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Abstract

This thesis develops various topics in combinatorial algebraic geometry
with computational aspects and is centered around toric and tropical
methods.

In Chapter 1, we study injective morphisms from complex projective
varieties X to projective spaces of small dimension. Based on connect-
edness theorems, we prove that the ambient dimension needs to be
at least 2 dimX for all injections given by a linear subsystem of a
strict power of a line bundle. We showcase different techniques for
constructing injections X → P2 dimX to correct and improve results by
Dufresne and Jeffries [DJ18]. Connections to separating invariants and
the geometry of partially symmetric tensors are discussed.

Chapter 2 revolves around toric degenerations of unirational vari-
eties in families based on the theory of Khovanskii bases. We develop
algorithms based on computational tropical geometry to classify degen-
erations arising naturally from a parametric description of the family.
A specific instance of interest are families of cubic surfaces and their
Cox rings. We study an open problem by Sturmfels and Xu [SX10]
regarding the classification of their degenerations.

In Chapter 3, we present an algorithm for computing zero-dimen-
sional tropical varieties using projections. Our main tools are fast uni-
modular transforms of lexicographical Gröbner bases. We prove that
our algorithm requires only a polynomial number of arithmetic opera-
tions if given a Gröbner basis, and we demonstrate that our implemen-
tation compares favorably to other existing implementations. Applying
it to the computation of general positive-dimensional tropical varieties,
we argue that the complexity for calculating tropical links is dominated
by the complexity of the Gröbner walk.

Chapter 4 introduces the notion of tropical defects, certificates that
a system of polynomial equations is not a tropical basis, and provides
two algorithms for finding them in affine spaces of complementary di-
mension to the zero set. We use these techniques to solve open prob-
lems regarding del Pezzo surfaces of degree three and realizability of
valuated gaussoids on four elements.
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Introduction

Systems of polynomial equations and the study of their solution sets
(“algebraic varieties”) lie at the heart of algebraic geometry. Combina-
torial techniques often facilitate and deepen their understanding. Two
major fields have emerged in this area:

I Toric geometry studies a special class of algebraic varieties which
are fully described in terms of an interplay of discrete and convex
polyhedral data.

I Tropical geometry revolves around combinatorial shadows of em-
bedded varieties which can be understood as encoding the limit
behavior under suitable compactifications and deformations.

With the increasingly important role of computations in the sci-
ences and as an exploratory tool in mathematics, algebraic techniques
become more and more relevant, as they are well suited for symbolic
computations. In this context of computational algebraic geometry,
toric and tropical varieties play a central role, as they are computa-
tionally more feasible due to their combinatorial nature. Of particular
interest is linking these two approaches: Toric varieties often define a
tractable subclass for a theoretical question or computational problem,
while for a non-toric variety, its tropicalization can give insights how
to degenerate it to a toric variety while preserving essential invariants.

The present thesis lies in this scope of combinatorial algebraic ge-
ometry: on the interface between toric and tropical algebra with a
view towards an improved understanding of algebraic varieties in gen-
eral. The thesis is structured in four parts dedicated to topics that,
while interrelated, are of interest independently of each other. They
revolve around the following matters:
(1) We introduce a dimensionality reduction problem which we inves-

tigate with a particular emphasis on toric varieties. Those form
a rich class of examples exhibiting general phenomena and their
combinatorial structure facilitates the study.

(2) As a general tool for passing to a toric setting, we use computa-
tional methods in tropical geometry to systematically find toric
degenerations in families of parameterized varieties.

(3) With this motivation, we develop algorithms revolving around
the computation of tropical varieties improving existing compu-
tational methods.
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2 Introduction

(4) Tropical varieties often obtain a more explicit combinatorial de-
scriptions from tropical bases. We provide computational meth-
ods to study the failure of polynomial systems to form tropical
bases, which can be seen as finding discrepancies between alge-
braic and purely combinatorial objects.

These four aspects feature diverse connections between toric, tropical
and classical algebraic geometry. Most of their treatment here have in
a modified presentation appeared in the form of articles, in part written
in collaborations with other authors. At the current stage, two of these
articles are published [GRS19] or accepted for publication [DGW20],
while the remaining two are still undergoing review [Gör19; GRZ19].
The personal contributions of the author of this thesis to the presented
results from multiple-authored papers are laid out in detail below in a
“Statement of contributions” after this introduction.

In the following, we describe each of the four topics in more detail.

Dimensionality reduction in projective geometry

For a system of polynomial equations

(?)

f1(x1, x2, . . . , xn) = 0,
f2(x1, x2, . . . , xn) = 0,

...
fm(x1, x2, . . . , xn) = 0,

its set of complex solutions X ⊆ Cn is an affine algebraic variety. Its
intrinsic dimension dim(X) can be much smaller than the ambient di-
mension n, yet computational methods, such as numerical homotopy
algorithms, typically scale significantly in terms of the number of vari-
ables. Moreover, varieties of low codimension n − dim(X) often allow
a better structural understanding, e.g. when studying relations among
the defining equations and, more generally, free resolutions.

The following natural dimensionality reduction problem arises:

Problem. Given (?), find a polynomial change of variables

y1 = g1(x1, x2, . . . , xn), . . . , yk = gk(x1, x2, . . . , xn)

with minimal k ≤ n such that every solution of (?) is uniquely deter-
mined by its values for y1, . . . , yk.

Geometrically, this corresponds to searching for a polynomial map
Cn → Ck whose restriction to X is injective, i.e., to find a low-
dimensional ambient space into which X injects.

We note that it would be algebraically more natural in the category
of affine varieties to ask for an embedding of X into a low-dimensional
affine space instead of an injective morphism, as it would induce an
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isomorphism of X onto its image. However, this would be signifi-
cantly more restrictive: X can have singular points where the tangent
space has a much larger dimension than dim(X), preventing a low-
dimensional embedding. On the other hand, it is always possible to
embed a dense open subset of X into Cdim(X)+1, but this does not cover
all solutions of the polynomial system at once, introducing boundary
cases. In between these two extremes lies the above-mentioned study
of injections of algebraic varieties which we treat in Chapter 1.

For motivation, we mention a strong connection to algebraic invari-
ants: To the action of a linear algebraic group G ⊆ GL(V ) acting on
a finite-dimensional vector space V , the ring C[V ]G of invariant poly-
nomial functions is finitely-generated under the technical assumption
that the group is reductive. Geometrically, one associates a quotient
variety V//G ⊆ Cn by picking generators p1, . . . , pn ∈ C[V ]G and con-
sidering the image of the polynomial map V → Cn they induce. Here,
the polynomial system (?) is given by letting f1, . . . , fm be the polyno-
mial relations among p1, . . . , pn. Points in V//G correspond essentially
to orbits of the group action.

Unfortunately, for explicitly given G, it can be very hard and com-
putationally challenging to find invariants generating the ring C[V ]G,
and the minimal number of generators is often large. From this, the
field of separating invariants has emerged, studying sets of invariants
that may fail to generate the invariant ring without diminishing the
potential to distinguish orbits. Geometrically, this corresponds pre-
cisely to studying injections V//G → Ck, and separating invariants
have established as an important practical and computational tool in
applications of invariant theory.

Going beyond invariant theory, we initiate a systematic study of in-
jections of algebraic varieties into low-dimensional spaces as a general
dimensionality reduction technique. On the technical side, however,
instead of the affine setting described above, we focus on projective
varieties, i.e., common zero loci of homogeneous polynomials inside
complex projective spaces. The passage to projective geometry is a
classical compactification approach in algebraic geometry, correspond-
ing to adding solutions “at infinity” to the polynomial system (?). In
this framework, the natural dimensionality reduction problem is as fol-
lows:

Question. Given a projective variety X, what is the smallest k such
that there exists an injective morphism X → Pk?

Projective varieties exhibit global phenomena absent from the affine
case which can be used as an organizing principle: Morphisms to pro-
jective spaces can be expressed in terms of line bundles and their linear
systems, providing a natural way to arrange the study into two parts.
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(a) For which line bundles on X do their global sections define injec-
tive morphisms to projective spaces?

(b) For each line bundle as in (a), what is the smallest number of
global sections defining an injection?

We answer (a) for toric varieties by giving an explicit combinatorial
criterion in terms of lattice polytopes. For some toric examples, we
explicitly construct injections into low-dimensional spaces, providing
upper bounds for (b). We also prove lower bounds for (b) depending
on the line bundle, in the context of arbitrary projective varieties.

An important source of examples arises from the theory of tensors,
which play a fundamental role in modern data science. A tensor of
format n1×n2×· · ·×nr is an element in Cn1⊗Cn2⊗· · ·⊗Cnr and can
be understood as a multidimensional array of numbers. Expressing a
given tensor as a sum of decomposable (rank 1) tensors v1⊗ · · · ⊗ vr is
a core problem in the subject. Geometrically, the set of decomposable
tensors forms a projective variety of dimension n1 + n2 + · · · + nr − r
inside a projective space of much larger dimension n1n2 · · ·nr− 1. It is
of interest to find a linear map to a lower-dimensional ambient space
under which decomposable tensors are still uniquely identified.

In algebraic language, this translates to our problem (b) for the
product of projective spaces X = Pn1−1 × Pn2−1 × · · · × Pnr−1 and the
line bundle defining its Segre-embedding. For other line bundles on
products of projective spaces, (b) corresponds to an analogous question
for tensors with (partial) symmetries. Independently, dimensionality
reduction for this specific case has also received particular attention
from the theory of separating invariants [DJ18]. With this motivation,
products of projective spaces form one of our primary explicit examples
and we improve the known results.

Toric degenerations in families

In many circumstances, toric varieties can be studied more easily than
arbitrary algebraic varieties due to their combinatorial nature. While
this makes toric geometry useful as a testing ground for conjectures or
to understand general phenomena, it is equally important to raise the
question how much of the toric story carries over to algebraic geometry
in a larger generality. A central tool in this context is the notion of
toric degenerations: For a given variety, one tries to deform it to a toric
variety while preserving essential invariants.

The basic idea is to construct a family of varieties containing a
non-toric variety of interest as well as a toric variety, and to impose
a technical condition guaranteeing that important properties remain
invariant throughout the family — typically, this is the algebraic notion
of flatness of the family. In most contexts, the family arises as the
solution set of a system of polynomial equations depending on one
additional parameter that can be varied.
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A common computational technique for obtaining toric degenera-
tions starting from the defining equations of a variety X ⊆ Cn is a
Gröbner deformation, which has a simple geometric description: For a
weight vector w ∈ Zn, the multiplicative group C∗ acts on the ambient
space Cn by t · (x1, x2, . . . , xn) = (tw1x1, t

w2x2, . . . , t
wnxn); one consid-

ers the image of X under this action and takes the limit as t → 0.
This construction describes a flat family and the defining equations of
the limit object, the special fiber, can be computed with Gröbner basis
algorithms fundamental to symbolic computation.

Depending on the weights w, the special fiber in a Gröbner defor-
mation may or may not be a toric variety. Finding suitable weights
can be aided by tropical geometry: The tropical variety Trop(X) is a
union of rational convex polyhedral cones in Rn whose integral points
are precisely those weight vectors w for which the special fiber is not
contained in the coordinate hyperplanes of Cn. Interior points of the
maximal-dimensional cones in Trop(X) are reasonable candidates for
weight vectors describing toric degenerations.

The systematic use of tropical geometry for the study of toric de-
generations based on Gröbner deformations play a central role in the
modern theory of Khovanskii bases [KM19]. Despite recent advances
in computational tropical geometry (to which we contribute in Chap-
ter 3), this approach is in general computationally challenging, and,
even more crucially, the existence of a Gröbner degeneration to a toric
variety is not always guaranteed. We study an approach to toric de-
generations that may in special cases overcome these difficulties and
that also gives a different viewpoint on the subject.

Not always are algebraic varieties given explicitly in terms of their
defining polynomial equations, on which the computational approach
of studying Gröbner degenerations is based. Instead, important classes
of algebraic varieties are only described parametrically, as the closure of
the image of a polynomial map ϕ : Cm → Cn. Such unirational varieties
show up for example in the context of geometric invariant theory as
quotients V//G described in the previous section. Unirational varieties
often come in families, with the defining polynomial map ϕ depending
on several non-zero parameter values (θ1, . . . , θk) that can vary over
another variety S ⊆ (C∗)k.

We explore toric degenerations in this setting of families of unira-
tional varieties which are given parametrically by a polynomial map
Φ: Cm × S → Cn × S. We exhibit that even if one is primarily inter-
ested in a specific member X ⊆ Cn of the family, it is useful to make
use of the parameter space S in constructing toric degenerations. The
approach we consider is to vary the parameters (θ1, . . . , θk) along an
infinitesimal curve in S approaching the coordinate hyperplanes of Ck,
while at the same time suitably rescaling the coordinates of the am-
bient space Cn as for Gröbner deformations. In the limit process, we
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obtain a variety which, under fortunate circumstances, is described by
a monomial map and therefore a toric variety.

The main task in this approach is to choose a suitable infinitesimal
curve in the parameter space whose choice guarantees a toric limit.
We organize this search systematically with the help of computational
tropical geometry by subdividing the tropical variety associated to S.
For a single member X ⊆ Cn of the family, one may obtain toric
degenerations going beyond Gröbner deformations of the individual
variety.

We apply this degeneration technique to the example of total coor-
dinate spaces of smooth cubic surfaces. Total coordinate spaces are the
geometric realizations of Cox rings [ADHL15] which are intrinsic coor-
dinate rings of projective varieties independent of the ambient space.
Toric degenerations of total coordinate spaces are of special interest
as they induce toric degenerations with respect to all embeddings into
projective spaces.

Smooth cubic surfaces can be seen as blow-ups of the projective
plane in six points, and these points can be varied in a parameter
space S which can be interpreted as the Grassmannian variety Gr(3, 6)
parameterizing three-dimensional subspaces of C6. Cox rings of cubic
surfaces allow an invariant-theoretic characterization and this expresses
the variation of total coordinate spaces parametrically as a family of
unirational varieties. Applying the developed techniques to this ex-
ample, we compute suitable subdivisions of the tropical Grassmannian
Trop(Gr(3, 6)) to address an open classification problem on toric de-
generations in [SX10].

Computing zero-dimensional tropical varieties

Tropical geometry studies combinatorial shadows encoding limiting be-
haviour of solution sets X ⊆ Cn to polynomial systems of equations

f1(x1, x2, . . . , xn) = 0, . . . , fm(x1, x2, . . . , xn) = 0.
The structure of the polynomial equations imposes restrictions on the
orders of magnitude of the values for x1, . . . , xn in a solution. As an
example, the single equation x7

1−x2
2 = 0 has as large integral solutions

only pairs (a1, a2) for which the decimal expansion of a2 has about 3.5-
times as many digits as that of a1. For polynomial systems with more
equations and more terms per equation, such an estimation of possible
orders of magnitude is significantly more sophisticated and is studied
systematically by tropical geometry.

We use a common convention in tropical geometry to focus on in-
finitesimal orders of magnitude. This is formalized as follows: Instead
of considering complex solutions (a1, a2, . . . , an) ∈ Cn to the polyno-
mial system of equations, one studies solutions where each entry ai is
a formal power series ∑k≥0 λkt

k, or, more generally, a formal Puiseux
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series ∑k∈ 1
r
Z, k≥s λkt

k. A measure for the infinitesimal order of magni-
tude of such series expressions is their valuation, i.e., the smallest k with
λk 6= 0. To a non-zero solution (a1, a2, . . . , an) in formal Puiseux se-
ries expressions, one associates the vector of valuations (k1, k2, . . . , kn).
These vectors form a set in Qn whose closure in Rn is called the tropical
variety of X. This notion easily generalizes to polynomial systems in
which the equations already involve formal series expressions.

An equivalent interpretation of tropical varieties can be given in
terms of the Gröbner deformations described in the previous section:
The Gröbner deformation of X ⊆ Cn associated to a weight vector w ∈
Zn has as limiting object a special fiber which remains unchanged under
rescaling w by a positive integer. This allows to generalize the notion
of the special fiber to rational weights w ∈ Qn. Only if the weights
are well-balanced, the special fiber is not contained in the coordinate
hyperplanes of Cn. The tropical variety Trop(X) is the closure of the
set of these rational weight vectors.

Additional to its use in the theory of toric degenerations as briefly
described in the previous section, tropical geometry often allows in-
sights to the structure of algebraic varieties, as the dimension, the
degree and similar invariants are reflected in their combinatorial coun-
terpart.

Tropical varieties are polyhedral complexes. Their computation
from the defining equations of algebraic varieties is a challenging al-
gorithmic problem. Modern algorithms [BJSST07] rely on a traversal
of the complex: Roughly, they determine a suitable starting point on
the tropical variety, then compute the maximal cone it is contained in.
At the boundary of the cone, one determines the directions to which
the neighboring cones lie and repeats the process with points found in
these directions.

While the computation of a surrounding cone is based on Gröbner
basis algorithms, the passage to neighboring cones can again be per-
formed by computing several zero-dimensional tropical varieties, i.e.,
tropical varieties which consist of finitely many points.

Due to this central role in the general computation of tropical vari-
eties, we investigate algorithmic aspects in the zero-dimensional case.
We develop a new algorithm for computing finite tropical varieties
based on reductions to the univariate setting via suitable projection
techniques. Our approach allows us to compare the complexity of the
different steps in the computation of arbitrary tropical varieties.

Tropical defects of polynomial equations

The simplest instance of a multivariate system of polynomial equations
is the case of only one defining equation f(x1, x2, . . . , xn) = 0. In
this case, the tropical variety of the solution set is called a tropical
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hypersurface Trop(f) and can be easily determined from the expression
of the defining polynomial.

In fact, if M ⊆ Nn is the set of exponent vectors (α1, α2, . . . , αn) of
the monomials xα1

1 x
α2
2 · · ·xαnn appearing in f , then Trop(f) can be seen

as the set of all linear functions Rn → R whose minimum among M is
not unique. This characterization makes the computation of tropical
hypersurfaces and the algorithmic decision of containment w ?

∈Trop(f)
particularly simple.

For arbitrary varieties X given by the vanishing of several polyno-
mials f1, f2, . . . , fm, it is conceivable that the tropical variety Trop(X)
would be the intersection of the tropical hypersurfaces Trop(fi). This
is however only true in special situations or after replacing the given
defining equations f1, f2, . . . , fm by a suitable algebraically equivalent
description, a tropical basis.

The question whether a given system of polynomial equations is
a tropical basis of the underlying variety is fundamental to tropical
geometry. The knowledge of a tropical basis to a polynomial system
can aid the understanding of the tropical variety and its computation.
In particular, containment tests w ?

∈Trop(X) become algorithmically
simple, while in general they require potentially harder Gröbner basis
computations.

The intersection of finitely many tropical hypersurfaces can often be
given a combinatorial description, purely based on the structure of the
polynomial equations. Examples include valuated matroids and valu-
ated gaussoids which form important classes of combinatorial objects.
On the other hand, tropical varieties describe combinatorial shadows
of algebraic solutions. In the case of a tropical basis, these two notions
agree. In general, however, not every “combinatorial solution” arises
from an algebraic solution to the polynomial system. These so-called
tropical defects often reflect a combinatorial notion of non-realizabilty
central to the understanding of discrete objects.

The computation of a tropical basis or its certification is a very
challenging algorithmic task. We focus our attention to finding tropi-
cal defects of a given system of polynomial equations. The algorithms
we develop try to methodologically identify them. While they give in
all generality only a heuristic approach, they can be useful for iden-
tifying particular discrepancies between combinatorial and algebraic
descriptions.

We apply our algorithms to tropical varieties arising from families
of Cox rings of cubic surfaces and to the setting of valuated gaussoids.
In both cases, we discover tropical defects, disproving conjectures in
[RSS16] and [BDKS19].
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Paul Görlach
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CHAPTER 1

Injection dimensions of projective varieties

The Whitney embedding theorem asserts that every n-dimensional real
smooth manifold can be embedded into R2n. The analogous question
in algebraic geometry whether every n-dimensional complex projec-
tive variety admits a closed embedding into 2n-dimensional complex
projective space has a negative answer. However, when we relax the
requirement on the morphism to P2n from being a closed embedding to
being injective (on the level of points), this is an open problem:
Question 1.1. Does every n-dimensional irreducible complex projec-
tive variety X admit an injective morphism X inj−−→ P2n?

In general, we define the injection dimension γ(X) ∈ N of a
complex projective variety X to be the smallest dimension of a pro-
jective space to which there exists an injective morphism from X. In
a more refined setting, it is desirable to study the injection dimension
γ(X,L ) with respect to a fixed line bundle L on X, where we restrict
to injective morphisms X inj−−→ Ps given by a linear subsystem of |L |.

Already in the case of curves, the study of injection dimensions is
interesting and largely open. Restricting to very ample line bundles,
injections to P2 are given by cuspidal projections of embeddings of the
curve. Recent progress in this area has been made in [BV18], especially
in the context of space curves lying on irreducible quadrics. More
classical work dates back to [Pie81], where it was proved that general
canonical curves of genus 4 do not admit cuspidal projections. This
describes examples of curves C with γ(C, ωC) = 3 > 2 dimC, showing
that refining Question 1.1 to injection dimensions with respect to all
very ample line bundles cannot have an affirmative answer in general.

In general, line bundles giving rise to injective morphisms form
a class lying between ample and very ample line bundles. For toric
varieties, we give a combinatorial characterization of this class:
Theorem 1.2 (Theorem 1.1.9). Let (X,L ) be the polarized toric va-
riety corresponding to a full-dimensional lattice polytope P ⊆ Rn. The
complete linear system |L | separates points if and only if

(kr · P ) ∩ (kZ)n = (kr · (P ∩ Zn)) ∩ (kZ)n for all k � 0, r ≥ 1,
where we denote m · Z := Z + . . .+ Z︸ ︷︷ ︸

m times

for m ∈ N, Z ⊆ Rn.

This chapter is based on the article [Gör19] by the author of this thesis.

11



12 Chapter 1. Injection dimensions of projective varieties

For all complex projective varieties X, a classical projection argu-
ment shows that γ(X,L ) ≤ 2 dimX + 1 for all line bundles L giving
rise to injections. With techniques inspired by work on separating in-
variants [DJ15; DJ18; Rei16; Rei18], we prove that there is very little
room for improvement for line bundles admitting a root of some order.

Theorem 1.3 (Theorem 1.3.6). Let X be a complex projective variety
and let L be a line bundle on X. Then γ(X,L ⊗k) ≥ 2 dimX for all
k ≥ 2, i.e., every injection X inj−−→ Ps given by a linear subsystem of
|L ⊗k| satisfies s ≥ 2 dimX.

This theorem vastly generalizes previous work in [DJ18, §5], whose
arguments amount to proving the above result for the special case
X = Pn1 × . . .× Pnr and L = O(1, . . . , 1).1

We further show that:
I Question 1.1 can in general not be improved upon: For every
n ≥ 3, there exist n-dimensional irreducible projective varieties
that cannot be injectively mapped to P2n−1. See Example 1.3.7
and Example 1.3.13.

I Question 1.1 has an affirmative answer for X = P1×P1×Pn and
for weighted projective spaces of the form X = P(1, q1, . . . , qn)
with lcm{qi, qj} = lcm{q1, . . . , qn} for all i 6= j. We provide
injections into small ambient spaces in Corollary 1.4.11 and The-
orem 1.4.5.

In the setting of normal varieties with singularities, we provide an
extension of Theorem 1.3 by giving a similar bound when the assump-
tion of divisibility in the Picard group is replaced by divisibility in the
class group, see Theorem 1.3.8. Applied to weighted projective spaces,
this gives rise to the following result:

Theorem 1.4 (Corollary 1.3.9 and Theorem 1.4.5). Consider a weight-
ed projective space P(q0, . . . , qn) with gcd(q0, . . . , q̂i, . . . , qn) = 1 for all
i, and let ` ≥ 2 be minimal such that lcm(qi1 , . . . , qi`) = lcm(q0, . . . , qn)
for all i1, . . . , i` distinct. Let L be the ample line bundle generating
the Picard group. Then

γ(P(q0, . . . , qn),L ⊗k) ≥

n+ `− 2 if k = 1,
2n if k ≥ 2.

For ` ∈ {2, 3} and q0 = 1, equality holds.

This generalizes the classification of injection dimensions for (non-
weighted) projective spaces carried out in [DJ15] and has analogues in
the theory of separating invariants for actions of finite cyclic groups

1The result claimed in [DJ18, §5] is more general, but unfortunately incorrect.
Proposition 1.4.2 gives a counterexample; see also the discussion at the beginning
of Section 1.3.
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[Duf08; DJ15]. From Theorem 1.4, we deduce that for the weighted
projective space P(1, 6, 10, 15), the smallest injection dimension cannot
be attained via linear projections starting from any embedding as a
subvariety of projective space, see Example 1.3.10.

We then focus on products of projective spaces: X = Pn1×. . .×Pnr .
This case is of particular importance from the theory of tensors, as it
can be interpreted as a dimensionality reduction problem for decompos-
able tensors with partial symmetries. Moreover, injection dimensions
of products of projective spaces can be seen as a measure for the dis-
crepancy between rank 2 and border rank 2 tensors. We briefly expand
on this connection in Section 1.2.2.

On the other hand, injections of products of projective spaces have
received special attention from the theory of separating invariants. In
[DJ18], techniques from local cohomology were employed to bound
their injection dimensions as follows:

γ(Pn1 × . . .× Pnr) ≥ 2(∑r
i=1 ni)− 2 min{n1, . . . , nr}+ 1.

We give a geometric argument for the following improved bound:

Theorem 1.5 (Corollary 1.3.5). For all n1, . . . , nr ≥ 1, we have
γ(Pn1 × . . .× Pnr) ≥ 2(∑r

i=1 ni)−min{n1, . . . , nr}.

Moreover, we use the example of products of projective spaces to
showcase several techniques for producing explicit injective morphisms
into twice-dimensional projective spaces in Section 1.4.

1.1. Separating polytopes and secant avoidance

In this section, we start out by establishing basic notions and gathering
general observations on injective morphisms from arbitrary projective
varieties to projective spaces and their relation to secant loci. We
then focus on the setting of toric varieties, in which case we give a
combinatorial criterion for complete linear systems to separate points.

1.1.1. General observations
First, we fix some conventions for the entire chapter: Throughout, we
work over the base field C and consider complex varieties, not assumed
to be irreducible in general. For a finite-dimensional vector space V , we
denote by C[V ∗] := Sym• V ∗ the graded ring of polynomial functions on
V and by P(V ) := Proj C[V ∗] the projective space parameterizing one-
dimensional subspaces of V . For v ∈ V \ {0}, the corresponding point
in P(V ) is denoted [v]. The term subvariety (or subscheme, point etc.)
refers to a closed subvariety (subscheme, point etc.), unless mentioned
otherwise.

We recall that a choice of global sections f0, . . . , fs ∈ H0(X,L )
of a line bundle L on a variety X determines a rational map to a
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projective space X 99K Ps. In a coordinate-free manner, it is the
composition of the natural evaluation ϕL : X 99K P(H0(X,L )∗) with
the projection P(H0(X,L )∗) 99K P(V ∗), where V is the subspace of
H0(X,L ) spanned by f0, . . . , fs. In general, for any non-zero subspace
V ⊆ H0(X,L ), the composition X 99K P(H0(X,L )∗) 99K P(V ∗) is
a well-defined rational map, which we denote by ϕV . In particular,
ϕL = ϕH0(X,L ) in our notations.

Definition 1.1.1 (Injection dimension). Let X be a projective variety
and L a line bundle on X. The injection dimension of X with
respect to L , denoted γ(X,L ), is defined as the smallest dimension
of a projective space into which X can be injected by global sections
of L . Formally,
γ(X,L ) := inf

{
dim V − 1 | V ⊆ H0(X,L ) non-zero subspace such

that ϕV : X 99K P(V ∗) is an injective morphism
}
.

We define the injection dimension of X as
γ(X) := min{γ(X,L ) | L line bundle on X}

= min{s ∈ N | there exists X inj−−→ Ps}.

Except for the case of projective spaces, the injection dimension is
strictly larger than the dimension of the variety, as we note as an easy
consequence of Zariski’s Main Theorem:

Lemma 1.1.2. Let X be a projective variety not isomorphic to a pro-
jective space. Then γ(X) ≥ dimX + 1.

Proof. Let n := dimX and assume that there is an injective mor-
phism ϕ : X inj−−→ Pn. Since ϕ is proper and finite, the restriction of ϕ to
any n-dimensional irreducible component of X has an n-dimensional
image and is therefore surjective. By injectivity of ϕ, X must be irre-
ducible and ϕ : X → Pn is bijective. Being a finite surjective morphism
of degree 1, the morphism ϕ is birational. Then normality of projective
space implies that ϕ is an isomorphism by Zariski’s Main Theorem (as
e.g. in [Vak17, Exercise 29.6.D]). �

Remark 1.1.3. More generally, the proof of Lemma 1.1.2 shows that
the image of an injection ϕ : X inj−−→ Pn is a normal variety if and only
if X is normal and ϕ is an isomorphism.

The lower bound in Lemma 1.1.2 can be attained in surprisingly
large classes of projective varieties. In [LW83, Corollary 4.2], an explicit
injection of n-dimensional complete intersections into Pn+1 was con-
structed under the assumption that the defining equations have pair-
wise relatively prime degrees. However, there are also n-dimensional
complete intersections whose injection dimension is at least n + 2, see
[LW83, Corollary 4.4].
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Throughout our study of injection dimensions, the following ele-
mentary connection between injections in projective and affine settings
will repeatedly come up:

Lemma 1.1.4. Let S = ⊕
d≥0 Sd be a finitely generated graded alge-

bra over S0 = C and let V ⊆ S1 be a subspace. The rational map
ϕV : ProjS 99K P(V ∗) is an injective morphism if and only if the mor-
phism of affine cones ϕ̂V : SpecS → V ∗ is injective.

Proof. The graded ring homomorphism Sym• V ↪→ Sym• S1 → S
induces the rational map ϕV : ProjS 99K Proj Sym• V = P(V ∗) as well
as the morphism of affine cones ϕ̂V : SpecS → Spec Sym• V = V ∗.
Note that ϕV is a morphism if and only if ϕ̂−1

V (0) consists only of the
closed point o ∈ SpecS corresponding to the maximal ideal S≥1. In
that case, we have the commutative diagram

SpecS \ {o} V ∗ \ {0}

ProjS P(V ∗),

ϕ̂V |SpecS\{o}
/C∗ /C∗

ϕV

where the vertical morphisms are geometric quotients for the C∗-actions
induced by the gradings of S and Sym• V . Since Sym• V → S is degree-
preserving, ϕ̂V is C∗-equivariant, hence ϕV : ProjS 99K P(V ∗) is an
injective morphism if and only if ϕ̂V is injective. �

If L is a very ample line bundle, i.e., if ϕL : X 99K P(H0(X,L )∗) is
a closed embedding, then γ(X,L ) ≤ h0(X,L )−1 <∞. Conversely, if
γ(X,L ) <∞, then L is a globally generated ample line bundle, since
L is the pullback of O(1) under the injective (hence finite) morphism
ϕL . Therefore, we have the implications

(1.1)
L very ample ⇒ γ(X,L ) <∞

⇒ L ample and globally generated.

Note that the argument for the second implication also shows that
non-projective complete varieties cannot be injected to projective spaces
due to the lack of ample line bundles. In other words, a complete va-
riety admits an injective morphism to a projective space if and only if
it admits an embedding into a projective space.

The reverse implications of (1.1) are not true, as the following ex-
amples show.

Example 1.1.5. Consider the three-dimensional weighted projective
space X = P(1, 6, 10, 15). The morphism

P(1, 6, 10, 15)→ P4,

[x0 : x1 : x2 : x3] 7→ [x30
0 : x24

0 x1 : x20
0 x2 + x5

1 : x15
0 x3 + x3

2 : x2
3]
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is defined by global sections of L = O(30) and it is injective, as we
will confirm in Theorem 1.4.5 below. Hence, γ(X,L ) = 4. On the
other hand, we observe that the line bundle L is not very ample: The
polarized toric variety (P(1, 6, 10, 15),L ) corresponds to the lattice
polytope P := conv(0, 5e1, 3e2, 2e3) ⊆ R3. Note that the semigroup
S := N(P ∩ Z3 − 5e1) is not saturated in Z3, because

(−6, 2, 1) = 1
2((−2, 1, 0) + (−5, 3, 0) + (−5, 0, 2)) ∈

(1
2S ∩ Z

3
)
\ S.

By [CLS11, Proposition 6.1.10], this shows that L is not very ample. In
fact, we discuss in Example 1.3.10 that γ(X,L ⊗k) ≥ 6 for all k ≥ 2,
highlighting that to attain the smallest possible injection dimension,
one cannot restrict to very ample line bundles only. Theorem 1.1.9
below will shed more light on this example.

Example 1.1.6. Let X be an elliptic curve and p ∈ X. Then L =
OX(2p) determines a double cover ϕL : X → P(H0(X,L )∗) ∼= P1. The
non-injectivity of this morphism implies γ(X,L ) = ∞. On the other
hand, L is globally generated and ample.

1.1.2. Toric injections
In the following, we give a combinatorial description of line bundles on
toric varieties with finite injection dimension, giving a complete picture
on (1.1) in the toric setting. For more results on injective morphisms
preserving toric structures from a viewpoint of separating invariants
for representations of tori, we refer to [DJ18, §6].

Lemma 1.1.7. Let S ⊆ T ⊆ Zn be affine monoids spanning the
same lattice and the same convex cone in Rn. The induced morphism
SpecC[T ] → SpecC[S] is injective if and only if for every m ∈ T , we
have k ·m ∈ S for all k � 0.

Proof. It is enough to prove the claim for T = S + Nm with
m ∈ T \ S. The assumption that ZS = ZT and cone(S) = cone(T )
ensures that the morphism ψ : SpecC[T ] → SpecC[S] is finite, i.e.,
that the set

K := {k ∈ Z>0 | k ·m ∈ S}
is non-empty. Denote by r ∈ Z>0 the smallest integer with K ⊆ rZ.
We need to show that ψ is injective if and only if r = 1.

If r = 1, then k, k + 1 ∈ K for some positive integer k. Hence,
in C[T ]χm , we have χm = χ(k+1)m/χkm, showing that the morphism ψ
restricts to an isomorphism of open subsets

SpecC[T ] ⊇ D(χm) ∼=−→ D(χkm) ⊆ SpecC[S].
On the other hand, ψ also maps the complement V (χm) ⊆ SpecC[T ]
bijectively onto the closed set V (χkm) ⊆ SpecC[S]. We conclude that
the morphism ψ is a bijection of sets.
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Conversely, consider the minimal face F of the rational polyhedral
cone cone(S) = cone(T ) ⊆ Rn containing m. The semigroup homo-
morphism

S → C, µ 7→

1 if µ ∈ F,
0 otherwise,

corresponds to a closed point of SpecC[S] over which the fiber of ψ
consists of r distinct points. Hence, ψ can only be injective if r = 1. �

In studying the geometry of polarized projective toric varieties,
combinatorial notions for lattice polytopes, such as normal and very
ample polytopes play a central role. We introduce a new notion for
lattice polytopes:

Definition 1.1.8. We call a full-dimensional lattice polytope P ⊆ Rn
separating if and only if for all k � 0, the following holds:

(kr · P ) ∩ (kZ)n = (kr · (P ∩ Zn)) ∩ (kZ)n for all r ≥ 1,

where we denote m · Z := Z + . . .+ Z︸ ︷︷ ︸
m times

for m ∈ N, Z ⊆ Rn.

The notion of separating polytopes relates to injective morphisms.

Theorem 1.1.9. Let (X,L ) be the polarized toric variety correspond-
ing to a full-dimensional lattice polytope P ⊆ Rn. The complete linear
system |L | induces an injective morphism X inj−−→ P(H0(X,L )∗) if and
only if P is separating.

Proof. Denote by C(P ) the convex cone over P × {1} in Rn+1

and consider the affine monoid T := C(P ) ∩ Zn+1. By Lemma 1.1.4,
the rational map ϕL : X 99K P(H0(X,L )∗) is an injective morphism
if and only if ψ : SpecC[T ] → SpecC[S] is injective, where S is the
submonoid of T generated by (P ∩Zn)×{1}. By Lemma 1.1.7, this is
equivalent to

{k ·m | m ∈ T} ⊆ S for all k � 0.

Note that S = ⋃
r≥0 r · (P ∩Zn)×{r} and T = ⋃

r≥0(r ·P )×{r}∩Zn+1,
so this inclusion can also be written as

(kr · P ) ∩ (kZ)n ⊆ (kr · (P ∩ Zn)) ∩ (kZ)n for all r ≥ 1.

The reverse inclusion always holds, so we conclude the claimed equiv-
alence. �

We note that the geometrically trivial fact that embeddings are in-
jective translates to the following combinatorial implication that could
also be checked from the definitions:

Corollary 1.1.10. Very ample lattice polytopes P ⊆ Rn are separating.
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Note that Example 1.1.5 provides a counterexample to the con-
verse of Corollary 1.1.10. Moreover, not every full-dimensional lattice
polytope is separating:
Example 1.1.11. For n ≥ 3, the lattice polytope

P := conv(0, e1, . . . , en−1, e1 + e2 + . . .+ en−1 + nen) ⊆ Rn

is (with respect to the lattice Zn ⊆ Rn) not separating: For r := n,
the all-one vector lies in r · P , hence (k, . . . , k) ∈ (kr · P ) ∩ (kZ)n for
all k ≥ 1. However, the last coordinate of every point in P ∩ Zn is
divisible by n, so (kr · (P ∩ Zn)) ∩ (kZ)n can only contain (k, . . . , k) if
n divides k. We revisit this example in Example 1.3.7, showing that
the corresponding toric variety does not inject into P2n−1.
1.1.3. Secant avoidance
Injection dimensions are closely tied to the behavior of secant loci, as
we point out next. In fact, this is an instance of the relation between
higher secant loci of varieties and the study of k-regular maps, see e.g.
[BJJM19]. In that context, injective maps to low-dimensional ambient
spaces appear under the name “2-regular maps” and are an important
first case of interest.
Definition 1.1.12. Let Y be a subvariety of P(V ), where V is a finite-
dimensional vector space. The secant locus of Y in P(V ), denoted
σ◦2(Y ) is the set

σ◦2(Y ) :=
⋃

p,q∈Y
〈p, q〉 ⊆ P(V ),

where 〈p, q〉 ⊆ P(V ) denotes the linear subspace spanned by the points
p and q. Its closure in P(V ) is the secant variety of Y ⊆ Pm and is
denoted σ2(Y ).

Injection dimensions can be given a straightforward reinterpretation
in terms of the smallest codimension of a linear space avoiding a secant
locus, based on the following classical observation:
Lemma 1.1.13. Let W ⊆ V be finite-dimensional vector spaces, let
Y ⊆ P(V ) be a subvariety and consider the linear space L := P(W ).
The rational map π : P(V ) 99K P(V/W ) (i.e., the projection from L)
restricts to an injective morphism π|Y : Y inj−−→ P(V/W ) if and only if
L ∩ σ◦2(Y ) = ∅.

Proof. The projection from L is a well-defined morphism on Y if
and only if Y ∩L = ∅. Let y1 6= y2 ∈ P(V )\L. Then π(y1) = π(y2) if and
only if there are representatives z1, z2 ∈ V \ {0} with yi = [zi] ∈ P(V )
such that z1 − z2 ∈ W . But

{[z1 − z2] ∈ P(V ) | zi ∈ V \ {0}, [zi] = yi} = 〈y1, y2〉.
This shows that π is well-defined and injective on Y if and only if
P(W ) ∩ σ◦2(Y ) = ∅. �
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Proposition 1.1.14. Let X be a projective variety and let L be a line
bundle on X with γ(X,L ) <∞. Let Y be the image of the morphism
ϕL : X inj−−→ P(H0(X,L )∗). Then

γ(X,L ) = min{codimL− 1 | L ⊂ P(H0(X,L )∗) linear sub-
space with L ∩ σ◦2(Y ) = ∅}.

Proof. Let V ⊆ H0(X,L ) be a non-zero subspace and consider
W := ker(H0(X,L )∗ � V ∗). The rational map ϕV is the projection
π : P(H0(X,L )∗) 99K P(H0(X,L )∗/W ) ∼= P(V ∗). By Lemma 1.1.13,
it is an injective morphism on Y if and only if W ∩ σ◦2(Y ) = ∅. With
the observation that dim V = codimW , this proves the claim. �

In particular, this gives the following folklore result which, contrary
to the study of closed embeddings, does not require smoothness of the
variety.

Corollary 1.1.15. Let X be a projective variety. For any line bundle
L with γ(X,L ) <∞, we have γ(X,L ) ≤ 2 dimX + 1.

Proof. Note that Y := ϕL (X) has the same dimension as X,
since ϕL is injective. Since dim σ2(Y ) ≤ 2 dim Y + 1 = 2 dimX + 1, a
general linear subspace of P(H0(X,L )∗) of codimension 2 dimX + 2
does not meet σ2(Y ), and in particular it avoids the secant locus of Y .
The bound then follows from Proposition 1.1.14. �

A brave generalization of Question 1.1 would be to ask whether
γ(X,L ) ≤ 2 dimX holds for every very ample line bundle L . This is
not the case: As shown in [Pie81], a general canonical curve X ⊆ P3 of
genus 4 does not admit a cuspidal projection to P2. By Lemma 1.1.13,
this means that γ(X,ωX) = 3 > 2 dimX. On the other hand, it is
conjectured in [DJ18, Conjecture 4.9] that for products of projective
spaces, one does have γ(Pn1× . . .×Pnr ,O(d1, . . . , dr)) ≤ 2(∑r

i=1 ni) for
all d1, . . . , dr > 0. A very simple case illustrating Proposition 1.1.14 is
the following example.

Example 1.1.16. Let X = P1 × P1 × P1 and consider the very ample
line bundle L = O(1, 1, 1), corresponding to the Segre embedding

ϕL : P1 × P1 × P1 = X ↪→ P(H0(X,L )∗) ∼= P7,

[x0 : x1]× [y0 : y1]× [z0 : z1] 7→ [xiyjzk | i, j, k ∈ {0, 1}]

Here, the secant variety of ϕ(X) fills the entire 7-dimensional ambient
space, but the secant locus σ◦2(ϕ(X)) does not. For example, one can
check that

[(x0y0z1)∗ + (x0y1z0)∗ + (x1y0z0)∗] ∈ P(H0(X,L )∗) \ σ◦2(ϕL (X)).
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Hence, γ(X,L ) ≤ 6 by Proposition 1.1.14 and projecting from this
point defines an injection of P1 × P1 × P1 into P6. Explicitly,

P1 × P1 × P1 inj−−→ P6,

[x0 : x1]× [y0 : y1]× [z0 : z1] 7→ [x0y0z0 : x0y0z1 − x0y1z0 : x0y0z1 − x1y0z0 :
x0y1z1 : x1y0z1 : x1y1z1].

In fact, one can check that P7\σ◦2(ϕ(X)) does not contain any line, so by
Proposition 1.1.14 there cannot exist an injection of P1×P1×P1 into P5

given by multilinear forms, showing γ(P1×P1×P1,O(1, 1, 1)) = 6. We
generalize this example in Corollary 1.4.11, constructing an injective
morphism P1 × P1 × Pm inj−−→ P2(m+2) for all m ≥ 1.

By Proposition 1.1.14, the injection dimension γ(X,L ) is deter-
mined by the largest-dimensional linear space avoiding the secant locus
of ϕL (X). A natural question is whether “largest-dimensional” can be
replaced by “maximal with respect to inclusion”:

Question 1.1.17. Let X be a projective variety, L a line bundle on
X and V ⊆ H0(X,L ) a subspace such that ϕV is a closed embedding.
Does there exist a subspace W ⊆ V of dimension γ(X,L ) + 1 such
that ϕW is an injective morphism?

This question was raised in [DJ18] and it was observed that a pos-
itive answer to it would be a significant step towards proving that
γ(X,L ) ≤ 2 dimX whenever X is smooth and L is a line bundle
with σ◦2(ϕL (X)) 6= σ2(ϕL (X)). However, the following example gives
a negative answer to Question 1.1.17.

Example 1.1.18. Let X = P1, L = OP1(5). The subspace V of
H0(X,L ) spanned by f0 := x5

0, f1 := x4
0x1 + x3

0x
2
1, f2 := x2

0x
3
1 + x0x

4
1

and f3 := x5
1 defines a closed embedding

ϕV : P1 = X ↪→ P(V ∗) ∼= P3, [x0 : x1] 7→ [f0 : f1 : f2 : f3],
describing a rational quintic space curve C ⊆ P3. One can algorith-
mically confirm that every point in P3 lies on a secant line of C, i.e.,
σ◦2(C) = P3. By Lemma 1.1.13, this implies that for any W ( V ,
the projection P(V ∗) 99K P(W ∗) cannot be injective on C, hence ϕW
is not injective. Geometrically, this means that C does not admit a
cuspidal projection. On the other hand, γ(P1,OP1(5)) = 2 because of
the injective morphism

P1 inj−−→ P2, [x0 : x1] 7→ [x5
0 : x4

0x1 : x5
1].

1.2. Separating invariants and partially symmetric tensors

In this section, we highlight close interactions between injection dimen-
sions and the theory of separating invariants. Moreover, we relate the
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case of products of projective spaces to the identifiability of decompos-
able partially symmetric tensors under linear quotient operations.

1.2.1. Graded separating invariants
Classical Invariant Theory revolves around the problem of describing
generators (and their relations) of invariant rings for group actions on
vector spaces or, more generally, on varieties. However, generating sets
of invariant rings tend to be very large (possibly infinite) and hard
to explicitly construct. The study of rational invariants, i.e., genera-
tors for quotient fields of invariant rings, is often simpler to carry out
[CS07; HK07], but in some applications describing only the generic
behavior of the group action can be insufficient. An intermediate ap-
proach between these two extremes is the more recent field of study of
separating invariants [DK15, §2.4], [Kem09], which maintain the full
geometric information about orbit separation while remedying many
of the complications of complete generating sets of invariants [Dom07;
DKW08; NS09]. Separating invariants are of major importance for ap-
plications, as for example in the recent work [CCH19]; see [DK15, §5]
for an overview of possible applications.

Here, we highlight the close connection between separating invari-
ants and injection dimensions of projective varieties. We focus on the
most classical situation: separating invariants for linear actions of re-
ductive algebraic groups on finite-dimensional vector spaces.

Definition 1.2.1. A separating set of invariants for a finite-dimen-
sional representation V of a group G is a set of invariant polynomials
F ⊆ C[V ∗]G such that for all points v, w ∈ V the following equivalence
holds:

f(v) = f(w) for all f ∈ F ⇔ f(v) = f(w) for all f ∈ C[V ∗]G.

Equivalently, in the case of a reductive algebraic group G, a finite
set of invariants F = {f1, . . . , fs} ⊆ C[V ∗]G is separating if and only
if the morphism V//G = SpecC[V ∗]G → As given by (f1, . . . , fs) is
injective. This means that in the affine setting, there is an immediate
translation between injective morphisms to affine spaces and separating
sets of invariants, whenever the coordinate ring of an affine variety has
a description as an invariant ring — the difference being rather a change
of language.

In this chapter, we look at the projective setting: We study injective
morphisms from projective varieties to projective spaces. Here, the
corresponding translation to the world of separating invariants is more
subtle and we dedicate this section to carefully working it out in detail.

Often, small separating sets of invariants are obtained in two steps:
(1) identify a large separating set, (2) form a smaller separating set by
taking suitable linear combinations. This is closely related to injections
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of projective varieties in the situation that the separating set in (1)
consists of homogeneous polynomials satisfying homogeneous relations.

Definition 1.2.2. Let V be a finite-dimensional representation of a
groupG. We call a finite separating set of invariants F = {f1, . . . , fs} ⊆
C[V ∗]G graded if each fi ∈ C[V ∗]G is a homogeneous polynomial and
its ideal of relations

ker
(
C[z1, . . . , zs]→ C[V ∗]G, zi 7→ fi

)
⊆ C[z1, . . . , zs]

is homogeneous.

Equivalently, a finite separating set F = {f1, . . . , fs} of homo-
geneous polynomials is graded if and only if the separating algebra
S := C[F ] can be given a grading S = ⊕

d≥0 Sd with F ⊆ S1. We
want to emphasize that this grading, induced by the homomorphism
C[z1, . . . , zs] � C[F ], does typically not agree with the natural grad-
ing of C[F ] as a graded subalgebra of the polynomial ring C[V ∗]. See
Example 1.2.3 below.

For convenience, we formulated Definition 1.2.2 for finite separating
sets, but note that this is not a restriction: A set F ⊆ C[V ∗]G spanning
a finite-dimensional vector space 〈F 〉 ⊆ C[V ∗]G is a separating set if
and only if a basis of 〈F 〉 is.

Example 1.2.3. The action of Z6 = {ξ ∈ C∗ | ξ6 = 1} on V = C4

given by
Z6 → GL(5,C), ξ 7→ diag(ξ2, ξ2, ξ3, ξ3)

has an invariant ring C[V ∗]Z6 generated by the 7 invariant homogeneous
polynomials

F := {fi := xi1x
3−i
2 , gj := xj3x

2−j
4 | i ∈ {0, 1, 2, 3}, j ∈ {0, 1, 2}}.

Their ideal of relations is homogeneous, generated by four quadratic
binomials, so F is a graded separating set of invariants. Note that
there are two different gradings on C[F ]: With respect to the grading
induced from C[V ∗], we have deg fi = 3 and deg gj = 2. On the other
hand, with respect to the grading induced by C[z1, . . . , z7] � C[F ],
every element of F is homogeneous of degree 1. A separating set of
smallest cardinality obtained by linear combinations from elements in
F is E := {f0, f1, f2 + f3, g0, g1, g2}, see Example 1.3.11.

Proposition 1.2.4. Let V be a finite-dimensional representation of
a reductive algebraic group G. Let F = {f1, . . . , fm} ⊆ C[V ∗]G be a
graded separating set and aF := ker(C[z1, . . . , zm] � C[F ]) its ideal of
relations. Let s ≤ m − 1 be minimal such that the projective variety
V (aF ) ⊆ Pm−1 can be injected to Ps by a linear projection Pm−1 99K Ps.
Then

s = min{|E| − 1 | E ⊆ 〈F 〉 separating set}.
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In particular, a lower bound for the size of a separating set obtained
by linear combinations of f1, . . . , fm is given by 1 +γ(ProjC[F ],O(1)),
where we equip C[F ] with the grading induced by C[z1, . . . , zm]� C[F ].

Proof. Replacing F with a linearly independent subset, we reduce
to the case that F is a basis for the subspace of C[V ∗]G it spans.
Let E = {g1, . . . , gk} ⊆ 〈F 〉 be a finite set of linear combinations of
f1, . . . , fm with dim 〈E〉 = k. Consider the morphism

ψ : V//G = SpecC[V ∗]G → SpecC[F ]→ SpecC[E]
(g1,...,gk)
↪−−−−−→ Ak

and note that E is a separating set if and only if ψ is injective on the
set-theoretic image of the quotient morphism V → V//G. For reductive
groups, the latter quotient morphism is surjective, so E is separating
if and only if ψ is injective.

Since F is a separating set, this means in particular that the mor-
phism SpecC[V ∗]G → SpecC[F ] is injective. By [DK15, Theorem 2.4.6],
the assumption that F consists of homogeneous polynomials (with re-
spect to the grading of C[V ∗]) implies that this morphism is the nor-
malization of SpecC[F ] and hence also surjective. In particular, ψ is
injective if and only if ϕ̂〈E〉 : SpecC[F ] (g1,...,gk)−−−−−→ Ak is injective.

Considering the grading C[F ] = ⊕
d≥0 Sd induced by the homo-

morphism C[z1, . . . , zm] � C[F ], we have ProjC[F ] ∼= V (aF ) ⊆ Pm−1

and E ⊆ S1. Then the above ϕ̂〈E〉 is the morphism of affine cones
over the rational map ϕ〈E〉 : ProjC[F ] 99K P(〈E〉∗) = Pk−1 given by
g1, . . . , gk ∈ S1 ⊆ H0(ProjC[F ],O(1)). By Lemma 1.1.4, injectivity of
ϕ̂〈E〉 is equivalent to ϕ〈E〉 being an injective morphism. To sum up, a
linearly independent set E ⊆ 〈F 〉 is separating if and only if

ϕ〈E〉 : ProjC[F ] ∼= V (aF ) ⊆ Pm−1 = P(〈F 〉∗) 99K P(〈E〉∗)

is an injective morphism, proving the claim. �

A classical fact about separating invariants is that there always
exists a separating set of size 2 dimC[V ∗]G + 1, see [Duf08, Proposi-
tion 5.1.1]. Note that in the presence of a graded separating set, this
bound can be improved by one, combining Proposition 1.2.4 and Corol-
lary 1.1.15. An example of a representation not admitting a graded
separating set is Z3 → GL(2,C), ξ 7→ diag(ξ, ξ2): Its invariant ring
C[x1, x2]Z3 = C[x3

1, x1x2, x
3
2] contains no homogeneous polynomials sep-

arating orbits and satisfying homogeneous relations.

Proposition 1.2.5. Let V be a finite-dimensional representation of
a reductive algebraic group G. Assume that the invariant ring S :=
C[V ∗]G can be given a grading S = ⊕

d≥0 Sd with S0 = C such that S1
is a separating set. Then, with respect to this grading,

γ(ProjS,O(1)) = min{|F | − 1 | F ⊆ S1 finite separating set}.



24 Chapter 1. Injection dimensions of projective varieties

As before, we remark that the grading of S = C[V ∗]G in Propo-
sition 1.2.5 need not agree with the grading induced from the poly-
nomial ring C[V ∗]. Moreover, note that Proposition 1.2.5 does not
assume S1 to be spanned by homogeneous polynomials with respect to
the C[V ∗]-grading (in which case Proposition 1.2.5 is a consequence of
Proposition 1.2.4).

Proof of Proposition 1.2.5. Since G is reductive, the invari-
ant ring S = C[V ∗]G is a finitely generated C-algebra and, in particular,
S1 is a finite-dimensional vector space. Moreover, the reductivity of G
implies that a subset F ⊆ S1 is separating if and only if the morphism
ϕ̂〈F 〉 : SpecS → 〈F 〉∗ is injective. By Lemma 1.1.4, this is equivalent
to ϕ〈F 〉 : ProjS 99K P(〈F 〉∗) being an injective morphism.

By assumption, this is the case for the separating set F = S1, so
in particular the rational map ϕS1 : ProjS 99K P(S∗1) is a morphism.
This means that the vanishing set of the homogeneous ideal (S1) ⊆ S in
ProjS is empty, hence the coherent sheaf OProjS(1) is a line bundle. Its
global sections areH0(ProjS,O(1)) = S1, since S = C[V ∗]G is a normal
ring, see [DK15, Proposition 2.4.4]. In particular, every rational map
from ProjS to a projective space given by a linear subsystem of |O(1)|
is of the form ϕ〈F 〉 for some F ⊆ S1. Then the previous observation
proves the claim. �

Remark 1.2.6. Proposition 1.2.5 and its proof generalize verbatim
to the setting that the finite-dimensional representation V of G is re-
placed by the action of a reductive algebraic group G on a normal
irreducible affine variety X = SpecR, with the obvious generalization
of Definition 1.2.1 to this case, as in [DK15, Definition 2.4.1].

Proposition 1.2.4 and Proposition 1.2.5 show that graded separating
sets have an interpretation as injective morphisms of projective varieties
to projective spaces by subsystems of a fixed line bundle. Conversely,
one can often interpret injections of a given projective variety as sepa-
rating sets with respect to a suitable invariant ring. We highlight this
in the setting of normal toric varieties:

Theorem 1.2.7. Let L be an ample line bundle on a normal projective
toric variety X. There is a finite-dimensional representation V of a
diagonalizable group G and a grading S = ⊕

d≥0 Sd of the invariant
ring S := C[V ∗]G such that

γ(X,L ) = inf{|F | − 1 | F ⊆ S1 finite separating set of invariants}.

Proof. LetX = XΣ be the normal toric variety associated to a fan
of rational polyhedral cones Σ. Its Cox ring Cox(XΣ) is the polynomial
ring C[xρ | ρ ∈ Σ(1)] and it is graded by the class group Cl(X), which
is a finitely generated abelian group, see [CLS11, §5.2]. If L ∈ Pic(X)
corresponds to α ∈ Cl(X) under the inclusion Pic(X) ↪→ Cl(X),
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then the α-graded piece of the Cox ring is Cox(XΣ)α = H0(X,L )
by [CLS11, Proposition 5.4.1].

The grading of the Cox ring by the class group corresponds to a lin-
ear action of the character group G0 := HomZ(Cl(X),C∗) on the vector
space V := CΣ(1) = Spec Cox(XΣ), and the graded pieces of Cox(XΣ)
are the eigenspaces for the induced action of G0 on the coordinate ring
C[V ∗] = Cox(XΣ). Since Cl(X) is a finitely generated abelian group,
G0 is a diagonalizable group (i.e., the product of a torus and a finite
abelian group).

Consider the subgroup G := {ξ ∈ G0 | ξ(α) = 1}, which is again di-
agonalizable. Then a homogeneous element f ∈ Cox(XΣ)β is invariant
under the action of G if and only if ξ(β) = 1 for all ξ ∈ G. By [Spr98,
Exercise 3.2.10.(4)], this is only the case when β lies in the subgroup
of Cl(X) generated by α. This means
C[V ∗]G =

⊕
d∈Z

Cox(XΣ)dα ∼=
⊕
d∈Z

H0(X,L ⊗d) =
⊕
d∈N

H0(X,L ⊗d),

where the last equality follows from the fact that H0(X,L ⊗d) = 0
for all d < 0, since L is ample. Defining Sd := H0(X,L ⊗d), this
describes a grading S = ⊕

d≥0 Sd on the invariant ring S := C[V ∗]G such
that S1 = H0(X,L ). Then the claim follows from Proposition 1.2.5,
using that X ∼= ProjS. Note that γ(X,L ) = ∞ holds if and only if
S1 = H0(X,L ) is not a separating set. �

Example 1.2.8. We exemplify Theorem 1.2.7 in the case of a weighted
projective space X = P(q0, . . . , qn). Its Cox ring is the polynomial
ring C[x0, . . . , xn] as a Z-graded ring with deg(xi) = qi. This grad-
ing corresponds to the action of the group G0 = C∗ on V = Cn+1

given by C∗ → GL(n + 1,C), t 7→ diag(tq0 , . . . , tqn). Every ample
line bundle on X is of the form L ∼= O(k) with k > 0 divisible by
all qi. Its section ring ⊕d∈NH

0(X,L ⊗d) is the k-th Veronese subring⊕
d≥0C[x0, . . . , xn]dk, which is the invariant ring for the action of the

subgroup G := {ξ ∈ C∗ | ξk = 1} ⊆ G0 on V .
Hence, γ(P(q0, . . . , qn),O(k))+1 is the smallest size of a separating

set of invariants F ⊆ C[x0, . . . , xn]Zk for the representation
Zk → GL(n+ 1,C), ξ 7→ diag(ξq0 , . . . , ξqn),

such that the polynomials in F are homogeneous of (q0, . . . , qn)-weighted
degree k.

1.2.2. Segre–Veronese varieties and tensors
A major source of examples in the constructive parts of this chapter
are products of projective spaces. Since every ample line bundle on
X = Pn1× . . .×Pnr is very ample, (1.1) makes clear which line bundles
give rise to injections: For (d1, . . . , dr) ∈ Zr we have

γ(X,O(d1, . . . , dr)) <∞ ⇔ d1, . . . , dr > 0.
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For L = O(d1, . . . , dr) with di ≥ 1, the vector space H0(X,L ) is
identified with the set of multihomogeneous forms of degree (d1, . . . , dr):

H0(X,L ) =
r⊗
i=1

Symdi(Cni+1)∗.

Then the closed embedding ϕL : X ↪→ P(H0(X,L )∗) is the natural
morphism

ϕL : P(Cn1+1)× . . .× P(Cnr+1) ↪→ P
(

r⊗
i=1

Symdi Cni+1
)
,

[v1]× . . .× [vr] 7→ [vd1
1 v

d2
2 . . . vdrr ].

Its image Y := im(ϕL ) is a subvariety of P(⊗r
i=1 Symdi Cni+1) called

the Segre–Veronese variety of type (n1, . . . , nr; d1, . . . , dr). The
space P(⊗r

i=1 Symdi Cni+1) consists of partially symmetric tensors up to
scaling, and the subvariety Y consists of the decomposable (or rank 1 )
partially symmetric tensors. Its secant locus σ◦2(Y ) is the set of par-
tially symmetric tensors (up to scaling) of rank at most 2, while the
secant variety σ2(Y ) corresponds to the notion of border rank at most 2.
We refer the reader to [MS20, §9] for a brief introduction to varieties
of tensors, their ranks and secant loci. For in-depth background on the
theory of (partially symmetric) tensors and their importance in appli-
cations, see [Lan12] . In this language, Proposition 1.1.14 gives the
following reinterpretation of γ(Pn1 × . . .× Pnr ,O(d1, . . . , dr)):

Corollary 1.2.9. Let X = Pn1 × . . .×Pnr and L := O(d1, . . . , dr) for
ni, di ≥ 1. Then

γ(X,L ) = min
{

codimL− 1 | L ⊆
r⊗
i=1

Symdi Cni+1 subspace not

containing any non-zero partially

symmetric tensor of rank ≤ 2
}
.

In other words, finding a low-dimensional injection of Pn1×. . .×Pnr
by polynomials of multidegree (d1, . . . , dr) is equivalent to the search of
a high-dimensional subspace L ⊆ ⊗r

i=1 Symdi Cni+1 such that decom-
posable partially symmetric tensors stay identifiable under the quotient
Symdi Cni+1 � Symdi Cni+1/L (in the sense that any decomposable
tensors can be uniquely reconstructed from its image under the quo-
tient operation).

By Theorem 1.2.7, this question also has a formulation in terms
of separating invariants. We work this out carefully here, since an
incorrect description in the literature gave rise to wrong lower bounds
on injection dimensions [DJ18]. We comment on this unfortunate flaw
in the literature and its correction at the beginning of Section 1.3.
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The Cox ring of X = ∏r
i=1 Pni is the polynomial ring C[V ∗], where

V := ⊕k
i=1Cni+1. Explicitly, denoting the coordinates on Cni+1 by

xi0, xi1, . . . , xini , this is
Cox(Pn1 × . . .× Pnr) = C[xij | i ∈ {1, . . . , r}, j ∈ {0, 1, . . . , ni}],

equipped with a Zr-grading given by deg xij = ei ∈ Zr. This grading
corresponds to the action of G0 = (C∗)r on V := ⊕r

i=1Cni+1 given by
(t1, . . . , tr) · (v1, . . . , vr) := (t1v1, . . . , trvr) for all v = (v1, . . . , vr) ∈ V.
Every ample line bundle on X is of the form L ∼= O(d1, . . . , dr) with
di > 0. Its section ring ⊕k∈NH

0(X,L ⊗k) is the homogeneous coordi-
nate ring of the Segre–Veronese variety of type (n1, . . . , nr; d1, . . . , dr).
It is the invariant ring for the action on V of the subgroup

G := {(t1, . . . , tr) ∈ (C∗)r | td1
1 · · · tdrr = 1} ⊆ G0,

which is isomorphic to (C∗)r−1 × Zk, where k := gcd{d1, . . . , dr}. Ex-
plicitly, consider the action of (C∗)r−1 × Zk on V given by

((t1, . . . , tr−1)× ξ)× eij 7→

td1···d̂i···dr
i ξ eij if i ≤ r − 1

(t1 · · · tr−1)−d1···dr−1 ξ eij if i = r.

Its invariant ring is generated by all the monomials of the multidegree
(d1, . . . , dr). A separating set of invariants consisting of s linear combi-
nations of these corresponds to an injection of Pn1× . . .×Pnr inj−−→ Ps−1

given by global sections of O(d1, . . . , dr).

1.3. Obstructions to low-dimensional injections

In this section, we provide lower bounds on injection dimensions due
to topological obstructions: The first approach (Proposition 1.3.3) ex-
ploits that in projective spaces any two subvarieties of complementary
dimension must intersect, while this is not necessarily the case for ar-
bitrary projective varieties — this discrepancy leads to lower bounds
on injection dimensions, irrespective of the choice of a line bundle. We
use this simple argument to improve previously known lower bounds
on γ(Pn1 × . . .× Pnr).

Secondly, a more sophisticated argument based on (dis-)connected-
ness properties for orbits of linear spaces under a finite group action
bounds injection dimensions for line bundles which admit a root of
some order (Theorem 1.3.6) or are divisible in the class group (Theo-
rem 1.3.8). We apply this to construct n-dimensional irreducible vari-
eties of injection dimension ≥ 2n and comment on injection dimensions
of weighted projective spaces.

Previous work from the perspective of separating invariants [Duf08],
[DJ15] established that γ(Pn,O(d)) = 2n for all d ≥ 2, whereas of
course γ(Pn,O(1)) = n. There, the (slightly stronger) question of
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injecting the affine cones over Veronese varieties into affine spaces is
studied with techniques from local cohomology in order to obtain lower
bounds.

With a similar approach, the article [DJ18] claims to prove for prod-
ucts of projective spaces Pn1×. . .×Pnr that the injection dimension with
respect to a very ample line bundle O(d1, . . . , dr) is bounded below by
2(∑r

i=1 ni), provided that not all di are equal to 1. Unfortunately, this
is wrong; we provide an explicit counterexample in Proposition 1.4.2
showing γ(P1 × P1,O(1, 2)) = 3. The flaw in [DJ18] is an incorrect
description of a group action identifying the homogeneous coordinate
ring of a Segre–Veronese variety with an invariant ring in the case
that not all di are equal. Correcting this with the description given
in Section 1.2.2, a straightforward adaption of [DJ18, Proof of Theo-
rem 5.4] shows γ(Pn1 × . . .×Pnr ,O(d1, . . . , dr)) ≥ 2(∑r

i=1 ni) whenever
gcd{d1, . . . , dr} > 1.

Theorem 1.3.6 and Theorem 1.3.8 generalize these results from
(products of) projective spaces to arbitrary projective varieties.

1.3.1. Existence of fibrations
We start out with an elementary observation giving lower bounds on
injection dimensions:

Lemma 1.3.1. Let X be a projective variety and let Y, Z ⊆ X be
disjoint closed subsets. Then

γ(X) ≥ dim Y + dimZ + 1.

Proof. For any injection ϕ : X inj−−→ Ps, we have ϕ(Y ) ∩ ϕ(Z) =
ϕ(Y ∩ Z) = ∅ and dimϕ(Y ) = dim Y , dimϕ(Z) = dimZ. But two
subvarieties of Ps can only be disjoint if their dimensions sum to at
most s− 1, hence s ≥ dim Y + dimZ + 1. �

Example 1.3.2. Let L ⊆ Pn be a linear subspace of codimension 2
and consider the blow-up of Pn along L. Then the strict transforms of
two distinct hyperplanes containing L are disjoint effective divisors on
BlL Pn. Hence, γ(BlL Pn) ≥ 2n− 1 by Lemma 1.3.1.

A particular consequence of Lemma 1.3.1 is that the existence of
fibrations X → S is an obstruction to low-dimensional injections of X:

Proposition 1.3.3. Let X → S be a surjective morphism of irreducible
projective varieties with dimS ≥ 1. Then

γ(X) ≥ 2 dimX − dimS.

Proof. We can find disjoint irreducible subvarieties Y0, Z0 ⊆ S
with dim Y0 + dimZ0 = dimS − 1. Let Y, Z ⊆ X be the fibers of
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X → S over them. Note that Y ∩ Z = ∅, so Lemma 1.3.1 implies
γ(X) ≥ dim Y + dimZ + 1

≥ (dimX − dimS + dim Y0) + (dimX − dimS + dimZ0) + 1
≥ 2 dimX − dimS. �

Example 1.3.4. An n-dimensional projective bundle over a curve has
injection dimension at least 2n− 1.

In [DJ18, Proposition 5.6], the following general bound for injection
dimensions of products of projective spaces was derived with techniques
from local cohomology:

γ(Pn1 × . . .× Pnr) ≥ 2
( r∑
i=1

ni
)
− 2 min{n1, . . . , nr}+ 1.

Our basic geometric observations improve this bound as follows:

Corollary 1.3.5. For all n1, . . . , nr ≥ 1, we have

γ(Pn1 × . . .× Pnr) ≥ 2
( r∑
i=1

ni
)
−min{n1, . . . , nr}.

Proof. This follows from applying Proposition 1.3.3 to the pro-
jections Pn1 × . . .× Pnr → Pni for i = 1, . . . , r. �

1.3.2. Divisibility in the Picard/class group
Our main lower bound for injection dimension with respect to fixed
line bundles follows. It is inspired by and vastly generalizes previous
work for (products of) projective spaces in [DJ15; DJ18].

Theorem 1.3.6. Let X be a projective variety and let L be a line
bundle on X. Then γ(X,L ⊗k) ≥ 2 dimX for all k ≥ 2.

Proof. By restricting to a top-dimensional component, we may
assume that X is irreducible. Fix k ≥ 2. We may assume that
γ(X,L ⊗k) < ∞, since the claim is otherwise trivial. Then the line
bundle L is ample by (1.1), so by [Laz04, Example 1.2.22], its sec-
tion ring R := ⊕

d≥0H
0(X,L ⊗d) is a finitely generated graded algebra

over R0 = H0(X,OX) = C, and we have ProjR ∼= X. The C-algebra
S := R ⊗C R is then also finitely generated, and it inherits a grading
S = ⊕

d≥0 Sd with graded pieces Sd = ⊕d
i=0Ri ⊗C Rd−i.

The Veronese subalgebra R(k) := ⊕
d≥0Rkd is the section ring of the

line bundle L ⊗k and we have ProjR(k) ∼= ProjR ∼= X. Note that R(k)

is the invariant ring under the degree-preserving action of the cyclic
group Zk = {ξ ∈ C∗ | ξk = 1} on R given by

Zk ×Rd → Rd, (ξ, f) 7→ ξdf.

Let V ⊆ H0(X,L ⊗k) = Rk be a non-zero subspace such that
ϕV : X inj−−→ P(V ∗) is an injective morphism. We aim to show that
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dimP(V ∗) ≥ 2 dimX. We consider the following commutative dia-
gram:

SpecR(k) ⊗C R
(k) SpecR⊗C R

ProjR(k) × ProjR(k) V ∗ × V ∗ ProjR⊗C R

P(V ∗)× P(V ∗) P(V ∗ × V ∗).

ϕ̂V ×ϕ̂V ψ̂

/(Zk×Zk)
π

ϕV ×ϕV ψ

Injectivity of ϕV means that the preimage of the diagonal inside
P(V ∗)×P(V ∗) under ϕV ×ϕV is set-theoretically the diagonal in X×X,
i.e.,

((ϕV × ϕV )−1∆P(V ∗)×P(V ∗))red = ∆ProjR(k)×ProjR(k) .

On the level of affine cones, the morphism ϕ̂V : SpecR(k) → V ∗ is
injective by Lemma 1.1.4, so this equality lifts to

((ϕ̂V × ϕ̂V )−1∆V ∗×V ∗)red = ∆SpecR(k)×SpecR(k) .

The morphism π : SpecR ⊗C R → SpecR(k) ⊗C R(k) is the geometric
quotient for the action of Zk×Zk on SpecS = SpecR×SpecR, so the
preimage of the diagonal under ψ̂ := (ϕ̂V × ϕ̂V )◦π is the Zk×Zk-orbit
of the diagonal in SpecR× SpecR:

(ψ̂−1∆V ∗×V ∗)red = (Zk × Zk) ·∆SpecR×SpecR.

Under projectivization of V ∗ × V ∗, the diagonal ∆V ∗×V ∗ becomes
a linear subspace L ⊆ P(V ∗ × V ∗) of dimension dimP(V ∗). Then the
previous equality of sets becomes

(ψ−1L)red = (Zk × Zk) · Y =
⋃
ξ∈Zk

(1× ξ) · Y,

where Y := V (f ⊗ 1− 1⊗ f | f ∈ R) ⊆ ProjR⊗C R.
We claim that this is in fact a disjoint union, so that ψ−1(L) has

k ≥ 2 connected components. Then, by [Laz04, Theorem 3.3.3], this
disconnectedness forces

codimP(V ∗×V ∗) L ≥ dim imψ.

Note that codimP(V ∗×V ∗) L = dimP(V ∗) + 1. On the other hand,

dim imψ = dim im ψ̂ − 1 = dim im(ϕ̂V × ϕ̂V )− 1
= dim im(ϕV × ϕV ) + 1 = 2 dimX + 1,

where the last equality holds by injectivity of ϕV . We conclude that
P(V ∗) ≥ 2 dimX.

It remains to prove that (1 × ξ) · Y and (1 × ξ′) · Y are disjoint
for ξ 6= ξ′ ∈ Zk. For this, we may assume that ξ′ = 1. Note that
(1× ξ) · Y = V (f ⊗ 1− 1⊗ ξdf | f ∈ Rd, d ≥ 0). Therefore,
Y ∩ (1× ξ) · Y = Y ∩ V (f ⊗ 1, 1⊗ f | f ∈ Rd, d ≥ 0 with ξd 6= 1).
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In particular, we have
(1.2) Y ∩ (1× ξ) ·Y ⊆ V (Rd⊗ 1 + 1⊗Rd) for all d ≥ 0 s.t. (d, k) = 1.

For d � 0, the line bundle L ⊗d is globally generated, so the van-
ishing locus of Rd = H0(X,L ⊗d) inside ProjR ∼= X is empty. This
means that for d� 0, we have

√
(Rd) ⊇ R≥1, which implies√

(Rd ⊗ 1 + 1⊗Rd) ⊇ (R≥1 ⊗ 1 + 1⊗R≥1) = (R⊗C R)≥1.

Then (1.2) shows Y ∩ (1× ξ) · Y = ∅, proving the claim. �

We use Theorem 1.3.6 to give an example indicating that we cannot
do better than what we ask for in Question 1.1, even as the dimension
of the varieties increase:

Example 1.3.7. Let (X,L ) be the polarized normal toric variety of
dimension n ≥ 3 corresponding to the full-dimensional lattice polytope

P := conv(0, e1, . . . , en−1, e1 + e2 + . . .+ en−1 + nen) ⊆ Rn.
Then Pic(X) ∼= Z is generated by L , and the complete linear system
|L | determines a non-injective finite morphism ϕL : X → Pn. In par-
ticular, γ(X,L ⊗k) =∞ for all k ≤ 1. For k ≥ 2, Theorem 1.3.6 shows
that γ(X,L ⊗k) ≥ 2 dimX. In particular, γ(X) ≥ 2 dimX, i.e., X
cannot be injected to Ps for s < 2 dimX. For smooth examples with
the same property see Example 1.3.13.

In the case of normal varieties, Theorem 1.3.6 can be sharpened
for singular situations, replacing the assumption on divisibility in the
Picard group by divisibility in the class group. Then we obtain the
following bound:

Theorem 1.3.8. Let X be a normal projective variety, let D be a Weil
divisor on X, let k ≥ 2 and assume that kD is Cartier. Then

γ(X,OX(kD)) ≥ 2 dimX − δ,

where

δ := min{1 + dim
( ⋂
q-m

Bs |mD|
)
| q prime power dividing k},

using the convention dim ∅ = −1.

Proof. We proceed as in the proof of Theorem 1.3.6, but replace
the graded C-algebra⊕d≥0H

0(X,L ⊗d) byR := ⊕
d≥0H

0(X,OX(dD)).
As before, we only need to consider the case that X is irreducible and
that γ(X,OX(kD)) <∞ (in particular, D is ample).

Consider a non-zero subspace V ⊆ H0(X,OX(kD)) = Rk inducing
an injective morphism X inj−−→ P(V ∗) with dimP(V ∗) ≤ 2 dimX. With
the same notations as in the previous proof, this injection gives rise
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to a morphism ψ : ProjR ⊗C R → P(V ∗ × V ∗) and a linear subspace
L ⊆ P(V ∗ × V ∗) of dimension dimP(V ∗) such that

(ψ−1L)red =
⋃
ξ∈Zk

(1× ξ) · Y,

where Y := V (f ⊗ 1− 1⊗ f | f ∈ R) ⊆ ProjR⊗C R.
In this setting, it remains no longer true that (1×ξ)·Y and (1×ξ′)·Y

are disjoint for ξ 6= ξ′ ∈ Zk. Instead, we show that

(1.3) dim
(
(1× ξ) · Y ∩ (1× ξ′) · Y

)
= dord(ξξ′−1),

where for each r ∈ N, we denote by dr the dimension of the closed set
Br := ⋂

r-m Bs |mD| ⊆ X. Denoting

δ := min{1 + dq | q prime power dividing k},

we then show that (1.3) implies that

(1.4)
⋃
ξ∈Zk

(1× ξ) · Y is not connected in dimension δ.

But on the other hand, it follows from classical connectedness theorems,
in particular [FOV99, Lemma 3.2.2], that the preimage of the linear
subspace L under the finite morphism ψ : ProjR⊗C R→ P(V ∗ × V ∗)
is connected in dimension

dim ProjR⊗C R− dimL− 2 = 2 dimX − dimP(V ∗)− 1,

so we deduce that dimP(V ∗) ≥ 2 dimX − δ.
It remains to prove (1.3) and (1.4). For (1.3), we may restrict to

the case ξ′ = 1 and we denote r := ord(ξ). Since (1 × ξ) · Y is the
vanishing set of all f ⊗ 1− 1⊗ ξmf for f ∈ Rm,m ≥ 0, we have

Y ∩ (1× ξ) · Y = Y ∩ V (Rm⊗C 1 + 1⊗C Rm | m ≥ 0 with ord(ξ) - m).
Consider the commutative diagram

SpecR⊗C R

ProjR× ProjR V ∗ × V ∗ ProjR⊗C R

P(V ∗)× P(V ∗) P(V ∗ × V ∗).

ψ̂

ϕV ×ϕV ψ

Note that in ProjR ∼= X, we have V (Rm) = Bs |mD|. Hence, the affine
cone over Y ∩(1×ξ)·Y in SpecR⊗CR is the diagonal ∆B̂r×B̂r ⊆ B̂r×B̂r,
where B̂r ⊆ SpecR is the affine cone over Br ⊆ ProjR. In particular,
dim Y ∩ (1× ξ) · Y = dr, proving (1.3).

In order to show (1.4), let q = p` be a prime power dividing k. Let
ζ be a primitive k-th root of unity. For i ∈ {1, . . . , p} consider the set
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Zi := ⋃k/p
j=1(1 × ζjp+i) · Y ⊆ ProjR ⊗C R. Then we have the following

equalities of sets:⋃
ξ∈Zk

(1× ξ) · Y =
p⋃
i=1

Zi and

Zi1 ∩ Zi2 =
k/p⋃
j1=0

k/p⋃
j2=0

(
(1× ζj1p+i1) · Y ∩ (1× ζj2p+i2) · Y

)
.

Note that for i1 6= i2 ∈ {1, . . . , p}, the order of ζ(j1−j2)p+(i1−i2) is divis-
ible by q. Since drq ≤ dq for all r ≥ 1, we conclude from (1.3) that
dimZi1 ∩ Zi2 ≤ dq for all i1 6= i2. Hence, ⋃ξ∈Zk(1 × ξ) · Y is not con-
nected in dimension dq + 1. This establishes (1.4) and concludes the
proof. �

Our situation in the proof of Theorem 1.3.8 is very close to the
setting in [Rei18], where small separating sets of invariants for finite
group actions on affine varieties are investigated. In fact, we remark
that Theorem 1.3.8 could also be obtained as a consequence of [Rei18,
Theorem 4.5], if we additionally assumed that the section ring R =⊕

d≥0H
0(X,OX(dD)) is integrally closed.

As an example, we apply Theorem 1.3.8 to weighted projective
spaces. With the link between injection dimensions of weighted pro-
jective spaces and separating invariants of finite cyclic groups (see Ex-
ample 1.2.8), the following bound on injection dimensions could also
be proved on the basis of [DJ15, Theorem 3.4]. For the purpose of
illustration, we choose to base our proof on Theorem 1.3.8.

Corollary 1.3.9. Consider a weighted projective space P(q0, . . . , qn)
that is well-formed, i.e., gcd(q0, . . . , q̂i, . . . , qn) = 1 for all i. Let ` ≥ 2
be minimal such that
lcm(qi1 , . . . , qi`) = lcm(q0, . . . , qn) holds for all i1, . . . , i` distinct.

Let L be the ample line bundle generating the Picard group. Then

γ(P(q0, . . . , qn),L ⊗k) ≥

n+ `− 2 if k = 1,
2n if k ≥ 2.

Proof. The weighted projective spaceX := P(q0, . . . , qn) is ProjR,
where R = C[x0, . . . , xn] is graded via deg(xi) = qi. The twisting
sheaf OProjR(1) is the reflexive sheaf OX(D) on X corresponding to
a Weil divisor D generating the class group. For all m ∈ Z, we have
H0(X,OX(mD)) = Rm. The ample line bundle generating Pic(X) is
L = OProjR(a) = OX(aD), where a := lcm{q0, . . . , qn}.

Theorem 1.3.6 shows that γ(X,L ⊗k) ≥ 2n for all k ≥ 2. We are
therefore only concerned with establishing a lower bound for γ(X,L )
based on Theorem 1.3.8. We may assume that not all weights qi are
equal to 1 (otherwise, X = Pn and the claim γ(Pn,O(1)) ≥ n is trivial).
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Then a ≥ 2 and, by minimality of `, there exists a prime power pr
dividing a and weights qi1 , . . . , qi`−1 not divisible by pr. Note that⋂

pr -m
Bs |mD| = V (Rm | pr -m) ⊆ V (xi1 , . . . , xi`−1).

We conclude with Theorem 1.3.8 that
γ(X,OX(aD)) ≥ 2n− 1− dim

( ⋂
pr -m

Bs |mD|
)
≥ n+ `− 2. �

Example 1.3.10. The weighted projective space P(1, 6, 10, 15) injects
to P4 (see Example 1.1.5 and Theorem 1.4.5), but not by linear projec-
tions from any embedding. This follows from Theorem 1.3.6 because
the ample line bundle O(30) generating the Picard group is not very
ample (see Example 1.1.5), whence all very ample line bundles admit
a root of some order in Pic(X) ∼= Z.

The case ` = 2 in Corollary 1.3.9 is the case of (non-weighted)
projective spaces, for which explicit constructions in the context of
separating invariants [Duf08, Proposition 5.2.2] show that the above
bound is sharp. In the next case, ` = 3, we show in Theorem 1.4.5 that
the bound in Corollary 1.3.9 remains sharp when one of the weights is 1.
However, the next example shows that the latter assumption cannot
be dropped.
Example 1.3.11. Corollary 1.3.9 shows that γ(P(2, 2, 3, 3),O(6)) ≥ 4.
We show that actually γ(P(2, 2, 3, 3),O(6)) = 5 holds. Indeed, note
that the global sections of O(6) are just Sym3(C2)∗ ⊕ Sym2(C2)∗ and
the secant locus of Y := im(ϕO(6)) ⊆ P(Sym3C2 ⊕ Sym2C2) is

σ◦2(Y ) = {[v ⊕ w] | (v = 0 or [v] ∈ σ◦2(C3)) and
(w = 0 or [w] ∈ σ◦2(C2))},

where Cd ⊆ P SymdC2 for d ∈ {2, 3} denotes the d-th rational normal
curve. The secant locus of the plane conic C2 fills its ambient space,
while the secant locus of the twisted cubic curve C3 consists of all points
that cannot be written as [v1v

2
2] ∈ P(Sym3C2) with {v1, v2} a basis of

C2. Hence, a linear subspace L ⊆ P(Sym3C2 ⊕ Sym2C2) does not
meet σ◦2(Y ) if and only if it does not meet the center of the projection
π1 : P(Sym3C2 ⊕ Sym2C2) 99K P(Sym3C2) and π1(L) ∩ σ◦2(C3) = ∅.
Every line in P(Sym3C2) intersects σ◦2(C3) by Proposition 1.1.14 and
Remark 1.1.3, so π1(L) and hence L needs to be a point. In fact, L can
be chosen to be the point [v1v

2
2 ⊕ 0] /∈ σ◦2(Y ) (for some basis {v1, v2} of

C2). By Proposition 1.1.14, this shows γ(P(2, 2, 3, 3),O(6)) = 5.
Example 1.3.11 generalizes easily to show that an n-dimensional

weighed projective space of the form P(2, . . . , 2, d, d) with n, d ≥ 3 and
d odd cannot be injected to P2n−2, while the bound from Corollary 1.3.9
only established that injections to P2n−3 are impossible. In fact, we
always expect the following:
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Conjecture 1.3.12. Let d, e ≥ 2 be relatively prime and let r, s ≥ 2.
Then

γ(P(d, . . . , d︸ ︷︷ ︸
r

, e, . . . , e︸ ︷︷ ︸
s

)) = 2(r + s− 1)− 1.

From γ(Pr−1,O(e)) = 2(r − 1) and γ(Ps−1,O(d)) = 2(s − 1), see
[Duf08, Proposition 5.2.2], the existence of an injection

P(d, . . . , d, e, . . . , e) inj−−→ P2(r+s−1)−1

is clear. The result in question in Conjecture 1.3.12 is therefore the
lower bound improving the one obtained from Corollary 1.3.9.

We finish this section by applying our lower bounds on injection
dimensions also to a non-toric example.

Example 1.3.13. Let n ≥ 3 and let q0, . . . , qn+1 ≥ 2 be pairwise rel-
atively prime. Let X ⊆ P(q0, . . . , qn+1) be a general hypersurface of
weighted degree d := q0q1 · · · qn+1. Then X is an n-dimensional con-
nected smooth projective variety with γ(X) ≥ 2n. Indeed, [RS06,
Theorem 1] implies that the restriction homomorphism of class groups
Cl(P(q0, . . . , qn)) → Cl(X) is an isomorphism. Since P(q0, . . . , qn) has
only finitely many singular points, X is smooth, so we conclude that
Pic(X) = Cl(X) is generated by the restriction of the reflexive sheaf
O(1) on P(q0, . . . , qn+1) to X. On the other hand, by generality of X,
the homomorphism H0(P(q0, . . . , qn),O(1)) → H0(X,O(1)|X) is sur-
jective, so the line bundle O(1)|X has no global sections. In particular,
it cannot give rise to injective morphisms. Every other line bundle is
a power of O(1)|X , so Theorem 1.3.6 implies that γ(X) ≥ 2 dimX.

1.4. Explicit constructions of injections

In this section, we give three specific approaches for explicitly con-
structing injective morphisms X → P2 dimX with a focus on products
of projective spaces and weighted projective spaces.

1.4.1. Constructions from tangential varieties
The following approach is helpful for producing injections of the r-fold
product Pm× . . .×Pm for m ≥ 1: Consider d = (d1, . . . , dr) ∈ Zr>0 and
let D := ∑r

i=1 di. The image of the morphism
ψm,d : P(Cm+1)× . . .× P(Cm+1)→ P(SymD Cm+1),

[v1]× . . .× [vr] 7→ [vd1
1 · · · vdrr ]

is theChow–Veronese variety of type (m, d). In the casem = 1, this
is also called the coincident root locus of type d, and its understand-
ing is of major interest from the viewpoint of practical applications, see
for example [LS16]. We observe that injections of these varieties for
suitable d give rise to injections of products of projective spaces:
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Lemma 1.4.1. Let r,m ∈ Z>0 and let d ∈ Zr>0 be such that

(1.5)
∑
i∈I

di 6=
∑
j∈J

dj for all I, J ⊆ [r] with I ∩ J = ∅.

Then ψm,d is injective. In particular, if Y ⊆ P(SymD Cm+1) denotes
the Chow–Veronese variety of type (m, d), then

γ(Pm × . . .× Pm,O(kd)) ≤ γ(Y,OY (k)) for all k > 0.

Proof. Let p ∈ Y , then p = [z] for z ∈ SymD Cm+1 \ {0} of
the form z = vd1

1 · · · vdrr for some vi ∈ Cm+1 \ {0}. To show injectiv-
ity of ψm,d, we need to see that each vi is uniquely determined up to
scaling. But Sym•Cm+1 ∼= C[x0, . . . , xm] is a unique factorization do-
main, so z uniquely determines the set {[v1], . . . , [vr]} ⊆ P(Cm+1) as
the linear factors of z up to scaling. Moreover, for each i, the non-zero
factor vi ∈ Cm+1 appears in z with multiplicity mi := ∑

j∈Ji dj, where
Ji := {j | [vj] = [vi]}. By assumption (1.5), the integer mi uniquely
determines the set Ji. Therefore, each vi is uniquely determined up to
scaling from z. Hence, ψm,d is injective. The second claim follows from
ψ∗m,d(OY (1)) = O(d). �

In the case r = 2, d = (1, k − 1) with k ≥ 3, the Chow–Veronese
variety of type (m, d) is the tangential variety of the k-th Veronese vari-
ety νk(Pm) ⊆ P(Symk Cm+1). As a simple consequence of Lemma 1.4.1,
we construct two explicit injections from the cases in which this tan-
gential variety has a secant variety of small dimension (as classified in
[CGG02] and [AV18]).

Proposition 1.4.2. The following two morphisms are injective:
P1 × P1 → P3,

[x0 : x1]× [y0 : y1] 7→ [x0y
2
0 : x1y

2
0 + 2x0y0y1 : 2x1y0y1 + x0y

2
1 : x1y

2
1 ],

P2 × P2 → P8,

[x0 : x1 : x2]× [y0 : y1 : y2] 7→ [x0y
2
0 : x0y

2
1 + 2x1y0y1 : x1y

2
0 − x2y

2
1 + 2x0y0y1 − 2x1y1y2 :

x1y
2
1 : x1y

2
2 + 2x2y1y2 : x1y

2
0 − x0y

2
2 + 2x0y0y1 − 2x2y0y2 :

x2y
2
2 : x2y

2
0 + 2x0y0y2 : 2x0y1y2 + 2x1y0y2 + 2x2y0y1].

In particular, γ(P1 × P1,O(1, 2)) = 3 and γ(P2 × P2,O(1, 2)) ≤ 8.

Proof. By Lemma 1.4.1, the morphism
ψ1,(1,2) : P(Sym1C2)× P(Sym1C2)→ P(Sym3C2)

is injective and its image is the tangential surface of the twisted cubic
curve in P(Sym3C2). Picking a basis {T0, T1} of C2, we consider the
{T 3

0 , T
2
0 T1, T0T

2
1 , T

3
1 } as a basis of Sym3C2. In these bases, the mor-

phism ψ1,(1,2) : P1 × P1 inj−−→ P3 maps [x0 : x1] × [y0 : y1] to the point
whose coordinates are the coefficients in T0 and T1 of the expression
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(x0T0 +x1T1)(y0T0 +y1T1)2. Explicitly, this is the injection written out
above. Note that it is given by global sections of O(1, 2).

Similarly, the morphism ψ2,(1,2) injectively maps to the tangential
variety of the Veronese surface and it is known that the secant variety
of this tangential fourfold is of dimension 8 only, see [CGG02, Proposi-
tion 3.2]. By Lemma 1.1.13, a projection of the image of ψ2,(1,2) from a
general linear space of codimension 9 gives an injection P2×P2 inj−−→ P8

given by global sections of O(1, 2).
Explicitly, with respect to a basis {T0, T1, T2} ⊆ C3 and the corre-

sponding basis {TiTjTk | i, j, k} ⊆ Sym3C3, the injection ψ2,(1,2) is the
morphism P2 × P2 inj−−→ P9 mapping [x0 : x1 : x2] × [y0 : y1 : y2] to the
10 coefficients in T0, T1, T2 of the expression

(x0T0 + x1T1 + x2T2)(y0T0 + y1T1 + y2T2)2.

The secant variety of its image in P(Sym3C3) does not fill the entire
9-dimensional projective space. Explicitly, one checks that the point
p := [T 2

0 T1+T 2
1 T2+T 2

2 T1] ∈ P(Sym3C3) does not lie on a secant line. In
particular, the composition of ψ2,(1,2) with the projection from p gives
an injective morphism P2 × P2 inj−−→ P8. This is the morphism written
out above. �

Another application of Lemma 1.4.1 is the following explicit con-
struction:
Proposition 1.4.3. Let d ≥ 3. Then the following morphism is injec-
tive:
P1 × P1 inj−−→ P4,

[x0 :x1]×[y0 : y1] 7→
[
x0y

d
0 :dx0y

d
0y1 + x1y

d
0 :
(
d
2

)
x0y

d−1
0 y2

1 + dx1y
d
0y1 :x0y

d
1 + dx1y0y

d−1
1 :x1y

d
1
]
.

In particular, γ(P1 × P1,O(1, d)) ≤ 4.
Proof. We use Lemma 1.4.1 and construct an injection of the

tangential variety of the rational normal curve of degree d + 1: The
morphism ψ1,(1,d) : P1× P1 → P(Symd+1C2) is injective. Fixing a basis
{T0, T1} ⊆ C2 and the corresponding basis {Ti0 · · ·Tid} ⊆ Symd+1C2, it
is explicitly given by mapping [x0 : x1]× [y0 : y1] to the d+1 coefficients
in T0, T1 of the expression (x0T0 + x1T1)d(y0T0 + y1T1). The morphism
written out above only maps to the point in P4 whose coordinates are
the coefficients of the monomials T d+1

0 , T d0 T1, T d−1
0 T 2

1 , T0T
d
1 and T d+1

1 .
This is the composition of the injection ψ1,(1,d) with the projection
P(Symd+1C2)→ P(Symd+1C2/W ), whereW := 〈T d−2

0 T 3
1 , . . . , T

2
0 T

d−1
1 〉.

By Lemma 1.1.13, we need to see that P(W ) does not meet the
secant locus of the tangential variety of the rational normal curve of
degree d+1. We check this explicitly: Assume that fdg−f ′dg′ ∈ W\{0}
for some f, f ′, g, g′ ∈ C2 \ {0}. Since every element of W is divisible
by T 2

0 T
2
1 , we note that f is proportional to T0 (resp. T1) if and only if

f ′ is. But this cannot be the case, since no nonzero element of W is



38 Chapter 1. Injection dimensions of projective varieties

divisible by T d0 (resp. T d1 ). Similarly, g is proportional to T0 (resp. T1)
if and only if g′ is. Since W0 := 〈T d−2

0 T 2
1 , . . . , T

2
0 T

d−2
1 , T0T

d−1
1 〉 defines

a linear space P(W0) ⊆ P(SymdC2) not intersecting the secant locus of
the rational normal curve νd(P1) ⊆ P(SymdC2), no nonzero element of
W ⊆ T0W0 ∩ T1W0 can be written as T0(fd − f ′d) or T1(fd − f ′d).

We may therefore now assume that f, f ′, g, g′ are not proportional
to T0, T1, so we can write (after rescaling):

f = T0−αT1, g = T0−βT1, f ′ = T0−α′T1, g′ = T0−β′T1

for non-zero α, α′, β, β′ ∈ C. Since fdg − f ′dg′ ∈ W , it has zero coeffi-
cients for T d+1

0 , T d0 T1, T d−1
0 T 2

1 , T0T
d
1 and T d+1

1 , i.e.,

dα + β = dα′ + β′,
(
d
2

)
α2 + dαβ =

(
d
2

)
α′

2 + dαβ′,

αd + dαd−1β = α′
d + dα′

d−1
β′, αdβ = α′

d
β′.

We wish to conclude α = α′ and β = β′. As

dα2 +β2 = (dα+β)2−2
((

d
2

)
α2 + dαβ

)
and d

α
+ 1
β

= αd + dαd−1β

αdβ
,

this follows from the lemma that follows. �

Lemma 1.4.4. For every d ≥ 2, the morphism (C∗)2 → C3 mapping
(x, y) 7→ (x−1 + dy−1, x+ dy, x2 + dy2) is injective.

Proof. The fiber over a point (a, b, c) ∈ C3 is given by the vanish-
ing of

f := x−1 + dy−1− a, g := x+ dy− b and h := x2 + dy2− c.

The ideal (f, g, h) ⊆ C[x±1, y±1] contains

(d+ 1)xyf + a(x+ y)g − ah = (d(d+ 1)− ab)x+ (d+ 1− ab)y + ac.

If the fiber consisted of more than one point, then this linear polynomial
needs to be proportional to the linear polynomial g. Then in particular
d+ 1− ab = d(d(d+ 1)− ab), i.e., ab = (d+ 1)2. In this case,

axyf + (a2y− ad)g = a2dy2 + (a− ad2− a2b)y− abd = d(ay− d− 1)2,

hence ay − d − 1 = 0 for all points in (C∗)2 on which f, g, h vanish.
Then the unique point mapping to (a, b, c) is (d+1

a
, d+1

a
). �

1.4.2. Inductive constructions
In the following, we provide explicit injections of some weighted pro-
jective spaces matching the lower bounds on injection dimensions in
Corollary 1.3.9. This generalizes the case of (non-weighted) projective
spaces worked out in [Duf08, Proposition 5.2.2].
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Theorem 1.4.5. Consider a weighted projective space P(q0, q1, . . . , qn)
with q0 = 1 and such that lcm(qi, qj, qk) = d for all i, j, k distinct,
where d := lcm(q1, . . . , qn). Let ai := d/qi and bij := lcm(qi, qj)/qi for
all i, j ∈ {0, 1, . . . , n}. Then the following are injective morphisms:
ϕ1 : P(q0, q1, . . . , qn)→ Pn+1,

[x0 : . . . : xn] 7→
[
xd0 : xd−q1

0 x1 : xa1
1 + xd−q2

0 x2 :

xa2
2 + xd−q3

0 x3 : . . . : xan−1
n−1 + xd−qn0 xn : xann

]
,

ϕk : P(q0, q1, . . . , qn)→ P2n,

(k≥2) [x0 : . . . : xn] 7→
[ ∑
i+j=`
i≤j

x
kai−bij
i x

bji
j | ` = 0, 1, . . . , 2n

]
.

In particular, the injection dimensions for these weighted projective
spaces are as follows:

γ(P(q0, q1, . . . , qn),O(kd)) =


∞ if k ≤ 0,
n if k = 1; q1 = . . . = qn,

n+ 1 if k = 1; q1, . . . , qn not all equal,
2n if k ≥ 2.

Proof. Recall that for any r0, . . . , rm ∈ Z>0 and c ∈ Z>0 with
(r0, c) = 1, there is an isomorphism

(1.6)
P(r0, cr1, . . . , crn) ∼= P(r0, r1, . . . , rm),
[x0 : x1 : . . . : xm] 7→ [xc0 : x1 : . . . : xm].

In particular, we may assume that gcd(q1, . . . , qn) = 1, noting that the
descriptions of ϕ1 and ϕk do not change under composition with the
isomorphism (1.6).

The restriction of ϕ1 to V (x0) ∼= P(q1, . . . , qn) is given by
ϕ1([0 : x1 : . . . : xn]) = [0 : 0 : xa1

1 : xa2
2 : . . . : xann ].

By assumption, lcm(qi, qj) = lcm(q0, qi, qj) = d for all positive i 6= j. In
particular, if pr is a prime power in d not dividing qi for some i > 0, then
pr must divide all qj for j > 0, j 6= i. Composing the corresponding
isomorphisms (1.6), we see that P(q1, . . . , qn) → Pn, [x1 : . . . : xn] 7→
[xa1

1 : xa2
2 : . . . : xann ] is an isomorphism. In particular, ϕ1|V (x0) is

injective.
The restriction of ϕ1 to the affine open D(x0) can be checked to be

injective by setting x0 = 1. We have
ϕ1|x0=1 : An → An+1

(x1, . . . , xn) 7→ (x1, x2 + xa1
1 , x3 + xa2

2 , . . . , xn + x
an−1
n−1 , x

an
n ),

which is a closed embedding, since it is of triangular shape. Note that
for points in ϕ(V (x0)) the first coordinate is zero, while for points in
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ϕ(D(x0)) it does not. Hence, the images of ϕ|V (x0) and ϕ|D(x0) do not
intersect. We conclude that ϕ is injective.

For ϕk with k ≥ 2, we also consider the affine open D(x0) by setting
x0 = 1, giving

ϕk|x0=1 : An → A2n

(x1, . . . , xn) 7→ (x1, x2 + xka1
1 , x3 + xka1−b12

1 xb21
2 ,

x4 + xka1−b13
1 xb31

3 + xka2
2 , . . .),

which is of triangular shape and therefore a closed embedding. The
first coordinate for points in ϕk(V (x0)) vanishes, while this is not the
case for points in ϕk(D(x0)). Hence, with the above, is enough to show
that the restriction of ϕk to V (x0) is injective. As above, using (1.6),
we have the isomorphism ϕ1|V (x0) : V (x0)

∼=−→ Pn. Composing with this
isomorphism, it only remains to show that
ψ : Pn−1 → P2(n−1), [x1 : . . . : xn] 7→

[ ∑
i+j=`
i≤j

xk−1
i xj | ` = 2, 3 . . . , 2n

]

is injective. This was originally proved in [Duf08, Proposition 5.2.2].
It follows by induction on n as follows: The case n = 1 is trivial.
Let n ≥ 2. The restriction of ψ to V (x1) ∼= Pn−2 is injective by the
induction hypothesis. The restriction of ψ to the affine open D(x1) can
be checked to be injective by setting x1 = 1. We have

ϕ|x1=1 : An−1 → A2(n−1)

(x2, . . . , xn) 7→ (x2, x3 + xk2, x4 + xk−1
2 x3, x5 + . . . , . . .),

which is a closed embedding. Since ψ(V (x1)) ∩ ψ(D(x1)) = ∅, we
conclude that ψ is injective. �

We employ a similar technique to construct an injective morphism
P1 × Pn inj−−→ P2(n+1) given by global sections of O(d, 1):

Theorem 1.4.6. Let n, d ≥ 1. The following is an injective morphism:
P1 × Pn inj−−→ P2n+2,

[x0 : x1]× [y0 : . . . : yn] 7→ [xd0y0 : xd1y0 + dx0x
d−1
1 y1 :

xd0y1 : xd1y1 + dx0x
d−1
1 y2 : . . . :

xd0yn−1 : xd1yn−1 + dx0x
d−1
1 yn :

xd0yn : xd1yn : dx0x
d−1
1 y0].

In particular, γ(P1 × Pn,O(d, 1)) ≤ 2(n+ 1).

Proof. The morphism ϕ : P1 × Pn inj−−→ P2n+2 written out above
maps [x0 : x1] × [y0 : . . . : yn] to the point in P2n+2 whose coordinates
are the coefficients of T d+1 and TSd in the expressions

{fi := (x0T + x1S)d(yiT + yi+1S) | i = −1, 0, 1, . . . , n},
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where y−1 := yn+1 := 0. Restricting ϕ to {[0 : 1]} × Pn, we obtain the
closed embedding

{[0 : 1]} × Pn ↪→ P2n+2,

[0 : 1]× [y0 : . . . : yn] 7→ [0 : y0 : 0 : y1 : . . . : 0 : yn−1 : 0 : yn : 0].

Note that the zero-pattern of the points in the image implies that the
image of [0 : 1] × Pn does not intersect ϕ(D(x0) × Pn). In particular,
it is sufficient to show injectivity of the restriction of ϕ to D(x0)× Pn,
for which we may simply set x0 = 1. The first of the expressions
fi = (x0T + x1S)d(yiT + yi+1S) with a non-zero coefficient of T d+1

uniquely determines the minimal k such that yk 6= 0. Similarly, the last
expression in which TSd appears with non-zero coefficient determines
the maximal m with ym 6= 0. Hence, for a point in the image of

ϕ|x0=1 : A1 × Pn → P2n+2,

[1 : x1]× [y0 : . . . : yn] 7→ [y0 : xd1y0 + dxd−1
1 y1 : y1 : xd1y1 + dxd−1

1 y2 : . . . :
yn−1 : xd1yn−1 + dxd−1

1 yn : yn : xd1yn : dxd−1
1 y0]

the values k and m can be read off the zero-pattern of its coordinates.
Note also that y0, . . . , yn are determined by the even-indexed coordi-
nates. Finally, x1 can be reconstructed from the coordinates as

x1 = d
yk
ym

xd1ym

dxd−1
1 yk

= d
xd0yk
xd0ym

xd1ym + dx0x
d−1
1 ym+1

xd1yk−1 + dx0x
d−1
1 yk

.

This shows that any point in the image of ϕ|x0=1 determines a unique
preimage, proving injectivity. �

Note that in the case n = 1, Theorem 1.4.6 gives another injection
P1×P1 inj−−→ P4 via global sections of O(d, 1), structurally different from
the one constructed before in Proposition 1.4.3.

1.4.3. Graph-theoretic constructions
In this section, we give a combinatorial construction of an injection
P1 × P1 × Pm ↪→ P2m+4 by multilinear forms, showing that

γ(P1 × P1 × Pm,O(1, 1, 1)) ≤ 2m+ 4.

The complete linear system |O(1, 1, 1)| embeds P1×P1×Pm by the
Segre embedding

P(C2)× P(C2)× P(Cm+1) ↪→ P(C2 ⊗ C2 ⊗ Cm+1),
[u]× [v]× [w] 7→ [u⊗ v ⊗ w].

We denote its image by Y ⊆ P(C2 ⊗ C2 ⊗ Cm+1). For any k ≥ 1,
we denote the standard basis vectors of Ck+1 by e0, e1, . . . , ek, and we
write e∗0, . . . , e∗k ∈ (Ck+1)∗ for the dual basis.
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Contrary to the approach in Section 1.4.1 and Section 1.4.2, here, we
do not construct the injection by writing out explicit polynomials defin-
ing the morphism and proving injectivity by exploiting their structure.
Instead, we explicitly describe a linear subspace L ⊆ P(C2⊗C2⊗Cm+1)
of codimension 2m+ 3 not intersecting the secant locus σ◦2(Y ). Then,
by Proposition 1.1.14, the projection of Y from L gives an injection to
P2m+4.

Necessarily, a linear space of codimension 2m + 3 must intersect
the (2m+ 3)-dimensional secant variety σ2(Y ), and we need to ensure
that this intersection does not lie in the secant locus σ◦2(Y ). In fact, we
construct a linear subspace whose intersection with the secant variety
is of much higher than expected dimension:

Theorem 1.4.7. Consider the Segre variety Y ⊆ P(C2 ⊗C2 ⊗Cm+1).
There exists a linear subspace L ⊆ P(C2 ⊗C2 ⊗Cm+1) of codimension
2m+ 3 not meeting σ◦2(Y ) such that

L ∩ σ2(Y ) = L1 t L2,

where L1, L2 ⊆ σ2(Y ) \ σ◦2(Y ) are disjoint linear spaces spanning L.

We recall that Y consists of the points corresponding to rank 1
tensors in C2 ⊗ C2 ⊗ Cm+1 and σ◦2(Y ) is the set of rank ≤ 2 tensors.
The closure of the latter is the secant variety σ2(Y ) parameterizing
tensors of border rank at most 2. Therefore, reformulated in the theory
of tensors, Theorem 1.4.7 states the existence of two disjoint large-
dimensional linear subspaces consisting of border rank 2 tensors only,
whose common span does not contain any rank 2 tensor.

In order to constructively prove Theorem 1.4.7, we first introduce
combinatorial objects encoding in a useful way the tensor subspaces
which we will consider.

Throughout, we fix a positive integer m. Let Γ be the directed
graph with vertex set {0, 1, . . . ,m} and edges E := E1 t E2, where

E1 := {(0, 1), (1, 2), (2, 3), . . . , (m− 1,m)} and
E2 := {(i,m− i) | 0 ≤ i < bm/2c}
∪ {(m− i, i+ 1) | 0 ≤ i < b(m− 1)/2c}
= {(0,m), (m, 1), (1,m− 1), (m− 1, 2), . . .}.

See Figure 1.1 for an illustration, where the edges of in E1 are marked
in red, the edges of E2 in blue. Note that E1 and E2 each form a
directed path in Γ.

Consider the vector space CE = {w : E → C} of complex weight
functions on the edges of Γ. For each vertex k ∈ {0, 1, . . . ,m}, consider
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Figure 1.1. The graph Γ for m = 6 and m = 7.

the linear map
Ψk : CE → C4,

w 7→
( ∑

(i,k)∈E1

w(i, k),
∑

(k,i)∈E1

w(k, i),
∑

(i,k)∈E2

w(i, k),
∑

(k,i)∈E2

w(k, i)
)
,

extracting from a weight function the total weights of incoming and out-
going edges at vertex k from E1 and E2, respectively. For every w ∈ CE,
let Zw ⊆ C4 denote the vector space spanned by Ψ0(w), . . . ,Ψm(w).

We now define the linear space L which we will check to satisfy
the properties of Theorem 1.4.7: Let W1 ⊆ C2 ⊗ C2 ⊗ Cm+1 be the
m-dimensional vector space with the basis
ui,j := e0 ⊗ e0 ⊗ ej + e0 ⊗ e1 ⊗ ei + e1 ⊗ e0 ⊗ ei for all (i, j) ∈ E1

Similarly, let W2 ⊆ C2⊗C2⊗Cm+1 be the (m− 1)-dimensional vector
space with the basis
vi,j := e1 ⊗ e0 ⊗ ej + e1 ⊗ e1 ⊗ ei + e0 ⊗ e0 ⊗ ei for all (i, j) ∈ E2

Define W := W1 + W2, which is a vector space of dimension 2m − 1.
Denote by L1, L2, L ⊆ P(C2 ⊗ C2 ⊗ Cm+1) the corresponding linear
spaces Li := P(Wi) and L := P(W ).

We may identify elements of W with elements of CE under the
linear isomorphism

Φ: CE
∼=−→ W, w 7→

∑
(i,j)∈E1

w(i, j) ui,j +
∑

(i,j)∈E2

w(i, j) vi,j.

This allows for a combinatorial reformulation of the condition that a
tensor in W is of border rank ≤ 2:

Lemma 1.4.8. A tensor t ∈ W ⊆ C2⊗C2⊗Cm+1 is of border rank 2
if and only if w := Φ−1(t) ∈ CE satisfies dimZw ≤ 2.

Proof. By [LM04, Theorem 5.1], a tensor t ∈ W ⊆ C2⊗C2⊗Cm+1

is of border rank ≤ 2 if and only if the induced linear map
ϕt : (Cm+1)∗ → C2 ⊗ C2, ` 7→ (id⊗ id⊗`)(t)
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has image im(ϕt) ⊆ C2 ⊗C2 of dimension at most 2. Let w := Φ−1(t).
Composing ϕt with the isomorphism

(e∗0 ⊗ e∗0 − e∗1 ⊗ e∗1, e∗0 ⊗ e∗1, e∗1 ⊗ e∗0 − e∗0 ⊗ e∗1, e∗1 ⊗ e∗1) : C2 ⊗ C2 ∼=−→ C4

gives the linear map (Cm+1)∗ → C4, e∗k 7→ Ψk(w), whose image is
precisely Zw. �

Based on Lemma 1.4.8, our proof of Theorem 1.4.7 will become very
combinatorial. The main graph-theoretic observations are the content
of the next two Lemmas:

Lemma 1.4.9. Let w ∈ CE. If Zw ⊆ C4 lies in one of the coordinate
hyperplanes, then Φ(w) ∈ W1 or Φ(w) ∈ W2.

Proof. If Zw ⊆ V (e∗0), then the first coordinate of Ψk(w) is zero
for all k ∈ {0, 1, . . . ,m}. Since every vertex of Γ has at most one
incoming edge from E1 and since every edge from E1 is an incoming
edge at some vertex, this shows that w(i, j) = 0 for all (i, j) ∈ E1.
Hence, Φ(w) ∈ W2. The other three cases Zw ⊆ V (e∗i ) for i ∈ {1, 2, 3}
follow from the same argument. �

Lemma 1.4.10. Let w ∈ CE. If dimZw ≤ 2, then Zw ⊆ C4 lies in
one of the coordinate hyperplanes.

Proof. By induction on m. Assume that Zw is not contained in
any coordinate hyperplane. Consider the special vertex k := dm/2e in
Γ, which has no adjacent edges in E2.

First, we show that Ψk(w) = 0: Along the directed path of edges
from E2, let (i, j) is the first edge with non-zero weight. Then the two
vertices i and k have both no weight on incoming edges from E2, hence
Ψi(w) and Ψk(w) lie in the coordinate hyperplane V (e∗2) ⊆ C4. Since
dimZw ≤ 2 and Zw 6⊆ V (e∗2), the vectors Ψi(w) and Ψk(w) must be
proportional. But Ψi(w) /∈ V (e∗3), while Ψk(w) ∈ V (e∗3), so we conclude
that Ψk(w) = 0.

Secondly, we may assume that the edge in E2 between the vertices
k−1 and k+1 has non-zero weight: Otherwise, we may delete this edge
as well as the the vertex k and its incident edges to obtain a weighted
graph which can be viewed as a subgraph of the graph Γ for the case
m− 1. This case is covered by the induction hypothesis.

In particular, Ψk−1(w) 6= 0 and Ψk+1(w) 6= 0. One of the vertices
k−1 and k+ 1 has no outgoing edge in E1, while the other has an out-
going edge in E2 with non-zero weight. Hence, Ψk−1(w) and Ψk+1(w)
are not proportional. Because of dimZw ≤ 2, they must form a basis
of Zw.

We now need to distinguish between even and odd m.
Case 1: m is even. Then the last edge of the directed path formed

by E2-edges is (k − 1, k + 1) ∈ E2. The vertex 0 has no incoming edge
in E1, so Ψ0(w) ∈ V (e∗0). Since also Ψk+1(w) ∈ V (e∗0) and Zw 6⊆ V (e∗0)
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and dimZw = 2, the vector Ψ0(w) must be a multiple of Ψk+1(w). But
the vertex 0 has no incoming edge in E2, while the vertex k + 1 has
an incoming edge in E2 with non-zero weight, so in fact, we must have
Ψ0(w) = 0.

If also Ψm(w) = 0, then we may delete the vertices 0 and m and
their incident edges to obtain the graph Γ for the case of replacing m
by m− 2, so this case is already covered by the induction hypothesis.
So, we may assume Ψm(w) 6= 0.

Since the vertex m has no outgoing edge in E1, the vectors Ψm(w)
and Ψk−1(w) are both non-zero vectors in V (e∗1), so they must be pro-
portional by dimZw ≤ 2 and Zw 6⊆ V (e∗1). Since Ψ0(w) = 0, we have
Ψm(w) ∈ V (e∗2), so we must also have Ψk−1(w) ∈ V (e∗2). This means
that the edge (k + 2, k − 1) ∈ E2 has weight zero.

This in turn implies Ψk+2(w) ∈ V (e∗3). In particular, Ψk+2(w)
is proportional to Ψk+1(w). Then Ψk+2(w) ∈ V (e∗0), hence the edge
(k + 1, k + 2) ∈ E1 has weight zero. But then Ψk−1(w) and Ψk+1(w)
lie both in V (e∗1), contradicting Zw 6⊆ V (e∗1), since they form a basis.
This concludes Case 1.

Case 2: m is odd. Here, the last edge along the directed path of
edges from E2 is (k+ 1, k− 1). We argue similar to Case 1: The vector
Ψm(w) is proportional to Ψk−1(w), since the vertex m has no outgoing
edge in E1. The vertex 0 has no incoming edge in E1, so Ψ0(w) is
proportional to Ψk+1(w).

If one of Ψ0(w) and Ψn(w) is zero, then so is the other, because the
edge in E2 between them has weight zero, while the edge (k+ 1, k− 1)
does not. But this case is covered by the induction hypothesis, as
previously in Case 1.

Hence, Ψ0(w) 6= 0 and Ψm(w) 6= 0. The edge (m, 2) ∈ E2 has weight
zero, since Ψm(w) is proportional to Ψk−1(w). But this implies that
Ψ1(w) must be proportional to Ψk+1(w). Then the edge (0, 1) ∈ E1
must have weight zero. But since Ψ0(w) is a non-zero multiple of
Ψk+1(w), this implies that both Ψk−1(w) and Ψk+1(w) lie in V (e∗1), a
contradiction. This concludes Case 2 and therefore the proof. �

Proof of Theorem 1.4.7. Combining the previous Lemmas, we
have established the following: A tensor t ∈ W is of border rank ≤ 2
if and only if t ∈ W1 or W2. In other words, σ2(Y ) ∩ L = L1 t L2.

It only remains to show that Lk ∩ σ◦2(X) = ∅ for k = 1, 2. For all
λi,j ∈ C, the vector ∑(i,j)∈E1 λi,jui,j ∈ W1 is the tangent vector to the
Segre variety at the point e0 ⊗ e0 ⊗ (∑(i,j)∈E1 λi,jei) in the direction
e1 ⊗ e1 ⊗ (∑(i,j)∈E1 λi,jej). Such a tangent vector is of rank 3 unless∑

(i,j)∈E1 λi,jei is proportional to
∑

(i,j)∈E1 λi,jej, which is the case if and
only if λi,j = 0 for all (i, j) ∈ E1. Hence L1 ∩ σ◦2(X) = ∅. The same
argument proves the claim for L2. �
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We have given a geometric construction of an injective morphism
P1×P1×Pm inj−−→ P2m+4. Choosing appropriate bases, we arrive at the
following explicit description:

Corollary 1.4.11. The following morphism is injective:
P1 × P1 × Pm → P2(m+2),

[x0 : x1]× [y0 : y1]× [z0 : . . . : zm]

7→
[
x0y1zm : x1y1zdm/2e : x1y1zdm/2e+(−1)m : x0y0zi+1 − x0y1zi : x0y0zi+1 − x1y0zi :

x1y0zm−j+b2j/mc − x0y0zj : x1y0zm−j+b2j/mc − x1y1zj

∣∣∣ i ∈ {0, 1, . . . ,m− 1},

j ∈ {0, 1, . . . ,m} \ {dm/2e, dm/2e+ (−1)m}
]
.

In particular, γ(P1 × P1 × Pm,O(1, 1, 1)) ≤ 2(m+ 2).



CHAPTER 2

Toric degenerations in families of unirational
varieties

Toric degenerations are deformations of algebraic varieties to toric lim-
its. They are an essential element in the toolkit of combinatorial al-
gebraic geometry, as they allow to transition from the special class of
toric varieties to more general settings and make purely combinatorial
techniques applicable to a wider class of algebraic varieties.

Degeneration techniques are an important subject throughout al-
gebraic geometry. In computational algebraic geometry, they are the
geometric notion behind fundamental symbolic algorithms. In fact, the
classical techniques for computing dimensions and degrees of varieties
rely on degenerations to arrangements of linear spaces aligned with
the coordinate axes. In general, classical Gröbner basis algorithms can
be viewed as a tool to compute degenerations of arbitrary ideals in
polynomial rings to monomial ideals [Eis95, §15.8].

Degenerations to toric varieties can be seen as a milder deformation
technique with irreducible limits that carry a rich combinatorial struc-
ture described by lattice polytopes or fans of convex polyhedral cones.
They often provide more structural insights, for example by describing
Hilbert functions as counting lattice points in polytopes [SX10].

Computationally, embedded toric degenerations of an irreducible
affine variety X = V (I) ⊆ Cn may be obtained via Gröbner basis tech-
niques as the vanishing set of the initial ideal inw(I), where w ∈ Zn is a
suitably chosen weight vector in the relative interior of a maximal cone
of the tropical variety Trop(X). The family describing the deformation
arises from rescaling coordinates of the ambient space corresponding
to the weights w and passing to a limit. See [KM19] for a modern
view on this construction in the more general context of the theory of
Khovanskii bases. Central questions in this topic revolve around the
(non-)existence of suitable weights w, possibly after re-embedding the
variety [BLMM17; KM19; IW20].

In this chapter, we approach the topic of toric degenerations from an
alternative direction inspired by Sturmfels and Xu’s study of Cox rings
of del Pezzo surfaces [SX10] and the subsequent work [BCDFM17]. We

This chapter grew out of the results in the article “Towards classifying toric
degenerations of cubic surfaces” [DGW20] by Maria Donten-Bury, Milena Wrobel
and the author of this thesis, accepted for publication in Le Matematiche, 2020.

47



48 Chapter 2. Toric degenerations in families of unirational varieties

consider a family of unirational varieties X → S given as the closure
of the image of a morphism

Φ: Cm × S → Cn × S,

where S ⊆ (C∗)k is a very affine variety. The main geometric idea is to
track the behavior of the family along curves in S under a simultaneous
rescaling of the coordinates of the ambient space, and to use tropical
geometry to classify toric limits arising from this.

Curves can in analytic neighborhoods of smooth points be described
in terms of power series. Algebraically, this corresponds to C((t))-valued
point of S. More generally, if K is the fraction field of a discrete
valuation ring R with residue field C, then for any K-valued points of
S, we consider the induced morphism

ΦK : Cm × SpecK → Cn × SpecK.

After rescaling the coordinates of the ambient space Cn×SpecK = AnK
by suitable powers of the uniformizing parameter, this extends to a
morphism ΦR : Cm × SpecR→ Cn × SpecR such that over the closed
point of SpecR, the image of Φ0 : Cm → Cn is not contained in the
coordinate hyperplanes. The image of ΦR describes a flat family over
SpecR. In fortunate circumstances, the special fiber may happen to
agree with the closure of the image of Φ0. If moreover, Φ0 is defined
by monomials, then the latter is a toric variety.

This geometric picture underlies the algebraic notion of Khovan-
skii bases over valued fields, which were in the present setup described
in [SX10] under the name SAGBI bases. In that article, families of
total coordinate spaces of del Pezzo surfaces were degenerated to pro-
vide interpretations of their multigraded Hilbert functions as counting
lattice points of polytopes. The open classification problem [SX10,
Problem 5.4] was the motivation behind our study.

This chapter is structured as follows: In Section 2.1, we introduce
the general setup and give a detailed picture on the construction of
a flat family outlined above. We raise a combinatorial problem for
classifying when the special fiber is toric and relate it to the theory of
Khovanskii bases. In Section 2.2, we describe an algorithm for resolving
this classification problem based on a computational subdivision of the
tropical variety of S. In Section 2.3, we specialize to the setting of
[SX10, Problem 5.4] and comment on the algorithmic challenges and
optimizations possible in this context. We carry out the classification
algorithm with respect to a fixed embedding of S, partially answering
[SX10, Problem 5.4]. In Section 2.4, we consider the issue of extending
our classification to a complete answer to [SX10, Problem 5.4] and
resolve it for one particular subclass.
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2.1. Parameterized families and their degenerations

In this section, we describe a generalized geometric picture of a degen-
eration approach taken in [SX10] via the theory of SAGBI bases.

2.1.1. Families of unirational varieties and their degenerations
Throughout, we work with a family of unirational varieties X → S
arising as follows: Let S be an irreducible subvariety of (C∗)k with
coordinate ring A = C[z±1 , . . . , z±k ]/IS. Over the base S, we consider a
morphism

Φ: AmS → AnS
explicitly given by n polynomials f1, . . . , fn ∈ A[x1, . . . , xm], each of
which is assumed to be homogeneous of positive degree. By X ⊆ AnS,
we denote the closure of the image of Φ. We assume that
(2.1) X ×S T = im(Φ×S T : AmT → AnT ) for all S-schemes T .
This is for example satisfied if the morphism Φ has a closed image.

Our aim is to study the family X along infinitesimal curves in S
and to classify toric degenerations naturally arising from them. Alge-
braically, analytic curves can be studied in terms of K-valued points of
S, where K is a suitable valued field such as the field of Puiseux series
C{{t}}. In general, we make the following assumptions on the field K:

Convention 2.1.1. We fix an algebraically closed field K with a non-
trivial valuation ν : K∗ → R, i.e., ν is a non-zero group homomorphism
with ν(f + g) ≥ min{ν(f), ν(g)} for all f, g ∈ K∗. Consider its val-
uation ring R := {f ∈ K∗ | ν(f) ≥ 0} ∪ {0}. For convenience, we
assume that K ⊇ C and that the residue field of R is C. Since K is al-
gebraically closed, we may fix a group homomorphism µ : ν(K∗)→ K∗

such that ν ◦ µ = idν(K∗), see [MS15, Lemma 2.1.15]. We abbreviate
tλ := µ(λ) for λ ∈ ν(K∗). Our main example is K = C{{t}}.

Our degeneration approach is to build suitable families over SpecR
from K-valued points of S, based on the construction that follows. We
write S(K) for the set of K-valued points of S. For each w ∈ Zn,
consider the automorphism

ψw : AnK
∼=−→ AnK , (y1, . . . , yn) 7→ (t−w1y1, . . . , t

−wnyn).

Lemma 2.1.2. Let a ∈ S(K) and consider the induced morphism
Φ(a) : AmK → AnK. There exists at most one weight vector w(a) ∈ Rn for
which the composition ψw(a) ◦Φ(a) lifts to a morphism θ(a) : AmR → AnR
such that, over the closed point, the image of θ(a)0 : AmC → AnC does not
lie in the coordinate hyperplanes.

Proof. For a ∈ S(K), the polynomials fi ∈ A[x1, . . . , xm] defining
Φ specialize to the polynomials fi|a ∈ K[x1, . . . , xm] with coefficients in
K that define Φ(a). If fi|a = 0 for some i, then the image of ψw ◦Φ(a)
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is contained in a coordinate hyperplane of AnR, hence the desired weight
vector w(a) cannot exist. Otherwise, we claim that w(a) exists and is
uniquely determined. In fact, consider
(2.2) ν̃ : K[x1, . . . , xm] \ {0} → R,

∑
α

cαxα 7→ min{ν(cα) | cα 6= 0},

which extends to a valuation ν̃ : K(x1, . . . , xm)∗ → R. Note that the
composition ψw ◦ Φ(a) lifts to a morphism AmR → AnR if and only if
wi ≥ ν̃(fi|a) for all i. On the other hand, if wi > ν̃(fi|a) for some
i, then the i-th component of ψw ◦ Φ(a) has positive valuation with
respect to ν̃ and is therefore zero over the closed point of SpecR. This
shows that

w(a) :=
(
ν̃(f1|a), . . . , ν̃(fn|a)

)
∈ Rn

is the unique weight vector with the desired property. �

We call a K-valued point a of S feasible if the weight vector w(a)
in Lemma 2.1.2 exists, i.e., if f1|a, . . . , fn|a are non-zero elements of
K[x1, . . . , xm]. In this case, we consider

Z(a) := im(θ(a)) ⊆ AnR,
which is a flat family over SpecR by construction, as it is integral and
dominates SpecR. Note that its generic fiber can be described as

Z(a)η = im(θ(a)η : AmK → AnK),
while for the special fiber we only have the containment
(2.3) Z(a)0 ⊇ im(θ(a)0 : AmC → AnC).

For geometric intuition, Z(a)η can be thought of (up to a rescaling
of the ambient space) as a member of the family X , more precisely
as the fiber of X over a general point on a small analytic curve in S.
Its properties relate through the family Z(a) to the special fiber which
may be structurally simpler.

If equality holds in (2.3) and if the morphism θ(a)0 is given by
monomials (possibly with non-trivial coefficients), then the special fiber
is a (not necessarily normal) affine toric variety. In this case, Z(a)
describes a toric degeneration. This leads to the following definition:

Definition 2.1.3. We call a feasible point a ∈ S(K) Khovanskii if
equality holds in (2.3). Moreover, a point a ∈ S(K) is called moneric
if it is feasible and if the morphism θ(a)0 : AmC → AnC is of the form

(x1, . . . , xm) 7→ (c1xα1 , . . . , cnxαn)
for some ci ∈ C∗, αi ∈ Nm. The moneric class of a is then the tuple
of monomials (xα1 , . . . ,xαn), disregarding the coefficients ci.

The following observation translates the study of toric degenera-
tions arising from the above construction into a finite classification
problem.
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Proposition 2.1.4. There are only finitely many moneric classes. Let
a, b ∈ S(K) be two moneric points with the same moneric class. Then
a is Khovanskii if and only if b is.

Proof. The first claim follows from the simple observation that
a moneric class (xα1 , . . . ,xαn) can only contain monomials present in
the polynomials f1, . . . , fn. Indeed, it follows from the definition of
θ(a)0 that the i-th monomial xαi needs to occur among the terms of
the polynomial fi ∈ A[x1, . . . , xm].

For the second claim, we argue by comparing the Hilbert polyno-
mials of the coordinate rings involved. For this, we recall that the
polynomials f1, . . . , fn ∈ A[x1, . . . , xn] defining Φ are assumed to be
homogeneous. Hence

Xa, Z(a)η, Z(a)0 and Ya := im(θ(a)0)
have graded coordinate rings (over the field K or C). Note that
Xa := X ×S SpecK (defined via a : SpecK → S) agrees with the clo-
sure of the image of Φ(a) because of (2.1). Since θ(a)η = ψw(a) ◦ Φ(a),
this shows that the coordinate ring of Xa has the same Hilbert poly-
nomial as the coordinate ring of Z(a)η = im(θ(a)η). By flatness of
Z(a)→ SpecR, this in turn coincides with the Hilbert polynomial for
the coordinate ring of Z(a)0. We conclude that the coordinate rings of
Xa and Z(a)0 have the same Hilbert polynomial, and similarly for b.

Moreover, note that X → S is flat. Indeed, this follows from the
valuative criterion for flatness: For a discrete valuation ring R̃ and an
R̃-valued point of S, the assumption (2.1) implies that X ×S Spec R̃
is an integral scheme surjecting onto Spec R̃ and therefore flat over
Spec R̃.

In particular, the coordinate rings of Xa and Xb share their Hilbert
polynomials. By the discussion above, the same is true for Z(a)0 and
Z(b)0. Moreover, since a and b describe the same moneric class, the
varieties im θ(a)0 and im θ(b)0 only differ by a rescaling of the ambient
space, so the Hilbert polynomials of their coordinate rings also agree.
From these observations, we conclude that the inclusions

Z(a)0 ⊇ im(θ(a)0) and Z(b)0 ⊇ im(θ(b)0)
are either both strict or both equalities. I.e., a is Khovanskii if and
only if b is. �

Note that Proposition 2.1.4 allows us to talk about Khovanskii
classes (xα1 , . . . ,xαn), by which we mean moneric classes such that
any corresponding moneric K-valued point of S is Khovanskii.

If a ∈ S(K) is moneric and Khovanskii, then the flat family Z(a)
has a toric special fiber. The following classification problem arises:

Problem 2.1.5. Classify all moneric classes. Which of them are Kho-
vanskii?
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2.1.2. Khovanskii bases over valued base fields
The term Khovanskii in Definition 2.1.3 alludes to the theory of Kho-
vanskii bases as in [KM19]. For an integral K-algebra Q equipped
with a valuation ν̃ : Q\{0} → R extending ν : K∗ → R, a Khovanskii
basis is a subset F ⊆ Q \ {0} such that the image of K∗ ∪ F in

grν̃(Q) :=
⊕
λ∈R

Qν̃≥λ/Qν̃>λ

generates the C-algebra grν̃(Q). Here,
Qν̃≥λ := {f ∈ Q \ {0} | ν̃(f) ≥ λ}.

and analogously for Qν̃>λ. This is the natural extension of [KM19,
Definition 2.5] to the setting of a valued base fields (for valuations
of rank 1). In our setting, for a feasible point a ∈ S(K), we consider
the subalgebra of K[x1, . . . , xm] generated by f1|a, . . . , fn|a and equip it
with the valuation ν̃ from (2.2). Below, we observe that a feasible point
a ∈ S(K) is Khovanskii if and only if f1|a, . . . , fn|a form a Khovanskii
basis with respect to ν̃ for the K-algebra they generate. Therefore,
Problem 2.1.5 can be interpreted as a classification problem studying
when the given polynomials f1, . . . , fn ∈ A[x1, . . . , xm] specialize to a
Khovanskii basis over a valued field K.

We note that the notion of a Khovanskii basis for a subalgebra
Q ⊆ K[x1, . . . , xm] equipped with the coefficient valuation (2.2) has a
simple algebraic description: For a polynomial g ∈ K[x1, . . . , xm] \ {0}
over K, its initial form is defined as

in(g) := (t−ν̃(g)g)
∣∣∣
t=0
∈ C[x1, . . . , xm].

Then, a set F ⊆ Q is a Khovanskii basis with respect to ν̃ if and only
if its set of initial forms {in(f) | f ∈ F} generates the initial algebra

in(Q) := C[in(g) | g ∈ Q].
In our setting, a K-valued point a ∈ S(K) defines a set of polyno-

mials {f1|a, . . . , fn|a} ⊆ K[x1, . . . , xm] which are non-zero if and only
if a is feasible. By the construction in the proof of Lemma 2.1.2,
the morphism θ(a)0 : AmC → AnC is the map given by the initial forms
in(f1|a), . . . , in(fn|a). In particular, a is moneric if and only if all the
initials in(fi|a) are monomials (with possibly non-trivial coefficients).
Moreover, note that by construction,

Z(a) = SpecR
[
t−ν̃(g)g | g ∈ K[f1|a, . . . , fn|a]

]
,

and in particular, the coordinate ring of Z(a)0 is the initial algebra
in(K[f1|a, . . . , fn|a]). Therefore, a ∈ S(K) is Khovanskii if and only if
f1|a, . . . , fn|a form a Khovanskii basis of the algebra they generate.

Remark 2.1.6. This algebraic setup behind the geometric picture de-
scribed in Section 2.1.1 was introduced in [SX10] in the study of Cox
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rings of del Pezzo surfaces and their Hilbert functions. A moneric set of
polynomials over K forming a Khovanskii basis was called a SAGBI ba-
sis there, generalizing previous notions of SAGBI bases [KM89; RS90].
The article [BCDFM17] builds upon [SX10] and replaces the term
SAGBI basis byKhovanskii basis, which were still required to be moneric
by definition. It should be pointed out that, in contrast, we formally
separate the property of being moneric from forming a Khovanskii ba-
sis, since these two notions are independent and it seems to be more
in line with the general theory of Khovanskii bases [KM19]. For the
purpose of toric degenerations, we will of course only be interested in
Khovanskii bases which are also moneric.

2.2. Tropical geometry as a classification tool

Tropical geometry studies combinatorial shadows of algebraic varieties.
For a subvariety Y of (C∗)`, its tropical variety is the closure in the
euclidean topology of the set of coordinate-wise valuations of its K-
valued points:

Trop(Y ) := {(ν(a1), . . . , ν(a`)) ∈ R` | (a1, . . . , a`) ∈ Y (K)} ⊆ R`.
This definition of tropical variety will be sufficient for our purposes in
this chapter, yet it should be noted that the theory of tropical geometry
goes beyond this set-theoretic notion used here, see [MS15]. Later,
in Chapter 3 and Chapter 4, we will extend the above definition of
tropical varieties to subvarieties of (K∗)` and use refined structures
such as multiplicities and Gröbner polyhedra.

The main structural property of interest in this chapter is the fact
that Trop(Y ) is the support of a fan of rational polyhedral cones [MS15,
Theorem 3.3.5], i.e., it can be written as the union over finitely many
rational polyhedral cones in R` that only intersect each other along
faces. By a fan structure on Trop(Y ), we mean the collection of all the
polyhedral cones in such a description, the maximal cones as well as
all their faces. There is generally not a unique coarsest fan structure
on a tropical variety, see [MS15, Example 3.5.4]. Of importance for us
is that from the vanishing ideal of Y , it is algorithmically possible to
compute some fan of rational polyhedral cones defining Trop(Y ), see
[BJSST07]. For irreducible Y , the maximal cones of any fan structure
on Trop(Y ) are all of the same dimension, namely dim(Y ).

Let us return to the setup of the previous section. We will use the
tropical variety of S ⊆ (C∗)k to aid the classification of moneric classes
in Problem 2.1.5. For any K-valued point a = (a1, . . . , ak) ∈ (K∗)k of
S, we denote its coordinate-wise valuation by

ν(a) := (ν(a1), . . . , ν(ak)) ∈ Trop(S)
and we say that a tropicalizes to ν(a).
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Definition 2.2.1. We define the tropical dimension of a moneric
class C = (xα1 , . . . ,xαn) as the smallest non-negative integer d such
that the set{

ν(a) ∈ Trop(S) | a ∈ S(K) moneric with moneric class C
}

is contained in a finite union of d-dimensional linear subspaces of Rk.
We call a moneric class full-dimensional if its tropical dimension is
dim(Y ).

Proposition 2.2.2. After a suitable re-embedding of S ⊆ (C∗)k, all
moneric classes are full-dimensional.

Proof. We observe that the definition of moneric classes does not
depend on the embedding of S into (C∗)k, while the tropical dimension
of a moneric class does.

We write each of the polynomials f1, . . . , fn ∈ A[x1, . . . , xm] defining
Φ as

fi =
ri∑
j=1

cij xγij with cij ∈ A \ {0} and γij ∈ Nm.

The r := r1 + · · · + rn many coefficients cij ∈ A are regular functions
on S = SpecA and hence define a re-embedding

S
id×(cij | i,j)
↪−−−−−−→ (C∗)k × Cr.

Denote by S ′ the intersection of the image with (C∗)k+r. Note that
S ′ is then isomorphic to the non-empty open subset of S given by the
non-vanishing of all cij ∈ A. We may now replace Φ: AmS → AnS by
Φ×S S ′ : AmS′ → AnS′ (and therefore X → S by X ×S S ′ → S ′) without
changing the moneric classes. We claim that after this replacement
every moneric class is full-dimensional.

Let a ∈ S ′(K) be a feasible point. Note that its tropicalization
ν(a) ∈ Trop(S ′) uniquely determines the valuation of each coefficient
cij|a in fi|a. Consider a tuple C = (xγ1s1 , . . . ,xγnsn ) with 1 ≤ si ≤ ri.
By definition, a ∈ S ′(K) is moneric with moneric class C if and only if

ν(cisi |a) < ν(cij|a) for all i = 1, . . . , n, j ∈ {1, . . . , ri} \ {si}.

These strict inequalities describe an open subset U ⊆ Rk+r. Its in-
tersection with Trop(S ′) is non-empty if and only if C is a moneric
class. In this case, the moneric class is full-dimensional: Each maximal
cone of Trop(S ′) is of dimension dim(S ′) = dim(S), so the intersection
U ∩ Trop(S ′) cannot be contained in a finite union of linear spaces of
smaller dimension. �

In the following, for any c ∈ A, we denote by Γ(c) ⊆ Rk+1 the trop-
ical graph of c, i.e., Γ(c) is the tropical variety of the re-embedding
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of S = SpecA into (C∗)k ×C given by id×c. By the lower envelope
of a subset Y ⊆ Rk+1, we mean the set{

(p, q) ∈ Rk × R |
(
{p} × (−∞, q]

)
∩ Y = {(p, q)}

}
.

Note that the lower envelope of a finite union of fans of convex cones
is again a fan of convex cones.

The algorithm that follows classifies full-dimensional moneric classes
based on computational tropical geometry and computational convex
geometry. It is a generalization of the approach pursued in [SX10,
§4] for total coordinate spaces of del Pezzo surfaces of degree 4. For
the successful application of this algorithm in a computationally much
more challenging setting, see Section 2.3.

Algorithm 2.2.3 (Computing full-dimensional moneric classes).
Input: A prime Laurent polynomial ideal

IS ⊆ C[z±1 , . . . , z±k ]
defining S ⊆ (C∗)n, and non-zero homogeneous polynomials

f1, . . . , fn ∈ (C[z±1 , . . . , z±k ]/IS)[x1, . . . , xm],
defining a morphism Φ: AmS → AnS satisfying (2.1).

Output: The set of all full-dimensional moneric classes.
1: Compute the tropical variety Trop(S) ⊆ Rk.
2: for i = 1, . . . , n do
3: Compute the tropical graphs Γ(ci1), . . . ,Γ(ciri) ⊆ Rk+1, where

ci1, . . . , ciri are the coefficients of fi = ∑
j cijxγij .

4: Λi := lower envelope of Γ(ci1) ∪ . . . ∪ Γ(ciri).
5: Ti := {(σ, s) | σ max. cone of Λi, σ ⊆ Γ(cis), σ * Γ(cij) ∀j 6= s}.
6: Σi := subdivision of Trop(S) induced from Λi under the projec-

tion π : Rk+1 � Rk.
7: Σ := common refinement of the fans Σ1, . . . ,Σn on Trop(S).

8: return
{

(xγ1s1 , . . . ,xγnsn )
∣∣∣∣ π(σ1) ∩ . . . ∩ π(σn) max. cone

of Σ and (σi, si) ∈ Ti ∀i

}
.

Correctness of Algorithm 2.2.3. If a coefficient cij can be
expressed as cij = ∑

β∈Zk bβzβ, then the lower envelope of Γ(cij) is the
image of Trop(S) under the map Rk ↪→ Rk+1, v 7→ (v, trop(cij)(v)),
where trop(cij) denotes the piece-wise linear function

trop(cij) : Trop(S)→ R, (v1, . . . , vk) 7→ min
{ k∑
i=1

βivi | bβ 6= 0
}
.

Note that because of this, trop(cij) is independent of the choice of the
expression ∑β∈Zk bβzβ representing cij modulo IS. The projections to
Rk of the maximal cones of the lower envelope of Γ(cij) are the regions
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of lineality of trop(cij). For a ∈ S(K) such that ν(a) lies in the relative
interior of such a projected cone, we have ν(cij|a) = trop(cij)(ν(a)).

In particular, if σ is a maximal cone of Λi for some i, then for any
a ∈ S(K) with ν(a) ∈ Relint(π(σ)), we have

ν̃(fi|a) = min{ν(ci1|a), . . . , ν(ciri |a)}
= min{trop(ci1)(ν(a)), . . . , trop(ciri)(ν(a))}
= trop(cis)(ν(a)) if σ ⊆ Γ(cis).

In particular, the minimum is attained exactly once if and only if σ
shows up in a pair (σ, s) of the set Ti, and in this case, in(fi|a) is a
scalar multiple of xγis . Since Σ is the common refinement of all π(Λi),
this shows that every monomial tuple (xγ1s1 , . . . ,xγnsn ) output by the
algorithm is in fact a full-dimensional moneric class.

Conversely, we need to argue that every full-dimensional moneric
class is output by the algorithm. Maximal cones of Σ are of the form
π(σ1) ∩ . . . ∩ π(σn) with σi being maximal cones of Λi. We have just
argued that any a ∈ S(K) tropicalizing to the relative interior of such
a cone is moneric with moneric class (xγ1s1 , . . . ,xγnsn ) if and only if
(σi, si) ∈ Ti for all i. Therefore, if a ∈ S(K) is a moneric point whose
moneric classes we do not output, then ν(a) cannot lie in the relative
interior of any maximal cone of Σ. Since Σ covers Trop(S), this implies
that the moneric class is not full-dimensional. �

Algorithm 2.2.3 can be used to classify moneric classes. For tack-
ling Problem 2.1.5 of describing toric degenerations, it is also necessary
to check which moneric classes are Khovanskii. This can be done for
example by comparing the Hilbert polynomial of the toric variety aris-
ing from the moneric class with that of the fibers of X → SpecR,
as in the proof of Proposition 2.1.4. In situations where this is unde-
sirable (e.g. if the main purpose of constructing toric degenerations is
the computation of Hilbert polynomials), one can check that the defin-
ing equations of the toric variety lift to equations of the family, as in
[CHV96, Proposition 1.3]. The verification of such a lifting criterion
can be carried out with a classical subduction algorithm, see [KM19,
Algorithm 2.11 and Theorem 2.17] for more details.

2.3. Total coordinate spaces of cubic surfaces

Smooth cubic surfaces are among the most classical projective varieties.
They can be described as the blow-ups of six points in the projective
plane in general position (meaning that no three of the points lie on
a line and that there is no conic passing through all the points). In
this section, we consider the family of total coordinate spaces of these
blow-ups and study toric degenerations in this family. This study was
initiated in [SX10] in the context of finding Ehrhart-type formulas for
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multigraded Hilbert functions. A classification of the toric degener-
ations was left as an open research problem. Progress was made in
[BCDFM17] and we build upon their work, applying the setup and
techniques described in the previous sections.

If p1, . . . , p6 ∈ P2
C are points in general position, then their blow-up

X = Blp1,...,p6 P2
C is a smooth cubic surface. There are 27 lines on X.

For one, there are the exceptional divisors E1, . . . , E6. Then, for each
of the 15 pairs of points pi 6= pj, there is the strict transform of the
line through pi and pj, which we denote by Fij. Finally, there are six
more lines G1, . . . , G6, where Gi is the strict transform of the unique
conic passing through all points except for pi. We further denote by H
the strict transform of a fixed general line in the projective plane not
passing through any of the points p1, . . . , p6.

The divisors H,E1, . . . , E6 generate a subgroup D of Div(X) which
maps isomorphically onto the free abelian group Pic(X). The Cox
ring of the cubic surface X is defined as

Cox(X) :=
⊕
D∈D

H0(X,OX(D)).

This definition is independent of the choice of H,E1, . . . , E6 as divisors
generating the Picard group, see [ADHL15, Proposition 1.4.2.2]. The
variety Spec Cox(X) is called the total coordinate space of X. The
Z7-grading on Cox(X) translates to a (C∗)7-action on the total coordi-
nate space and by taking the GIT quotient of suitable subgroups, one
can regain the homogeneous coordinate ring of X under any embedding
by a complete linear system. In this sense, Cox rings carry information
on all embeddings of X into projective spaces. See [ADHL15] for more
background on the importance of Cox rings.

Of particular interest are toric degenerations of total coordinate
spaces that are equivariant with respect to the (C∗)7-action, i.e., which
reflect the Z7-graded structure on the Cox ring. Such toric degenera-
tions can be used to give combinatorial interpretations for the multi-
graded Hilbert function in terms of counting lattice points in polytopes,
see [SX10].

Cubic surfaces and therefore also their total coordinate spaces nat-
urally arise in families, as one may allow the blown up points to vary
in the projective plane.

As shown by Nagata in [Nag59], the Cox ring of a smooth cubic
surface can be interpreted as a certain invariant ring: Let M ∈ C3×6

be a matrix whose columns define six points p1, . . . , p6 ∈ P2
C in general

position, and let X be the blow-up of P2
C at these points. We con-

sider the kernel of the matrix M as an additive subgroup G of C6 and
consider the action of G on A6

C × A6
C given by

G× A6
C × A6

C → A6
C × A6

C,

(λ, x, y) 7→ (x, y + λ · x),
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where λ · x := (λ1x1, . . . , λ6x6). The corresponding invariant subring
of C[x,y] := C[x1, . . . , x6, y1, . . . , y6] under this action is called the
Cox–Nagata ring and we have

(2.4) Cox(X) ∼= C[x,y]G ⊆ C[x,y].

In [Muk04], Mukai explicitely describes the isomorphism in (2.4). More-
over, Batyrev and Popov [BP04] show that the Cox ring of a smooth cu-
bic surface is generated by global sections corresponding to the 27 lines.
Using this, we obtain distinguished generating set of the Cox–Nagata
ring C[x,y]G, which, by abuse of notation, we denote simply as

F = {E1, . . . , E6, F12, . . . , F56, G1, . . . , G6} ⊆ C[x,y]G.

Geometrically, this generating set and (2.4) together describe the
total coordinate space Spec Cox(X) as the closure of the image of the
morphism

ϕM : A12
C = A6

C × A6
C
F−→ A27

C .

We observe that multiplying the 3× 6-matrix M from the left with an
invertible 3×3-matrix leaves G = kerM invariant and in the geometric
picture, interpreting the columns as points in P2

C, it simply corresponds
to applying an automorphism of P2

C. In fact, the isomorphism (2.4) is
equivariant with respect to this action of GL(3), hence the morphism
ϕM only depends on the subspace G = kerM ⊆ C6. Each of the
polynomials in F can be expressed in terms of the Plücker coordinates
pijk of this point in Gr(3, 6):

E1 = x1,

F12 = p123y3x4x5x6 + p124x3y4x5x6 + p125x3x4y5x6 + p126x3x4x5y6,

G1 = p234p235p236p456 · y2y3x4x5x6x
2
1 + p234p246p245p356 · y2y4x3x5x6x

2
1

+ p235p245p256p346 · y2y5x3x4x6x
2
1 + p236p246p256p345 · y2y6x3x4x5x

2
1

+ p234p345p346p256 · y3y4x2x5x6x
2
1 + p235p345p356p246 · y3y5x2x4x6x

2
1

+ p236p346p356p245 · y3y6x2x4x5x
2
1 + p245p345p456p236 · y4y5x2x3x6x

2
1

+ p246p346p456p235 · y4y6x2x3x5x
2
1 + p256p356p456p234 · y5y6x2x3x4x

2
1

+ (p235p346p124p256 − p234p356p125p246) · y2y1x3x4x5x6x1

+ (p235p246p134p356 − p234p256p135p346) · y3y1x2x4x5x6x1

+ (p245p236p134p456 + p234p256p145p346) · y4y1x2x3x5x6x1

+ (p235p246p145p356 − p245p236p135p456) · y5y1x2x3x4x6x1

+ (p236p245p146p356 − p246p235p136p456) · y6y1x2x3x4x5x1

+ (p235p246p134p156 − p234p256p135p146) · y2
1x2x3x4x5x6,

and the other polynomials in F arise from letting the symmetric group
S6 permute the indices, see [SX10, §5].
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Remark 2.3.1. On first sight, the above expressions may not seem
to exhibit an invariance by the symmetric group S6: For example,
permuting the indices 2 and 6 changes the last binomial expression
appearing as the coefficient of y2

1x2x3x4x5x6 in G1. However, modulo
the Plücker relations the two differing expressions become equal:
p235p246p134p156 − p234p256p135p146 = p356p246p134p125 − p346p256p135p124.

In fact, systematically exploiting this observation, we can for each of
the binomial expressions above generate other binomial expressions
equivalent modulo Plücker relations. Knowing several equivalent ex-
pressions for the coefficients turns out useful in the computations we
describe below.

The binomial
q := p235p246p134p156 − p234p256p135p146

plays a special role: It takes a non-zero value, as its vanishing would
have the geometric meaning that the columns of the matrixM describe
six points lying on a conic, [RSS16, (2.7)]. Moreover, each Plücker
coordinate is non-zero, as no three of the six points were allowed to lie
on a line.

This all gives rise to the following setup: Consider the affine cone
in A20

C over the Grassmannian Gr(3, 6) in its Plücker embedding. Re-
embedding it into A21

C with the additional coordinate given by the bi-
nomial q and intersecting with the torus (C∗)21, we obtain a variety
which we denote by S. We denote by A = C[p±123, . . . , p

±
456, q

±]/IS its
coordinate ring. Consider the morphism

Φ: A12
S
F−→ A27

S

given by the polynomial expressions for F from above. This morphism
describes the family of total coordinate spaces of smooth cubic surfaces
as a family of unirational varieties as in the general setup in Section 2.1.

Tackling Problem 2.1.5 in this setting was suggested as an open
research question in [SX10, Problem 5.4]. In [BCDFM17, Proposi-
tion 6.4], it was shown that not all moneric classes are full-dimensional,
so directly applying Algorithm 2.2.3 will not necessarily lead to a com-
plete classification of toric degenerations.

Nevertheless, carrying through a classification of all degenerations
arising from full-dimensional moneric classes is already interesting in
itself and can lead to further insights. In the following theorem, we
work this out. For computational convenience, we restricted to those
moneric classes that map full-dimensionally onto the tropical Grass-
mannian TGr(3, 6), the tropical variety associated to the affine cone
over Gr(3, 6) in its Plücker embedding. This corresponds to replacing
Trop(S) by TGr(3, 6) in Algorithm 2.2.3, yet we do not expect this
restriction to be essential for the feasibility of the computations.
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Theorem 2.3.2. The tropical Grassmannian TGr(3, 6) can be given a
fan structure with f -vector
(0, 1, 987, 25605, 245280, 1195815, 3380380, 5827950, 6076590, 3524580, 870840)

such that every K-valued point of Gr(3, 6) tropicalizing to the relative
interior of a maximal cone is moneric for the family of total coordi-
nate spaces. There are 32880 distinct full-dimensional moneric classes,
which fall into 78 orbits under the S6-symmetry. Among these, there
are 38 orbits of Khovanskii classes, describing toric degenerations of
total coordinate spaces.

Proof. The direct calculation of the fan structure Σ with Algo-
rithm 2.2.3 is a computationally difficult task, as evidenced by its large
f -vector. However, by exploiting symmetries at several stages and mak-
ing use of parallel computations, we were able to carry out the compu-
tation with the computer algebra system Singular [DGPS19] using
its interface to Gfan [Jen17] and its library for computing tropical
varieties [JMMR19]. All of our computer code, extensive classification
output and supplementary material is made available at

https://software.mis.mpg.de.

We proceed as follows: We consider TGr(3, 6) with the fan structure
described in [SS04]. To determine Σ, we compute for every single
maximal cone in TGr(3, 6) its subdivision in Σ. Up to S6-symmetry,
TGr(3, 6) consists only of seven maximal cones [SS04]. These seven
cones themselves are stabilized under a subgroup of S6 of order 48, 24,
8, 8, 4, 3 and 2, respectively. In the following steps of the computation,
we fix one of these seven maximal cones C and its symmetry group
S(C) ⊆ S6.

Most of the coefficients cij in F = {E1, . . . , G6} are monomial ex-
pressions in the Plücker coordinates. For these cij, the tropical graph
T (cij) is simply the image of TGr(3, 6) under the linear embedding
R20 ↪→ R21, v 7→ (v, trop(cij)(v)).

The remaining coefficients can be expressed as cij = f ± g with
f, g monomials in C[p123, . . . , p456], possibly in several different ways,
see Remark 2.3.1. If the linear functions trop(f), trop(g) : R20 → R
do not coincide on the entire cone C for at least one of the equivalent
binomial expressions for cij obtained from Remark 2.3.1, then the lower
envelope of T (cij)∩π−1(C) is the graph of the piece-wise linear function
min{trop(f), trop(g)}|C : C → R. Computations show this to happen
in fact in all of the cases except for one: For one of the seven cones
C, there exists one coefficient cij for which all known expressions as
binomials f ± g satisfy trop(f)|C = trop(g)|C . For this one choice of C
and cij, we computed the tropical variety T (cij) explicitly in Singular
and read off that the lower envelope of T (cij) ∩ π−1(C) is in fact the
graph of a linear function C → R.

https://software.mis.mpg.de
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From these descriptions of the lower envelopes of T (cij) ∩ π−1(C)
for all cij, we compute Λi ∩ π−1(C) for each i = 1, . . . , 27 and the
induced subdivisions Σi|C of C. Here, the computation reveals that
the relative interior of each maximal cone of Λi intersects only one of
the tropical graphs T (ci1), . . . , T (ciri). Our next step is to compute the
common refinement of Σ1|C , . . . ,Σ27|C , which is combinatorially large,
so we find it imperative to exploit symmetries and use parallelization
in the computation, as described in the following algorithm. Here, each
subdivision Σi|C is understood as a set of maximal cones.

Input: The subdivisions Σ1|C , . . . , Σ27|C and the symmetry group S(C)
Output: Σ|C , the common refinement of Σ1|C , . . . ,Σ27|C
1: Ω := {C}.
2: for i from 1 to 27 do
3: for all σ ∈ Σi|C do // To be carried out in parallel
4: Compute Ωσ := {σ ∩ σ′ | σ′ ∈ Ω such that dim(σ ∩ σ′) = dim(σ)}.
5: Ω := {τ1, . . . , τk}, representatives for the S(C)-orbits of

⋃
σ∈Σi|C Ωσ.

6: return
⋃
g∈S(C){g · σ | σ ∈ Ω}.

With this common refinement algorithm, we were able to compute
the maximal cones in the subdivision Σi|C for each of the seven maxi-
mal cones C representing the S6-symmetry classes in TGr(3, 6). After
letting the symmetric group act on these results and computing the fan
structure induced by the set of maximal cones, we obtain Σ and read
off the f -vector claimed above.

During the computation, we remember at every stage for each max-
imal cone the choice of initial monomials it corresponds to. At the end,
the computation reveals that the 870840 maximal cones only describe
32880 distinct moneric classes, and they fall into only 78 orbits under
the S6-symmetry. More detailed statistics on the subdivisions for each
of the seven symmetry classes of cones are presented in Figure 2.1. An
explicit description of the subdivision for one of the seven maximal
cones C in TGr(3, 6) is contained among the discussion in Section 2.4.

It remains to test which of the moneric classes (xα1yβ1 , . . . ,xα27yβ27)
form a Khovanskii basis. For this, we proceed with the method pre-
sented in [SX10, Theorem 5.1] and consider the binomial ideal J of rela-
tions among these 27 monomials. As in the proof of Proposition 2.1.4,
it suffices to compare the Hilbert function of C[x,y]/J to that of the
Cox ring of a smooth cubic surface. We are in a multigraded setting:
The Cox–Nagata ring is graded by Z7 and this grading can be induced
by a Z7-grading on C[x,y] which is preserved under the degenerations
we consider, see [SX10; BCDFM17]. In particular, we may consider
the Z7-graded Hilbert function of C[x,y]/J and compare it to the ex-
plicit formula for Cox rings given in [SX10, Corollary 5.2]. In fact, it is
sufficient to compare the values of the multigraded Hilbert functions at
the multidegrees of the minimal binomial generating set of J . Carrying
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Type of cone C FFFGG EEEE EEFF1 EEFF2 EFFG EEEG EEFG

size of S6-orbit S6 · C 15 30 90 90 180 240 360
order of symmetry group S(C) 48 24 8 8 4 3 2
#{cones in Σ|C} 1240 864 1248 860 806 830 812
#{cones in Σ|C}/S(C) 38 36 205 142 259 278 460
#{moneric classes from C}/S(C) 31 35 162 135 253 274 449
#{moneric classes from S6 · C}/S6 25 17 45 47 60 37 64
#{moneric classes from S6 · C} 11040 7080 16080 17880 24600 17040 26400

Figure 2.1. Statistics on moneric classes arising from Σ

this out for representatives of the 78 moneric symmetry classes, we find
that 38 of them are Khovanskii. In particular, we obtain 38 different
combinatorial types of toric degenerations of total coordinate spaces of
smooth cubic surfaces. �

2.4. Beyond full-dimensional classes

In Section 2.3, we have classified the toric degenerations of total coor-
dinate spaces of smooth cubic surfaces arising from Khovanskii classes
which are full-dimensional in TGr(3, 6). To complete the classifica-
tion asked for in [SX10, Problem 5.4], it would also be necessary to
classify Khovanskii classes whose tropical dimension in TGr(3, 6) is
strictly smaller than dim(Gr(3, 6)). Proposition 2.2.2 shows how this
could in theory be achieved with Algorithm 2.2.3 by considering the re-
embedding of the affine cone over the Grassmannian with all binomials
in the Plücker coordinates that appear in the expressions G1, . . . , G6.
This would be a variety in a 51-dimensional ambient space whose trop-
icalization is computationally out of reach. In [BCDFM17, §6], the
problem of finding a more tractable re-embedding of the base carrying
full information about moneric classes was considered, yet no positive
conclusion could be reached.

We believe that based on the fan structure described in Theo-
rem 2.3.2, a refined approach examining in detail the behavior along
non-maximal cones can lead to a complete answer to [SX10, Prob-
lem 5.4]. In this section, we present partial results in this direction.

The fan structure on TGr(3, 6) described in [SS04] consists of 1005
maximal cones which fall into seven orbits under the S6-action. In
the following, we focus our attention to one of these seven symme-
try classes, called EEEE in [SS04]. Going beyond Theorem 2.3.2, we
study all moneric points tropicalizing to the relative interior of cones
of this symmetry class, also classifying the behavior along the lower-
dimensional cones in the subdivision. We suspect that a similar ap-
proach would be useful for treating all cones in TGr(3, 6).
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By [SS04], a cone C representing the symmetry class EEEE is the
image of the cone R6 × R4

≥0 under the linear map ϕ : R6 × R4 ↪→ R20,

ϕ(λ, µ) :=
∑
i<j<k

(λi+λj+λk)eijk+µ1e123+µ2e145+µ3e246+µ4e356 ∈ R20,

where the standard basis vectors of R20 are indexed in the same way as
the Plücker coordinates. The symmetry group S(C) ⊆ S6 of this cone
C is the subgroup of S6 of order 24 generated by (12)(56), (16)(25),
(13)(46) and (16)(34). It is the stabilizer of

(e1 ∧ e6) · (e2 ∧ e5) · (e3 ∧ e4) ∈ Sym3∧2R6.

In the following, let a ∈ S(K) be a moneric point such that its cor-
responding tropical point in TGr(3, 6) is ν(a) = ϕ(λ, µ) for some
(λ, µ) ∈ R6 × R4

>0. For notational simplicity, we denote the polyno-
mials in
F|a = {E1|a, . . . , E6|a, F12|a, . . . , F56|a, G1|a, . . . , G6|a} ⊆ K[x,y]

in the following just by Ei, Fij, Gi. Since a is assumed to be moneric,
their initial forms are monomials (with possibly non-trivial complex
coefficients).

First, we observe that the coefficients in F16 are p126, p136, p146 and
p156, so their valuations are {λ1+λ6+λi | i = 2, 3, 4, 5}. Since in(F16) is
a monomial, this implies that there is a unique smallest number among
{λ2, λ3, λ4, λ5}. In the same way, considering the coefficients of F25 and
F34 reveals that both {λ1, λ3, λ4, λ6} and {λ1, λ2, λ5, λ6} have a unique
smallest element. Up to S(C)-symmetry, we may assume that λ1 < λi
for i = 2, . . . , 5 and that λ2 < λj for j = 3, 4, 5. The coefficients of
F14 have valuations λ1 + λ4 + {λ2, λ3, λ5 +µ2, λ6}, so λ2 6= λ6 holds, as
otherwise in(F14) would not be a monomial. This leads to two cases to
consider: λ6 < λ2 and λ2 < λ6.
Case 1 : λ1 < λ6 < λ2 < λi for all i = 3, 4, 5.

Considering the expression for the polynomial Fij, we observe that
the four coefficients of Fij have valuations at least λi + λj + λk, where
k ranges over {1, . . . , 6} \ {i, j}, with equality if and only if

{i, j, k} 6= {1, 2, 3}, {1, 4, 5}, {2, 4, 6}, {3, 5, 6}.
In particular, the above inequalities for λ1, . . . , λ6 uniquely determine

in(Fij) = x2x3x4x5x6

xixj
y1 for 1 < i < j, (i, j) 6= (2, 3), (4, 5),

in(F1i) = x2x3x4x5

xi
y6 for i = 2, 3, 4, 5 and in(F16) = x3x4x5y2.

For F23 and F45, we observe that their coefficients have valuations
λ2 +λ3 +{λ1 +µ1, λ4, λ5, λ6} and λ4 +λ5 +{λ1 +µ2, λ2, λ3, λ6}, respec-
tively, leading to the following four possibilities for the initial monomi-
als in(F23), in(F45):
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µ1 < λ6 − λ1 µ1 > λ6 − λ1
µ2 < λ2 − λ1 x4x5x6y1, x2x3x6y1 x1x4x5y6, x2x3x6y1
µ2 > λ2 − λ1 x4x5x6y1, x1x2x3y6 x1x4x5y6, x1x2x3y6.

In the polynomial expression for Gi, the monomials are of the form
x1···x6xi
xjxk

yjyk, where (j, k) ranges over tuples with j 6= k or j = k = i.
Examining the coefficient of such a monomial, we observe that it has
valuation at least 2∑ 6̀=i λ` + λj + λk. From this, we conclude that
in(Gi) = x2x3x4x5xiy1y6 for i = 2, 3, 4, 5, as the corresponding coeffi-
cients exactly attain this bound, while the inequalities among λ1, . . . , λ6
force the remaining coefficients of Gi to have higher valuation.

For G1, we observe that the coefficient of y2
1x2x3x4x5x6 is a binomial

u−v in the Plücker coordinates, where ν(v) = ν(u)+µ3. In particular,
ν(u − v) = ν(u) = 2∑i λi, which is smaller than the valuations of all
other coefficients of G1. Hence, in(G1) = x2x3x4x5x6y

2
1. Consider

G6 =(u1−u2)x2x3x4x5x6y1y6 +u3x3x4x5x
2
6y1y2 +u4x1x2x3x4x5y

2
6 + . . . ,

where {u1, u2, u3, u4} are monomials in the Plücker coordinates of val-
uations

2λ1 + . . .+ 2λ5 + {λ1 + λ6 + µ1, λ1 + λ6 + µ2, λ1 + λ2 + µ1, 2λ6}
and the remaining terms of G6 are each of higher valuation than at least
one of them. Refining the conditions imposed by the four possibilities
for in(F23), in(F45) leads to the following possible leading monomials
for G6:

conditions on a ∈ R6, b ∈ R4
>0 valuations of u1, . . . , u4 in(G6)

µ1 > λ6 − λ1, µ2 > λ2 − λ1 ν(u4) < ν(u1), ν(u2), ν(u3) x1x2x3x4x5y
2
6

µ1 > λ6 − λ1, µ2 < λ2 − λ1 ν(u2) < ν(u4) < ν(u1) < ν(u3) x2x3x4x5x6y1y6
µ1 < λ6 − λ1, µ2 > λ2 − λ1 ν(u1) < ν(u2), ν(u3), ν(u4) x2x3x4x5x6y1y6

µ1 < λ6 − λ1, µ2 < λ2 − λ1, µ1 < µ2 ν(u1) < ν(u2), ν(u3), ν(u4) x2x3x4x5x6y1y6
µ2 < µ1 < λ6 − λ1 ν(u2) < ν(u1) < ν(u3), ν(u4) x2x3x4x5x6y1y6
µ1 = µ2 < λ6 − λ1 ν(u1) = ν(u2) < ν(u3), ν(u4) ?

In the last case µ1 = µ2 < λ6 − λ1, the binomial u1 − u2 can attain
any valuation h ≥ µ1 + 2∑6

i=1 λi − (λ6 − λ1). Indeed, the tropical
graph T (u1 − u2) ⊆ R21 contains all points of the form (ϕ(a′, b′), h′)
with a′ ∈ R6, b′ ∈ R4

>0, b′1 = b′2 and h ≥ b′1 + 2∑6
i=1 λi − (λ6 − λ1). In

particular, the following three cases occur under the specified condition
on h0 := ν(u1 − u2)− 2∑6

i=1 λi + (λ6 − λ1)− µ1:

conditions on (a, b, h0) ∈ R6 × R4
>0 × R>0 in(G6)

µ1 = µ2 < λ6 − λ1, h0 < λ2 − λ6, h0 < (λ6 − λ1)− µ1 x2x3x4x5x6y1y6
µ1 = µ2 < (λ6 − λ1)− (λ2 − λ6), h0 > λ2 − λ6 x3x4x5x

2
6y1y2

(λ6 − λ1)− (λ2 − λ6) < µ1 = µ2 < λ6 − λ1, h0 > (λ6 − λ1)− µ1 x1x2x3x4x5y
2
6 .
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Case 2 : λ1 < λ2 < λi for all i = 3, 4, 5, 6.
We proceed as in the previous case, examining the restrictions im-

posed by the inequalities λ1 < λ2 < λ3, λ4, λ5, λ6 on the leading terms
of F . We always have

in(F1j) = x3x4x5x6

xj
y2, in(Fij) = x2x3x4x5x6

xixj
y1

for all j ≥ 4, i /∈ {1, 6} with (i, j) 6= (4, 5) as well as

in(G1) = x2x3x4x5x6y
2
1, in(G2) = x2x3x4x5x6y1y2, in(G3) = x2

3x4x5x6y1y2,

while for the remaining generators, we obtain
in(F45) ∈ {x2x3x6y1, x1x3x6y2} =: X1,

in(F12) ∈ {x4x5x6y3, x3x5x6y4, x3x4x6y5, x3x4x5y6} =: X2,

in(F13) ∈ {x4x5x6y2, x2x5x6y4, x2x4x6y5, x2x4x5y6} =: X3,

in(F23) ∈ {x4x5x6y1, x1x5x6y4, x1x4x6y5, x1x4x5y6} =: X4,

in(G5) ∈ {x3x4x
2
5x6y1y2, x2x3x

2
5x6y1y4, x2x3x4x5x6y1y5, x2x3x4x

2
5y1y6} := X5,

in(G4) ∈ {x3x
2
4x5x6y1y2, x2x

2
4x5x6y1y3, x2x3x4x5x6y1y4, x2x3x

2
4x6y1y5,

x2x3x
2
4x5y1y6} =: X6,

in(G6) ∈ {x3x4x5x
2
6y1y2, x2x3x5x

2
6y1y4, x1x3x5x

2
6y2y4, x2x3x4x

2
6y1y5,

x1x3x4x
2
6y2y5, x2x3x4x5x6y1y6, x1x3x4x5x6y2y6} =: X7.

Opposed to case 1, one also observes that here no cancellation of
lowest order terms in binomials can affect the initial term of any gen-
erator. In particular, the initials of the generators F only depend on
a and b, leading to a distinction of 31 cases of moneric choices, visual-
ized in Figure 2.2. There, the choice of initial monomials from the sets
X1, . . . , X7 is specified by a 7-tuple (i1, . . . , i7) indicating that the ij-th
element of Xj forms the leading monomial.

In total, cases 1 and 2 combined, we obtain 39 sets of inequalities
classifying all moneric subspaces inside C up to S(C)-symmetry. By
considering their S6-orbits, we obtain:

Theorem 2.4.1. For the family of total coordinate spaces of smooth
cubic surfaces, there are exactly 7320 moneric classes that arise from
points a ∈ S(K) whose corresponding tropicalization in TGr(3, 6) lies
in the relative interior of a maximal cone of type EEEE. These classes
fall into 19 orbits under the action of S6.

We envision that systematically expanding our approach for The-
orem 2.4.1 to other cones of TGr(3, 6) leads to a complete classifica-
tion of all moneric classes, entirely settling [SX10, Problem 5.4]. An
efficient extension of Algorithm 2.2.3 to also cover lower-dimensional
moneric classes would also be of interest for degenerations of other fam-
ilies of unirational varieties; this would be a subject worthy of further
research.
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µ2<λ2−λ1 µ2>λ2−λ1

λ4<λ5,λ6, 2222232 1222233
λ4<µ1+λ1

λ5<λ4,λ6, 2333344 1333345
λ5<µ1+λ1

λ6<λ4,λ5, 2444456 1444457
λ6<µ1+λ1

λ4<λ5,λ6, µ2<(λ2+µ1)−λ4 µ2>(λ2+µ1)−λ4 2221231
λ4∈µ1+(λ1,λ2) 1221232 1221231

λ5<λ4,λ6, µ2<(λ2+µ1)−λ5 µ2>(λ2+µ1)−λ5 2331341
λ5∈µ1+(λ1,λ2) 1331344 1331341

λ6<λ4,λ5, µ2<(λ2+µ1)−λ6 µ2>(λ2+µ1)−λ6 2441451
λ6∈µ1+(λ1,λ2) 1441456 1441451

λ4<λ5,λ6, µ4<λ4−(λ2+µ1) µ4>λ4−(λ2+µ1) µ4<λ4−(λ2+µ1) µ4>λ4−(λ2+µ1)

λ4∈µ1+(λ2,λ3) 1211111 1211131 2211111 2211131
λ5<λ4,λ6, µ4<λ5−(λ2+µ1) µ4>λ5−(λ2+µ1) µ4<λ5−(λ2+µ1) µ4>λ5−(λ2+µ1)

λ5∈µ1+(λ2,λ3) 1311111 1311141 2311111 2311141
λ6<λ4,λ5, µ4<λ6−(λ2+µ1) µ4>λ6−(λ2+µ1) µ4<λ6−(λ2+µ1) µ4>λ6−(λ2+µ1)

λ6∈µ1+(λ2,λ3) 1411111 1411151 2411111 2411151

λ4,λ5,λ6>µ1+λ3
µ4<λ3−λ2 µ4>λ3−λ2 µ4<λ3−λ2 µ4>λ3−λ2

1111111 1111121 2111111 2111121

Figure 2.2. Classification of monerics for λ1 < λ2 < λ3, λ4, λ5, λ6.



CHAPTER 3

Computing zero-dimensional tropical varieties

Tropical varieties are piecewise linear structures which arise from poly-
nomial equations. They appear naturally in many areas of mathematics
and beyond, such as geometry [Mik05], combinatorics [AK06; FS05],
and optimization [ABGJ18], as well as phylogenetics [SS04; LMY19],
celestial mechanics [HM06; HJ11], and auction theory [BK19; TY19].
Wherever they emerge, tropical varieties often provide a fresh insight
into existing computational problems, which is why efficient algorithms
and optimized implementations are of great importance.

Computing tropical varieties from polynomial ideals is a fundamen-
tally important yet algorithmically challenging task, requiring sophis-
ticated techniques from computational algebra and convex geometry.
Currently, Gfan [Jen17] and Singular [DGPS19] are the only two
programs capable of computing general tropical varieties. Both pro-
grams rely on a traversal of the Gröbner complex as initially suggested
by Bogart, Jensen, Speyer, Sturmfels, and Thomas [BJSST07], and
for both programs the initial bottleneck had been the computation
of so-called tropical links. Experiments suggest that this bottleneck
was resolved with the recent development of new algorithms [Cha13;
HR18]. However the new approaches still rely on computations that
are known to be very hard, [Cha13] on elimination and [HR18] on root
approximation to an unknown precision.

In this chapter, we study the computation of zero-dimensional trop-
ical varieties, which is the key computational ingredient in [HR18], but
using projections, which is the key conceptual idea in [Cha13]. We cre-
ate a new algorithm for computing zero-dimensional tropical varieties
that only requires a polynomial amount of field operations if we start
with a Gröbner basis, and whose timings compare favorably with other
implementations even if we do not. In particular, we argue that in the
computation of general tropical varieties, the calculation of so-called
tropical links becomes computationally insignificant compared to the
Gröbner walk required to traverse the tropical variety.

Note that projections are a well-studied approach in polynomial
systems solving, see [Stu02; DE05] for an overview on various tech-
niques. Our approach can be regarded as a non-Archimedean analogue
of that strategy, since tropical varieties can be regarded as zeroth-order

This chapter is based on the article [GRZ19] by Yue Ren, Leon Zhang and the
author of this thesis.
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approximation of the solutions in the topology induced by the valua-
tion.

This chapter is organized as follows: In Section 3.2, we introduce a
special class of unimodular transformations and study how they act on
generic lexicographical Gröbner bases. In Section 3.3, we explain our
main algorithm for reconstructing zero-dimensional tropical varieties
from their projections, while Section 3.4 touches upon some technical
details of the implementation. In Section 3.5, we compare the per-
formance of our algorithm against the root approximation approach,
while Section 3.6 analyses the complexity of our algorithm.

All algorithms have been implemented in the Singular library
tropicalProjection.lib. Together with the data for the timings, it
is available at https://software.mis.mpg.de, and will in the future
also be made available as part of the official Singular distribution.

3.1. Background

For the sake of notation, we briefly recall some basic notions of tropical
algebraic geometry and computational algebra that are of immediate
relevance to us. In tropical geometry, our notation closely follows that
of [MS15].
Convention 3.1.1. Throughout this chapter, let K be a field with
non-trivial valuation ν : K∗ → R, i.e., ν is a non-zero group homo-
morphism with ν(f + g) ≥ min{ν(f), ν(g)} for all f, g ∈ K∗. Typical
examples include:

(i) K = C(t), where ν maps α ∈ C(t)∗ to the unique integer k such
that α = tk f/g for some f, g ∈ C[t] not divisible by t,

(ii) K = Q with the p-adic valuation for some prime p: Here, ν maps
α ∈ Q∗ to the unique integer k such that α = pk f/g for some
f, g ∈ Z not divisible by p,

(iii) valued field extensions of (i) and (ii).
We fix a multivariate polynomial ring K[x] := K[x1, . . . , xn] as well

as a multivariate Laurent polynomial ring K[x±] := K[x±1 , . . . , x±n ].
Moreover, given a Laurent polynomial ideal I ⊆ K[x±], we call a finite
subset G ⊆ I a Gröbner basis with respect to a monomial ordering ≺
on K[x] if G consists of polynomials and forms a Gröbner basis of the
polynomial ideal I ∩K[x] with respect to ≺ in the conventional sense,
see for example [GP02, §1.6]. All our Gröbner bases are reduced.

Finally, a lexicographical Gröbner basis will be a (reduced)
Gröbner basis with respect to the lexicographical ordering ≺lex with
xn ≺lex · · · ≺lex x1.

For the purposes of this chapter, the following definition of tropical
varieties in terms of coordinate-wise valuations of points in solution
sets suffices.

https://software.mis.mpg.de
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Definition 3.1.2 (Tropical variety). Let I ⊆ K[x±] be a Laurent
polynomial ideal. The tropical variety Trop(I) ⊆ Rn is given by

Trop(I) :=
⋃

(L,νL)

{
(νL(p1), . . . , νL(pn)) ∈ Rn

∣∣∣∣ p ∈ (L∗)n s.t.

f(p) = 0 ∀f ∈ I
}
,

where the union is over all valued field extensions of K, i.e., K ⊆ L
and νL : L∗ → R is a valuation extending ν.

In a more combinatorial way, which we will exploit in Chapter 4,
the tropical variety can also be described as the set of weight vectors
w ∈ Rn such that the initial ideal inw(I ∩K[x]) does not contain any
monomial in x1, . . . , xn. See [MS15, Theorem 3.2.3] for the equivalence
of these two descriptions and for further context. In particular, the
definition above is independent of the valued extension (L, νL) of (K, ν),
see also [MS15, Theorem 3.2.4]. In fact, up to euclidean closure, in the
description of Definition 3.1.2, it suffices to consider L = K̂al, the
algebraic closure of the completion of K, with the natural extension
ν̂al of the valuation ν.

In this chapter, our focus lies on zero-dimensional ideals I ⊆ K[x±],
in which case Trop(I) is a finite set of deg(I) points if each point
w ∈ Trop(I) is counted with the multiplicity corresponding to the
number of solutions p ∈ V

K̂al(I) with ν̂al(p) = w.
In the univariate case, the tropical variety of an ideal I = (f) in

K[x±1 ] simply consists of the negated slopes in the Newton polygon
of f [Neu99, Proposition II.6.3]. Our approach for computing zero-di-
mensional tropical varieties of multivariate ideals is based on reducing
computations to the univariate case.

Definition 3.1.3. We say that a zero-dimensional ideal I ⊆ K[x±] is
in shape position if the projection morphism onto the last coordi-
nate pn : (K∗)n → K∗, (a1, . . . , an) 7→ an defines a closed embedding
pn|V (I) : V (I) ↪→ K∗.

In this chapter, we will concentrate on ideals that are in shape
position. Lemma 3.1.4 shows an easy criterion to decide whether a
given ideal is in shape position, while Lemma 3.1.5 shows how to coax
degenerate ideals into shape position.

Lemma 3.1.4 ([CLO05, §4 Exercise 16]). A zero-dimensional ideal
I ⊆ K[x±] is in shape position if and only if its (reduced) lexicographical
Gröbner basis is of the form

(SP) G = {fn, xn−1 − fn−1, . . . , x2 − f2, x1 − f1}

for some univariate polynomials f1, . . . , fn ∈ K[xn]. The polynomials
fi are unique.
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Lemma 3.1.5. Let I ⊆ K[x±] be a zero-dimensional ideal. Then there
exists a dense open subset V ⊆ Rn−1 such that for any (u1, . . . , un−1)
in V ∩ Zn−1 the unimodular transformation

Φu : K[x±]→ K[x±], xi 7→

xi if i < n,

xn
∏n−1
i=1 x

ui
i if i = n

maps I to an ideal in shape position.

Proof. Without loss of generality, we may assume that the field
K is algebraically closed. For any u = (u1, . . . , un−1) ∈ Zn−1, let
fu : (K∗)n → (K∗)n be the torus automorphism induced by Φu, so
that V (Φu(I)) = f−1

u (V (I)). Then the transformed ideal Φu(I) is in
shape position if and only if the map pn ◦ f−1

u : (K∗)n → K∗ given by
(a1, . . . , an) 7→ an ·

∏n−1
i=1 a

−ui
i is injective on the finite set V (I).

For a ∈ (K∗)n \ {(1, . . . , 1)}, the set
Na := {w ∈ Zn | aw1

1 . . . awnn = 1}
is a Zn-sublattice of positive corank. Hence,

Wa := {w ∈ Rn−1 | (w1, . . . , wn−1,−1) ∈ Na ⊗Z R}
is a proper affine subspace of Rn−1. By definition, for any two elements
b 6= c ∈ V (I), we have

pn ◦ f−1
u (b) = pn ◦ f−1

u (c) ⇔ (u1, . . . , un−1) ∈ Wb−1c.

Thus, Φu(I) is in shape position if and only if (u1, . . . , un−1) ∈ V∩Zn−1,
where V := Rn−1 \ ⋃b6=c∈V (I)Wb−1c is a dense open subset of Rn−1. �

3.2. Unimodular transformations on Gröbner bases

In this section, we introduce a special class of unimodular transforma-
tions and describe how they operate on lexicographical Gröbner bases
in shape position.

Definition 3.2.1. We will consider unimodular transformations in-
dexed by the set
U := {u ∈ Zn | ∃ 1 ≤ ` � n : u` = −1 and ui ≥ 0 for all i 6= `}.

For any u ∈ U , we define a unimodular ring automorphism

ϕu : K[x±]→ K[x±], xi 7→

x
u1
1 · · ·x

u`−1
`−1 x

1
`x

u`+1
`+1 · · ·xunn if i = `,

xi otherwise,
and a linear projection

πu : Rn � R, (w1, . . . , wn) 7→ −
n∑
i=1

uiwi.

We call such a ϕu a slim (unimodular) transformation concen-
trated at `.
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While our slim unimodular transformations might seem overly re-
strictive, the next lemma states that they are sufficient to compute
arbitrary projections of tropical varieties, which is what we will need
in Section 3.3.

Lemma 3.2.2. Let ϕu be a slim transformation concentrated at `.
Then

πu(Trop(I)) = Trop(ϕu(I) ∩K[x±` ]).

Proof. We may assume that K is algebraically closed. The ring
automorphism ϕu describes a torus automorphism fu : (K∗)n → (K∗)n
with f−1

u (V (I)) = V (ϕu(I)), which in turn gives rise a linear transfor-
mation hu : Rn

∼=−→ Rn mapping Trop(ϕu(I)) to Trop(I):

K[x±] K[x±]

induces

(K∗)n (K∗)n

Rn Rn

ϕu

fu

hu

ν ν

x`
∏
i6=` x

ui
i x`

(z1, . . . , zn) (z1, . . . , z` ·
∏
i 6=` z

ui
i , . . . , zn)

(w1, . . . , wn) (w1, . . . , w` +
∑
i 6=` uiwi, . . . , wn).

Hence, with p` : Rn � R denoting the projection onto the `-th coordi-
nate, we have:

Trop(ϕu(I) ∩K[x±` ]) = p`(Trop(ϕu(I)))
= (p` ◦ h−1

u )(Trop(I)) = πu(Trop(I)). �

The following easy properties of slim unimodular transformations
serve as a basic motivation for their inception. They map polynomials
to polynomials, which is important when working with software which
only supports polynomial data. Moreover, they preserve saturation
and shape position for zero-dimensional ideals, which is valuable as
saturating and restoring shape position as in Lemma 3.1.5 are two
expensive operations.

Lemma 3.2.3. For any slim transformation ϕu and any zero-dimen-
sional ideal I ⊆ K[x±], we have
(1) ϕu(K[x]) ⊆ K[x],
(2) ϕu(I) ∩K[x] = ϕu(I ∩K[x]),
(3) I in shape position ⇔ ϕu(I) in shape position.
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Proof. From the definition, it is clear that ϕu maps polynomi-
als to polynomials, showing (1). In particular, the homomorphism
ϕu|K[x] : K[x] → K[x] induces a morphism f̂u : Kn → Kn which on
the torus (K∗)n restricts to an automorphism fu : (K∗)n → (K∗)n
satisfying f−1

u (V (I)) = V (ϕu(I)). To show (2), we need to see that
f̂−1
u (V (I ∩ K[x])) ⊆ Kn does not have irreducible components sup-
ported outside the torus (K∗)n. However, V (I ∩ K[x]) is the clo-
sure of V (I) ⊆ (K∗)n in Kn, so by zero-dimensionality of I, we have
that V (I ∩ K[x]) ⊆ (K∗)n. Since f̂−1

u ((K∗)n) = (K∗)n, this proves
(2). Finally, we note that ϕu(xn) = xn, so we have pn ◦ fu = pn,
where pn : (K∗)n → K∗ denotes the projection onto the last coordi-
nate. Hence, pn|V (I) is a closed embedding if and only if pn|V (ϕu(I)) is,
proving (3). �

The following Algorithm 3.2.4 allows us to efficiently transform a
lexicographical Gröbner basis of I into a lexicographical Gröbner basis
of ϕu(I). This is the main advantage of slim unimodular transforma-
tions, which we will leverage to compute πu(Trop(I)).

Algorithm 3.2.4 (Slim unimodular transformations of Gröbner bases).
Input: (ϕu, G), where

I ϕu is a slim transformation concentrated at `,
I G = {fn, xn−1−fn−1, . . . , x2−f2, x1−f1} is the lexicographical

Gröbner basis of an ideal I ⊆ K[x±] in shape position as in (SP).
Output: G′, the lexicographical Gröbner basis of ϕu(I).
1: In the univariate polynomial ring K[xn], compute the element f ′`

with deg(f ′`) < deg(fn) and

f ′` ≡
(
xunn ·

n−1∏
i=1
i 6=`

fuii

)−1
· f` (mod fn).

2: return G′ := {fn, xn−1 − fn−1, . . . , x` − f ′`, . . . , x1 − f1}.

Correctness of Algorithm 3.2.4. Note that the polynomial
ideal I ∩ K[x] is saturated with respect to the product of variables
x1 · · ·xn, and is by assumption generated by G. This implies that fn
is relatively prime to each fi for i < n and to xn. In particular, the
inverse in K[xn]/(fn) showing up in the definition of f ′` is well-defined.
The ideal ϕu(I) ⊆ K[x±] is generated by

ϕu(G) =
{
fn, xn−1 − fn−1, . . . ,

( n∏
i=1
i 6=`

xuii

)
x` − f`, . . . , x1 − f1

}
.

Note that the expression (∏i 6=` x
ui
i )x`−f` is equivalent to x`−f ′` modulo

the ideal (fn, xi − fi | i 6= `, n). It follows that ϕu(I) is generated by
G′, and it is clear that G′ is a lexicographical Gröbner basis. �
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3.3. Zero-dimensional tropical varieties via projections

In this section, we assemble our algorithm for computing Trop(I) from
a zero-dimensional ideal I ⊆ K[x±]. This is done in two stages, see
Figure 3.1: In the first stage, we project Trop(I) onto all coordinate
axes of Rn. In the second stage, we iteratively glue the coordinate
projections together until Trop(I) is fully assembled.

R · e1 ⊇ Trop(I){1}

R · e2 ⊇ Trop(I){2}R · uπu(Trop(I)) ⊆

Figure 3.1. Computing zero-dimensional tropical vari-
eties via projections.

For the sake of simplicity, all algorithms contain some elements of
ambiguity to minimize the level of technical detail. To see how these
ambiguities are resolved in the actual implementation, see Section 3.4.
Moreover, we will only consider Trop(I) as points in Rn without multi-
plicities. It is straightforward to generalize the algorithms to work with
Trop(I) as points in Rn with multiplicities, which is how we implement
them in Singular.

The following algorithm merges several small projections into a sin-
gle large projection. For clarity, given a finite subset A ⊆ {1, . . . , n},
we use RA to denote the linear subspace of Rn spanned by the unit
vectors indexed by A and pA to denote the projection Rn � RA.
For w ∈ Rn and I ⊆ K[x±], we denote wA := pA(w) ∈ RA and
Trop(I)A := pA(Trop(I)) ⊆ RA.
Algorithm 3.3.1 (gluing projections).
Input: (G, Trop(I)A1 , . . . ,Trop(I)Ak), where

I G is the lexicographical Gröbner basis of a zero-dimensional ideal
I ⊆ K[x±] in shape position as in (SP),

I A1, . . . , Ak ⊆ {1, . . . , n} are non-empty sets.
Output: Trop(I)A ⊆ RA, where A := A1 ∪ . . . ∪ Ak.
1: Construct the candidate set

T :=
{
w ∈ RA

∣∣∣∣ wAi ∈ Trop(I)Ai for i = 1, . . . , k
}
.
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2: Pick a slim transformation ϕu such that the following map is injec-
tive:

πu|T : T → R, (wi)i∈A 7→ −
∑
i∈A

uiwi.

3: Using Algorithm 3.2.4, transform G into a Gröbner basis G′ of
ϕu(I):

G′ := {fn, xn−1 − fn−1, . . . , x` − f ′`, . . . , x1 − f1}.

4: Compute the minimal polynomial µ ∈ K[z] of f ′` ∈ K[xn]/(fn) over
K and read off Trop(µ) ⊆ R from its Newton polygon.

5: return {w ∈ T | πu(w) ∈ Trop(µ)}.

Correctness of Algorithm 3.3.1. First, we argue that Line 2
can be realized, i.e., we show the existence of a slim unimodular trans-
formation ϕu such that πu is injective on the candidate set T . Pick
` 6= n and denote B := {1, . . . , n} \ {`}. It suffices to show that the set

Z := {v ∈ RB≥0 | πv−e`|T is injective} ⊆ RB

contains an integer point. By the definition of πv−e` , we see that

Z = RB≥0 \
⋃

w 6=w′∈T
Hw−w′ , where Hz :=

{
v ∈ RB

∣∣∣∣ ∑
i∈B

zivi = z`

}
.

This describes Z as the complement of an affine hyperplane arrange-
ment in RB inside the positive orthant. Therefore, Z must contain an
integer point.

Next, we note that the candidate set T contains Trop(I)A by con-
struction, so injectivity of πu|T shows that

Trop(I)A = {w ∈ T | πu(w) ∈ πu(Trop(I))}.
Therefore, the correctness of the output will follow from showing that
πu(Trop(I)) = Trop(µ). By Lemma 3.2.2, it suffices to prove that
µ(x`) ∈ K[x`] generates the elimination ideal ϕu(I) ∩K[x±` ].

For this, we note that reducing a univariate polynomial g ∈ K[x`]
with respect to the lexicographical Gröbner basis G′ substitutes x` by
f ′` to obtain a univariate polynomial in K[xn] and then reduces the
result modulo fn. In particular, this shows that such a g ∈ K[x`] lies
in the ideal ϕu(I) if and only if g(f ′`) = 0 in K[xn]/(fn). Hence, the
elimination ideal ϕu(I) ∩K[x`] is generated by µ(x`). �

The next algorithm computes Trop(I) by projecting it onto all co-
ordinate axes and gluing the projections together via Algorithm 3.3.1.

Algorithm 3.3.2 (tropical variety via projections).
Input: G = {fn, xn−1 − fn−1, . . . , x2 − f2, x1 − f1}, the lexicograph-

ical Gröbner basis of a zero-dimensional ideal I ⊆ K[x±] in shape
position as in (SP).

Output: Trop(I) ⊆ Rn
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1: Compute the projection onto the last coordinate:

Trop(I){n} = Trop(fn).

2: for k ∈ {1, . . . , n− 1} do
3: Compute the minimal polynomial µk ∈ K[z] of fk ∈ K[xn]/(fn)

over K and read off the projection Trop(I){k} = Trop(µk).
4: Initialize a set of computed projections:

W :={Trop(I){1}, . . . ,Trop(I){n}}.

5: while W 63 Trop(I){1,...,n} do
6: Pick projections Trop(I)A1 , . . . ,Trop(I)Ak ∈ W to be merged

together such that Trop(I)A /∈ W for A := A1 ∪ · · · ∪ Ak.
7: Using Algorithm 3.3.1, compute Trop(I)A.
8: W := W ∪ {Trop(I)A}.
9: return Trop(I){1,...,n}.

Correctness of Algorithm 3.3.2. Since G is the lexicograph-
ical Gröbner basis of I, the elimination ideal I ∩K[x±n ] is generated by
fn, so we indeed have the equality Trop(I){n} = Trop(fn) in Line 1. The
equality Trop(I){k} = Trop(µk) in Line 3 holds because µk(x`) ∈ K[x`]
generates the elimination ideal I ∩K[x±` ] by the same argument as in
the proof of correctness of Algorithm 3.3.1.

In every iteration of the while loop, the set W grows in size. Since
there are only finitely many coordinate sets A ⊆ {1, . . . , n}, we will
after finitely many iterations compute Trop(I) = Trop(I){1,...,n}, hence
the while loop terminates. �

Example 3.3.3. Consider K = Q equipped with the 2-adic valuation
and the ideal

I = (2 + x3 + x2
3 + x3

3 + 2x4
3︸ ︷︷ ︸

=:f3

, x2 − 2x3︸︷︷︸
=:f2

, x1 − 4x3︸︷︷︸
=:f1

) ⊆ K[x±1 , x±2 , x±3 ].

This ideal is in shape position by Lemma 3.1.4. From the Newton
polygon of f3, see Figure 3.2 (left), it is not hard to see that

Trop(I){3} = Trop(f3) = {−1,0, 1},
Trop(I){2} = {λ+ 1 | λ ∈ Trop(I){3}} = {0,1, 2},
Trop(I){1} = {λ+ 2 | λ ∈ Trop(I){3}} = {1,2, 3},

where points with multiplicity 2 are highlighted in bold. To merge
Trop(I){1} and Trop(I){2}, we consider the following projection that is
injective on the candidate set T := Trop(I){1} × Trop(I){2}:

π(−1,3,0) : T −→ R, (w1, w2) 7−→ w1 − 3w2.
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−1 0 0 1
−1

−2 −1 0
3

f3

−1 1
1

3

−1
−2

−1
0

3
Resx3(f3, x1 − f ′1)

−4

−2
−2 0

11

7
5

3 3

Resx3(f3, x1 − f ′′1 )

Figure 3.2. Newton polygons of f3 and the two resul-
tants in Example 3.3.3. Below each vertex is its height,
above each edge is its slope.

The corresponding unimodular transformation ϕ(−1,3,0) sends x1 to x1x
3
2

and hence ϕ(−1,3,0)(I) is generated by {f3, x2 − f2, x1x
3
2 − 4x3}, which

Algorithm 3.2.4 transforms into the following lexicographical Gröbner
basis:

ϕ(−1,3,0)(I) =
(
f3, x2 − f2, x1 − (1

4x
3
3 − 3

8x
2
3 − 1

8x3 − 1
8︸ ︷︷ ︸

=:f ′1

)
)
.

The minimal polynomial of f ′1 in K[x3]/(f3) over K can be computed
as the resultant

Resx3(f3, x1 − f ′1) = 8x4
1 + 3x3

1 + 7
2x

2
1 + 3

4x1 + 1
2 .

Figure 3.2 (middle) shows the Newton polygon of the resultant, from
which we see:

Trop(Resx3(f3, x1 − f ′1)) = {−3,−1, 1}.

Thus,
Trop(I){1,2} = {(3, 2), (2,1), (1, 0)}.

To merge Trop(I){1,2} and Trop(I){3}, we consider the following
projection that is injective on the candidate set T := Trop(I){1,2} ×
Trop(I){3}:

π(−1,0,3) : T −→ R, (w1, w2, w3) 7−→ w1 − 3w3.

The corresponding unimodular transformation ϕ(−1,0,3) sends x1 to x1x
3
3

and hence ϕ(1,0,3)(I) is generated by {f3, x2 − f2, x1x
3
3 − 4x3}, which

Algorithm 3.2.4 transforms into the following lexicographical Gröbner
basis:

ϕ(−1,0,3)(I) =
(
f3, x2 − f2, x1 − (2x3

3 − 3x2
3 − x3 − 1︸ ︷︷ ︸

=:f ′′1

)
)
.

Another resultant computation yields the minimal polynomial of f ′′1 ∈
K[x3]/(f3) over K:

Resx3(f3, x1 − f ′′1 ) = 8x4
1 + 24x3

1 + 224x2
1 + 384x1 + 2048.
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Figure 3.2 (right) shows the Newton polygon of the resultant, from
which we see:

Trop(Resx3(f3, x1 − f ′′1 )) = {0,2, 4},
and thus

Trop(I) = Trop(I){1,2,3} = {(3, 2, 1), (2,1,0), (1, 0,−1)}.

3.4. Implementation

In this section, we reflect on some design decisions that were made in
the implementation of the algorithms from the previous section in our
Singular library tropicalProjection.lib. While the reader who
is only interested in the algorithms, their performance, and their com-
plexity may skip this section without impeding their understanding,
we thought it important to include this section for the reader who is
interested in the actual implementation.

3.4.1. Picking unimodular transforms in Algorithm 3.3.1, l. 2
As πu|T is injective for generic u ∈ U , it seems reasonable to sample
random u ∈ U until the corresponding projection is injective on the
candidate set. Our implementation however iterates over all u ∈ U in
increasing `1-norm until the smallest one with injective πu|T is found.
This is made in an effort to keep the slim unimodular transformation
ϕu(I) as simple as possible, since Lines 3–4 are the main bottlenecks
of our algorithm.

3.4.2. Transforming Gröbner bases in Algorithm 3.3.1, l. 3
As mentioned before, Lines 3–4 are the main bottlenecks of our al-
gorithm. Two common reasons why polynomial computations may
scale badly are an explosion in degree or in coefficient size. The de-
gree of the polynomials is not problematic in our algorithm, as using
Algorithm 3.2.4 in Line 3 only incurs basic arithmetic operations in
K[xn]/(fn) whose elements can be represented by polynomials of de-
gree bounded by deg(fn), while the degree of the minimal polynomial
in Line 4 also is bounded by deg(fn). Therefore, the only aspect that
needs to be controlled in our computation is the size of the coefficients.

Coefficient explosion is a common problem for computing inverses
in K[xn]/(fn) via the Extended Euclidean Algorithm [GG13, §6.1]. To
make matters worse, the polynomial h := xn

un ·∏i 6=`,n fi
ui ∈ K[xn]/(fn)

to be inverted in Algorithm 3.2.4 usually already has large coeffi-
cients. However, we can exploit the fact that the minimal polynomial∑k
i=0 aiz

i of f ′` ∈ K[xn]/(fn) is the reflection of the minimal polyno-
mial ∑k

i=0 ak−iz
i of (f ′`)−1 . Instead of computing f ′` = h

−1
f` in Algo-

rithm 3.2.4, it thus suffices to compute (f ′`)−1 = h·(f`)−1 ∈ K[xn]/(fn),
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which is easier as f` has generally smaller coefficients than h and is in-
dependent of u, so its inversion modulo fn is much faster.

3.4.3. Computing minimal polynomials in Algorithm 3.3.1, l. 4
The computation of minimal polynomials for elements in K[xn]/(fn)
can be carried out in many different ways, for example using:
Resultants: We can compute the resultant of the two polynomials fn
and hx` − f` ∈ K[x`, xn] with respect to the variable xn by standard
resultant algorithms. The minimal polynomial µ(x`) ∈ K[x`] is the
squarefree part of the resultant.
Linear algebra: Let k be the smallest positive integer such that in the
finite-dimensional K-vector space K[xn]/(fn) the set of polynomials
{hd−if`

i | i = 0, . . . , k} is linearly dependent, where d := deg(fn).
We can find a linear dependence ∑k

i=0 aih
d−i
f`
i = 0 and conclude that

µ = ∑k
i=0 ak−iz

i.
Gröbner bases: Note that {fn, x` − f ′`} ⊆ K[x`, xn] forms a Gröbner
basis with respect to the lexicographical ordering with xn ≺ x`. We can
transform this to a Gröbner basis with respect to the lexicographical
ordering with x` ≺ xn using FGLM [FGLM93] and read off the eliminant
µ(x`) as the generator of the elimination ideal (x` − f ′`, fn) ∩K[x`].

For polynomials with small coefficients, the implementation using
Singular’s resultants seemed the fastest, but Singular’s FGLM seems
to be best when dealing with very large coefficients.

For K = Q however, we can use a modular approach thanks to
the Singular library modular.lib [Ste19]: It computes the minimal
polynomial over Fp for several primes p using any of the above methods,
then lifts the results to Q. This modular approach avoids problems
caused by very large coefficients and works particularly well using the
method based on linear algebra from above. We can check if the lifted
µ is correct by testing whether µ(f ′`) = 0 in K[xn]/(fn).

3.4.4. Picking gluing strategies in Algorithm 3.3.2, l. 6
Algorithm 3.3.2 is formulated in a flexible way: Different strategies of
realizing the choice of coordinate sets A1, . . . , Ak in Line 6 can adapt
to the needs of a specific tropicalization problem. The four gluing
strategies that follow seem very natural and are implemented in our
Singular library. See Figure 3.3 for an illustration in the case n = 5.
oneProjection: Only a single iteration of the while loop, in which we
pick k = n and Ai = {i} for i = 1, . . . , n.
sequential: n− 1 iterations of the while loop, during which we pick
k = 2 and A1 = {1, . . . , i} and A2 = {i+ 1} in the i-th iteration.
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Figure 3.3. Visualization of different gluing strategies.

regularTree(k): n − 1 iterations of the while loop, which can be
partially run in parallel in dlogk ne batches. In each batch we merge k
of the previous projections.
overlap: (n−1)n/2 iterations of the while loop, which can be partially
run in parallel in n − 1 batches. During batch i, we pick k = 2 and
A1 = {1, . . . , i}, A2 = {1, . . . , i− 1, j} for j > i.

oneProjection is the simplest strategy, requiring only one uni-
modular transformation. For examples of very low degree, it is the
best strategy due to its minimal overhead. For examples of higher de-
gree d, the candidate set T in Algorithm 3.3.1 can become quite large,
at worst |T | = dn. This generally leads to larger u ∈ U in Line 2 and
causes problems due to coefficient growth.

sequential avoids the problem of a large candidate set T by only
gluing two projections at a time, guaranteeing |T | ≤ d2. This comes at
the expense of computing n− 1 unimodular transformations, but even
for medium-sized instances we observe considerable improvements com-
pared to oneProjection. In Section 3.6, we prove that sequential
guarantees good complexity bounds on Algorithm 3.3.2.

regularTree(k) can achieve considerable speed-up by paralleliza-
tion. Whereas every while-iteration in sequential depends on the
output of the previous iteration, regularTree(k) allows us to com-
pute all gluings in parallel in dlogk ne batches. The total number of
gluings remains the same.

overlap further reduces the size of the candidate set T compared to
sequential, while exploiting parallel computation like regularTree(k).
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It glues projections two at a time, but only those A1 and A2 which over-
lap significantly. This can lead to much smaller candidate sets T , at
best |T | = d which makes a unimodular transformation obsolete. The
strategy overlap seems particularly successful in practice and is the
one used for the timings in Section 3.5.

Our implementation in Singular also allows for custom gluing
strategies by means of specifying a graph as in Figure 3.3.

3.5. Timings

In this section we present timings of our Singular implementation of
Algorithm 3.3.2 for K = Q and the 2-adic valuation. We compare it
to a Magma [BCP97] implementation by Avi Kulkarni which approxi-
mates the roots in the 2-adic norm using Magma’s native Roots com-
mand, see the supplementary material provided in Section 3.7. While
Singular is also capable of the same task, we chose to compare to
Magma instead as the latter is significantly faster due to its finite pre-
cision arithmetic over p-adic numbers. Our Singular timings use the
overlap strategy, a modular approach and parallelization with up to
four threads. The Singular timings we report on are total CPU times
across all threads (for reference, the longest example in Singular re-
quired 118 seconds total CPU time, but only 32 seconds real time). All
computations were run on a server with 2 Intel Xeon Gold 6144 CPUs,
384GB RAM and Debian GNU/Linux 9.9 OS. All examples and scripts
are available at https://software.mis.mpg.de.

3.5.1. Random Gröbner bases in shape position
Given natural numbers d and n, a random lexicographical Gröbner

basis G of an ideal I ⊆ Q[x1, . . . , xn] of degree d in shape position will
be a Gröbner basis of the form

G = {fn, xn−1 − fn−1, xn−2 − fn−2, . . . , x2 − f2, x1 − f1},
where fn, fn−1, fn−2 . . . , f1 are univariate polynomials in xn of degree
d, d− 1, d− 1, . . . , d− 1 respectively whose coefficients are of the form
2λ · (2k + 1) for random λ ∈ {0, . . . , 99} and k ∈ {0, . . . , 4999}.

Figure 3.4 shows timings for n = 5 and varying d. Each compu-
tation was aborted if it failed to terminate within one hour. We see
that Magma is significantly faster for small examples, while Singular
scales better with increasing degree.

For many of the ideals I however, Trop(I) has fewer than d distinct
points. This puts our algorithm at an advantage, as it allows for eas-
ier projections in Algorithm 3.3.2 Line 2. Mathematically, it is not an
easy task to generate non-trivial examples with distinct tropical points.
Picking fn to have d roots with distinct valuation for example would
make all roots live in Q2, in which case Magma terminates instantly.

https://software.mis.mpg.de
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deg(I) 2 4 8 12 16 20 24
#Singular finished 100 100 100 100 100 100 100
#Magma finished 100 100 100 93 51 21 9
Singular avg. (s) 1 5 14 19 37 44 63
Magma avg. (s) 0 1 41 >663 >2273 >3095 >3395

Figure 3.4. Timings for the randomly generated ideals
in shape position.

Our next special family of examples has criteria which guarantee dis-
tinct points.

3.5.2. Tropical lines on a random honeycomb cubic
Let V (f) ⊆ P3 be a smooth cubic surface. In [PV19], it is shown that

Trop(f) ⊆ R3 may contain infinitely many tropical lines. However, for
general f whose coefficient valuations induce a honeycomb subdivision
of its Newton polytope, Trop(f) will always contain exactly 27 dis-
tinct tropical lines [PV19, Theorem 27], which must therefore be the
tropicalizations of the 27 lines on V (f).

We used Polymake [GJ00] to randomly generate 1000 cubic poly-
nomials with honeycomb subdivisions whose coefficients are pure pow-
ers of 2. For each of these cubic polynomials f , we constructed the
one-dimensional homogeneous ideal Lf ⊆ Q[p12, p13, p14, p23, p24, p34] of
degree 27 whose solutions are the lines on V (f) in Plücker coordi-
nates. Figure 3.5 shows the timings for computing Trop(Lf ), where
Lf := Lf + (p34 − 1) is a zero-dimensional ideal of degree 27. Out of
our 1000 random cubics, 8 had to be discarded because Lf was of lower
degree, i.e., V (f) contained lines with p34 = 0.

Unsurprisingly, the Singular timings are relatively stable, while
the Magma timings heavily depend on the degree of the splitting field
of Lf over Q2. Over Q, the generic splitting field degree would be
51840 [EJ12]. Over Q2, the distinct tropical points of Trop(Lf ) severely
restrict the Galois group of the splitting field.
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Magma avg. 23 22 37 104 149 403 831 830 2840 4791 1998 5935

Figure 3.5. Timings for the 27 tropical lines on a trop-
ical honeycomb cubic.

3.6. Complexity

We now bound the complexity for computing a zero-dimensional trop-
ical variety from a given Gröbner basis using Algorithm 3.3.2 with the
sequential strategy. We show that the number of required arithmetic
operations is polynomial in the degree of the ideal and the ambient
dimension. Based on this, we argue that the complexity of comput-
ing a higher-dimensional tropical variety is dominated by the Gröbner
walk required to traverse the Gröbner complex, as the computation of a
tropical link is essentially polynomial time in the aforementioned sense.
Convention 3.6.1. For the remainder of the section, consider a zero-
dimensional ideal I ⊆ K[x±1 , . . . , x±n ] of degree d and assume that
ν(K∗) ⊆ Q, which implies Trop(I) ⊆ Qn.

For the sake of convenience, we recall some results on the complexity
of arithmetic operations over algebraic extensions, a well-studied topic
in the area of computational algebra.
Proposition 3.6.2 ([GG13, Corollary 4.6 + §4.3 + Exercise 12.10]).
Let f, g ∈ K[z] be two univariate polynomials of degree ≤ d. Then:

(i) Addition, multiplication and inversion in K[z]/(f) require O(d2)
arithmetic operations in K.

(ii) Computing the k-th power of ḡ ∈ K[z]/(f) requires O(d2 log k)
arithmetic operations in K.

(iii) Computing the minimal polynomial of an element ḡ ∈ K[z]/(f)
requires O(d2 log d log log d) arithmetic operations in K.
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Proposition 3.6.3. Algorithm 3.2.4, which computes the lexicograph-
ical Gröbner basis of ϕu(I) for some slim transformation ϕu, requires
O
(
d2∑

ui>0(1 + log ui)
)
arithmetic operations in K.

Proof. We need to count the number of field operations in which
the following polynomial f ′` ∈ K[xn] can be computed:

f ′` ≡
(
xunn ·

n−1∏
i=1
i 6=`

fuii

)−1
· f` ≡

(
xunn · f−1

` ·
n−1∏
i=1
i 6=`

fuii

)−1
(mod fn).

Denoting k := |{i ∈ {1, . . . , n} | ui 6= 0}|, this entails the following
operations in K[xn]/(fn):

I k − 1 exponentiations xunn and fuii for i 6= `, n.
I 1 inversion for f`,
I k−1 multiplications for the product of f−1

` , xunn and all other fuii ,
I 1 final inversion.

An exponentiation to the power ui requires O(d2 log ui) arithmetic op-
erations in K, while every other operation requires O(d2) arithmetic
operations in K by Proposition 3.6.2. In total, the number of required
field operations in K is

O
(
d2 ∑

ui>0
(1+log ui)+d2 +d2(k−1)+d2

)
= O

(
d2 ∑

ui>0
(1+log ui)

)
. �

Lemma 3.6.4. Let X, Y ⊆ Q be finite sets of cardinality ≤ d. Then
there exists a non-negative integer m ≤

(
d2

2

)
such that X × Y → Q,

(a, b) 7→ a−mb is injective. The smallest such m can be found in O(d4)
arithmetic operations in Q.

Proof. The map (a, b) 7→ a − mb will fail to be injective if and
only if there exists a pair of points in X×Y lying on an affine line with
slope m. Since there are at most

(
d2

2

)
pairs of points, the statement

follows by the pigeonhole principle.
We can determine all integral slopes attained by a line between any

two points of X×Y with O
((

d2

2

))
= O(d4) arithmetic operations in Q.

Picking the smallest natural number not occurring among these slopes
gives the desired m. �

Proposition 3.6.5. Let k ∈ {2, . . . , n} and assume that the follow-
ing are known from a previous call of Algorithm 3.3.1 within Algo-
rithm 3.3.2 running the sequential strategy:

I Trop(I){1,...,k−1} and Trop(I){k},
I a slim transformation ϕv concentrated at ` with vi = 0 for i ≥ k
such that πv is injective on Trop(I){1,...,k−1},

I the lexicographical Gröbner basis of ϕv(I).
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Then Algorithm 3.3.1 for gluing the two projections into Trop(I){1,...,k}
requires only O(d2 log d log log d) and O(d4) arithmetic operations in K
and Q respectively.

Proof. Applying Lemma 3.6.4 to X := πv(Trop(I){1,...,k−1}) and
Y := Trop(I){k}, we can compute a minimal m ≤

(
d2

2

)
such that

(a, b) 7→ a−mb is injective on X×Y in O(d4) arithmetic Q-operations.
Setting w := v + mek, this means that πw is injective on the set
Trop(I){1,...,k−1} × Trop(I){k}.

Since ϕw(I) = ϕu(ϕv(I)) for u := mek − e` and a lexicographical
Gröbner basis of ϕv(I) is already known, we may compute the lexico-
graphical Gröbner basis of ϕw(I) by applying Algorithm 3.2.4 to u and
ϕv(I). By Proposition 3.6.3, this requires O(d2 logm) = O(d2 log d)
arithmetic operations in K.

By Proposition 3.6.2, computing the minimal polynomial of the
element f ′` ∈ K[xn]/(fn) requires O(d2 log d log log d) arithmetic op-
erations in K, so the overall number of arithmetic K-operations in
Algorithm 3.3.1 is also O(d2 log d log log d). �

Theorem 3.6.6. Algorithm 3.3.2, which computes the zero-dimen-
sional tropical variety Trop(I), with the sequential strategy requires
O(n d2 log d log log d) and O(nd4) arithmetic operations in K and Q,
respectively.

Proof. Algorithm 3.3.2 using the sequential strategy consists of
the following operations:

I computation of the minimal polynomials of fk ∈ K[xn]/(fn) for
k = 1, . . . , n− 1,

I applying Algorithm 3.3.1 to Trop(I){1,...,k−1} and Trop(I){k} for
k = 2, . . . , n.

We may store the information on the unimodular transformation com-
puted in iteration k − 1 during the computation of Trop(I){1,...,k−1}
and this information may be used in the next iteration. Then Propo-
sitions 3.6.2 and 3.6.5 allow us to deduce the claimed bounds on arith-
metic operations in Algorithm 3.3.2. �

Remark 3.6.7 (Computing positive-dimensional tropical varieties).
Currently, gfan and Singular are the only software systems capa-
ble of computing general tropical varieties, and both rely on a guided
traversal of the Gröbner complex as introduced in [BJSST07]. Their
frameworks roughly consist of two parts:

(i) the Gröbner walk to traverse the tropical variety,
(ii) the computation of tropical links to guide the Gröbner walk.

While the computation of tropical links had been a major bottleneck of
the original algorithm and in early implementations, experiments sug-
gest that it has since been resolved by new approaches [Cha13; HR18].
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However, the algorithm in [Cha13, §4.2] relies heavily on projections,
while [HR18, Algorithm 2.10] relies on root approximations to an un-
known precision, so neither approach has good complexity bounds. In
fact, [HR18, Timing 3.9] shows that the necessary precision can be
exponential in the number of variables.

Algorithm 3.3.2 was designed with [HR18, Algorithm 2.10] in mind,
and with Theorem 3.6.6 we argue that the complexity of calculating
tropical links as in [HR18, Algorithm 4.6] is dominated by the com-
plexity of the Gröbner basis computations required for the Gröbner
walk. In the following, let J ⊆ K[x±1 , . . . , x±n ] be a homogeneous ideal
of codimension c and degree d.

(i) The Gröbner walk requires Gröbner bases of initial ideals inw(J)
with respect to weight vectors w ∈ Trop(J) with dimCw(J) =
dim Trop(J) − 1, where Cw(J) denotes the Gröbner polyhedron
of J around w. Note that inw(J) is neither monomial since w ∈
Trop(J) nor binomial as dimCw(J) < dim Trop(J). Therefore,
this is a general Gröbner basis computation which is commonly
regarded as double exponential time.

(ii) Replacing [HR18, Algorithm 2.10] in [HR18, Algorithm 4.6] with
our Algorithm 3.3.2 requires Gröbner bases of ideals of the form

inw(J)|x1=...=xc−1=1,xc=λ ⊆ K[xc+1, . . . , xn],
where w is chosen as before and λ ∈ K is chosen to satisfy
ν(λ) = ±1. These ideals are zero-dimensional of degree at most
d, and it is known that Gröbner bases of zero-dimensional ideals
can be on average computed in polynomial time in the number of
solutions [Lak91; LL91]. Thus, the entire computation of tropical
links can on average be done in polynomial time.

3.7. Supplementary material: Magma code

The comparison of timings in Section 3.5 is based on the following
Magma implementation by Avi Kulkarni. The function computes ap-
proximations of the solutions of a zero-dimensional affine scheme over
a p-adic field. As input it requires a zero-dimensional ideal over the
rational numbers in shape position and the completion of Q at a prime
p. In addition to the solutions, it returns an extension of the input
field over which the solutions are defined.

1 function pAdicSolutionsOverSplittingField (I, Qp)
2 R := Generic (I);
3 gs := GroebnerBasis (I); // assumed to be in shape position
4
5 u := UnivariatePolynomial (gs[#gs ]);
6 up := ChangeRing (u,Qp);
7 K := SplittingField (up); // main bottleneck of the algorithm
8
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9 vars_padic := Variables ( ChangeRing (R,K));
10 padic_rts := Roots( ChangeRing (up ,K));
11
12 function backSolve (rt)
13 rt_coords := [rt];
14 for i in [#gs -1 .. 1 by -1] do
15 g := Evaluate (gs[i], vars_padic [1..i] cat rt_coords );
16 rti := Roots( UnivariatePolynomial (g));
17 assert #rti eq 1;
18 Insert (~ rt_coords , 1, rti [1][1]);
19 end for;
20 return rt_coords ;
21 end function ;
22
23 return [ backSolve (rt [1]) : rt in padic_rts ], K;
24 end function ;



CHAPTER 4

Detecting tropical defects of polynomial equations

The tropical variety Trop(I) of a polynomial ideal I is the image of
its algebraic variety under component-wise valuation. Tropical vari-
eties are commonly described as combinatorial shadows of their alge-
braic counterparts and arise naturally in many applications throughout
mathematics and beyond. Inside mathematics for example, they enable
new insights into important invariants in algebraic geometry [Mik05] or
the complexity of central algorithms in linear optimization [ABGJ18].
Outside mathematics they arise as spaces of phylogenetic trees in biol-
ogy [SS04; PS05], loci of indifference prizes in economics [BK19; TY19]
or in the proof of the finiteness of central configurations in the 4, 5-body
problem in physics [HM06; HJ11].

As the image of an algebraic variety, a tropical variety equals the
intersection of all tropical hypersurfaces of the polynomials inside the
ideal. A natural question in this context is whether this equality al-
ready holds for a given finite generating set F ⊆ I, i.e.,

(?) Trop(I) =
⋂
f∈I

Trop(f) ?=
⋂
f∈F

Trop(f) =: Trop(F ).

We call Trop(F ) a tropical prevariety and, if equality holds, F a tropi-
cal basis. This question is important for two main reasons. On the one
hand, tropical prevarieties can provide upper dimension bounds where
Gröbner bases are infeasible to compute, see [HM06; HJ11], and a trop-
ical basis implies that this bound is actually sharp. On the other hand,
the difference between a tropical variety and prevariety can be inter-
esting in and of itself, e.g., tropical matrices of Kapranov rank r versus
tropical matrices of tropical rank r [DSS05], tropical Grassmannians
versus their Dressians [HJS14], or other realizability loci of combinato-
rial objects such as ∆-matroids [Rin12] or gaussoids [BDKS19].

Nevertheless, checking the equality in (?) is a computationally highly
challenging task. Current algorithms for computing tropical varieties
require a Gröbner basis for each maximal Gröbner polyehdron, of which
there can be many even for tropicalization of linear spaces [JS18]. Ad-
ditionally, it is known that deciding the equality in (?) is co-NP-hard,
as is merely deciding whether Trop(F ) is connected [The06].

In practice, testing the equality in (?) can fail for multiple reasons:

This chapter is based on the article [GRS19] by Yue Ren, Jeff Sommars and
the author of this thesis, published in Journal of Algebraic Combinatorics, 2019.
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(P1) Computing Trop(F ) might not be possible due to its size or due
to the number of intersections necessary to compute it.

(P2) Computing Trop(I) might not be feasible due to its size or due
to problematic Gröbner cones in Trop(I) whose Gröbner bases
are too hard to compute.

In this chapter, we introduce the notion of tropical defects, certifi-
cates for generating sets which are not tropical bases, and propose two
randomized algorithms for computing tropical defects around affine
subspaces of complementary dimension. An independent verification
of these certificates will require a single Gröbner basis computation.

The basic idea is simple, relying on some recent results on (stable)
intersections of tropical varieties [OP13; JY16]: to reduce the complex-
ity of the computations, we (stably) intersect both sides of Equation
(?) with a random affine space of complementary dimension, and look
for differences between the tropical variety and prevariety around it.
Under certain genericity assumptions, this yields a zero-dimensional
tropical variety on the left, which is not only simpler to compute than
its positive-dimensional counterparts, but also implies that the tropi-
cal prevariety computation on the right can be aborted if a positive-
dimensional polyhedron is found. Therefore, our algorithm operates
within the realm where (P1) and (P2) are infeasible, but the following
key computational ingredients are not:
(K1) computation of zero-dimensional tropical varieties in Singular

[DGPS19; HR18],
(K2) computation of zero-dimensional tropical prevarieties in Dynamic-

Prevariety [JSV17].
To a degree, our approach for finding tropical defects is related to

the approach for studying tropical bases in [HT09; HT12]. In [HT09;
HT12], the authors consider preimages of projections to Rd+1, where
d := dim Trop(I). Our hyperplanes are generally given as preimages of
points under a projection to Rd, but can also be regarded as preimages
of lines under a projection to Rd+1. Hence our approach can be seen
as a relaxation where instead of considering the preimage of the entire
projection to Rd+1 we only consider the parts of the projection which
meet a fixed line.

In Sections 4.2 and 4.3, we present two tropical defects found using
out algorithm, disproving Conjecture 5.3 in [RSS16] and Conjecture 8.4
in [BDKS19]. Note that the tropical defects were postprocessed for the
ease of reproduction, see Remark 4.1.8.

Code and auxiliary materials for this chapter are available at
https://software.mis.mpg.de.

More information on gaussoids can be found at
https://www.gaussoids.de.

https://software.mis.mpg.de
https://www.gaussoids.de
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4.1. Tropical defects

In this section, we introduce the notion of tropical defects for generating
sets of polynomial ideals, and two algorithms to find them around
generic affine spaces L = Trop(H) of complementary dimension. To be
precise, Algorithm 4.1.9 requires a generic tropicalization L, whereas
Algorithm 4.1.13 merely requires a generic realization H.

Opposed to the case of zero-dimensional tropical varieties treated
in Chapter 3, for the treatment in this chapter, polyhedral structures
on tropical varieties arising from Gröbner basis theory are of central
importance. In the following, we introduce and fix the necessary no-
tation. Our conventions with those of [MS15], to which we again refer
for a more in-depth treatment of the subject.
Convention 4.1.1. Throughout this chapter, fix an algebraically closed
field K with a (possibly trivial) valuation ν : K∗ → R. We interpret
the residue field

κ := {f ∈ K | f = 0 or ν(f) ≥ 0}
/
{f ∈ K | f = 0 or ν(f) > 0}

as a valued field equipped with a trivial valuation. Since K is alge-
braically closed, we may fix a group homomorphism µ : ν(K∗) → K∗

such that ν ◦ µ = idν(K∗), see [MS15, Lemma 2.1.15]. We abbrevi-
ate tλ := µ(λ) for λ ∈ ν(K∗). As before, we denote the multivariate
Laurent polynomial ring K[x±1 , . . . , x±n ] by K[x±].
Definition 4.1.2 (Initial forms, initial ideals). Given a Laurent poly-
nomial f ∈ K[x±], say f = ∑

α∈Zn cα ·xα, its initial form with respect
to a weight vector w ∈ Rn is

inw(f) := ∑
w·α+ν(cα) min. t−ν(cα)cα · xα ∈ κ[x±].

For a finite set F ⊆ K[x±] and an ideal I ⊆ K[x±], we denote
inw(F ) := {inw(g) | g ∈ F} ⊆ κ[x±],
inw(I) := (inw(g) | g ∈ I) ⊆ κ[x±].

Moreover, the Gröbner polyhedron of f , of I, or of a finite set
F ⊆ K[x±] around w is defined as

Cw(f) :={v ∈ Rn | inw(f) = inv(f)} ⊆ Rn,
Cw(I) :={v ∈ Rn | inw(f) = inv(f) for all f ∈ I} ⊆ Rn,
Cw(F ) :={v ∈ Rn | inw(f) = inv(f) for all f ∈ F} ⊆ Rn.

Both Cw(f) and Cw(F ) are in fact convex polyhedra, while Cw(I) is
only guaranteed to be a convex polyhedron if I is homogeneous.

The combinatorial definition of tropical variety we will embrace in
this chapter follows. The equivalence to the description in terms of
component-wise valuations of algebraic solutions is a fundamental fact
in tropical geometry, see [MS15, Theorem 3.2.3].
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Definition 4.1.3 (Tropical variety, tropical prevariety). Given a poly-
nomial f ∈ K[x±], an ideal I ⊆ K[x±] and a finite set F ⊆ K[x±], the
tropical varieties of f and of I and the tropical prevariety of F
are defined to be

Trop(f) := {w ∈ Rn | inw(f) is not a monomial},
Trop(I) := {w ∈ Rn | inw(f) is not a monomial for all f ∈ I},
Trop(F ) := {w ∈ Rn | inw(f) is not a monomial for all f ∈ F}.

A finite generating set F ⊆ I is called a tropical basis if

Trop(F ) = Trop(I).

The sets Trop(f), Trop(I) and Trop(F ) are supports of polyhedral
complexes. For both Trop(f) and Trop(F ), these polyhedral complexes
can be chosen to be a collection of Gröbner polyhedra, and, if I is
homogeneous, so can Trop(I).

Let T ⊆ Rn be the support of a polyhedral complex Σ. The star
of T around a point w ∈ Rn is given by

Starw T := {v ∈ Rn | w + ε · v ∈ T for ε > 0 sufficiently small}

and that the stable intersection of T with respect to an affine sub-
space H ⊆ Rn is defined to be

T ∩st H :=
⋃
σ∈Σ

dim(σ+H)=n

σ ∩H.

Example 4.1.4. Let K = C{{t}} be the field of complex Puiseux
series and consider the ideal I ⊆ K[x±, y±] which can be generated by
either one of the following two generating sets:

I := (x+ y + 1, x+ t−1y + 2︸ ︷︷ ︸
=:F1

) = (x+ y + 1, (t−1 − 1)y + 1︸ ︷︷ ︸
=:F2

)

Figure 4.1 compares the tropical prevarieties of both F1 and F2 with
the tropical variety of I, showing that F2 is a tropical basis while F1 is
not.

ex

ey

Trop(F1)

ex

ey

Trop(I) Trop(F2)

Figure 4.1. A tropical non-basis and a tropical basis.
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For the following result, we refer to [MS15], where it is only shown
for polynomial rings. However, the result extends directly to Laurent
polynomial rings, since inw(I ∩K[x]) ·K[x±] = inw(I) for every ideal
I ⊆ K[x±].
Lemma 4.1.5 ([MS15, Lemma 2.4.6 and Corollary 2.4.10]). Given an
element f ∈ K[x±] and a homogeneous ideal I ⊆ K[x±], we have for
any weight vectors w, v ∈ Rn and ε > 0 sufficiently small:

inv inw(f) = inw+ε·v(f) and inv inw(I) = inw+ε·v(I).
In particular, for a finite set F ⊆ K[x±] or a homogeneous ideal
I ⊆ K[x±], this implies

Trop(inw F ) = Starw Trop(F ) and Trop(inw I) = Starw Trop(I).
We will now introduce the notion of a tropical defect and two algo-

rithms for finding them around affine spaces of complementary dimen-
sion to the tropical variety. For the sake of simplicity, we will restrict
ourselves to affine spaces in the direction of the last few coordinates.
General affine spaces can be realized via suitable unimodular transfor-
mations similar to Chapter 3, see Example 4.1.10.
Definition 4.1.6 (Tropical defects). Let I ⊆ K[x±] be a Laurent
polynomial ideal generated by a finite set F ⊆ I. We call a finite
tuple w := (w0, . . . , wk) ∈ (Rn)k+1 a tropical defect if for all ε > 0
sufficiently small we have

w0 + εw1 + · · ·+ εkwk ∈ Trop(F ) \ Trop(I).
Example 4.1.7. For I = (F1) from Example 4.1.4, the tuple (w, v)
with w := (0, 1) and v := (0, 1) is a tropical defect, while the singleton
(w) is not. On the other hand, the singleton (u) with u := (0, 2) is a
tropical defect, see Figure 4.2.

ex

ey

v

w

ex

ey

u

Figure 4.2. Two tropical defects.

Remark 4.1.8 (Singleton tropical defects). Note that any tropical
defect (w0, . . . , wk) of a homogeneous ideal can be transformed into a
singleton tropical defect u through a single (tropical) Gröbner basis
[CM19] or standard basis computation [MR19]:

One can simulate the weight vector wε := w0 + εw1 + · · ·+ εkwk for
ε > 0 sufficiently small through a sequence of weights as in Lemma 4.1.5.
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In particular, we can compute a Gröbner basis with respect to the se-
quence of weights, which gives us the inequalities and equations of
the Gröbner cone Cwε(I) by [MS15, proof of Proposition 2.5.2]. Any
u ∈ RelintCwε(I) is a singleton tropical defect.

For the ease of verification, the tropical defects we detect in Sec-
tions 4.2 and 4.3 have been transformed into singletons.

Algorithm 4.1.9 checks for tropical defects around affine subspaces
which satisfy a strong genericity assumption.
Algorithm 4.1.9 (Testing for defects, strong genericity).
Input: (F, v), where

(1) F ⊆ K[x±], a finite generating set of a d-dimensional prime ideal
I ⊆ K[x±], and assume w.l.o.g. that

π(Trop(I)) = Rd,(∗)
where π : Rn → Rd denotes the projection onto the first d coor-
dinates.

(2) v ∈ Rd, describing an affine subspace H := π−1(v) ⊆ Rn of
complementary dimension n − d such that the following strong
genericity assumption holds:

Trop(I) ∩H = Trop(I) ∩st H.(SG)
Output: (b,w), such that

(1) if b=true, then w is a tropical defect,
(2) if b=false, then Trop(F ) ∩H = Trop(I) ∩H holds. (In this

case, w := 0.)
1: Set F ′ := F ∪ {xi − tvi | i = 1, . . . , d} and I ′ := I + (xi − tvi | i =

1, . . . , d).
2: Compute the tropical prevariety Trop(F ′).
3: if ∃w ∈ Trop(F ′) with dimCw(F ′) > 0 then
4: Pick 0 6= u ∈ Lin(Cw(F ′)− w). // Cw(F ′)− w := {v − w | v ∈ Cw(F ′)}
5: return (true, (w, u)).
6: Compute the tropical variety Trop(I ′).
7: if ∃w ∈ Trop(F ′) \ Trop(I ′) then
8: return (true, w)
9: else
10: return (false, 0)

Correctness of Algorithm 4.1.9. Note that (SG) implies that
Trop(I)∩H is at most zero-dimensional, since H is of complementary
dimension to Trop(I) and because of [MS15, Theorem 3.6.10], while
(∗) ensures that it is not empty. By [OP13, Theorem 1.1], we therefore
have

Trop(I ′) = Trop(I + (xi − tvi | i = 1, . . . , d))
= Trop(I) ∩ Trop((xi − tvi | i = 1, . . . , d)) = Trop(I) ∩H.
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If the algorithm terminates at Line 5, then Cw(F ′) is a positive-
dimensional polyhedron contained in Trop(F ′) = Trop(F )∩H, whereas
Trop(I) ∩ H consists of finitely many points. In particular, we have
that w + εu /∈ Trop(I) for ε > 0 sufficiently small.

If the algorithm terminates at Line 8, then w is a tropical defect
since

w ∈ Trop(F ′) \ Trop(I ′) = (Trop(F ) ∩H) \ (Trop(I) ∩H)
⊆ Trop(F ) \ Trop(I).

Finally, should the algorithm terminate at Line 10, then

Trop(F ) ∩H = Trop(F ′) = Trop(I ′) = Trop(I) ∩H. �

Example 4.1.10. Consider the generating set F of the following one-
dimensional ideal:

I := ((x+ 1)(y + 1), (x− 1)(y + 1)︸ ︷︷ ︸
=:F

) ⊆ C[x±, y±],

and let π : R{x,y} → R{x} denote the projection onto the x-coordinate.
Figure 4.3 shows the tropical variety Trop(I) and the tropical prevariety
Trop(F ).

Then for any v ∈ R, the affine line Hv := π−1(v) satisfies (SG).
Algorithm 4.1.9 yields a tropical defect if and only if v = 0, in which
case it terminates at Line 5.

ex

ey

0

Trop(I)

Trop(F )

H0 L−1

ea

eb

0

Trop(ψ(I))

Trop(ψ(F ))

(ψ[)−1H0 (ψ[)−1L−1

Figure 4.3. Trop(I) ⊆ Trop(F ) in Example 4.1.10.

We can also use arbitrary rational affine subspaces like

Lv := v · ex + Lin(ex + ey)

by applying a unimodular transformation ψ on the ring of Laurent
polynomials whose induced map ψ[ on the weight space aligns Lv with
the coordinate axes:

ψ : K[x±, y±] ∼−→ K[a±, b±], x 7→ ab, y 7→ b,

ψ[ : R{x,y} ∼←− R{a,b}, ex ←[ ea, ex + ey ←[ eb.
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This transformation yields
ψ(F ) = {(ab+ 1)(b+ 1), (ab− 1)(b+ 1)} and

(ψ[)−1(Lv) = v · ea + Lin(eb) ⊆ R{a,b},
which always satisfies (SG) and for which Algorithm 4.1.9 terminates
at Line 8 if and only if v 6= 0, as Trop(ψ(F )) ∩ (ψ[)−1(Lv) consists of
two points of which only one belongs to the tropical variety Trop(ψ(I)),
see Figure 4.3.
Example 4.1.11. Consider the generating set F of the following one-
dimensional ideal:

I := (x+ z + 2, y + z + 1︸ ︷︷ ︸
=:F

) ⊆ C[x±, y±, z±],

and let π : R{x,y,z} → R{x} denote the projection onto the x-coordinate.
Figure 4.4 shows Trop(I) as well as Trop(F ). Consider the plane Hv :=
π−1(v) for some v ∈ R. Note that while any Hv with v 6= 0 satisfies
(SG), only Hv with v > 0 yields a tropical defect in Algorithm 4.1.9,
Line 5.

⊆ Trop(F )
ex

ey

Trop(I)
ez

−ex − ey − ez

Figure 4.4. Trop(I) ⊆ Trop(F ) from Example 4.1.11.

Remark 4.1.12 (Strong genericity). In Algorithm 4.1.9, the strong
genericity assumption (SG) is only required for the correctness of the
output at Line 5. If the algorithm does not terminate at Line 5, then
(SG) must hold because Trop(F ) ∩H = Trop(F ′) is zero-dimensional,
and hence so is Trop(I) ∩ H ⊆ Trop(F ) ∩ H. This implies that for
λi ∈ K generic with ν(λi) = vi, we have

Trop(I) ∩H = Trop(I + (xi − λi)) = Trop(I) ∩st H,

where the first equality holds by [OP13, Theorem 1.1], and the second
equality holds by [MS15, Theorem 3.6.1].

One possibility to ascertain whether (SG) holds upon termination
at Line 5 is to compute the Gröbner polyhedron Cw(I), if I is homo-
geneous. However, that requires a tropical Gröbner basis or standard
basis, and hence might not be viable for large examples.
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In practice, affine subspaces satisfying the strong genericity assump-
tion induce several problems, see Remark 4.1.16. This is why we in-
troduce Algorithm 4.1.13, which relies on a weakened genericity as-
sumption. Note that, compared to Algorithm 4.1.9, Algorithm 4.1.13
requires the computation of Trop(inw(F )) for some w ∈ Trop(F ) ∩H
at Line 5. This is unproblematic however, since inw(f) has fewer terms
than f for all f ∈ F , so that Trop(inw(f)) will be simpler than Trop(f).
In fact, generically inw(f) will be a binomial and Trop(inw(f)) a linear
space.

Algorithm 4.1.13 (Testing for defects, weak genericity).
Input: (F, λ), where

(1) F ⊆ K[x±], a finite generating set of a d-dimensional prime ideal
I ⊆ K[x±], and assume w.l.o.g. that

π(Trop(I)) = Rd,
where π : Rn → Rd denotes the projection onto the first d coor-
dinates.

(2) λ ∈ (K∗)d, describing an affine subspace
H := Trop({xi − λi | i = 1, . . . , d}) ⊆ Rn

of complementary dimension n− d such that the following weak
genericity assumption holds:

Trop(I + (xi − λi | i = 1, . . . , d)) = Trop(I) ∩st H.(WG)

Output: (b,w), such that
(1) if b=true, then w is a tropical defect,
(2) if b=false, then Trop(F ) ∩st H = Trop(I) ∩st H holds. (In

this case, w := 0.)
1: Set H := Trop({xi − λi | i = 1, . . . , d}) and F ′ := F ∪ {xi − λi |
i = 1, . . . , d}.

2: Compute the tropical prevariety Trop(F ′). // Trop(F ′) = Trop(F ) ∩H
3: Initialize ∆ := ∅. // ∆ will consist of tuples of weight vectors

// first entry: weight vector in Trop(F ) ∩st H

// further entries: bookkeeping of original cone in Trop(F )
4: for w ∈ Trop(F ′) with dimCw(F ′) = 0 do
5: Compute Trop(inw F ).
6: if ∃u ∈ Trop(inw F ) : dimCu(inw F ) > d then
7: Let v1, . . . , vk be a basis of Lin(Cu(inw F )).
8: return (true, (w, u, v1, . . . , vk)).
9: if ∃u ∈ Trop(inw F ) with dim(Cu(inw F ) +H) = n then
10: Let v1, . . . , vd be a basis of Lin(Cu(inw F )).
11: ∆ := ∆ ∪ {(w, u, v1, . . . , vd)}.
12: Compute Trop(I ′), where I ′ := I + (xi − λi | i = 1, . . . , d).
13: if ∃(w, u, v1, . . . , vd) ∈ ∆ such that w /∈ Trop(I ′) then
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14: return (true, (w, u, v1, . . . , vd)).
15: else
16: return (false, 0).

Correctness of Algorithm 4.1.13. Suppose that the algorithm
terminates at Line 8. By Lemma 4.1.5, there exists δ > 0 with

D := {w + εu+ ε2v1 + · · ·+ εk+1vk | 0 < ε < δ} ⊆ Trop(F ).

Because any infinite subset of D has affine span w+ Lin(Cu(inw F )) of
dimension k > d = dim Trop(I), any polyhedron on Trop(I) will have
a finite intersection with D. In particular, this implies that w + εu +
ε2v1 + · · ·+ εk+1vk /∈ Trop(I) for ε > 0 sufficiently small.

Suppose the algorithm terminates at Line 14. Again, Lemma 4.1.5
shows that there exists δ > 0 such that

D := {w + εu+ ε2v1 + · · ·+ εd+1vd | 0 < ε < δ} ⊆ Trop(F ).

Any infinite subset of D has affine span w + Lin(Cu(inw F )), which
intersects H stably. We have w /∈ Trop(I ′) = Trop(I) ∩st H by As-
sumption (WG), so any polyhedron on Trop(I) around w can only
have a finite intersection with D. In particular, this implies that
w + εu+ ε2v1 + · · ·+ εk+1vk /∈ Trop(I) for ε > 0 sufficiently small.

Finally, suppose the algorithm terminates at Line 16. Since Trop(F )
contains Trop(I), we always have Trop(F ) ∩st H ⊇ Trop(I) ∩st H. For
the converse, assume there exists a weight w ∈ Trop(F )∩st H not con-
tained in Trop(I) ∩st H. Let Cu(F ) ⊆ Trop(F ) be a Gröbner polyhe-
dron of the prevariety with w ∈ Cu(F ) ∩H and dim(Cu(F ) +H) = n,
which necessarily implies dimCu(F ) ≥ d. If dimCu(F ) > d, then
dimCu(inw(F )) > d and we would have terminated at Line 8. If
dimCu(F ) = d, then w appears as the first entry of some tuple in
∆ by Lemma 4.1.5 and Lines 9 to 11, hence we would have terminated
at Line 14, as Trop(I ′) = Trop(I) ∩st H by Assumption (WG). �

Remark 4.1.14 (Weak genericity). If Algorithm 4.1.13 terminates at
Line 8, then the output is correct even if the input did not satisfy the
weak genericity assumption (WG), since a polyhedron in Trop(F ) of
too large dimension was found. On the other hand, the correctness
of a tropical defect output at Step 14 does depend on the assumption
(WG) on the input. In order to certify the correctness of the output
regardless of the validity of (WG), one needs to check that there is no
sufficiently small ε > 0 such that w+ εu+ ε2v1 + . . .+ εd+1vd ∈ Trop I.
If I is homogeneous, this can by Lemma 4.1.5 be achieved by certifying
that the iterated initial ideal invd · · · inv1 inu inw(I) is the entire Laurent
polynomial ring κ[x±].
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Example 4.1.15. Consider the generating set from Example 4.1.10
(see also Figure 4.3):

I := ((x+ 1)(y + 1), (x− 1)(y + 1)︸ ︷︷ ︸
=:F

) ⊆ C[x±, y±].

Unlike before, Algorithm 4.1.13 will be unable to find a tropical defect
around Hv even for v = 0, always terminating at Line 16. This is
because without condition (SG), the line H0 need not have a zero-di-
mensional intersection with Trop(I), so that its positive-dimensional
intersection with Trop(F ) need not arise from a tropical defect.

However Algorithm 4.1.13 will still find a tropical defect for Lv for
v 6= 0, in which case it terminates at Line 14.
Remark 4.1.16 (Strong genericity vs. weak genericity from a practi-
cal point of view). Theoretically, it is always possible to find tropical
defects for generating sets which are not tropical bases using Algo-
rithm 4.1.9 with the right choice of an affine subspace. In practice,
however, it is much more reasonable to use Algorithm 4.1.13 instead.
This is because generic v ∈ Rd for Algorithm 4.1.9 usually entail high
exponents in the polynomial computations, whereas generic λ ∈ (K∗)d
for Algorithm 4.1.13 only entail big coefficients, and most computer-
algebra software systems such as Macaulay2 or Singular are better
equipped to deal with the latter. For instance, our Singular exper-
iments using Algorithm 4.1.9 regularly failed due to exponent over-
flows, since exponents in Singular are stored in the C++ type signed
short (bounded by 215 for most CPU architectures), while coefficients
are stored with arbitrary precision.
Remark 4.1.17 (Comparison with existing techniques). As hinted in
the introduction, tropical basis verification is a problem that has been
studied by many people. However, the only software currently capa-
ble of this task is gfan [Jen17], which for example has been used to
prove that the 4× 4-minors of a 5×n matrix form a tropical basis
[CJR11]. Its command gfan_tropicalbasis computes a tropical ba-
sis of a tropical curve, and its command gfan_tropicalintersection
for computing tropical prevarieties Trop(F ) has an optional argument
--tropicalbasistest to test whether Trop(F ) equals the tropical va-
riety Trop(I). Compared to the algorithms in gfan, our techniques
have the following disadvantages and advantages.

Since our algorithms revolve around finding tropical defects, they
are incapable to verify that a generating set is a tropical basis. As
we only search around random hyperplanes of complementary dimen-
sion, we are also blind to lower-dimensional defects. This means, if
dim(Trop(I) \ Trop(F )) < dim(Trop(I)) =: d then the probability for
a random affine hyperplane of codimension d to intersect Trop(I) \
Trop(F ) is zero. One example where our algorithms failed to return a
definite answer is [Rin12, Conjecture 4.8].
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In return, our algorithms avoid the computation of both Trop(F )
and Trop(I). Instead of Trop(F ) = ⋂

f∈F Trop(f), we rather compute
Trop(F ′) = ⋂

f∈F (Trop(f) ∩ H). This is faster, since Trop(f) ∩ H is
covered by fewer polyhedra compared to Trop(f). Moreover, instead
of Trop(I) we compute Trop(I ′), where I ′ := I + (xi−λi | i = 1, . . . , d).
This is easier since I ′ is zero-dimensional whereas I is not. Additionally,
Trop(I ′) consists of up to deg(I) many points while Trop(I) is generally
covered by many more polyhedra.

4.2. Application: Cox rings of cubic surfaces

Cox rings are global invariants of important classes of algebraic va-
rieties. For example, they carry essential information about all mor-
phisms to projective spaces. See [ADHL15] for further details and
Chapter 2, where we studied their toric degenerations. In this section,
we address [RSS16, Conjecture 5.3] which predicts a tropical basis for
Cox rings of smooth cubic surfaces; we disprove this conjecture it with
a tropical defect.

Definition 4.2.1. Consider six points p1, . . . , p6 ∈ P2 in general posi-
tion in the complex projective plane. Up to change of coordinates, we
may assume that

pi = (1 : di : d3
i ) for some di ∈ C,

where di satisfy certain genericity conditions, see [RSS14, §6]. Blowing
up P2 in these points results in a smooth cubic surfaceX := Blp1,...,p6 P2.
The geometry of this surface is captured by its Cox ring

Cox(X) =
⊕

(a0,...,a6)∈Z7

H0(X,OX(a0E0 + a1E1 + . . .+ a6E6)),

where
I E1, . . . , E6 ⊆ X are the exceptional divisors over the points
p1, . . . , p6 ∈ P2,

I E0 ⊆ X is the preimage of a line in P2 not containing p1, . . . , p6,
I H0(X,OX(a0E0 + a1E1 + . . . + a6E6)) ⊆ K(X) are the rational
functions on X vanishing along Ei with multiplicity at least −ai.1

For a smooth cubic surface X, the Cox ring Cox(X) is a finitely
generated integral domain with a natural set of 27 generators. These
generators are the rational functions onX establishing the linear equiv-
alence of each of the 27 lines on the cubic surface X to a divisor of form∑
i aiEi ∈ Div(X), see [BP04, Theorem 3.2]. Their ideal of relations

was described by Ren, Shaw and Sturmfels as follows:

1Here, vanishing with a negative multiplicity −k means should be understood
as having poles of positive order k.
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Proposition 4.2.2 ([RSS16, Proposition 2.2]). For general complex
numbers d1, . . . , d6 ∈ C, let X be the cubic surface arising as the blowup
of the points (1 : di : d3

i ) ∈ P2. Then
Cox(X) ∼= C[E1, . . . , E6, F12, F13, . . . , F56, G1, . . . , G6]/IX ,

where, up to saturation at the product of all variables, IX is generated
by the following 10 trinomials and their 260 translates under the action
of the Weyl group of type E6:
(d3−d4)(d1+d3+d4)E2F12−(d2−d4)(d1+d2+d4)E3F13+(d2−d3)(d1+d2+d3)E4F14,

(d3−d5)(d1+d3+d5)E2F12−(d2−d5)(d1+d2+d5)E3F13+(d2−d3)(d1+d2+d3)E5F15,

(d3−d6)(d1+d3+d6)E2F12−(d2−d6)(d1+d2+d6)E3F13+(d2−d3)(d1+d2+d3)E6F16,

(d4−d5)(d1+d4+d5)E2F12−(d2−d5)(d1+d2+d5)E4F14+(d2−d4)(d1+d2+d4)E5F15,

(d4−d6)(d1+d4+d6)E2F12−(d2−d6)(d1+d2+d6)E4F14+(d2−d4)(d1+d2+d4)E6F16,

(d5−d6)(d1+d5+d6)E2F12−(d2−d6)(d1+d2+d6)E5F15+(d2−d5)(d1+d2+d5)E6F16,

(d4−d5)(d1+d4+d5)E3F13−(d3−d5)(d1+d3+d5)E4F14+(d3−d4)(d1+d3+d4)E5F15,

(d4−d6)(d1+d4+d6)E3F13−(d3−d6)(d1+d3+d6)E4F14+(d3−d4)(d1+d3+d4)E6F16,

(d5−d6)(d1+d5+d6)E3F13−(d3−d6)(d1+d3+d6)E5F15+(d3−d5)(d1+d3+d5)E6F16,

(d5−d6)(d1+d5+d6)E4F14−(d4−d6)(d1+d4+d6)E5F15+(d4−d5)(d1+d4+d5)E6F16.

Here, the generators corresponding to the 27 lines are denoted as follows:
I Ei represents the exceptional divisor over the point pi,
I Fij represents the strict transform of the line through pi and pj,
I Gi represents the strict transform of the unique conic through
{p1, . . . , p6} \ {pi}.

The following theorem answers [RSS16, Conjecture 5.3] negatively:

Theorem 4.2.3. For general d1, . . . , d6 ∈ C, the 270 trinomial gener-
ators of IX described in Proposition 4.2.2 are not a tropical basis.

Proof. Fix the following ordered set of variables:
S := {E1, E2, E3, E4, E5, E6, F12, F13, F14, F15, F16, F23, F24, F25, F26,

F34, F35, F36, F45, F46, F56, G1, G2, G3, G4, G5, G6}.

Let IX be the ideal in the polynomial ring C(d1, . . . , d6)[S] generated
by the 270 trinomials described in Proposition 4.2.2, and consider the
weight vector
w :=(2, 1, 0, 1, 1, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)∈RS.
One can computationally verify that w is a tropical defect, i.e., w lies
in the tropical prevariety, since inw(f) is at least binomial for each
trinomial generator f , and outside the tropical variety, since inw(IX)
contains the monomial E6F56G6. �

Remark 4.2.4. The statements in the proof of Theorem 4.2.3 can
be easily verified using a computer algebra system such as Singular.
The following script is available on https://software.mis.mpg.de,
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and the following shortened transcript was produced using Singular’s
online interface (version 4.1.2) available at

https://www.singular.uni-kl.de/tryonline.

> LIB " tropicalBasis .lib "; // initializes necessary libraries
// and helper functions

> intvec wMin = 2,1,0,1,1,1,0,2,0,0,0,1,0,0,0,1,1,1,0,0,0,0,0,
0,0,0,0; // wMin is in min-convention

> intvec wMax = -wMin; // Singular uses max-convention
> intvec allOnes = onesVector (size(wMax ));
> ring r = (0,d1 ,d2 ,d3 ,d4 ,d5 ,d6),(E1 ,E2 ,E3 ,E4 ,E5 ,E6 ,
. F12 ,F13 ,F14 ,F15 ,F16 ,F23 ,F24 ,F25 ,F26 ,F34 ,F35 ,F36 ,F45 ,F46 ,F56 ,
. G1 ,G2 ,G3 ,G4 ,G5 ,G6),(a( allOnes ),a(wMax),lp);
// Prepending allOnes makes no difference mathematically as the ideal is
// homogeneous, but it helps computationally.
> ideal F = // Singular ideals are lists of polynomials
. (d3 -d4 )*( d1+d3+d4)*E2*F12 +(d2 -d4 )*( d1+d2+d4)*E3*F13
. -(d2 -d3 )*( d1+d2+d3)*E4*F14 ,
... [...]

. -(d5 -d6 )*( d1+d3+d4)* F24*G4+(d4 -d6 )*( d1+d3+d5)* F25*G5

. -(d4 -d5 )*( d1+d3+d6)* F26*G6;
> ideal inF = initial (F,wMax ); // initial forms of the elements in F

// all are at least binomial, hence
// wMin ∈ Trop(F )

> ideal IX = groebner (F);
> ideal inIX = initial (IX ,wMax) // initials of Gröbner basis elements

// this is a Gröbner basis of inwMin(IX)
> NF(E6*F56*G6 ,inIX );
0 // normal form is 0, hence E6∗F56∗G6 ∈ inwMin(IX)

4.3. Application: Realizability of valuated gaussoids

Gaussoids are combinatorial structures introduced by Lněnička and
Matúš [LM07] that encode conditional independence relations among
Gaussian random variables. Reminiscent of the study of matroids,
Boege, D’Alì, Kahle and Sturmfels [BDKS19] introduced the notions
of oriented and valuated gaussoids. In this section, we address the
question whether all valuated gaussoids on four elements are realizable,
disproving it with a tropical defect. This was initially conjectured in
the first version of [BDKS19], as found on arXiv. The published version
has since been updated with our Theorem 4.3.3.

Definition 4.3.1 ([BDKS19, §1]). Fix n ∈ N. Consider the Laurent
polynomial ring

Rn := C
[
p±I | I ⊆ [n]

][
a±{i,j}|K | i, j ∈ [n] distinct, K ⊆ [n] \ {i, j}

]
,

https://www.singular.uni-kl.de/tryonline
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in which we abbreviate a{i,j}|K to aij|K , and consider the ideal Tn gen-
erated by the following 2n−2

(
n
2

)
so-called square trinomials

a2
ij|K − pK∪{i} pK∪{j} + pK∪{i,j} pK

for i, j ∈ [n] distinct, K ⊆ [n] \ {i, j},

and the following 12 · 2n−3
(
n
3

)
so-called edge trinomials:

pL∪{k} aij|L\{i,j} − pL aij|L∪{k}\{i,j} − aki|L\{i} akj|L\{j}
for i, j, k ∈ [n] distinct, L ⊆ [n] \ {k}.

A valuated gaussoid is a point in the tropical prevariety defined
by the square and edge trinomials. It is called realizable if it lies in
the tropical variety Trop(Tn).
Remark 4.3.2. The variables of the ring Rn correspond to the prin-
cipal and almost-principal minors of a symmetric n × n-matrix (i.e.,
determinants of square submatrices whose row- and column index sets
differ by at most one index). The ideal Tn corresponds to the polyno-
mial relations among these minors for symmetric matrices with non-
zero principal minors by [BDKS19, Proposition 6.2].

The following theorem negatively answers Conjecture 8.4 in the
first arXiv-version of [BDKS19], and is now Theorem 8.4 in the final
published version of [BDKS19]:
Theorem 4.3.3. Not all valuated gaussoids on four elements are real-
izable, i.e., the square and edge trinomials in Definition 4.3.1 are not
a tropical basis of T4.

Proof. Consider the following ordered set S of the variables of R4
and weight vector w ∈ RS:
S :={p∅, p1, p12, p123, p1234, p124, p13, p134, p14, p2, p23, p234, p24, p3, p34, p4,

a12, a12|3, a12|34, a12|4, a13, a13|2, a13|24, a13|4, a14, a14|2, a14|23, a14|3,

a23, a23|1, a23|14, a23|4, a24, a24|1, a24|13, a24|3, a34, a34|1, a34|12, a34|2}

w :=(14, 10, 6, 0, 6, 8, 8, 2, 8, 6, 6, 2, 8, 8, 8, 8, 8, 4, 2, 10, 9, 3, 5, 5, 9, 11,
1, 5, 7, 5, 5, 5, 7, 7, 1, 5, 8, 6, 4, 4) ∈ RS.

One can check that w is a tropical defect, i.e., w lies in the tropical
prevariety, since inw(f) is at least binomial for all square and edge
trinomials f , and lies outside the tropical variety, since inw(T4) contains
the monomial a23a23|1. �

Remark 4.3.4. The statements in the proof of Theorem 4.3.3 can
be easily verified using a computer algebra system such as Singular.
The following script is available on https://software.mis.mpg.de,
and the following shortened transcript was produced using Singular’s
online interface (version 4.1.2) available at

https://software.mis.mpg.de
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https://www.singular.uni-kl.de/tryonline.

> LIB " tropicalBasis .lib "; // initializes necessary libraries
// and helper functions

> intvec wMin = 14 ,10 ,6 ,0 ,6 ,8 ,8 ,2 ,8 ,6 ,6 ,2 ,8 ,8 ,8 ,8 ,8 ,4 ,2 ,10 ,9 ,3 ,
. 5 ,5 ,9 ,11 ,1 ,5 ,7 ,5 ,5 ,5 ,7 ,7 ,1 ,5 ,8 ,6 ,4 ,4;

// wMin is in min-convention
> intvec wMax = -wMin; // Singular uses max-convention
> intvec allOnes = onesVector (size(wMax ));
> ring r = 0,(p,p1 ,p12 ,p123 ,p1234 ,p124 ,p13 ,p134 ,p14 ,p2 ,p23 ,
. p234 ,p24 ,p3 ,p34 ,p4 ,a12 ,a12_3 ,a12_34 ,a12_4 ,a13 ,a13_2 ,a13_24 ,
. a13_4 ,a14 ,a14_2 ,a14_23 ,a14_3 ,a23 ,a23_1 ,a23_14 ,a23_4 ,a24 ,
. a24_1 ,a24_13 ,a24_3 ,a34 ,a34_1 ,a34_12 ,a34_2),
. (a( allOnes ),a(wMax),lp);
// Prepending allOnes makes no difference mathematically as the ideal is
// homogeneous, but it helps computationally.
> ideal F = // Singular ideals are lists of polynomials
. a34_12 * a13_24 +p124*a14_23 -a14_2*p1234 ,
... [...]

. -p1*p2+a12 ^2+p*p12;
> ideal inF = initial (F,wMax ); // initial forms of the elements in F

// all are at least binomial, hence
// wMin ∈ Trop(F )

> ideal I = groebner (F);
> ideal inI = initial (I,wMax ); // initials of Gröbner basis elements

// this is a Gröbner basis of inwMin(IX)
> NF(a23*a23_1 ,inI );
0 // normal form is 0, hence a23a23|1 ∈ inwMin(IX)

Remark 4.3.5 (sampling affine subspaces for tropical defects). The
tropical defects in Theorems 4.2.3 and 4.3.3 were found by repeatedly
running Algorithm 4.1.13 on random affine subspaces H ⊆ Rn. In
the sampling of the affine subspaces, a situation which we tried to
avoid are two subspaces intersecting the tropical variety in exactly the
same Gröbner polyhedra. In the following, we describe our sampling
approach which we based on this thought.

Even though we were unable to compute the tropical variety Trop(I)
or the tropical prevariety Trop(F ) in both problems, we were able to
compute
(1) a Gröbner basis of I with respect to a graded reverse lexicographical

ordering,
(2) for selected finite fields Fp and for d + 1 := dim(I) + 1 variables

xi0 , . . . , xid , the generator g ∈ Fp[xi0 , . . . , xid ] of the principal elim-
ination ideal (I ⊗Z Fp) ∩ Fp[xi0 , . . . , xid ].2

2Here, we abuse notation by regarding I as an ideal in Z[x±]. Note that in
the example of Cox rings, the generators of I have integral coefficients if we choose
rational numbers di ∈ Q and clear denominators.
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In other words, (2) allowed for educated guesses for generators g of
principal elimination ideals I ∩ K[xi0 , . . . , xid ], while (1) allowed for
tests whether the guesses were correct. Thus, we were able to compute
tropical hypersurfaces Trop(g) ⊆ Rd+1 which are the images of Trop(I)
under selected orthogonal projections π : Rn → Rd+1.

For each projection, we then constructed affine lines L1, . . . , Lk in
Rd+1 such that each maximal polyhedron of Trop(g) intersects at least
one line. Their preimages π−1(L1), . . . , π−1(Lk) are then affine sub-
spaces of codimension d, which were our samples for H.
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