, and network domains. Current functional safety assessment is mainly focused on digital hardware failures while minor attention is devoted to analog hardware and not at all to the interconnecting network. In this work we believe that in networked cyber-physical systems, the dependability must be verified not only for the nodes in isolation but also by taking into account their interaction through the communication channel. For this reason, this work proposes a holistic methodology for simulation-based safety assessment in which safety mechanisms are tested in a simulation environment reproducing the high-level behavior of digital hardware, analog hardware, and network communication. The methodology relies on three main automatic processes: 1) abstraction of analog models to transform them into system-level descriptions, 2) synthesis of network infrastructures to combine multiple cyber-physical systems, and 3) multi-domain fault injection in digital, analog, and network. Ultimately, the flow produces a homogeneous optimized description written in C++ for fast and reliable simulation which can have many applications. The focus of this thesis is performing extensive fault simulation and evaluating different functional safety metrics, \eg, fault and diagnostic coverage of all the safety mechanisms

    Analog and Mixed-Signal Modelling with SystemC-AMS

    Get PDF
    SystemC will become more and more important for the design of digital circuits from the specification down to the RT-Level. Complex systems often contain analog components. This paper introduces concepts for the extension of the SystemC methodology for the specification and design of analog and mixed signal systems. The concepts will be illustrated on a telecommunication system including digital hard- and software, analog filter and an analog environment

    A Problem-Oriented Approach for Dynamic Verification of Heterogeneous Embedded Systems

    Get PDF
    This work presents a virtual prototyping methodology for the design and verification of industrial devices in the field level of industrial automation systems. This work demonstrates that virtual prototypes can help increase the confidence in the correctness of a design thanks to a deeper understanding of the complex interactions between hardware, software, analog and mixed-signal components of embedded systems and the physical processes they interact with

    Embedded System Design

    Get PDF
    A unique feature of this open access textbook is to provide a comprehensive introduction to the fundamental knowledge in embedded systems, with applications in cyber-physical systems and the Internet of things. It starts with an introduction to the field and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, including real-time operating systems. The author also discusses evaluation and validation techniques for embedded systems and provides an overview of techniques for mapping applications to execution platforms, including multi-core platforms. Embedded systems have to operate under tight constraints and, hence, the book also contains a selected set of optimization techniques, including software optimization techniques. The book closes with a brief survey on testing. This fourth edition has been updated and revised to reflect new trends and technologies, such as the importance of cyber-physical systems (CPS) and the Internet of things (IoT), the evolution of single-core processors to multi-core processors, and the increased importance of energy efficiency and thermal issues

    Méthodes et outils de la conception amont pour les systèmes et les micro-systèmes

    Get PDF
    Ce travail de thèse porte sur l'élaboration de modèles de haut-niveau de systèmes pluridisciplinaires à base d'électronique. L'objectif est de réaliser des prototypes virtuels de ces systèmes et de vérifier formellement leur comportement dès les premières étapes du cycle de conception. Grâce à une approche descendante et au formalisme HiLeS, nous réalisons des représentations hiérarchiques qui associent des réseaux de Petri à un ensemble de blocs et de canaux interagissant mutuellement. Nous avons développé l'outil HiLeS Designer pour rendre utilisable le formalisme avec plusieurs améliorations opérationnelles telles que le couplage avec un outil d'analyse de réseaux de Petri (TINA) et la compatibilité avec VHDL-AMS. Nous proposons donc, une plate-forme de conception amont autour de l'outil HiLeS Designer avec des passerelles vers TINA et VHDL-AMS. L'utilisation de cette plate-forme nous à permis d'identifier plusieurs perspectives de développement, notamment vers la conduite de projet. ABSTRACT : This work concerns the development of high-level models of multi-disciplinary systems based on electronics. The objective is to construct virtual prototypes of those systems and to verify their behavior since the early stages of the design process. Using a top-down approach and the HiLeS formalism we obtain hierarchical models that associate Petri nets and a group of blocks and channels interacting mutually. We developed HiLeS Designer, a software tool that implements the formalism with several complementary improvements such as an interface to a Petri nets analysis tool (TINA) and compatibility with VHDL-AMS. These two aspects are the base of our formal verification and virtual prototyping approach. We propose a high-level systems design platform that integrates HiLeS Designer, TINA and VHDL-AMS. Using this platform on two case studies allowed us to identify possible improvements to our project and prospective evolutions

    Embedded System Design

    Get PDF
    A unique feature of this open access textbook is to provide a comprehensive introduction to the fundamental knowledge in embedded systems, with applications in cyber-physical systems and the Internet of things. It starts with an introduction to the field and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, including real-time operating systems. The author also discusses evaluation and validation techniques for embedded systems and provides an overview of techniques for mapping applications to execution platforms, including multi-core platforms. Embedded systems have to operate under tight constraints and, hence, the book also contains a selected set of optimization techniques, including software optimization techniques. The book closes with a brief survey on testing. This fourth edition has been updated and revised to reflect new trends and technologies, such as the importance of cyber-physical systems (CPS) and the Internet of things (IoT), the evolution of single-core processors to multi-core processors, and the increased importance of energy efficiency and thermal issues

    On the Verification of a WiMax Design Using Symbolic Simulation

    Get PDF
    The system-On-Chip design process is continuously increasing in terms of cost and complexity. This imposes new modeling and verification challenges. A particular example is heavy computational applications and functionality, such as digital signal processing and telecommunication applications, which are increasingly integrated in embedded systems nowadays. To meet these challenges, designers use a multilevel model based approach, which is a top-down design methodology where the behavior of the system is first modeled at a higher level of abstraction. Then, design decisions are made to refine those models in a number of transformations until the final product is realized. In this thesis we verify an implementation of a WiMax modem physical layer that has been designed according to the multilevel design approach. This implementation is provided by STMicroelectronics. We propose the utilization of two verification methodologies to verify designs at higher levels of abstraction. The first one is an equivalence checking methodology that is based on symbolic simulation, which provides high speed and computational capabilities. The main purpose of this methodology is to verify the functional equivalence of refined system models in the design process. The second methodology is a property checking approach, which is also based on symbolic simulation. It verifies the conformance of models at different levels of abstraction with the system specification. We verified the equivalence of three models of the WiMax system at different levels of abstraction, and we verified the correctness of various system properties on those models

    High-Speed Performance, Power and Thermal Co-simulation For SoC Design

    Get PDF
    This dissertation presents a multi-faceted effort at developing standard System Design Language based tools that allow designers to the model power and thermal behavior of SoCs, including heterogeneous SoCs that include non-digital components. The research contributions made in this dissertation include: • SystemC-based power/performance co-simulation for the Intel XScale microprocessor. We performed detailed characterization of the power dissipation patterns of a variety of system components and used these results to build detailed power models, including a highly accurate, validated instruction-level power model of the XScale processor. We also proposed a scalable, efficient and validated methodology for incorporating fast, accurate power modeling capabilities into system description languages such as SystemC. This was validated against physical measurements of hardware power dissipation. • Modeling the behavior of non-digital SoC components within standard System Design Languages. We presented an approach for modeling the functionality, performance, power, and thermal behavior of a complex class of non-digital components — MEMS microhotplate-based gas sensors — within a SystemC design framework. The components modeled include both digital components (such as microprocessors, busses and memory) and MEMS devices comprising a gas sensor SoC. The first SystemC models of a MEMS-based SoC and the first SystemC models of MEMS thermal behavior were described. Techniques for significantly improving simulation speed were proposed, and their impact quantified. • Vertically Integrated Execution-Driven Power, Performance and Thermal Co-Simulation For SoCs. We adapted the above techniques and used numerical methods to model the system of differential equations that governs on-chip thermal diffusion. This allows a single high-speed simulation to span performance, power and thermal modeling of a design. It also allows feedback behaviors, such as the impact of temperature on power dissipation or performance, to be modeled seamlessly. We validated the thermal equation-solving engine on test layouts against detailed low-level tools, and illustrated the power of such a strategy by demonstrating a series of studies that designers can perform using such tools. We also assessed how simulation and accuracy are impacted by spatial and temporal resolution used for thermal modeling
    corecore