

Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

Aref, Ibrahim Asaad (2011) Wireless extension to the existing systemC
design methodology. PhD thesis.

http://theses.gla.ac.uk/2407/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

.

Wireless Extension to the Existing SystemC
Design Methodology

by
Ibrahim Asaad Aref

A Thesis presented for the degree of

Doctor of Philosophy

to the Department of Electronics and Electrical Engineering,

College of Science and Engineering, School of Engineering,
University of Glasgow

February 2011

.

Copyright © Ibrahim Asaad Aref, 2011.

.

Wireless Extension to the Existing SystemC Design
Methodology

Ibrahim Asaad Aref

Submitted for the degree of doctor of Philosophy

February 2011

Abstract

This research uses a SystemC design methodology to model and design complex wireless
communication systems, because in the recent years, the complexity of wireless commu-
nication systems has increased and the modelling and design of such systems has become
inefficient and challenging. The most important aspect of modelling wireless communi-
cation systems is that system design choices may affect the communication behaviour and
also communication design choices may impact on the system design.

Whilst, the SystemC modelling language shows great promise in the modelling of complex
hardware/software systems, it still lacks a standard framework that supports modelling of
wireless communication systems (particularly the use of wireless communication chan-
nels). SystemC lacks elements and components that can be used to express and simulate
wireless systems. It does not support noise links natively. To fill this gap, this research
proposes to extend the existing SystemC design methodology to include an efficient simu-
lation of wireless systems. It proposes to achieve this by employing a system-level model
of a noisy wireless communication channel, along with a small repertoire of standard com-
ponents (which of course can be replaced on a per application basis).

i

Finally, to validate our developed methodology, a flocking behaviour system is selected as
a demonstration (case study). This is a very complex system modelled based on the devel-
oped methodology and partitioned along different parameters. By applying our developed
methodology to model this system as a case study, we can prove that incorporating and
fixing the wireless channel, wireless protocol, noise or all of these elements early in the
design methodology is very advantageous. The modelled system is introduced to simulate
the behaviour of the particles (mobile units) that form a mobile ad-hoc communication
network. Wireless communication between particles is addressed with two scenarios: the
first is created using a wireless channel model to link each pair of particles, which means
the wireless communication between particles is addressed using a Point-to-Point (P2P)
channel; the other scenario is created using a shared channel (broadcast link).

Therefore, incorporating wireless features into existing SystemC design methodology, as
done in this research, is a very important task, because by developing SystemC as a design
tool to support wireless systems, hardware aspects, sofware parts and communication can
be modelled, refined and validated simultaneously on the same platform, and the design
space expanded into a two-dimensional design space comprising system and communica-
tion.

ii

Declaration

This thesis presented a work that was carried at the University of Glasgow under the su-
pervision of Dr. Khaled Elgaid and Dr. Fernando Rodríguez-Salazar, Department of Elec-
tronics and Electrical Engineering, during the period between March 2007 to December
2010. I declare that the work is entirely my own work and it has not been previously
submitted for any other degree or qualification in any university.

Ibrahim Asaad Aref

Glasgow, February 2011

iii

Acknowledgments

I would like to express my grateful acknowledgement to my supervisors Dr. Khaled Elgaid
and Dr. Fernando Rodríguez-Salazar for their supervision and support. I wish to express
my sincere thanks to the Electronics & Electrical Engineering, University of Glasgow
for creating an environment that has been fabulous for research and fun. Also this work
would not have been possible without the financial support from the Ministry of Education
in Libya, I am grateful to them for this opportunity.

I am most appreciative of my father, mother, brothers and sister for their continuing sup-
port, as without their supports and wishes, I couldn’t achieve what I have achieved today.
Special thanks to my beloved wife for her patience and providing me comfort and my
daughters and my son for giving me all the joy. Above all, I thank Allah almighty for his
unlimited blessings.

Also I would like to thank the librarians for helping me to source the books and references
that I needed to write my thesis.

Lastly, how can I forget to thank mates and colleagues, as without their help and friendly
attitude, it was highly impossible to complete my thesis.

Ibrahim Aref

Glasgow, February 2011

iv

Contents

Abstract i

List of Figures ix

List of Tables xiii

List of Algoritms xiv

List of Publications xv

List of Symbols xvii

Glossary xix

I. Introduction and Background 1

1. Introduction 2

1.1. Research Objectives . 5
1.2. Application Domains . 6
1.3. Thesis Organisation . 6

2. Background 8

2.1. System Design using SystemC Methodology 8
2.1.1. System Level Design (SLD) . 9
2.1.2. SystemC Language Overview 9
2.1.3. SystemC Design Methodology 10
2.1.4. System Design Flow with SystemC 15
2.1.5. Extending SystemC Methodology to Support Wireless Features . 18

2.2. Radio Communication System . 21
2.2.1. Wireless Channel . 22
2.2.2. Characteristics of Wireless Channels 23
2.2.3. Some Channel Models . 30
2.2.4. Noise . 33

v

Contents

2.2.5. Channel Model . 35
2.3. Flocking Behaviour System . 37

2.3.1. What is Flocking? . 38
2.3.2. Flocking Applications . 38
2.3.3. Reynolds’s Model . 38
2.3.4. Development of Flocking Behaviour Models 39

2.4. Summary . 39

II. SystemC Wireless Methodology 41

3. RTL-Level Modeling of an 8B/10B using Existing SystemC Methodol-

ogy 42

3.1. Introduction . 42
3.2. 8B/10B Encoder-Decoder Description 43
3.3. 8B/10B Encoder-Decoder SystemC Modules Structure 45
3.4. Software Implementation . 47

3.4.1. The 8B/10B Encoder . 48
3.4.2. The 10B/8B Decoder . 50

3.5. Results and Discussion . 50
3.6. Summary . 51

4. Developing SystemC Design Methodology to Support Wireless Sys-

tems 53

4.1. Models Needed for SystemC Wireless Methodology 53
4.1.1. Modelling of a Noisy Wireless Communication Channel 54
4.1.2. Constructing Other Parts of Wireless Systems 54
4.1.3. Creating a Demonstration . 55

4.2. Wireless Extension into Existing SystemC Methodology 55
4.2.1. System Design Flow Based on Naïve Structure 56
4.2.2. System Design Flow Based on Hierarchical Approach 57

4.3. Summary . 61

5. Modelling of a Noisy Wireless Communication Channel 62

5.1. Introduction . 62
5.2. Related Work . 63
5.3. Noise Generation Process . 63
5.4. Wireless Channel Platform . 64

5.4.1. Transmitter and Receiver Models 65
5.4.2. Wireless Digital Channel Model 66

vi

Contents

5.4.3. Design of Point-to-Point (P2P) Commnication Channel 67
5.4.4. Point to Multipoint (P2M) Construction 67
5.4.5. Multipoint-to-Multipoint (M2M) Construction 69

5.5. Data Packetization . 70
5.6. ARQ Communication Protocol . 70

5.6.1. Stop-and-wait ARQ . 71
5.6.2. Window Flow Control . 71

5.7. Simulation Platform . 73
5.8. Results and Analysis . 74
5.9. Summary . 77

III. Case Study: Flocking Behaviour System 78

6. Modelling of a Flocking Behaviour System Based on Shared Variable

Communication 79

6.1. Informal Description of the Flocking Behaviour System 79
6.2. System Definition . 80
6.3. System Model . 81

6.3.1. Flocking Control System . 81
6.3.2. Communication Between Particles 82
6.3.3. Particle Module Structure . 83
6.3.4. Convergence Module . 84
6.3.5. Data Packet . 85

6.4. Simulation Platform . 86
6.4.1. Initial Conditions . 86
6.4.2. Boundary Conditions . 88
6.4.3. Simulation Scenarios . 89
6.4.4. Evaluating Convergence Point 89

6.5. Experimental Results . 90
6.5.1. System Modelling Based on Shared Variable Communication . . 91
6.5.2. System Convergence versus Number of Particles in Terms of Dif-

ferent Transmission Rates . 100
6.5.3. Effect of Changing Relative Positions 103
6.5.4. System Behaviour in 3D . 105

6.6. Summary . 108

7. Inserting a Noisy Communication Channel 109

7.1. Inserting a Wireless Communication Channel 109

vii

Contents

7.2. Incorporating Wireless Features into the System 110
7.2.1. Impact of Noise . 110
7.2.2. The Influence of Communication Delay 111

7.3. Experimental Results . 112
7.3.1. Inserting a Wireless Channel . 112
7.3.2. The Effect of Communication Delay 116
7.3.3. Effect of Noise . 119
7.3.4. Investigation of Critical Unstable Point in Terms of Particle Ac-

celeration . 120
7.4. Summary . 121

8. Measuring and Optimising Convergence and Stability in Terms of Sys-

tem Construction 124

8.1. Interaction between Control, Communication and Implementation 124
8.2. Investigating System Stability in Terms of Radius of Perception 125
8.3. Simulation Platform . 127
8.4. Experimental Results . 129

8.4.1. System Behaviour . 129
8.4.2. System Converging Point against Number of Connections 132
8.4.3. System Convergence Against Density of Additional Connections 133

8.5. Summary . 135

9. Modelling Communication Based-on Multiple Access Protocol 136

9.1. Multiple Access Protocols . 136
9.1.1. TDMA . 138
9.1.2. CSMA . 138

9.2. System Model . 139
9.3. Communication Scenarios Based on Multichannel Access Protocols . . . 139

9.3.1. TDMA Modelling . 140
9.3.2. Non-persistent CSMA Modelling 141

9.4. Experimental Results . 143
9.4.1. TDMA . 144
9.4.2. Non-persistent CSMA . 147
9.4.3. Impact of Noise . 150

9.5. Summary . 152

10.Conclusions 154

10.1. Summary of contributions . 154
10.2. Future Work . 156

viii

Contents

Appendix A - 8B/10B Encoding/Decoding 157

Appendix B - Wireless Channel Model 175

Appendix C Flocking Behaviour System 192

ix

List of Figures

1.1. Conventional methodology versus our developed methodology 5
1.2. Some examples of heterogeneous wireless communication systems 7

2.1. System modelling graph [1] . 11
2.2. Abstraction Levels in 3D . 12
2.3. SystemC design methodology [1] . 13
2.4. SystemC design flow . 16
2.5. A simple wireless communication system model 22
2.6. Reflection mechanism at the surface of the Earth 23
2.7. Diffraction phenomenon . 24
2.8. Scattering . 24
2.9. Wireless channel characteristics . 25
2.10. Path loss versus distance . 26
2.11. Shadowing . 28
2.12. The power drop due to slow fading (long-term fading) 29
2.13. Multipath fading scenario . 29
2.14. Rayleigh fading . 31
2.15. Signal fluctuation in Rayleigh fading . 32
2.16. Example of a digital signal suffering impulse noise and its corresponding

logic level[2] . 34
2.17. General shape of PB versus Eb/N0curve 36

3.1. 8B-10B Conversion . 44
3.2. 8B/10B Encoder/Decoder Block Diagram 45
3.3. Block Diagram illustrates Program Implementation Structure with all De-

signed Modules . 47
3.4. 8B/10B Encoder Module . 50
3.5. 10B/8B Decoder Module . 50
3.6. Encoder Decoder Simulation Timing Diagram 51

4.1. Design space in Naive approach . 56
4.2. Wireless SystemC design methodology - Naïve structure 57

x

List of Figures

4.3. Design space in hierarchical approach 58
4.4. Wireless SystemC design methodology - Hierarchical structure 59

5.1. Block diagram of a wireless communication system consisting of two nodes 63
5.2. Stochastic projection of noise. 65
5.3. Channel module implementation . 66
5.4. Simple point-to-point communication channel structure 67
5.5. Point-to-Multipoint communication channel structure 68
5.6. Multipoint-to-Multpoint communication channel 70
5.7. Selective re-transmission . 72
5.8. Go-Back N re-transmission . 73
5.9. Simulation platform . 73
5.10. Changing in BER versus number of packets in P2P communication channel 74
5.11. Packets in the noisy communication wireless channel 75
5.12. Changing in BER versus number of packets in P2M communication channel 75
5.13. System throughput for P2P with ARQ window size 7 76
5.14. System throughput for P2M with ARQ window size 7 76

6.1. The representation of a particle . 80
6.2. Flocking behaviour system constructed at a high abstraction level 82
6.3. Particle control system . 83
6.4. Transmitting and receiving communication messages between particles . 83
6.5. The structure of the particle module . 84
6.6. The structure of the convergence module 85
6.7. Data packet format . 86
6.8. Relative position for N=12 . 87
6.9. Interaction between the transmitting and receiving process 88
6.10. Connecting the convergence module to the particles 90
6.11. The initial values of the relative positions 92
6.12. Modelling classification of flocking behaviour system 93
6.13. System behaviour for ring topology with shared variable fixed leader and

with arrangement (A) of Figure(6.11) 94
6.14. The final positions of the particles . 95
6.15. System behaviour for ring topology with shared variable fixed leader and

with arrangement (B) of figure(6.11) . 95
6.16. Leader’s path to the final destination . 96
6.17. Details of system behaviour for ring topology with shared variable moved

leader with arrangement (A) of Figure(6.11) 97
6.18. System convergence . 98

xi

List of Figures

6.19. Details of system behaviour for fully connected topology with shared vari-
able fixed leader with arrangement (C) of Figure(6.11) 99

6.20. Details of system behaviour for fully connected topology with shared vari-
able moved leader with arrangement (C) of Figure(6.11) 101

6.21. System convergence . 102
6.22. System convergence based on particle position 102
6.23. System convergence based on particle position 103
6.24. Relative position defined with distance 10 104
6.25. System behaviour based on relative position distance (Ld = 10) 104
6.26. System convergence in terms of relative positions 105
6.27. Snapshots of flocking behaviour in 3D with the leader fixed 106
6.28. Snapshots of flocking behaviour in 3D with the leader moving 107

7.1. Inserting a noisy communication channel model 110
7.2. Schematic diagram of incorporating impulsive noise into the wireless chan-

nel model . 111
7.3. The final state of the system . 113
7.4. The final state of the system . 114
7.5. The final state of the system . 115
7.6. The final state of the system . 115
7.7. System behaviour in the presence of delay, 1 step and 7 steps (instability

region) . 117
7.8. Effect of insert communication delay . 118
7.9. Effect of communication delay . 119
7.10. The effects of inserting implusive noise 120
7.11. Investigating instability in terms of changing particle acceleration 122
7.12. Investigating changing of particles’ acceleration against system conver-

gence . 123

8.1. The interaction between communication, control and implementation . . . 125
8.2. Vertex-Edge graph components . 127
8.3. Increasing system connections . 128
8.4. Data Flow within the particle model . 129
8.5. Connection matrix . 130
8.6. System behaviour . 131
8.7. The velocity of the particle P1 in X direction 132
8.8. Number of connections versus converging time 133
8.9. Evaluate convergence point based on particle position 134
8.10. Evaluate convergence point based on particle energy 134

xii

List of Figures

9.1. Multiple access techniques . 137
9.2. A diagram of the TDMA approach . 138
9.3. Flocking behaviour system over shared bus 140
9.4. System constructed based on TDMA scenario 141
9.5. System constructed based on CSMA scenario 142
9.6. The initial values of the relative positions 143
9.7. System behaviour for TDMA with fixed leader and with arrangement of

Figure(9.6) . 144
9.8. Details of system behaviour for TDMA approach with moved leader and

with arrangement of Figure (9.6) . 146
9.9. System behaviour for TDMA with moved leader 147
9.10. System behaviour for non-persistent CSMA approach with fixed leader . 148
9.11. Details of system behaviour for CSMA approach with moved leader and

with arrangement of Figure (9.6) . 149
9.12. System dynamics for CSMA, movable leader 150
9.13. Effect of noise on the system based on non-persistent CSMA approach

with fixed leader . 151
9.14. System convergence and final position of the particles 152
9.15. Details of system behaviour of Figure (9.11) under noise effect 153

xiii

List of Tables

3.1. 5B/6B Encoding . 46
3.2. 3B/4B Encoding . 46
3.3. Encoder Signals Definition . 48

6.1. System Parameters . 94
6.2. System convergence versus number of particles in terms of different trans-

mission rates - system parameters . 100
6.3. Effect of changing relative positions - system parameters 105

7.1. System convergence points at different modelling levels 116
7.2. Convergence points of the system in the presence of communication delay 118
7.3. Effect of changing acceleration in system convergence 121

8.1. System parameters . 131
8.2. Converging time against density of connections 132
8.3. System convergence against density of additional connections - system

parameters . 133

9.1. System Parameters . 145

xiv

List of Algorithms

3.1. Program segment of 8b/10b Encoder . 49

5.1. Transmitter and receiver modules . 66
5.2. Implement P2M platform . 69

7.1. Changing acceleration according to error 121

9.1. Modelling TDMA approach . 141
9.2. Modelling CSMA approach . 143
9.3. Inserting impulsive Noise . 151

xv

List of Publications

The following publications have been based on the research work car-
ried out during this Ph.D. project:

PAPER (1): I. A. Aref, N. A. Ahmed, F. Rodríguez-Salazar and K. Elgaid, “RTL-Level Mod-
elling of an 8B/10B Encoder-Decoder using SystemC”, in Proc. Fifth IEEE and IFIP In-
ternational Conference on wireless and Optical communications Networks (WOCN_2008),
Surabaya, Indonesia, May. 5–7, 2008.

PAPER (2): N. A. Ahmed, I. A. Aref, F. Rodríguez-Salazar and K. Elgaid, “Wireless Channel
Model Based on SoC Design Methodology”, in Proc. The Fourth International Conference
on Systems and Networks Communications (ICSNC2009), September 20-25, 2009 - Porto,
Portugal

PAPER (3): Ibrahim Aref, Nuredin Ahmed, Fernando Rodríguez-Salazar and Khaled El-
gaid, “Wireless Extension Into Existing SystemC Design Methodology”, in Proc. The 2nd
IEEE International Conference on Computer Engineering and Technology (ICCET 2010),
April 16 - 18, 2010, Chengdu, Sichuan, China.

PAPER (4): Ibrahim Aref, Nuredin Ahmed, Fernando Rodríguez-Salazar and Khaled El-
gaid, “Measuring and Optimising Convergence and Stability in terms of System Construction
in SystemC”, in Proc. 17th IEEE International Conference and Workshops on Engineering
of Computer-Based Systems. Oxford, UK, 22-26 March, 2010.

PAPER (5): Ibrahim Aref, Nuredin Ahmed, Fernando Rodríguez-Salazar and Khaled El-
gaid, “Modeling of Flocking Behaviour System in SystemC”, in Proc. The Sixth Advanced
International Conference on Telecommunications (AICT 2010), May 9 - 15, 2010 - Barcelona,
Spain.

PAPER (6): Nuredin Ahmed, Ibrahim Aref, Fernando Rodríguez-Salazar and Khaled El-
gaid, “Network performance evaluation based on SoC design methodology”, in Proc. The
7th International Symposium on Communication Systems Networks and Digital Signal Pro-
cessing (CSNDSP), Newcastle upon Tyne, United Kingdom, 21-23 July 2010.

.

xvi

List of Symbols

µ Mean and variance.

W Work space.

Pk Particle with index k.

εx current error in x direction.

εy current error in y direction.

Kp proportional gain.

Kd derivative gain.

oldεx error from the last cycle in x direction.

oldεy error from the last cycle in y direction.

xacc. current acceleration in x direction.

yacc. current acceleration in y direction.

N Number of particles (Flock size).

Ld desired distance.

R Transmission rate.

Vx Particle velocity in x-direction.

Vy Particle velocity in y-direction.

pi Current position as vector (x,y).

r Real position as vector (x,y).

C Converging time.

ρ Density of connections.

ec Existing connections. = given conns.+randomly added cons.

xvii

gc Given conns.= N (number of conns. in ring topology).

mc Maximum number of connections.

e Error percentage in the relative position.

Pr Received power.

Pt Transmitted power.

Gr Receiver antenna gains.

Gt Transmitter antenna gains.

d Distance.

hr Antenna heights of receiver.

ht Antenna heights of transmitter.

P0 power at a distance d0

α path loss exponent.

PL(d0) the mean path loss in dB at distance d0

χ is a normally (Gaussian) distributed random variable.

σ standard deviation

xviii

Glossary

AM Amplitude Modulation.

AMS Analog and Mixed Signal.

ARQ Automatic Repeat reQuest.

ASK Amplitude Shift Keying.

AUV Autonomous Underwater Vehicles.

AWGN Adaptive White Gaussian Noise.

BER Bit Error Rate.

CLT Central Limit Theorem.

CSMA Carrier Sense Multiple Access.

DRHW Dynamically recon�gurable hardware.

DSP Digital Signal Processing.

DUT Device Under Test.

FIFO First In First Out.

FM Frequency Modulation.

FPGA Field-Programmable Gate Array.

FSK Frequency Shift Keying.

GSM Global System for Mobile Communications.

HDL Hardware Description Language.

HDLC High-Level Data Link Control.

IM Intermodulation

IP Intellectual Property

xix

ISS Instruction Set Simulator.

JPEG Joint Photographic Experts Group.

LOS Line of Sight.

LSB Least Signi�cant Bit.

MAC Media Access Control.

MSB Most Signi�cant Bit.

MoC Model of Computation.

NS2 Network Simulator.

OFD MOrthogonal Frequency Division Multiplexing.

P2P Point-to-Point.

P2M Point-to-Multipoint.

PD ProportionalDerivative.

PDF Probability Density Function.

PLD Programmable Logic Device.

PLL Phased Locked Loop.

PM Phase modulation.

QAM Quadrature Amplitude Modulation.

RMS root mean square.

RMSE root mean square error.

RTL Register Transfer Level.

RTOS Real-Time Operating System.

SCNSL SystemC Network Simulation Library.

SDF Synchronous Data Flow.

SLD System Level Design.

xx

SLDL System Level Design Language.

SMA Simple Moving Average.

SoC System-on-Chip.

SNR Signal-to-Noise Ratio.

TDMA Time Division Multiple Access.

TLM Transactional Level Modeling.

UART Universal Asynchronous Receiver/Transmitter.

UAV Unmanned Air Vehicles.

VHDL VHSIC Hardware Description Language.

VHSIC Very High Speed Integrated Circuits.

VOIP Voice Over IP.

WAN Wireless Area Network.

WCDMA Wideband Code Division Multiple Access.

WGN White Gaussian Noise.

WMN Wireless Mesh Network.

WSN Wireless Sensor Network.

xxi

Part I.

Introduction and Background

1

1. Introduction

The complexity of wireless communication systems has increased in recent years; the
modelling and designing of such systems is becoming inefficient and very challenging
because of many problems arising during the design process. It has become essential
to improve currently used design methodologies. As a result of the problems shown,
system designers are moving towards using System-on-Chip (SoC) design methodology.
SoC is a complex integrated circuit that integrates the major functional elements of a
large system into a single chip. It may integrate different types of components, such as
digital elements, electronic elements or non-electrical parts (sensors), as well as software
components [3, 4]. This design methodology can be used as a powerful modelling and
simulation technique to design, model and verify complex wireless systems as well as
address all aspects of the modelling process consistently and efficiently. SystemC [5],
a hardware description language (HDL), is emerging as a suitable design and modelling
language because it provides a consistent methodology for the design and refinement of
complex digital systems [6]. This methodology is essential to manage complexity and
enhance designer productivity. It allows the designer to view designs at different levels
of abstraction, and in particular advocates evaluation of system performance early in the
design cycle; it is useful in guiding the refinement process into lower levels of abstraction
[4]. It is desirable to apply only one design methodology based on one modelling language
to design complete complex systems, including any off-chip components.

SystemC design methodologies can be defined as approaches, sets of models, and proce-
dures employed to convert the functional specifications of the target system to the system’s
lowest layer of abstraction [7]. It enables design and verification at the system level, in-
dependent of any detailed hardware and software implementation, as well as enabling co-
verification with RTL design. It also builds the bridge between hard and software design
[1, 8]. A number of efforts to extend SystemC design methodology to support a wide range
of applications have already been undertaken, as in, for example, the forthcoming AMS
(analogue and mixed signal) extension to the language [9, 10]; others also extend Sys-
temC methodology for digital signal processing systems [11]. They present a SystemC-
based solution supporting automatic design space exploration and automatic performance
evaluation, as well as automatic system generation for mixed hardware/software solutions

2

1. Introduction

mapped onto FPGA-based platforms; however, none have been specifically developed for
the design of wireless communication systems, which are driving a large number of state-
of-the-art developments in consumer products. Modelling and designing wireless commu-
nication systems is complicated and challenging, because during the system design explo-
ration, system design options may affect communication behaviour and communication
design options may impact system design [12]. For this reason it is important to introduce
the integration of communication modelling into the design modelling at an early stage
of system development. However, system designers are more focused on system design
issues, whereas communication features are introduced by choosing traditional protocols;
this makes the modelled system very difficult to optimise. To overcome this problem, pow-
erful modelling and simulation techniques are required to address and manage complexity
early in the design process. In the system modelling and design field, it is desirable and
very advantageous to apply the same design methodology throughout the modelling of the
system and communication aspects, to ensure that the whole system can be optimised and
investigated easily and quickly [4, 13, 14].

In the literature, two types of modelling and simulation tools are employed to design a
system: communication tools and system tools [15]. Communication simulation tools
include Network Simulator (NS2) [16] and Opnet [17]; the problem is that these com-
munication tools cannot be used for system design since they do not concurrently model
tasks within each node in the communication system and do not provide a direct path to
hardware/software synthesis [12]. Instead, system modelling tools, such as hardware de-
scription languages (HDLs), could be used to model communication, because they can
model communication at least at high abstraction levels. As mentioned above, one HDL
is SystemC [5], which has been traditionally used for system design and cannot be used to
design complex wireless communication systems because it still lacks a standard frame-
work that supports modelling of wireless communication systems (in particular the use of
wireless communication channels). SystemC has certain elements, such as First-In First-
Out (FIFOs), signals and semaphores [7]. The signal element behaves like a wire, which
cannot be used to model a wireless system because no wireless features can be incorpo-
rated into this signal element, i.e., no noise model is supported by the SystemC language.
Thus, SystemC lacks elements and components that can be used to express and simulate
wireless systems. It does not support noise links natively. To fill this gap, this research
proposes to extend existing SystemC design methodology to include an efficient simula-
tion of wireless systems. It proposes to achieve this by employing a system-level model of
a noisy wireless communication channel, along with a small repertoire of standard com-
ponents (replaceable on a per application basis).

Thus, developing SystemC design methodology to support wireless features is a critical
task for the designers, because SystemC provides a consistent methodology and a ho-

3

1. Introduction

mogeneous design flow for the design and refinement of complex digital systems; it is
also essential in managing complexity and enhancing designer productivity. After insert-
ing wireless features into existing SystemC design methodology, the designers can very
quickly investigate changes in the behaviour of the complex wireless communications sys-
tem, allowing us to implement the system as we wish, view designs at different levels of
abstraction and evaluate system performance early in the design cycle. These steps can all
be achieved because SystemC is a unified environment, which means everything can be
modelled in the same platform. However, the models developed of the target design could
not be synthesizable, because the most accurate model that can be implemented using
SystemC is RTL model. Hence to synthesis the target system, SystemC code representing
hardware elements can be changed to HDL languages such as VHDL or Verilog and can
then be synthesized. On the other hand, approaches that use different combinations of net-
work simulation tools, such as NS2 [16] or Opnet [17], in the various stages of design flow
require more than one tool to investigate the changes, so system blocks must be optimised
again when they are integrated together; this is the main advantage of developing SystemC
methodology to support wireless.

Finally, to validate our developed methodology, a flocking behaviour system [18] is se-
lected as a demonstration. This is a very complex system modelled based on the devel-
oped methodology and partitioned along different parameters. By applying our developed
methodology to model this system, we can prove that incorporating and fixing the wireless
channel, wireless protocol, noise or all of these elements early in the design methodology
is highly advantageous. The main point is the integration between computation, commu-
nication and SystemC methodology, i.e., introducing integrated communication modelling
into the design modelling early in the system development. This allows us to investigate
the system very easily and make changes quickly, because SystemC is a unified environ-
ment, which means everything is on the same platform. The modelled system is introduced
to simulate the behaviour of particles (mobile units) that form a mobile ad-hoc communi-
cation network. Wireless communication between particles is addressed in two scenarios:
the first is created using a wireless channel model to link each pair of particles [19, 20, 21],
thus wireless communication between particles is addressed using a Point-to-Point (P2P)
channel; the other scenario is created using a shared channel. Many protocols have been
designed to handle access to the shared channel [22]. In this part of the research, two mul-
tiple access protocols are employed to accomplish communication between particles. The
first protocol is Time Division Multiple Access (TDMA), which is classified as a channel-
ization protocol. In this protocol, the available bandwidth of the channel is shared in time
[22]. The second protocol is Carrier Sense Multiple Access (CSMA), which is classified
as a random access protocol. It was developed to minimise the chance of collision and
therefore increase system performance. It uses a contention-based approach to channel

4

1. Introduction

access and does not require time synchronisation [23, 24].

Therefore incorporating wireless features into existing SystemC design methodology, as
done in this research, is a very important task, because by developing SystemC as a design
tool to support wireless features, hardware (HW), software (SW) and communication can
be modelled, refined and validated simultaneously in same platform. That means, allow
the designers to integrate system design options and communication choices at an early
stage in the design flow flow. On the other hand, the design space expanded into a two
dimensional design space, as shown in Figure (1.1). The vertical dimension addresses
both the refinement of the system model and the optimisation of its algorithms; during
this process the communication model is used both to drive architecture exploration and to
verify that communication requirements are met. The horizontal dimension represents the
design space of the communication model in which different topologies and parameters
can be verified [15].

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

0N 1N
2

N N
m−1

N
m−2

L2

L3

L4

L1

(BW, delay, transmission rate, noise)

Communication Alternative

Whole system design space

N
o

d
e

 p
a

rt
it
io

n
a

l

(s
y
s
te

m
 a

lt
e

rn
a

ti
v
e

)

many nodes

Figure 1.1.: Conventional methodology versus our developed methodology

1.1. Research Objectives

The aim of this research is to provide a wireless extension to existing SystemC design
methodology. To achieve this target, we propose the following three phases:

5

1. Introduction

1. Design a digital wireless communication channel. This represents the core of any
wireless communication system. It is needed to link network nodes in wireless
systems.

2. Construct system-level models for a small set of standard components that are typi-
cally required to implement wireless communication system elements, such as PLL
(Phased Locked Loop), 8B/10B Encoder/Decoder, MAC (Media Access Control),
communication protocols such as HDLC (High-Level Data Link Control), modula-
tion techniques, etc.

3. Create a demonstration in order to validate the methodology by developing a small
application and/or test case, such as a flocking behaviour system, fully connected
Wireless Mesh Networks (WMNs) or Wireless Sensor Networks (WSNs). We can
design such systems as test cases using the elements constructed for the above
points.

1.2. Application Domains

The extended SystemC design methodology can be applied in multiple application do-
mains. It is developed to support different application domains in wireless communica-
tions fields. The main focus is on modeling of the heterogeneous wireless communication
systems such as unmanned aerial vehicles (UAV), wireless sensor networks (WSN), cel-
lular telephones, etc. as shown in Figure(1.2).

1.3. Thesis Organisation

This PhD thesis comprises three parts. The first part, which is the introduction and back-
ground, has two chapters, including this one. Chapter 2 provides the necessary back-
ground, in considerable detail, on conventional SystemC design methodology, as well as
channel modelling methods and flocking behaviour algorithms. The second part of the
thesis comprises Chapters 3 to 5, and focuses on wireless methodology. Chapter 3 pro-
vides RTL-level modelling of an 8B/10B Encoder-Decoder using SystemC. Chapter 4
describes in detail how to develop existing SystemC design methodology by incorporating
wireless features and then how to employ this methodology to model wireless communi-
cation systems. Chapter 5 presents a new method to model and simulate a noisy digital
wireless communication channel with a preset Bit-Error-Rate (BER) for P2P and Point-to-
Multipoint (P2M) platforms based on SystemC. The flocking behaviour system case study

6

1. Introduction

(A) Taxi mobile

(B) Wireless medical monitoring [25]

Figure 1.2.: Some examples of heterogeneous wireless communication systems

is developed to validate our wireless methodology; this is presented in part three, which
comprises five chapters. Chapter 6 presents modelling of a flocking behaviour system
based on our developed methodology, where wireless communication between particles
is addressed using a P2P channel. Chapter 7 investigates the effects of wireless features
on the modelled system by incorporating the wireless channel model. In Chapter 8, we
use the flocking behaviour system modelled in Chapter 6 to show how the stability of the
system and converging point are measured and optimised in terms of system construction,
using some important concepts of graph theory. Chapter 9 presents communication mod-
elling based on a shared channel (broadcast link). Finally, we conclude the thesis with
conclusions and possible future work in Chapter 10.

7

2. Background

As mentioned in Chapter One, this research studies how wireless features, including the
efficient simulation of wireless systems, can be incorporated into existing SystemC design
methodology. In this chapter we provide background information about the main compo-
nents investigated in order to achieve the research target. This information is necessary
in order to understand the material found in subsequent chapters. In the first part of this
chapter we describe existing SystemC design methodology; the second part illustrates how
a communication channel model can be developed. Finally, we explain the concept and
main rules of the flocking behaviour system constructed as a case study to validate the
proposed wireless methodology.

2.1. System Design using SystemC Methodology

System design methodologies can be understood as approaches, sets of models, and proce-
dures employed to convert the functional specifications of the target system to the system’s
lowest layer of abstraction [3, 7]. One of the emerging design methodologies, SystemC
methodology, is very flexible in terms of the design and refinement of complex digital
systems. This is essential for managing complexity and enhancing designer productivity
[26].

Since our target in this research is to develop SystemC design methodology to support
wireless systems, therefore we need to explore the existing SystemC methodology in order
to make this extension. This part begins with an overview of the System-Level Design
Language (SLDL). Some background on the SystemC language is presented in Section
2.1.2. Section 2.1.3 describes conventional SystemC methodology and the roles of the
levels of abstraction that are widely used in the system design and modelling field. Section
2.1.4 presents the system design flow of SystemC methodology.

8

2. Background

2.1.1. System Level Design (SLD)

System-level design (SLD) is defined as the design process of the entire system, which
is constructed based on several components. The specifications of the target system are
presented in terms of functionality [27]. An SLD approach can be employed to produce
system implementation from system functionality and specifications [1]. It can be involved
to define the target system to verify system functionality and then to find an optimal so-
lution by comparing design alternatives. The software part of the system is integrated
into a SoC [26, 28]. Moreover, with the increasing complexity of hardware and software,
system-level design can be used to help designers reduce system design complexity by
defining a number of intermediate models; this approach can be used to reduce the time
required to market and reduce design costs [14, 29].

Several system-level design languages (SLDLs) have recently become available; these
can be immediately employed by system designers in order to model HW/SW designs at
system level. SystemC [30, 4], which is based on the C/C++ language, is an example.
These languages allow designers to describe both HW and SW aspects of the design using
the same modelling language [28].

2.1.2. SystemC Language Overview

SystemC is a system design language that provides designers with basic mechanisms, such
as channels, interfaces and events, to model systems, communication and synchronisation
styles in system designs at various levels of abstraction [13, 8, 31]. The software content
of the system can be written in C++, without the need for additional constructs. The power
of SystemC is that it can be used as a common language by system designers, software
engineers and hardware designers [32, 33].

The advantages of SystemC include the ability for hardware/software co-design, the abil-
ity to exchange Intellectual Property (IP) easily and effectively, the establishment of a
common design environment consisting of C++ libraries, models and tools, and the ability
to reuse test benches across multiple levels of design abstraction [26, 34]. Moreover, the
design can be incrementally refined with the addition of hardware and timing constructs to
arrive at the final target architecture. SystemC ensures a smooth flow in capturing design
details at multiple abstraction levels, starting with an algorithmic-level implementation
used to verify the functionality of the system, up to a cycle-accurate design. The major
hardware-oriented features included within the SystemC library are [6, 26, 35]:

• Time model.

9

2. Background

• Hardware data types.

• Module hierarchy to manage structure and connectivity.

• Communication management between concurrent units of execution.

• Concurrency model.

Moreover, there are several approaches to designing and simulating behavioural modelling
of embedded systems by using software tools such as Matlab [36] and Simulink [37].
These tools are flexible and easy to learn but, being commercial products, are more expen-
sive. Alternatively, Verilog, VHDL and other HDLs model simulate digital and electronic
systems. Also there is Handel-C [38], a language based on ANSI-C, employed to simulate
parallel programs, channel communications and extended with concepts for timing and
concurrency [39].

However, these approaches do not deal as effectively with the increasing design complex-
ity of these systems as SystemC [8], which allows early and rapid verification of both the
hardware and software aspects of the entire System. It promotes early software develop-
ment, so the software-part is not necessary on the critical-path. SystemC also forwards
design reuse and automation [40]. There are more SystemC features, but here we have
tried to provide a brief sketch by listing the most important aspects of this library. Beyond
that, there are good references for SystemC in [5, 6, 26, 28, 8, 31, 33, 41], which explain
the complete SystemC functionality.

2.1.3. SystemC Design Methodology

The design and verification of complex digital systems requires powerful modelling and
simulation means to address all aspects consistently and efficiently. However, system
designers face a big issue: how to manage increasing system design complexity. Design
methodology is the key for managing the complexity of the design flow, especially at the
system level [4, 26, 42]. As mentioned above, the primary goal of SLD is to make the
design and modelling processes of such systems easier for designers to manage. One
essential aspect of an SLDL is the ability to support modelling of the system at multiple
layers of abstraction, represented by a number of intermediate models. These layers are
defined in order to reduce the complexity of the system design process and to evaluate
system performance early in the design cycle [13, 43]. Hence the whole design can be
separated into several small tasks, with each task represented by one abstraction level.
Finally, each model can be simulated and the result of the simulation can be independently
validated [7, 44].

10

2. Background

The works in [1, 45] introduce a system modelling graph in two dimensions: computation,
represented by the X-axis, and communication, represented by the Y-axis, as shown in
Figure (2.1). This graph is mainly used to represent the system design domain and illus-
trates how much timing information is included in the computation and communication
aspects. Hence, all the models defined above have a specific position in this graph, based
on the timing information. Both axes of the graph move from very little timing informa-
tion to complete timing information, which means from untimed to approximate timed to
cycle timed. To model a system, the design should start from an untimed model that rep-
resents the pure functionality of the design without any implementation details, and then
go through some intermediate models before arriving at the final model, which is an RTL
model, as indicated in Figure (2.1).

timed

Approximate

timed
Cycle

timed

Approximate

timed

Cycle

1: Untimed functional model

2: Timed functional model

3: TLM

4: Behaviour model

5: RTL model

Computation

Communication

Untimed

Untimed

1 2

3

4 5

Figure 2.1.: System modelling graph [1]

The system modelling graph indicated above does not necessarily need to be represented
in two dimensions. We can extend it to three dimensions if the models described above
are mapped onto a 3D graph, as illustrated in Figure (2.2). In this case, we have three
axes. The first axis is timing, representing how much timing information is added, from
an untimed level to a cycle-timed level. The second axis is architecture, representing
how much the level of architecture complexity is in the current model. The third axis
is communication, representing the level of communication in the target system. At the
origin point of the graph, the functional model is located and is known as the highest
abstract timing model, which means no timing information is known at all. Functional
means nothing is known about architecture, only about implementation. When designing
a system we always start from a functional model and move towards a final model, an RTL
model. As shown in Figure (2.2), when the level of abstraction goes into the origin point,
the target model becomes more abstract. On the other hand, information is opposite of
abstraction, which means less information is a higher abstraction level, and adding more

11

2. Background

information decreases the abstraction level. Depending on the information added, we can
establish more abstraction levels. To design a system, we move between the 3-dimensional
axes until the target model is determined, which should be located at the lowest abstraction
levels of timing, architecture and communication.

Information/Implementation

Abstract

Specification Model (starting model)

RTL Model (final model)

Intermediate Models

TimingCommunication

Architecture

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

1

2

1

2

Figure 2.2.: Abstraction Levels in 3D

As shown in Figure (2.2), the functional model is located at the origin point (position-1),
RTL is located at position-2 and TLM and behaviour levels are located between these two
points. Those intermediate models represent the abstraction levels. But these are not ex-
clusive: there are some levels in between. It is not one model and other but it is a global
refinement along these abstraction models, which means we can increase or decrease the
number of abstraction levels: this means there is no specific number of abstraction levels.
We can create a huge number of levels by adding more timing, architecture and commu-
nication information.

SystemC as an SLDL offers high abstraction level timing modelling through transaction
level modelling (TLM), causing substantially increasing simulation speeds compared to
conventional RTL simulation, and reducing system design complexity [34, 43, 46]. This
saves time during debugging and allows for more efficient architecture exploration. More-
over, SystemC provides designers with a top down design methodology, which means that

12

2. Background

the system level is said to be at the highest or top level of abstraction, and the model is
refined as it moves down to lower levels, as shown in Figure (2.3) [1, 8, 47]. These in-
termediate levels divide the entire design into small design tasks; each small task has a
specific design objective. Since each task can be modelled and simulated, the result of
each model can be independently validated; the system design can be refined and vali-
dated at each level in terms of architecture. The next sections provide a short description
of SystemC modelling methodology abstraction levels [43].

Algorithmic

Model

Untimed Functional

Model

Timed Functional

Model

Behaviour Level
Model

RTL

TLM

A
c
c
u

ra
c
y
,
S

y
n

th
e
s
iz

a
b

il
it

y

A
b

s
tr

a
c
ti

o
n

 l
e
v
e
l,
 S

im
u

la
ti

o
n

 s
p

e
e
d

C++/UML

SystemC

Hardware
Description
Language

(HDL)

refinement

Figure 2.3.: SystemC design methodology [1]

1- Algorithmic Model

An algorithmic model can be employed to develop an idea for a target design. The func-
tionality of the design can be confirmed and the output may be created for verification
purposes in later system stages [48]. This model has no timing, size or cost constraints
information.

2- Untimed Functional Model

An untimed functional model is referred to as a specification model. It must be a pure,
functionally accurate model of the target system, without any implementation details. At
this level a system model is similar to an executable specification. As the name implies,

13

2. Background

this model is an untimed model in terms of both computation and communication, which
means no timing is incorporated into this type of model and there is no reference to any ar-
chitectural details of the system [7, 41, 49]. Communication in this model is point-to-point
and implemented with SystemC primitive channels such as first in, first out (FIFO), with-
out implementation of communication protocols or shared communication links, while
synchronisation between modules is usually implicit with blocking FIFO buffers. When
this model is simulated, the functional results can be verified and validated [1, 50].

3- Timed Functional Model

Here, the untimed model is refined into a timed model by partitioning the design function-
ality. The partitioned functionality is mapped onto components and the execution timing
of the processes are added to these components in order to reflect the timing constraints of
the design specification and also to estimate processing delays for the target architecture,
which means the latencies are modelled [41, 50]. Hence, this model is approximate-timed
in terms of computation. On the other hand, communication is still modelled at an ab-
stract level and is still point-to-point. The system components communicate through the
self-synchronising channels mentioned above, so this model is untimed in terms of com-
munication. At this level, this model can be employed to achieve early hardware-software
tradeoff analysis [13, 7].

4- Transaction-level Model (TLM)

In a TLM model, the communication of the target system is separated from the behaviour
and refined from a high abstraction level to a bus model. The behaviour is represented
by modules and the communication busses are implemented using function calls related
to communication, allowing for an easier architecture exploration [7, 45]. The time spent
during data exchange is represented by wait statements and is inserted into the bus model
(channel). The computational element is still approximate-timed, as indicated in the previ-
ous model. Both computation and communication are approximately timed, which means
the system design at this level delivers high-speed simulation and presents a virtual proto-
type of the final design [46, 50].

5- Behaviour-level Model

In this model, the communication bus model is refined into more detailed implementations,
and the communication protocols of the system bus are incorporated into the processing

14

2. Background

elements. The communication busses are represented by wires and pins added to the pro-
cessing elements, so the communication protocols are inlined into processing elements
(pin accurate interfaces) [50]. Since computation is still approximately timed, as indicated
in the previous model, the main difference here is that communication is refined to more
accurate model (cycle-accurate). By using this model we can get better performance anal-
ysis of the design, but at the cost of decreased simulation speed. This model can also be
employed for fine-tuning the system and refining the implementation [7].

6- Register-Transfer Level Model (RTL)

The RTL model is defined as the most accurate model that can be implemented using
SystemC; to date, there are no tools available on the market that can be used for imple-
mentation beyond RTL in SystemC. In this model, the computation behaviour and com-
munication channels of the target design are defined explicitly (both are cycle-accurate)
[7, 49]. Moreover, a SystemC code representing hardware elements is changed to HDL
and can then be synthesized. On the other hand, a SystemC code representing software is
changed to the desired programming language [13].

2.1.4. System Design Flow with SystemC

The SystemC language enables designers to model and design whole systems (HW and
SW components) at different abstraction levels, using one descriptive language. In Sys-
temC design flow the target design moves from the highest abstraction level (system speci-
fication level) to the lowest (synthesisable hardware description), in small refinement steps
[29, 33]. By using this approach, designers can more easily implement changes in the de-
sign at each level and then verify the model. The goal of this design approach is to avoid
some of the disadvantages of traditional design flows as well as achieve early modelling
of the entire system, to allow designers to save time, evaluate system performance early in
the design cycle and save design costs [47]. The design flow of the whole system is frag-
mented into several models, defined in the previous section. Each model represents the
abstraction level at which a current implementation is modelled. All phases in SystemC
design flow are depicted in Figure (2.4) [44, 49].

According on our description above, we can say that the design flow of SystemC design
methodology is based on the methodology stages described above. As shown in Figure
(2.4), the first step of the SystemC design flow is to capture functional specifications in
C++ abstraction. By the end of this step, the complete system functionality is captured
and validated. Some of the system specifications that can be introduced in this stage are

15

2. Background

Software

Design path

Implement

using codes

C/C++

Specification

Architecture

Exploration

Integration

Synthesis

Architecture

Selected

Partitioning

Capture System

Insert Communication

Protocol

Synthesis

Bus−cycle−accurate

BCA

CA

cycle−accurate

refinement

of behaviour

Test System

Communication

Implementation

RTL

refinement

of communications

H/W path

Figure 2.4.: SystemC design flow

concurrency, replacing native C++ data types to bit accurate SystemC data types, insert-
ing computation delay, partitioning target design and allocating system functionality into
components.

After capturing the specifications and refining the untimed functional model to a timed
functional SystemC model, the next step is architecture exploration. The main purpose
in this phase is to allocate system functionality into components. The system architec-
ture is derived from the specifications. We can develop more than one option/design and
compare them. We must estimate a metrics such as area, timing, power consumption etc
that will be employed to investigate system performance for these options and then select
the optimum design. The hardware/software partitioning then takes place. In this phase,
the components selected as S/W will be implemented using S/W code and the other com-
ponents will be exported to SystemC language to be implemented as H/W components
[1, 14]. Next, further refinement can be done in order to get bus-accurate description and
then pin-accurate description.

Several approaches to designing and simulating behavioural modelling of embedded sys-

16

2. Background

tems based on existing SystemC design methodology have been proposed and published.
For example, the behavioural modelling of analogue-to-digital converters (ADCs) based
on SystemC is presented in [51]. The authors design a 12 bit pipelined ADC in order to
compare the performance of their SystemC framework with Verilog, and report the results.
Also, the results presented in [52] emphasize the facility to describe hardware using Sys-
temC, which provides a faster simulation time compared to VHDL. Moreover, SystemC
is more efficient in validating hardware than VHDL, and potentially enables a much wider
community to design hardware. The author of [40] compares traditional design flow and
SystemC design flow, indicating that SystemC flow starts with an executable specification
in SystemC as a base for hardware and software design. The advantage to this is that the
hardware and software models exist in a homogeneous environment. This permits gradual
refinement of the hardware design, without any language barrier.

The authors in [53] investigate the capabilities of existing SystemC methodology by de-
signing and simulating a complex digital system starting from the highest abstraction level;
they demonstrate the main features of SystemC, such as supporting timed behavior, hier-
archy, concurrency and the creation of fast executable specifications of the target design.
Also, the authors examine their proposed design flow by applying it to capture and vali-
date the target design at the system level. Moreover, as an example of a complex digital
system used to test their design flow, the authors select a complex Iterative Turbo Decoder
algorithm as a prototype system. To support their results, the decoder behavior model
at the system level using SystemC is compared to an RTL model designed using Verilog
2001, and the final results show that the model implemented using SystemC was executed
approximately 10 times faster than the corresponding models designed at RTL level using
Verilog 2001. Finally, the authors in [53] successfully prove the effectiveness of SystemC
in exploring a huge system design space.

Similarly, the authors in [47] examine how we can use SystemC design methodology to
model and design an effective system with high performance. This includes evaluating
all the system modelling stages in the design flow, from functional level to RTL level,
and determining how the methodology can be used to improve system design. As part
of their investigation, a Joint Photographic Experts Group (JPEG) encoder and universal
asynchronous receiver/transmitter (UART) were successfully designed using SystemC de-
sign flow. These implemented models show how SystemC overcomes issues presented by
different design methodogies. More over, this work demonstrates that SystemC is worth
investigating as a suitable HDL to model and design high performance systems.

In order to facilitate an SLD approach, [54] defines some additional refinement of SystemC
methodology that can be employed to help designers manage the complexity of the differ-
ent embedded systems, from the highest level of abstraction to the lowest. As a case study,

17

2. Background

the authors design a digital camera to validate their proposed top down design methodol-
ogy. In [55, 56], the authors present system-level support for the design of dynamically
reconfigurable hardware (DRHW) based on SystemC, and also introduce many config-
uration management approaches that can be used to reduce the impact of configuration
overhead. Moreover, they have developed an estimation method for system partitioning
and DRHW modelling. The main goal of their approach is to help system designers easily
evaluate the effect of changing some components from fixed hardware implementation to
DRHW. The support is applied in a Wideband Code Division Multiple Access (WCDMA)
case study.

2.1.5. Extending SystemC Methodology to Support Wireless

Features

As previously mentioned, this research studies how wireless features can be incorporated
into existing SystemC design methodology, including the efficient simulation of wireless
systems. At present, the SystemC modelling language lacks a standard framework that
supports the modelling of wireless communication systems (in particular the use of wire-
less communication channels), because it is designed for modelling digital systems. It is
important to mention that, to the best of our knowledge, SystemC design methodology
has not previously been extended to support wireless features. However, in recent years
some researchers have proposed to extend SystemC to model and design analogue and
mixed-signal systems, such as in [10, 57, 58, 59, 60], and other researchers have extended
the capabilities of SystemC to model radio frequency parts [61]. For instance, the authors
in [10] propose an extension to the capabilities of SystemC to allow modelling of ana-
logue and mixed-signal systems, because at the time of its writing SystemC still lacked
elements that could be used to model and design continuous-time systems. To fill this
gap, team called SystemC-AMS [9] was formed to develop SystemC to support analogue
and mixed-signal systems (AMS), hence the name SystemC-AMS. They describe a de-
sign methodology to model such systems and, by using this methodology, analogue signal
processing applications can be efficiently supported without the need for sophisticated
continuous-time simulators.

The researchers in [58] define design objectives of analogue extensions to SystemC with
respect to requirements related to different application domains. They propose that the de-
velopment would involve three phases, with new capabilities being added in each phase.
Moreover, they present the first version of the SystemC-AMS functional specification in
[57], containing the first elements of phase 1 of the extension of SystemC framework to
support analogue and mixed-signal systems. They also show how integration between

18

2. Background

the analogue elements in the existing SystemC 2.0 environment was achieved. Another
approach is proposed in [33] by the same group, the SystemC-AMS group, to extend
the existing SystemC environment to support mixed discrete-continuous systems by im-
plementing a synchronous dataflow (SDF) model of computation (MoC). They mainly
use the SDF MoC to embed continuous-time behaviour in SDF modules and to support
synchronisation with the SystemC environment. They also present an overview of the
architecture and syntax of the proposed extensions including examples with results. The
authors in [61] propose an extension of the capabilities of the SystemC environment to al-
low modelling RF systems in SystemC-WMS[62], which is based on a wave mixed signal
class library created to extend the existing SystemC environment to allow for the design
and modelling of complex systems comprising heterogeneous analogue parts. They model
analogue RF parts at the system level by using only their specifications. Also, by using
the proposed methodology, a complete Bluetooth transceiver system consisting of digital
and analogue elements was designed and simulated in order to validate their methodology.
None of the works mentioned above extend the SystemC environment to model wireless
communication systems, indicating the uniqueness of the present research.

On the other hand, several approaches targeting integration between system design mod-
elling and communication aspects exist in literature. However, most of these researches
propose a framework supporting inter-operation of different tools in order to model the
system and communication aspects, meaning they have not incorporated the whole de-
sign process into a homogeneous design methodology based on a single language. The
authors in [63] present a co-design methodology to join system alternatives with network
features. In this approach, the HW/SW part of the system is modelled using SystemC
and the network part is implemented using a network simulator (NS2) [16]. Furthermore,
the authors modify the simulator kernels in order to share a common simulation time. In
this methodology, the partition phase is done through two steps: the functionalities of the
whole system are allocated between system aspect and network components, and the latter
functionalities are assigned to either HW or SW. In order to validate their methodology, the
authors successfully apply it to model the fast path of IPv4 routing, allowing it to explore
different solutions based on system and network configurations.

In [64], a methodology is explored for modelling an embedded system and its interaction
with a network. It joins SystemC and NS2 to model system and network aspects respec-
tively. The interface between these modelling tools is achieved through a shared memory
queue. The authors also apply their proposed methodology to two case studies: the mod-
elling of a network device and the verification of two cooperating embedded systems. In
[65], a modelling and simulation methodology is used to design networked systems based
on a timing accurate integration of SystemC as a hardward/software modelling tool and
NS-2 as a network simulation tool. The integration between these tools is implemented

19

2. Background

at the level of the simulation kernels in order to provide the highest efficiency level; this
integration also supports a timing accurate synchronisation of these simulation tools. The
efficiency of the proposed methodology design is tested by modelling an 802.11 MAC
layer. The results of this case study indicate the high efficiency of the proposed methodol-
ogy.

In [66], the authors develop a methodology to model system/network aspects of a het-
erogeneous network. The system is constructed from a mobile phone, a wireless sensor
network (WSN), remote hosts and a wireless area network (WAN). The mobile phone is
used as a gateway between the WSN and the WAN. It exchanges data with the WSN and
data/voice with remote hosts through the WAN. The gateway is modelled at the system
level with SystemC, while the WAN is simulated with NS2. The WSN has been com-
pletely modelled in SystemC while the WAN has been modelled with NS2. Moreover, to
achieve cycle accurate execution of the RTOS and the application software, HW/SW parti-
tioning has been applied to the initial model of the gateway and an instruction set simulator
(ISS) of the ARM processor has been employed. At a system level scenario, the system re-
sults indicate that the total elapsed time depends on the WSN size. The experiment shows
that with ten nodes the simulation is faster than real-time. Also, [67] and [15] integrate
TLM modelling with the system/network to model network embedded systems. In this
approach, the authors use network configurations to drive architecture exploration and to
validate the system model after each refinement step. They provide a general criterion in
order to map whole system functionalities to system alternative and network aspect. To
validate their proposed methodology, a Voice-over-IP client is modelled as case study.

The authors of [68] address the problem of simulating the heterogeneous networked em-
bedded systems which assist to construct reliable, secure and scalable applications. They
discuss and illustrate how to combine different modelling tools to provide different mod-
elling and simulation alternatives for the design of networked embedded systems. The
problem is investigated theoretically and practically by applying their approach to model
a real application obtained from a European project, consisting of wireless sensor nodes
interacting with traditional networks through a gateway. The authors mention that the use
of SystemC is a possible solution to designing and simulating network embedded systems,
but the main drawback of this approach is that the designer must implement the network
behaviours since, the communication aspect cannot be simulated because it is not sup-
ported by SystemC, this means that there is no available library in SystemC to support
network behaviours.

Hence, one can say that for any changes in the above approaches and methodologies,
more than one tool must be used to investigate the change, because the system blocks
must be re-optimised once they are integrated. The wireless methodology developed in

20

2. Background

this research relies on just one modelling language, SystemC, so we can investigate the
system’s behavioural changes very quickly, because SystemC is a unified environment,
which means every thing can be modelled in the same place. This is the main advantage
of our developed SystemC methodology over the approaches mentioned above. On the
other hand, one of the few studies using a unified environment throughout the modelling
of the system aspects and networks is found in [12, 69]. The authors have exploited the
SystemC language to build a System/Network simulator called SystemC Network Simula-
tion Library (SCNSL). This library allows for model network scenarios in which different
kinds of nodes, or nodes described at different abstraction levels, interact. Here the authors
use SystemC as a unique tool allowing them to model, validate and refine the system and
network in the same environment, but this approach is different from the present research.

2.2. Radio Communication System

In a radio communication system, communication is achieved and signals are transmitted
based on radio (radiated emission) [70]. Radio emission is classified depending on the
characteristics of the signal, such as modulation technique (Amplitude Modulation (AM),
Frequency Modulation (FM) or Phase Modulation (PM)), the nature of the modulating
signal, transmitted data type, licensing restrictions and radio bandwidth [71, 72, 73]. The
essential elements of any radio communication system are: a transmitter, a transmission
medium and a receiver [72]. Each transmitter and receiver comprises an antenna and
appropriate terminal equipment that can be used as an input or output device, such as a
microphone at the transmitter and a speaker at the receiver [70, 74]. The transmission
medium is a wireless channel that is subject to various types of noise and other wireless
features [72, 74]. So we can say that the wireless channel represents the core of any wire-
less communication system; in this research its model is used as a building block for the
development of SystemC methodology to support wireless communication. As a result
of noise effect, the behaviour of the wireless channel becomes unreliable and the state of
the channel may change frequently. This random behaviour of wireless communication
channels make communication over such a channel very complicated [75]. To provide
clear background information, this section reviewed the importance of accurate channel
models and investigated the role these models have on designing an efficient communi-
cation system. We provided an overview of wireless channel modelling as well as its
key characteristics. We also reviewed some of the wireless channel models found in the
literature.

21

2. Background

2.2.1. Wireless Channel

Channel modelling in general is an important research topic in wireless communication.
There are many communication channel models that have already been successfully im-
plemented to simulate different environments. To define a channel model, we can say that
a channel can be modelled physically by trying to calculate the physical processes which
modify the transmitted signal [76, 77]. The channel model represents the transmission
channel, which is the medium between the transmitting antenna and the receiving antenna
[71]. The simplest wireless communication system model can be represented by a trans-
mitter, a wireless channel and a receiver, as shown in Figure (2.5). In such a system, the
signal travels through the wireless channel from the transmitter station to the receiving sta-
tion, using the transmitter antenna, and is received together with interference and noise by
the receiver antenna [78, 79]. As illustrated in Figure (2.5), interference and some noise
affect the transmitted signals. Interference is produced from other radio transmitters or
other electrical equipment that emits radio frequency energy. Noise types are inserted or
incorporated into the signal as it travels in the transmission medium (the atmosphere), and
some noise is added from thermal and other effects inside the receiver. In the last stage,
at the receiving side, the signal is filtered by a band pass filter in order to reach the target
signal [79, 80].

ReceiverTransmitter

Delay Attenuation + +

Interference Noise

Wireless Channel Model

Figure 2.5.: A simple wireless communication system model

In the case of wireless communications systems, which are more relevant to our research,
wireless channels are classified according to their propagation environment: urban, subur-
ban, indoor, underwater or orbital; these propagation environments differ in various ways
[75]. Under these conditions, the performance of the wireless communication systems
mainly depends on the wireless channel behaviour, because, for example, the communica-
tion path between the sender station and the receiver can change from simple line-of-sight

22

2. Background

to one that is drastically obstructed by buildings, foliage and mountains. Hence, the mod-
elling and design of such a channel becomes the most difficult part of the wireless system
[75, 81]. The wireless channel can be modelled by calculating the reflection off every
object in the environment. A sequence of random numbers might also be added to simu-
late external interference and/or electronic noise in the receiver. Also, the communication
channel can be modelled statistically, or statistical and physical modelling can be com-
bined. In wireless communications the channel is often modelled by a random attenuation
(known as fading) of the transmitted signal, followed by additive noise [75, 82].

2.2.2. Characteristics of Wireless Channels

In radio communication systems, radio waves are propagated outwards from a transmitting
antenna to a receiving antenna, but some factors can seriously impact the propagations of
these waves. Reflection, diffraction and scattering represent the three basic factors that
impact mobile communication systems [83, 84].

• Reflection: This arises when propagating electromagnetic waves are incident on an
object with larger dimensions than the incident wave’s wavelength. For example,
the reflection mechanism can occur at the surface of the Earth, as shown in Figure
(2.6), or at walls [83, 85].

Reflected

wave

Direct wave

Earth

Transmitter Receiver

Figure 2.6.: Reflection mechanism at the surface of the Earth

• Diffraction: This occurs when a direct radio path from the transmitter antenna to
the receiver antenna is obstructed by a sharp object, as shown in Figure (2.7), and,
as a result of this, secondary waves are generated behind and around the obstructing
object [86].

23

2. Background

Figure 2.7.: Diffraction phenomenon

• Scattering: Scattering arises when the direct radio path of the wave propagation
consists of objects with a non-regular shape that have dimensions smaller than the
wavelength of the transmitted wave. As a result, the energy of the transmitting wave
is redirected in different directions around the obstacle, as shown in Figure (2.8)
[84, 85].

Figure 2.8.: Scattering

In this section we cover what happens to the signal as it travels from the transmitter to
the receivers. The wireless signal that travels from the transmitter antenna to the receiver
antenna is affected by some of the factors mentioned previously, so the behaviour of the
wireless channel can be characterised by three independent phenomena. These are: path
loss variation with distance, shadowing and multipath fading [71, 85]. These characteris-
tics depict the variations of the channel strength over time domain and frequency domain.

24

2. Background

The wireless channel variations can be classified into two types: large scale channel vari-
ation and small scale channel variation, as shown in Figure (2.9) [74].

• Large-scale fading: This refers to variations due to path loss of the signal as a
function of distance and shadowing by large objects (obstacles), such as buildings
and hills. This variation occurs when the receiver moves a relatively large distance
from the transmitter, so the signal strength gradually decreases. Large-scale fading
is typically frequency independent [73, 87].

• Small-scale fading: This happens when a receiver moves a short distance. The
signal strength may vary rapidly due to the constructive and destructive interference
of the multiple path propagation effects that occur over very short distances. This
phenomenon is frequency dependent [73, 87].

Wireless Channel Characteristic

Small scale channel
variation

ShadowingPath loss

Large scale channel
variation

Multi−path fading

Depending on

Delay spread Doppler spread

Depending on

Figure 2.9.: Wireless channel characteristics

a- Path Loss in Propagation

As a signal travels from the transmitter to the receivers, it goes through several sources of
attenuation. In a free space, the signal will lose power; as a signal leaves the transmitter
and moves towards the receiver, its power will drop, and the dropping ratio depends much
on the distance and the medium in which the signal travels. This means that the greater
the distance, the more power will drop [87]. In free space, assuming for simplicity that
the transmitted signal propagates uniformly in all directions, the following analysis holds.
We assume the transmitter sees the receiver, indicating a line of sight (LOS). Moreover,
here we assume the transmitter sees the receiver, indicating a line of sight (LOS) channel,
hence the signal leaves the transmitter towards to the receiver. The distance is d and here
we do not assume any type of reflection. Figure (2.10) illustrates signal strength versus

25

2. Background

distance for the path loss. The curve indicates the power loss of the signal due to traveling,
which is attenuation in power. For this LOS channel (free space), the ratio of the power
received Pr to the power transmitted Pt is given by [88]:

Pr = Pt

[√
Glλ

4πd

]2

(2.1)

where:

Pr : received power.

Pt : transmitted power.

Gl : the product of the transmit and receive antenna field radiation patterns.

λ : the wavelength.

d : the distance between transmitter and receiver.

Signal attenuation in free space

d

S
ig

n
a
l
s
tr

e
n

g
th

 (
d

B
)

Distance between transmitter and receiver

Figure 2.10.: Path loss versus distance

As indicated in Equation (2.1), the signal power decays inversely with the square of the dis-
tance from the transmitter. But in an indoor environment, this factor is increased, because
of the presence of objects such as furniture and also because of destructive interference of
the transmitted signal caused by the reflected signals from these objects. These combine
to produce what is known as the path loss of the radio channel [89, 90].

On the other hand, only path loss can be treated as a deterministic effect, because it mainly
depends on the distance between the transmitter and the receiver. It plays an important

26

2. Background

role in larger time scales, such as seconds or minutes, because the distance between the
transmitter and the receiver in most situations does not change significantly on smaller
time scales [91]. Theoretically, as mentioned above, the signal power during travel from
transmitter to receiver decreases in proportion to the square of the distance, as stated in
Equation (2.1). But in practice, the power decreases more quickly, typically to the 3rdor
4th power of distance, because due to the earth’s surface, some of the waves are reflected
and may reach the transmitter with a phase shift of 180° and may then reduce the net
received power. A simple two-ray approximation for path loss is shown in Equation (2.2)
[91]:

Pr = Pt
GtGrh2

t h2
r

d4 (2.2)

where:

Gr : Receiver antenna gains.

Gt : Transmitter antenna gains.

hr : Antenna heights of receiver.

ht : Antenna heights of transmitter.

In general, a common empirical formula for path loss is [91]:

Pr = PtP0(
d0

d
)α (2.3)

where:

P0 : power at a distance d0

α : path loss exponent.

The path loss is given by [91]:

PL(d)dB = PL(d0)+10αlog(
d
d0

) (2.4)

where:

PL(d0) : the mean path loss in dB at distance d0

27

2. Background

b- Shadowing

Large scale channel variation on a mean level is known as shadowing. As the signal travels
from the transmitter to the receiver it usually encounters large objects (obstacles) such as
buildings, trees, cars and other objects. It will also drop in power; this is called log-normal
fading. Hence, as indicated above, we assume free space and a medium with no obstacles
or obstructions, but here the signal loses power because of obstructions [90, 91, 92].

For example, when a receiver is moving, an obstacle such as a large building may get
between the transmitter and the receiver, causing an increase of the signal attenuation of
the received signal. Some part of the transmitted signal is also lost through absorption,
reflection, scattering and diffraction [90, 92] The receiver continues to move and, after a
short time, the signal path is clear and the power of the received signal increases again.
This effect is called shadowing and is illustrated in Figure (2.11) [91]. In this figure, if we
imagine the transmitter antenna as a light source, the middle building would cast a shadow
on the receiver antenna, hence the term shadowing. The net path loss becomes [87, 93]:

PL(d)dB = PL(d0)+10αlog(
d
d0

)+χ (2.5)

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

obstructing

object

signal
path

Transmitter

Receiver

b
u
il
d
in
g

Figure 2.11.: Shadowing

Here χ is a normally (Gaussian) distributed random variable (in dB) with standard devi-
ation σ , while the other variables are stated in Equation (2.4). χ represents the effect of
shadowing. As a result of shadowing, the power received at the points that are the same
distance d from the transmitter may be different and have a log-normal distribution. This
phenomenon is referred to as log-normal shadowing; as mentioned above, there is not only
one obstruction but probably several. We do not know how many; therefore, we must treat
this problem as statistical or probabilistic rather than deterministic. This is why we see the

28

2. Background

probability formula in the previous equation. Figure (2.12) shows the signal fluctuating
depending on the obstacles, obstructions or objects it travels through. There is a decrease
in power due to the long-normal fading [94].

Log−normal fading

S
ig

n
a
l
s

tr
e
n

g
th

 (
d

B
)

Distance (d) − km

Shadow + Path loss

Figure 2.12.: The power drop due to slow fading (long-term fading)

c- Multipath Fading

Multipath fading is a phenomenon occurring in radio communications systems; at any
point in time, the receiver receives multiple signals originating from the same transmitter,
each of which following a different path between the transmitter and receiver, as shown in
Figure (2.13) [71, 93, 95, 96]. Depending on the environment of the transmitter and re-
ceiver, there can be many or few objects reflecting the transmitted radio signal. In general
these objects are known as scatterers, and the transmission of a signal leads to a situation
known as multipath dispersion, or delay spread [73, 89, 97].

Figure 2.13.: Multipath fading scenario

• Delay Spread: This is basically the time between the first arrival and the last arrival
of the signal. As a signal moves through the channel, it is reflected, diffracted and

29

2. Background

scattered [77]. Here, reflected means each reflection represents a copy of the signal
and arrives at a different time. The time between the first and last arrival is referred
as a delay spread [81, 94, 98].

• Doppler Shift: This depends on how fast the transmitter is moving and how fast
any object between transmitter and receiver, which would be responsible for signal
reflection, is moving. The signal will encounter a change in frequency; this is called
a Doppler shift [77]. If everything is stationary, the signal frequency characteristics
will be preserved. Therefore, having a channel with a large Doppler shift means
having a dynamic channel, where the transmitter and/or receiver and/or objects are
responsible for scattering [95, 98].

2.2.3. Some Channel Models

The use of channel models for communication system design and evaluation is widespread
and universally accepted as an important element of system optimisation [99]. In com-
munication literature, a number of different methods have been proposed and used for
the simulation of Rayleigh fading; some other channel models are based on noise and
interference. In this section we briefly illustrate some of these channel models.

A- AWGN Channel Model

The Additive White Gaussian Noise (AWGN) communication channel is the predomi-
nant model used in the design and test of a communication system [100, 101]. In this
model, the transmitted signal is corrupted by the AWGN signal. Usually, White Gaus-
sian Noise (WGN) is needed for Digital Signal Processing (DSP) system testing or DSP
system identification [77]. In [100], the author presents a novel scheme of implementing
AWGN generators in FPGAs for channel emulators to evaluate the performance of com-
munication systems. Compared with existing methods, like the Central Limit Theorem
(CLT) method and the Box-Muller method, the proposed scheme has advantages in both
speed and simplicity, especially when two independent emulators are needed, such as for
modulation [87].

B- Rayleigh Channel

Rayleigh fading is a statistical model for the effect of a propagation environment on a ra-
dio signal. Rayleigh fading models assume that the magnitude of a signal that has passed

30

2. Background

through a communications channel model will vary randomly, or fade, according to a
Rayleigh distribution [89, 94, 97]. Rayleigh fading occurs because sometimes the trans-
mitter moves, for instance when one uses a phone in a car or a train. In cases where the
receiver moves or something between the transmitter and the receiver moves, the reflec-
tion can be from a moving target [101]. This gives rise to relative phase shifts between the
received reflected signals, which can cause various reflected signals to attenuate the orig-
inal transmitted signal (direct path signal), and may cancel each other out. This is called
Rayleigh fading and is shown in Figure (2.14) [89, 94].

p
o
w
e
r

R
e
c
e
iv
e
d

t

t

t

Direct

Reflected

Combined

Figure 2.14.: Rayleigh fading

On the hand, Rayleigh fading is known as a signal impairment source. As shown in Figure
(2.15), when we compare the path loss and shadowing effects mentioned above, we can see
rapid variant fluctuation. Fluctuation of signal power is really a type of fading; therefore,
we can see in the shadowing effect that the distance is 1-2km, while the distance here is a
few meters; as discussed earlier, the signal fluctuation is very fast because the transmitter
or the receiver is moving, or the reflectors responsible for reflecting the signal are moving
[96].

The Rayleigh fading channel model belongs to a class of channels where the received sig-
nals of faded signals are based on Rayleigh distribution. This is mainly used for describing
the statistical time varying nature of the received signal in an isotropic scattering environ-
ments, where no LoS propagation path exists between the transmitter and the receiver. The
Rayleigh PDF is given by [102]:

Pα(t)(y) =
2y
Ω

exp(−y2

Ω
),y≥ 0 (2.6)

where Ω = E[α2(t)].

31

2. Background

Figure 2.15.: Signal fluctuation in Rayleigh fading

α is a random variable.

C- Rician Channel

Rician distribution is commonly used to describe the statistical time varying nature of the
received envelope, when a signal is transmitted over an environment where, in addition to
many reflecting objects around the receiver, a LOS propagation route exists between the
transmitter and the receiver [101]. It can also be used to describe the envelope distribution
of the received signal when it contains a dominant non-faded component, although this
dominant component is not the LOS one [96]. The Rician PDF is given by

Pα(t)(y) =
2(K +1)y

Ω
exp
[
−K− (K +1)y2

Ω

]
I0

(
2y

√
K(K +1)

Ω

)
(2.7)

where : K represents the ratio of the power in the specular component.

Ω = E[α2(t)].

α is a random variable.

Io(.) is the 0th order modified Bessel function.

32

2. Background

2.2.4. Noise

The performance of any communication system is affected by noise and interference from
other sources. In practice, noise represents the number of errors occurring in the system.
It is the undesired electrical signals that always exist in communication systems [88]. It
also can be defined as the spurious signals inserted into the communication signal by the
channel, equipment, electromagnetic coupling or clicking of switches [99]. The perfor-
mance of electrical systems is generally affected by noise. For this reason, in electronic
communication systems the subject of noise and noise reduction plays a key role in sys-
tem design and is also the most important single consideration in transmission of data
[72]. But we can reduce the effect of noise through use of suitable filtering, the choice of
a suitable modulation technique and the selection of an optimum receiver site. There are
several types of noise that affect system performance, including thermal noise, impulse
noise, crosstalk and intermodulation noise [72, 99]:

a- Thermal Noise

This is a natural source of noise, also called Johnson noise [99]. It occurs in all transmis-
sion media and all communication equipment. This type of noise cannot be eliminated
because it is generated by the thermal motion of electrons in all passive devices, such as
resistors, wires and so on. Electrons causing thermal noise are the same electrons respon-
sible for electrical conduction [72].

From the previous description, we can claim that thermal noise is a statistical quantity
and can be represented by its probability distribution. Also, Gaussian distribution is used
to inform us of statistical randomness. Hence, thermal noise has a Gaussian distribution
and exists at all frequencies, so it also called white noise, because it refers to the average
uniform spectral distribution of noise energy with respect to frequency. The property of
Gaussian distribution allows it to be completely specified in terms of its power density
(= power/Hz) and is usually denoted by No = kT , where k is the Boltzmann’s constant
and T is the temperature in oK (degrees Kelvin) [72, 99, 88].

b- Impulse Noise

This is another type of noise that plays an important role in the communications field.
Impulse noise is different from other noise types because it is non-continuous (Figure
(2.16)) and is formed from irregular pulses or noise spikes of short duration with relatively
high amplitude [72, 99]. Sometimes these noise spikes are known as hits, and each spike

33

2. Background

has a wide spectral content, which means the impulse noise can smear a large frequency
bandwidth. Also, this type of noise may seriously degrade error performance on data or
other digital circuits. This is due to the clicking of mechanical switches and results in
either audible clicking sounds during conversation or spikes in digital bit transmission.
Another source of impulse noise could be sparking, due to imperfect insulation [72, 88].
In this research, we consider impulse noise to model digital noise and then insert it into
the system. The idea is to modify the individual bits or packets with a given probability,
as we will see in Chapter Four.

Impulse noise

above logic high

level

3.3V

2.0V

0.8V

Logic level

Logic level

Un−filtered I/O

Filtered I/O

Unwanted pulse

V
o
lt
a
g
e

le
v
e
l

Figure 2.16.: Example of a digital signal suffering impulse noise and its corresponding
logic level[2]

c- Crosstalk

This is a type of noise known as a disturbance, caused by electromagnetic interference
producing an undesirable coupling over a cable pair. Therefore, the signals are confused
and cross over each other. There are three main causes of crosstalk: electrical coupling be-
tween transmission media, poor control of frequency response and nonlinear performance
in analog FDM [72, 99].

d- Intermodulation Noise

Intermodulation (IM) noise is a special type of crosstalk; it occurs as a result of the pres-
ence of intermodulation products. If we have two signals with frequencies F1and F2 com-
ing from two different circuits and moving through a nonlinear device, the result is in-

34

2. Background

termodulate products which form a new signal that falls inside a frequency band and/or
outside a frequency band. This type of noise is similar to harmonics in music [72].

2.2.5. Channel Model

In wireless networks, it is an important consideration to determine to what extent can a
pair of nodes communicate. A link quality analysis has been carried out to describe the
behaviour of the communication medium between the transmitter and the receiver termi-
nals. This is based on the free-space propagation representation of the communication link
in equation (2.8), which represents signal decay as a function of distance [88].

L f s = 10Log10

(
Ptx

Prx

)
=−10Log10

(
GtGrλ

n

(4π)ndn

)
, (2.8)

where the free-space propagation loss is L f s (line-of-sight, in dB), Ptx and Prx are the
transmitted and received power in Watts, Gt and Gr represent the respective antenna gains
and the link distance is d. The receiver sensitivity required is usually quoted in dBm, and
can be computed using equation (2.9) [103].

Prx = Ptx−L f s−Fade Margine (2.9)

The general expression for propagation loss in dB with the assumption that the antenna
gains are 0 dB (for simple dipole antennaes) and in free space (where n is assumed to have
the value of 2) can be expressed as [88]:

L f s = Prx[dB]−Ptx[dB] = 10×n×Log10(4πd/λ) dB (2.10)

where λ = c/f is the free-space wavelength at the carrier frequency (and c is the speed of
light and f is the frequency).

Signal reduction due to multipath fading is normally in the range of 20 to 30 dB and hence
in practice a fade margin will be added to the power loss to account for it [88, 103].

We proceed to incorporate the effects of the modulation technique employed. This will
allow us to estimate the biterror probability PB which represents the Bit Error Rate (BER)

as a function of the bit energy and noise-density of the signal Eb/N0. Figure (2.17) illustrates
the waterfall like shape of most such curves. For the purpose of link budget analysis, the

35

2. Background

most important aspect of a given modulation technique is the signal to noise ratio necessary
for the receiver to achieve a specified level of reliability in terms of PB (BER) .

BP

Eb N 0(dB)/

BP

N 0

Eb10
−1

10
−2

10
−3

10
−4

10
−5

10
−6

10
−7

0 1 2 3 4 5 6 7 8

1.0

0.5

= Q

Figure 2.17.: General shape of PB versus Eb/N0curve

The probability of a bit error, PB, is defined as [88]:

PB = Q(z) = Q
(√

Eb

No

)
(2.11)

Where Q(z), is called the complementary error function or co-error function. This com-
plementary error function is numerically equal to the area under the “tail of the Gaussian”.
It is closely related to the complementary error function er f c(z) and error function er f (z):

er f (z)≡ 2√
π

zˆ

0

e−x2
dx, z≥ 0 (2.12)

er f c(z)≡ 2√
π

∞̂

z

e−x2
dx = 1− er f (z), z≥ 0 (2.13)

The Q− f unction is related to these functions by

Q(z) =
1
2

er f c
(

z√
2

)
, z≥ 0 (2.14)

Equation (2.15) provides a sample BER model for a specific modulation scheme, Quadratic
Phase-Shift Keying (QPSK). The BER assuming white noise AWGN is given by [103,
71]:

36

2. Background

BER =
1
2

er f c
(√

Eb/N0

)
(2.15)

where the maximum thermal noise power within a given bandwidth B is given by N0 =

kT B.

In the radio and microwave bands, the spectral density is taken as N, for a one sided spec-
trum, and as N0

2 for a two side spectrum, where: k = Boltzmann’s’s constant, T = system
temperature in Kelvins, usually assumed to be 290K. SNR gives the relation between the
received signal power S and the noise power N as given by [88]:

SNR[dB] = 10×Log10

(
S
N

)
(2.16)

Where Eb/N0, in equation (2.15) is just a normalised version of SNR [88], which can be
rewritten to emphasise that Eb/N0, is just a version of S/N, normalised by bandwidth and bit
rate R, as follows [88]:

Eb

N0
=

S
N

(
B
R

)
(2.17)

2.3. Flocking Behaviour System

As previously mentioned, one phase of this research is to create a demonstration in order
to validate the wireless methodology by developing a small application and/or test case.
A flocking behaviour system is selected as a case study for demonstration, because we
must prove that incorporating and fixing the wireless channel, wireless protocol, noise or
all of these factors early in the developed SystemC design methodology (wireless method-
ology) is very advantageous, i.e. to show that small changes in the wireless specifications
result in big changes in system dynamics. Therefore, we may need to construct different
architecture to investigate the system over different performance parameters. Our target
is not just designing and implementing a flocking behaviour system: the implementation
of such a system is trivial and has already been done a number of times [104, 105, 106].
The goal of this case study is to show that communication can have a big impact on sys-
tem dynamics. This is achieved by incorporating communication early in the design space
to create an optimal design. Moreover, we need to optimise system stability in terms of
communication.

37

2. Background

2.3.1. What is Flocking?

A flock is a phenomenon defined as a large group of animals organizing and moving
together into an ordered motion. This group can be a enormous flock of birds moving
with a collective and coherent motion, a number of wild animals moving across the sa-
vanna, a school of fish migrating, swarming of bacteria, and so on [104, 107, 108]. The
main characteristics of flocking systems are: distributed control, local interaction and self-
organisation [109]. The reason for creating a flock is that its members are believed to have
certain advantages over individuals, such as increased safety from predators [110, 111]
and better chances of finding food [109]. Though people have always been intrigued by
the movements presented by different flock types, modelling and systematic studies of
flocking behaviour have only recently emerged. The first real effort to simulate and model
flocking behaviour was done by computer scientist and animation artist Craig Reynolds in
1987 [112]. However, since that time flocking has become a subject of great interest in
many fields, such as computer science, biology and applied mathematics [106, 113].

2.3.2. Flocking Applications

Understanding flocking behaviour concepts can help designers construct and implement
many artificial autonomous application in different fields, such as unmanned air vehicles
(UAV), autonomous underwater vehicles (AUVs), search systems, mobile robots, etc.[109,
114].

2.3.3. Reynolds's Model

In 1987 computer scientist Craig Reynolds presented a flocking behaviour model to sim-
ulate the motion of a flock of birds [112]. He simulated flocks by starting to model each
individual member of the flock, known as a boid. A boid is a flock member and can be
any entity which can participate in the flocking behaviour, such as a bird, fish or sheep
[107, 108]. In Reynolds’s model, each boid in the flock makes steering decisions based on
three rules [112]. These are:

• Separation: This refers to collision avoidance. Each boid always tries to steer away
from other boids near them.

• Cohesion: This is when boids move toward the average position of local flockmates.

• Alignment: This refers to velocity matching. The boids must match their velocity
to that of other boids.

38

2. Background

With these fundamental rules, a simple flocking behaviour system can be implemented as
described in [104, 105, 106]. Accordingly, in [104], Travers develops a simple algorithm to
simulate a flocking behaviour by using autonomous agents with simple movement rules.
He designs his algorithm based on the three rules proposed by Craig Reynolds [112].
Motivations for studying flocking phenomenon in the biological world are described in
[106]. The work in [105] constructs a model that can be used for real-time simulations and
also has the potential to be used in games, simulations, crowd descriptions, etc. In 1999
[115], Craig Reynolds advanced his original model, implemented in 1987. This extension
is a greatly expanded model that is easier to fit and implement. In recent years, problems
in the flocking phenomenon have attracted much attention among researchers working
in the fields of computer science, control engineering, biology and physics [116, 117,
118]. As a result, flocking has opened a new subject on how to investigate the cooperative
movements of a large group of agents without a centralized scheme, and how to develop
various cooperative control capabilities of engineering groups, such as control of mobile
robots, design of mobile sensor networks and unmanned aerial vehicles (UAV) [119].

2.3.4. Development of Flocking Behaviour Models

In recent years, researchers have suggested some changes to improve the rules described
above, including obstacle avoidance and goal seeking. Many algorithms have been pro-
posed to achieve these rules. In [114], Zonggang uses graph theory as a basic tool to inves-
tigate and solve the coordinated control problem, because this theory provides an approach
to explaining the relations between the coordinated variables. Also, the leader/follower ap-
proach to the goal tracking problem is a research topic investigated in [111, 120, 121, 122,
123, 124].

2.4. Summary

In this chapter we gave background information about the main areas that required in-
vestigation in order to develop a SystemC design methodology to model and simulate
wireless communication systems. In the first part, we described the present SystemC de-
sign methodology, noting its strengths in describing hardware in a unified fashion from the
level of untimed functional models down to RTL level models, and the benefits that gives
designers in modelling at differing levels of abstraction. We reviewed recent examples in
the literature of SystemC being used to design large-scale heterogeneous systems and net-
works, and modern attempts to extend SystemC to the modelling of analogue and mixed
signal systems (including one example of the use of SystemC in RF transceiver design).

39

2. Background

However our review did not find any comprehensive examples of SystemC being used in
the comprehensive design of wireless networks, a gap in the literature that this research
aims to fill.

The second part first introduced the theory of radio communication systems and then pro-
vided background on channel modelling methods, by presenting some channel models
such as AWGN, Rayleigh and Rician. This information was necessary in order to under-
stand how a wireless communication channel model, which forms the core of any wireless
communication system, can be modelled and developed in order to use it as a building
block for the development of a SystemC methodology to support wireless communication.
The results of this discussion clearly showed the need for noise and delay to be included
in the channel model in order to investigate system performance under real conditions.

Finally, we explained the concepts behind the flocking behaviour system selected as a
case study to demonstrate our methodology. It is a very complex system and we need
to model it based on the developed methodology in order to prove that incorporating and
fixing the wireless channel, wireless protocol, noise or all of these elements early in the
design methodology is very advantages, because our target is not just designing and im-
plementing a flocking behaviour system. The implementation of such a system is trivial
and has already been done a number of times. The goal of this case study is to show that
communication can have a big impact on system dynamics as we will show in the coming
chapters.

40

Part II.

SystemC Wireless Methodology

41

3. RTL-Level Modeling of an

8B/10B using Existing

SystemC Methodology

As mentioned before, we need to construct some standard components at the system level
that are typically required to implement wireless communication systems; one of these
standard components is an 8B/10B Encoder/Decoder. Therefore, this chapter presents an
RTL-level model of an 8B/10B encoder/decoder block in SystemC. The use of 8B/10B
coding is an important technique in the construction of high performance serial interfaces.
These are particularly suitable for alleviating the I/O bottleneck of state-of–the-art sys-
tems. SystemC has been chosen because it provides a homogeneous design flow for com-
plex designs (i.e. SoC and IP based design), where system modelling at the early stages
of the design becomes increasingly important.

3.1. Introduction

Serial transmission technology is increasingly used for the transmission of digital data.
State of the art communication networks make use of serial links for transferring data [22].
This is in part due to the reduction in pinout and cost; but most importantly because it is
inherently immune to skew, which plagues high speed parallel interfaces. To improve the
performance in serial data transmission systems, block coding is used to ensure sufficient
data transitions occur for clock recovery and also to help guard against errors. In the
early 80’s the 8B/10B block coding technique was introduced by Albert Widmer and Peter
Fransazek of IBM Corporation [125]. Although quite old, the technique continues to be
employed in state of the art technologies, such as HyperTransport, IEEE1394b, SATA,
DVB, and many others.

This chapter describes the construction of an RTL model of an 8B/10B encoder in Sys-
temC. Although other HDL models have been used, a SystemC model is desirable as it

42

3. RTL-Level Modeling of an 8B/10B using Existing SystemC Methodology

integrates into the SystemC design methodology, which provides a consistent framework
for the design and modeling of complex systems at numerous levels of abstraction (which
encompass all levels from system specification to implementation). This is particularly
important for the design of SoC systems, where it is necessary to determine the system
performance before a prototype is constructed, in order to evaluate the merit of different
implementations. Also, because SystemC can describes hardware at high levels of ab-
straction, it also provides a faster simulation time, when compared to VHDL [52], which
is an important feature when a large design space needs to be explored. Managing ab-
straction, early verification and using the homogeneous model are the strongest weapons
in combating complexity [8].

The majority of published work is centered towards specific 8B/10B implementations,
such as in [126] which perform 8B/10B encoding/decoding within Lattice programmable
logic devices (PLDs). In [127], Wu et al propose a new peak-to-average power ratio re-
duction method. They use an 8B/10B code in the time domain of OFDM system to reduce
peak-to-average power ratio. DC-balance is ensured because the encoder transmits the
same number of ones as zeros. This is important, as providing AC-coupled links eliminate
the ground-loop problem. In this novel work, the main objective is to develop a reusable
8B/10B IP core offering flexible interoperability, which can be used to allow efficiently
prototyping of serial communication systems. Moreover, the model has been constructed
at the RTL level so that it can be efficiently synthesized to hardware, or implemented as a
software component if required [44, 128].

The remainder of this chapter is organized as follows: Section two provides a brief de-
scription of the 8B/10B Encoder-Decoder. Section three describes the SystemC 8B/10B
Encoder-Decoder Model. Software implementation is discussed in sections four, five and
six. Section seven provides results and a brief analysis. Finally, conclusions are drawn in
section eight.

3.2. 8B/10B Encoder-Decoder Description

In an 8B/10B encoding process a block of 8 bits of data is converted to a 10-bit block
before transmission (Figure(3.1)), with the additional information used to ensure that i)
enough data transitions are present. ii) DC balance is achieved and iii) to aid in providing
data integrity. The decoder decodes a 10-bit code into 8 bits of data. For ease of reference,
the eight input bits are named A, B, C, D, E, F, G, H, where A is the least significant
bit (LSB), and bit H is the most significant bit (MSB). They are split into two groups in
the encoding process: The five-bit group A,B,C,D,E, and the three-bit group F,G,H. The

43

3. RTL-Level Modeling of an 8B/10B using Existing SystemC Methodology

coded bits are named a, b, c, d, e, i, f, g, h, j (the order is not alphabetical). These bits
are also split into two groups in the decoding process: the six-bit group a,b,c,d,e,i, and the
four-bit group f,g,h, j.

H G F E D C B A

j h g f i e d c b a

8b10b Conversion

LSBMSB

02345 167

345 2 1 06789

Figure 3.1.: 8B-10B Conversion

Figure(3.2) shows a diagram of an 8B/10B Encoder/Decoder block. Since 8 bits of data
are converted to 10 bits before transmission, the technique requires transmitting encoded
data 25% faster than the desired throughput (i.e. 1 Gb/s of encoded data is transmitted
at 1.25 Gb/s between terminals [129]). Structurally the 8B/10B code is defined from
simpler 5B/6B and 3B/4B codes. For instance, in the encoding side, the 8B/10B Encoder
consists of two sub-blocks, the 5B/6B and the 3B/4B encoders, shown in tables (3.1)
and (3.2), respectively. In order to aid in clock recovery, the code is designed so that no
more than five consecutive 0’s or 1’s are ever transmitted [125]. The 8B/10B encoder
block continuously converts the incoming data to 10-bit symbols. The conversion is done
depending upon the value of a signal called running disparity and the incoming stream
of data. The running disparity is a binary parameter, which has either a positive or a
negative value, and whose purpose is to ensure DC balance is maintained in the stream.
The running disparity of any incoming data is calculated based on the number of logic 1’s
and 0’s present in that data code group. On reset the running disparity value is initialized
as negative.

An 8B/10B encoder takes a one byte input, and generates a 10-bit code. Some of these
codes are balanced (i.e. they have an equal number of 1s and 0s), while others have a
disparity of ±2 (either four 1s and six 0s, or, six 1s and four 0s). These last codes are
always assigned in pairs, such there are always two symbols (with disparities of +2 and
-2 respectively) associated to that particular input. The disparity (if any) of the current,
and any previous symbols is tracked by the running disparity variable, whose purpose is
to maintain an overall balanced stream. This is achieved by selecting the proper encoding
symbol so that the running disparity is held at ±1 (the running disparity is initialized
at reset to -1 [125]). The decoder, on the other hand, converts 10-bit symbols to 8-bit

44

3. RTL-Level Modeling of an 8B/10B using Existing SystemC Methodology

�
�
�
�
�
�

�
�
�
�
�
�

10−bit

Input Port

Output Port Input Port

Output Port
8−bit

8−bit

Decoder

10B to 8B8B to 10B

Encoder

Figure 3.2.: 8B/10B Encoder/Decoder Block Diagram

data, but does not need to track the running disparity, other than for synchronisation and
error correction purposes, as in this case the mapping is surjective. For completeness the
decoder implementation described in this chapter does keep track of the disparity.

3.3. 8B/10B Encoder-Decoder SystemC Modules

Structure

SystemC defines a system modeling and design methodology, which is supported by a
C++ class library, that can be used to model systems in a homogeneous environment all
the way from requirement capture to system partitioning, cycle accurate modeling and
backend implementation. This allows to obtain performance metrics at high levels of
abstraction which can be used to asses the impact of different architectural solutions early
in the design phase [30, 8].

In this work, structural designs for the encoder and decoder models are implemented in
SystemC using modules, ports, processes and signals which represent the fundamental
constructs of SystemC libraries. The Modules can contain other modules, allowing a
hierarchical construction of the system model. Processes communicate to each other via
interfaces, channels and ports, and can synchronize with each other via event objects. Also
there are a variety of data types are supported to include single bits, bit vectors and fixed-
point integers[13, 130]. The encoder and decoder models have been implemented by using
modules and can be connected together through the ports which are created from the base
class sc_in<data_type>in_port_name and sc_out<data_type> out_port_name.

45

3. RTL-Level Modeling of an 8B/10B using Existing SystemC Methodology

Decimal Binary Codeword

0 00000 100111 or 011000
1 00001 011101 or 100010
2 00010 101101 or 010010
3 00011 110001
4 00100 110101 or 001010
5 00101 101001
6 00110 011001
7 00111 111000 or 000111
8 01000 111001 or 000110
9 01001 100101
10 01010 010101
11 01011 110100
12 01100 001101
13 01101 101100
14 01110 011100
15 01111 010111 or 101000
16 10000 011011 or 100100
17 10001 100011
18 10010 010011
19 10011 110010
20 10100 001011
21 10101 101010
22 10110 011010
23 10111 111010 or 000101
24 11000 110011 or 001100
25 11001 100110
26 11010 010110
27 11011 110110 or 001001
28 11100 001110
29 11101 101110 or 010011
30 11110 011110 or 100001
31 11111 101011 or 010100

Table 3.1.: 5B/6B Encoding

Decimal Binary Codeword

0 000 0100 or 1011
1 001 1001
2 010 0101
3 011 0011 or 1100
4 100 0010 or 1101
5 101 1010
6 110 0110
7 111 0001 or 1110

Table 3.2.: 3B/4B Encoding

46

3. RTL-Level Modeling of an 8B/10B using Existing SystemC Methodology

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

10

OUTPUT

(gtkwave)

Stimulus ModuleTest Bench

stim()

Process

Clk

Create

VCD

File

10

10

8

8

1

Encoder

8B−10B

Decoder

10B−8B

Figure 3.3.: Block Diagram illustrates Program Implementation Structure with all De-
signed Modules

3.4. Software Implementation

The overall block diagram of the system is depicted in Figure (3.3). The system is im-
plemented using three main modules: The 8B/10B encoder and decoder modules, which
are the devices under test (DUT), the testbench and the stimulus modules. As depicted,
the stimulus module has been created as hierarchical construction which instantiates both
the encoder and decoder modules. It generates a byte wide data stream of random 1s and
0s then send them to the encoder module input port. Then, the encoder module maps the
8-bit parallel data input to 10-bit output DC balanced stream of 1s and 0s. This 10-bit
output is then loaded in and shifted out through its output port which is connected directly
to the input port of the decoder module. Next, the decoder module collects the encoded
data from its input port and then re-map the 10-bit data back to the original 8-bit data.
There are five ports that are created in the stimulus module, one is the input and the other
are outputs. All of these ports are used by the test bench which manages the designed
modules, captures data for visualisation purposes and verifies the correct operation of the
system.

To create the test bench, the main program links-in the various modules and interconnects
them. It generates a clock source that need for simulation and apply it to the design and
collect output waveforms. Through the four output ports of the stimulus module input
data and output data packets (before and after encoding and decoding) of the encoder and
decoder have been collected and sent to (Value Dump) VCD file which can be read by
GTKWave wave viewer program to display output results.

47

3. RTL-Level Modeling of an 8B/10B using Existing SystemC Methodology

3.4.1. The 8B/10B Encoder

The 8B/10B encoder is implemented as described in [125]. The first step is to apply the
data to the input ports of the encoder module. The input data is represented by an eight bit
data line, and a one bit control line, K, which indicates whether the input lines represent
data or indicates that the character input should be encoded as one of the 12 allowable
control, or K characters (refer to Table 3.3 for description of the core I/O pins). Each
incoming byte is partitioned into two sub blocks and applied to a 5B/6B and a 3B/4B
encoder respectively. A disparity control block (shown in Figure (3.4) and on the program
segment shown in 3.1) controls the encoding. In this implementation, the decoder exhibits
a five clock cycle latency. This information is readily available to the designer at the early
stages of design, which is an advantage of using the SystemC methodology.

Name Type Description

CLOCK IN Clocks all the encoder
logic. all input ports have
their time referenced to the
rising edge of the clock
input.

RESET IN Global asynchronous reset
(active high)

KI IN Control (K) input(active
high) , is used to indicate
that the input is for a
special character

HI,GI,
FI,EI,
DI,CI,
BI,AI

IN Declare unencoded 8-bits
Input Data, these 8-bits are
named ABCDE_FGH as
they represent a 5-bit and a
3-bit sub block of the
encoder, where A is the
LSB, and H is the MSB.

AO,BO,
CO,DO,
EO,IO,
FO,GO,
HO,JO

OUT Declare Encoded 10-bits
output Data, these 10-bits
are named ABCDEI_FGHJ
as they represent a 6-bit and
4-bit sub blocks, where
they arranged from Least
significant to Most.

Table 3.3.: Encoder Signals Definition

48

3. RTL-Level Modeling of an 8B/10B using Existing SystemC Methodology

Algorithm 3.1 Program segment of 8b/10b Encoder
SC_MODULE (enc_eight_ten) {

sc_in<sc_logic> RESET;

sc_in<bool> SBYTECLK;

sc_in<sc_logic> KI;

sc_in<sc_logic> AI,BI,CI,DI,EI,FI,GI,HI;

sc_out<sc_logic> AO,BO,CO,DO,EO,IO,FO,GO,HO,JO;

sc_signal<sc_logic> XLRESET, LRESET;

sc_signal<sc_logic> L40 ,L04, L13, L31, L22;

...

...

sc_signal<sc_logic> NFO, NGO, NHO, NJO, SINT;

// 5b Input Function

void enc_5b(void);

...

...

void ENC3B4B (void);

SC_CTOR(enc_eight_ten) {

SC_THREAD(SYNCRST);

sensitive <�< XLRESET <�< SBYTECLK <�< RESET;

dont_initialize();

...

...

SC_THREAD(ENC3B4B);

sensitive <�< LRESET <�< SBYTECLK <�< COMPLS4;

dont_initialize();

}};

...

...

void enc_eight_ten::enc_5b(void) {

while(true) {

wait(1);// Wait events in sensitivity list

// Four 1's

L40.write(AI & BI & CI & DI); // 1,1,1,1

...

...

L22.write((~((sc_logic)AI) & ~((sc_logic)BI) & CI &

DI)|(~((sc_logic)AI) & BI & CI & ~((sc_logic)DI))|(AI & BI &

~((sc_logic)CI) & ~((sc_logic)DI))|(AI & ~((sc_logic)BI) &

~((sc_logic)CI) & DI)|(~((sc_logic)AI) & BI & ~((sc_logic)CI) & DI)

|(AI & ~((sc_logic)BI) & CI & ~((sc_logic)DI)));

wait(2);

}}

49

3. RTL-Level Modeling of an 8B/10B using Existing SystemC Methodology

3B

function

5B

function

Disparty

Control

5B/6B

encoding

encoding

3B/4B

COMPL6

COMPL4

5

3

6

4

6

4

1

5 bit

3 bit
data

data

encoded
data

encoded
data

input
port

output
port

Kin
Control

Figure 3.4.: 8B/10B Encoder Module

3.4.2. The 10B/8B Decoder

The 10B/8B decoder converts 10-bit symbols received from the encoder side to 8-bit data.
The received code are decoded based on the running disparity process, as previously stated.
The block diagram of the decoder module is shown in Figure (3.5). Latency for this
modules is the same as for the encoder; i.e. 5 cycle latency, after which the decoded data
is passed to the decoder output port and collected by stimulus process.

3.5. Results and Discussion

The system described in 3.3 was implemented in SystemC. The testbench was used to
verify the correct operation of the system and to capture data to aid in visualisation as
previously described. Figure (3.6) shows a simulation timing diagram for the 8B/10B en-
coder/decoder operating on random data generated by the stimulus block. For simulation

function 5B

Decoding

Decoding

function 3B

Control
Ko

10 bit
data

1

10

5

3

5

3
input

port

output

port

5 bit

3 bit

decoded
data

decoded
data

Control

Lines

Disparity

Process

Figure 3.5.: 10B/8B Decoder Module

50

3. RTL-Level Modeling of an 8B/10B using Existing SystemC Methodology

purposes the clock frequency is fixed at 200 MHz. As mentioned in section 3.4, there is
a five clock latency for both, the encoding and decoding purposes, which is apparent in
the simulation. Furthermore, as the implementation of the stimulus module has not been
pipelined, throughput is limited by the ten cycle round-trip latency. This is an accurate
representation of bursty communication systems with short packets.

All signals in the designs are latched on the rising edge of the clock.In a second test, the
8B/10B encoder/decoder successfully completed an exhaustive test, to cover all possible
input vectors.

(A)

(B)

Figure 3.6.: Encoder Decoder Simulation Timing Diagram

3.6. Summary

In this chapter, an RTL-level SystemC model of an 8B/10B Encoder/Decoder core has
been described. Although other HDL models of 8B/10B decoders have been published,

51

3. RTL-Level Modeling of an 8B/10B using Existing SystemC Methodology

to the best of our knowledge, none target the SoC and IP design methodologies. SystemC
has been chosen, as it provides a homogeneous platform for the design and modeling
of complex systems. Furthermore, as systems become more tightly integrated (as in for
example SoC) the ability to evaluate the system performance at early stages of a design
becomes increasingly important. This is facilitated by the SystemC design methodology,
and by following an IP-based design.

Although implementation and prototyping of the core is out of the scope of this work,
it is important to note that both are relatively simple tasks, as the model developed is
already at the RTL-level. The implementation can be carried out by exporting the SystemC
code into VHDL or Verilog for synthesis, or directly by using the synthesisable subset of
the SystemC language. Once the design has been mapped into a target technology, it is
possible to back-annotate timing information directly into the SystemC model, which can
aid in providing more accurate timing information for the high level modeling of complete
systems.

52

4. Developing SystemC Design

Methodology to Support

Wireless Systems

The conventional SystemC design methodology is employed in order to manage the com-
plexity of the design flow process at the system level [41]. For example, it was successfully
employed to describe network-on-chip architecture [131] and to model the lowest network
layers of the Bluetooth communication standard [132]. As mentioned previously, this
work evaluates the potentiality of SystemC in simulating wireless communication systems
in order to provide capabilities for co-simulating HW, SW and communication. We will
show how the existing SystemC design methodology is developed and employed to model
complex wireless communications systems in SystemC by modelling the communication
nodes and connecting their instances to the wireless communication channel model [133]
that reproduces the behaviour of wireless features such as propagation delay, interference,
collisions and path loss. The design of the node can be dealt at different abstraction levels,
from the system level down to the register transfer level. After each refinement step, nodes
can be tested in their communication environment to verify that their communication con-
straints are met. Communication nodes with different functionality can be mixed in the
simulation, thus allowing the exploration of communication scenarios made of complex
devices. Synthesis can be directly performed on those models, provided they are described
using a suitable subset of the SystemC syntax. This chapter demonstrates how to incorpo-
rate wireless features into conventional SystemC methodology.

4.1. Models Needed for SystemC Wireless

Methodology

SystemC lacks elements that can be used to model and simulate wireless communication
systems because it does not support noise links natively (wireless features). Therefore,
a way to make SystemC support wireless systems must be established. Based on the

53

4. Developing SystemC Design Methodology to Support Wireless Systems

information described in Chapter One and Chapter Two, we need to address three issues
in order to enable SystemC to support wireless communication systems:

1. Model a noisy wireless communication channel.

2. Construct other parts of wireless systems.

3. Create a demonstration in order to validate the developed methodology.

4.1.1. Modelling of a Noisy Wireless Communication Channel

The most important model needed to extend SystemC methodology to implement wire-
less systems is a wireless channel model. We have modelled a wireless communication
channel in [133] that fulfils SystemC language requirements to support wireless systems;
this is described in detail in Chapter Four. The main aim of modelling this channel is to
change SystemC to include wireless features. The model supports the setting of a different
Signal-to-Noise Ratio (SNR) and different types of interference. The channel specifica-
tions support wireless features such as noise. The simplest model of digital noise is simply
to consider the constructed impulsive noise, in which individual bits or packets are modi-
fied with a given probability. Though other distributions can be used to model the noise,
we use exponential distribution for the sake of simplicity. The noisy digital wireless chan-
nel is modelled successfully with a preset Bit-Error-Rate (BER) for Point-to-Point (P2P)
and Point-to-Multipoint (P2M) platforms based on SystemC. This channel model repre-
sents what is missing in the SystemC language to support wireless systems.

4.1.2. Constructing Other Parts of Wireless Systems

We need to construct some standard components at the system level that are typically re-
quired to implement wireless communication systems. As mentioned in the first chapter,
some of these standard components are PLL, 8B/10B Encoder/Decoder, MAC, commu-
nication protocol such as HDLC, and modulation techniques. An example of one of the
wireless parts is an 8B/10B encoder decoder, which represents some form of encoding
and decoding is selected to model up to RTL level; we examined it in detail in Chapter
Three. Moreover the work on 8B/10B encoders/decoders was necessary to develop the
skills necessary to develop the methodology of the thesis. As mentioned before, It is an
8-bit 10-bit Encoder/Decoder that is typically required to implement a wireless communi-
cation system. It is a standard model constructed to further understand how we use Sys-
temC methodology to design and model a system. Also, it is an important technique in the

54

4. Developing SystemC Design Methodology to Support Wireless Systems

construction of high performance serial interfaces. In this novel work, the main objective
is to construct an 8B/10B model at the RTL level, so that it can be efficiently synthesized
to hardware, or implemented as a software component if required. Hence the model can be
used to allow efficient prototyping of serial communication systems. Moreover, it has not
been previously modelled at RTL level, so we have modelled it using SystemC in [134].

4.1.3. Creating a Demonstration

In the final stage, we need to validate and prove that our developed methodology can be
used to model complex wireless communications systems, so it is applied to a case study
consisting of the modelling of a flocking behaviour system; this is illustrated in part three.

As a first phase, we need to model and implement the first and second issues, because
they represent the requirements to develop wireless methodology and they are not part
of SystemC. This chapter focuses on developing SystemC design methodology to sup-
port wireless systems and examines how to integrate the three issues mentioned above to
achieve the main goal of the research.

4.2. Wireless Extension into Existing SystemC

Methodology

Complex wireless communication systems set various challenges in modelling and design
fields. Inserting Communication as a new dimension in the design flow process causes
conventional SystemC methodology tasks to become more complex. Modelling and simu-
lating communication features and their interaction with System aspects in the early stages
of design flow is thus key for developing an effective design methodology (which is our
target in this research).

In previous works, such as [133, 134], the system alternative (HW and SW) and its many
issues, such as partitioning options, architectural issues, synthesis and validation [29, 46],
have been fully studied. The integration between System and Communication modelling
in the SystemC platform is a new subject, because no one has extended SystemC to model
wireless systems yet. On the other hand, the Communication aspect gives the system de-
signer additional freedom in selecting how to implement a certain function. Given the
different abstraction levels of the System and Communication alternatives, this leads to a

55

4. Developing SystemC Design Methodology to Support Wireless Systems

Naïve structure, which means one partitioning step or can be lead into hierarchical parti-
tioning steps in the System/Communication aspects. In both cases, Communication be-
comes a new branch, as the System aspect is in traditional SystemC methodology.

4.2.1. System Design Flow Based on Naïve Structure

In this approach, which is called the Naive approach, the whole system design space is rep-
resented by HW/Node, SW/Node and Functionality/Node, as shown in Figure (4.1). For
each HW/Node we have a Functionality/Node and for each SW/Node we have a Func-
tionality/Node; our solution thus becomes very complicated, because the design space is
very large. However, in the architecture exploration phase we are free to move anywhere
we want in the whole system design space. In this case, the design flow is more flexible
but the problem is that the design space becomes huge, as illustrated in Figure (4.1). We
cannot use architecture exploration to find the optimum design of the whole design space
because it is almost infinite. Hence the problem of modelling systems using this approach
is that the design space becomes very large.

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������

whole design space in 3D
huge and unbound

solutions

SW

HW

Functionality/Node

Infinite number of solutions

Figure 4.1.: Design space in Naive approach

We start the design process by considering the whole system design space in the archi-
tectural exploration. We must explore what functionality will be mapped onto SW/Node
and HW/Node, and how SW and HW will be mapped onto Functionality/Node. It is al-
ready very difficult to conduct this architectural exploration because the design space, as

56

4. Developing SystemC Design Methodology to Support Wireless Systems

mentioned above, is huge. We must explore all of those functionalities in a single step, as
shown in Figure (4.2). This is the reason why this approach is more complex and difficult,
thus why it is useful to model the systems using the hierarchical approach explained in the
next section.

R
e

fi
n

e
m

e
n

t
&

 V
a

li
d

a
ti

o
n

Model of

Communication

Insert

Wireless channel

features

Incorporate wireless

Protocols, ...

Noise, BW, Latency,

HW and SW

Communications
Wireless

Inlined into Components

HW model

actual HW

HW

SW model

Application

SW

SW

option (1), option (2) option (m)

Nodal Decomposition

CommunicationHWSW

S
y
n

th
e
s
is

C
o

m
m

u
n

ic
a
tio

n

Intra−node
comms. comms.

Inter node

Architecture Exploration

System Requirements / Specifications

[Unpartitioned model of the whole SYSTEM]

Integration

Synthesis

HW/SW/Communication

Whole System partitioning

Figure 4.2.: Wireless SystemC design methodology - Naïve structure

4.2.2. System Design Flow Based on Hierarchical Approach

In the hierarchical approach we have HW/Node, SW/Node and Functionality/Node that
represent the dimensions of the whole system design space. In the first step of the system
modelling process, we need to find the optimum position along the Functionality/Node
axis (Figure (4.3-a)); once we have that, we can move along the two other axes (HW and
SW), as shown in Figure (4.3-b). This step is known as Nodal composition and it rep-
resents the first-level partitioning between Functionality and System. For example, if we
have a system containing 20 nodes, each node is modelled with a normal approach repre-
sented by second-level partitioning (traditional HW/SW partitioning). The main advantage
of breaking the design space into hierarchical layers is to reduce and handle complexity.

57

4. Developing SystemC Design Methodology to Support Wireless Systems

Therefore, a hierarchical approach is more efficient and better suited to modelling wireless
systems; also, the design space in this approach is limited and smaller than in the Naive
approach, as will be described later.

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

optimum

position

into HW and SW

Functionality mapped

optimum position

of the Functionality

solutions

Functionality/Node

Design space in 3D

SW

HW

(Limited solutions)

Design space in 2D

SW/Node

HW/Node

(a)

(b)

Figure 4.3.: Design space in hierarchical approach

The system design flow of the developed methodology (hierarchical approach) is illus-
trated in Figure (4.4). This figure shows how Communication alternatives are incorpo-
rated into existing SystemC design methodology and how they match their corresponding
tasks in the System alternative (HW and SW domains). One part in the design flow of the
developed methodology is mainly based on the conventional methodology stages [4], but
extra stages are added to describe how wireless communication features are incorporated
into conventional SystemC design methodology.

In the first phase of the design flow, the requirement specifications of the whole system are
captured and convened into functional and performance requirements. From these require-
ments, the whole system is constructed as a group of models that represent communication
nodes and can interact with each other at a high abstraction level by using SystemC primi-
tive channels such as buffer, FIFO, mutex, semaphore and signal [8]. In this phase, there is
no distinction between intra-node communication and inter-node communication because

58

4. Developing SystemC Design Methodology to Support Wireless Systems

R
e

fi
n

e
m

e
n

t
&

 V
a

li
d

a
ti

o
n

Model of

Communication

SW model HW model

actual HW

Insert

Wireless channel

features

Incorporate wireless

option (1), option (2) option (m)

Application

SW

SW HW

Protocols, ...

Noise, BW, Latency,

HW and SW

Communications
Wireless

SW HW

System Communication

Inlined into Components

C
o

m
m

u
n

ic
a
tio

n
S

y
n

th
e
s
is

Nodal Decomposition

Synthesis

Intra−node
comms. comms.

Inter node

Unpartitioned model of NODE to be designed

Architecture Exploration

Architecture Exploration

System Requirements / Specifications

[Unpartitioned model of the whole SYSTEM]

Second level partitioning
Traditional HW/SW

Nodes / Communication

First level partitioning

Figure 4.4.: Wireless SystemC design methodology - Hierarchical structure

the specification model does not tell us whether the system is wired or wireless. Both of
these options are possible, and the system should be open to architecture exploration that
includes all available options. We can say that, for the specification model, we do not need
to include wireless attributes at all.

After capturing the specifications, the next phase is architecture exploration of the whole
system. The main purpose of this phase is to allocate system functionality to the com-
ponents [7]. The system architecture is derived from the specifications. More than one
option/design can be developed and compared. After comparison, metrics that will be
employed to investigate system performance for these options should be estimated; we
can then select the best design. Here, the architecture exploration includes the commu-
nication elements and the topologies that produce more complexity in the design space.
This complexity is reflected in the modelling steps that should help evaluate the optimal
partition among hardware or software blocks and communication aspects. Each commu-

59

4. Developing SystemC Design Methodology to Support Wireless Systems

nication option can be employed to drive the architecture exploration process and validate
the whole system at each refinement step.

After the architecture exploration, the next phase is the first level of partitioning, which
is known as Node/Communication partitioning (Nodal decomposition). In this phase the
whole system is partitioned into a number of nodes that will communicate to achieve a
specific application. This phase also determines whether the function should be achieved
by the system board (inside node) or if it can be delegated to communication elements.
The Node/Communication partitioning is applied to the whole system model in order to
map some communication node models. Here, the node model is referred to as a System
model. Communication between the nodes is described as inter-node communication. It
is represented by a Communication model (our wireless channel model [133]) that can
be used to produce wireless communication behaviour. The next two sections describe
Communication and System models.

a- Communication

This first level of partitioning represents inter-node communication, which refers to how
the nodes communicate with each other. It is implemented through the wireless channel
model. It can be represented at a high abstraction level by a variable (signal, FIFO or
shared memory), and can then be refined by inserting a wireless communication model.
We can then incorporate wireless features, such as communication protocols, delay, noise,
etc.

b- System (HW/SW)

Here, a conventional design flow (conventional SystemC design methodology) can be ap-
plied to the System model to be developed. At this point, the second level of partitioning
(i.e., which is HW/SW partitioning) must be done. Hardware and software partitioning
is done on the node model to map the functionality of hardware or software components
based on some constraints such as area, timing, throughput, power consumption etc. It is
decided whether the function should be performed by a processor (SW) or by dedicated
hardware [14, 52]. The components that are to be modelled as hardware can be refined
down to RTL level.

In the last phase of the design flow, hardware and software models are mapped to actual
components. HW components can be either synthesised or taken from the market. For SW,

60

4. Developing SystemC Design Methodology to Support Wireless Systems

the operating system is defined and the functionality of the SW components becomes ap-
plication code. The wireless communication model is in-lined into hardware and software
components.

c- System Veri�cation

In SoC design methodology, the system design flow process is done after the system spec-
ifications are approved. In the system design flow described above, the system behaviour
modelling is verified against the functional requirements at each step. We need system ver-
ification in order to check the architecture against the intended functional and performance
requirements [135].

4.3. Summary

In this chapter, conventional SystemC design methodology is developed to model com-
plex wireless communication systems. The design exploration space is divided into two
dimensions: the System (HW/SW) to address exploration and refinement of the system,
and the other dimension is Communication to address wireless features. As a result, the
integration of communication modelling into design modelling is introduced in the early
stages of system development. The methodology is developed by employing a system level
model of a noisy wireless communication channel [133] that fulfils SystemC language re-
quirements in order to support wireless systems. For instance, the wireless communication
channel model becomes a part of the developed methodology and can then be inserted into
any system. We can also introduce some communication delays, communication protocols
and noise.

61

5. Modelling of a Noisy Wireless

Communication Channel

The work presented in this chapter introduces the integration of communication mod-
elling into the design modelling at the early stages of system development. It presents the
modelling of a noisy digital communication channel using SystemC. It supports different
modulation techniques, such as Amplitude-shift keying (ASK), Phase-shift keying (PSK)
and Quadrature amplitude modulation (QAM). It supports the setting of different Signal-
to-Noise Ratios (SNR) and different types of interference for Point-to-Point (P2P) and
Point-to-Multipoint (P2M) platforms. In this work, a demonstrator that implements both
P2P and P2M systems has been constructed and incorporated in the whole design method-
ology. It implements Go-back-N Automatic Repeat reQuest (ARQ) and High-Level Data
Link Control (HDLC) to confirm that the channel is working properly.

5.1. Introduction

This work will provide a first step towards this methodology by introducing a simple
noisy digital channel in SystemC that can be used to model all system interactions. It will
show the construction of a wireless communication system, such the one shown in Figure
(5.1), which represents two communication nodes that exchange information through a
noisy communication channel. The channel model proposed supports different modula-
tion techniques, such as ASK, PSK and QAM. It supports the setting of different SNR and
different types of interference. The system has been checked by implementing a demon-
strator, which supports Go-back-N ARQ and HDLC.

The main contribution of this work is the integration of communication modelling into the
design modelling at early stages of system development. To our knowledge, this is the first
time anyone has undertaken this modelling. The remainder of this chapter describes how
the noise is generated. Section three presents the channel module implementation, which

62

5. Modelling of a Noisy Wireless Communication Channel

describes the implementation of the noisy digital communication channel by incorporating
the noise generation process into the channel. Section four describes the work undertaken
on the modelling of Point-to-Point (P2P), Point-to-Multipoint (P2M) and Multipoint-to-
Multipoint (M2M) communication systems. Section five describes the data packetization.
Section seven briefly describes ARQ protocol. The last two sections describe the simula-
tion results with discussions and conclusions.

Node (N1) Node (N2)

Transmission medium

Wireless Channel Model

(free space)

process
Receive

Transmit
process

process
Receive

Transmit
process

wireless features
Insert

p
o

rt

p
o

rt

Figure 5.1.: Block diagram of a wireless communication system consisting of two nodes

5.2. Related Work

The modelling of noisy communication channels is not new. Analogue channel mod-
elling using Matlab, Simulink and Opnet is common. For example, behavioural modelling
has been proposed in [136], but has not been incorporated into a homogeneous design
environment. Work described in [136] is one of the few ones to date about modelling
using SystemC. The paper shows a systematic approach to modelling and simulating an
Orthogonal frequency division multiplexing (OFDM) transceiver for wireless LAN using
SystemC.

5.3. Noise Generation Process

The performance of any communication system is affected by noise and interference from
other sources, which play a crucial role in communication systems [72, 88]. In practice,
noise represents the number of errors occurring in the system. The simplest model of
digital noise is just to consider impulsive noise, in which the individual bits or packets
are modified with a given probability [72, 99]. The other type of error is lost bits, which
only happens if the system is out of synchronisation. However, it is assumed that there
is no model of a Phase Locked Loop (PLL) in the system, and it is assumed to be PLL
locked. Consequently, we will not model the second type of error at this stage; it will be

63

5. Modelling of a Noisy Wireless Communication Channel

left as an exercise for future work. Here the model is done in a conventional way, and
we assume a memory-less system, which implies the Markov property. Therefore, the
exponential distribution is a good fit for the model, though other distributions, such as
Pareto distribution, can be easily coded as well. Here, for simplicity, we use exponential
distribution, but it is not accurate for modelling real world systems and it gives inter-arrival
times for errors by solving the Probability Density Function (PDF) of the exponential
distribution for t, which represents the inter-arrival time of errors. Therefore, a random
experiment is performed to determine the position, where errors are injected in the bit
stream.

For each modulation technique there is a waterfall curve, which relates an SNR to a spe-
cific BER, as shown in Figure (5.2). The PDF of the exponential distribution is given by
f (t) = λe−λ t for 0 < t < ∞, where the BER = µ = 1

λ
and µ is the mean and variance for

the exponential distribution. Therefore, solving it for t to determine the position of errors
and introduce them to the channel follows these steps:

1. choosing the system SNR that corresponds to one of the modulation schemes.

2. getting the corresponding BER from the waterfall curves relating the BER to the
SNR.

3. calculating λ = 1
BER .

4. performing a random experiment according to the PDF of the exponential distribu-
tion.

5. injecting the error in the bit stream.

The process steps (from 1 to 5) of solving the PDF can be easily traced on the graph shown
in Figure (5.2).

5.4. Wireless Channel Platform

As mentioned previously, SystemC is a C++ class library and its methodology can be used
to model system-level designs and effectively create a cycle-accurate model of software al-
gorithms, hardware architecture and interfaces of SoC (System On Chip) and system-level
designs [30, 8]. In this part of the work, structural designs for transmitting, receiving and
channel models are implemented in SystemC using modules, ports, processes and signals
that represent the fundamental constructs of SystemC libraries. The modules can contain

64

5. Modelling of a Noisy Wireless Communication Channel

Figure 5.2.: Stochastic projection of noise.

other modules, allowing a hierarchical construction of the system model. The processes
communicate with each other via interfaces, channels and ports, and can synchronise with
each other via events objects. Also, a variety of data types are supported to include single
bits, bit vectors and fixed-point integers [13, 130]. Moreover, SystemC supports several
techniques for addressing the complexity of modern designs. Today’s system designer can
use several approaches for attacking the complexity issues that come with complex system
design; these approaches are abstraction, design reuse, team discipline, project reuse and
automation [8]. On the other hand, blocks communicate via ports/pins and signals or wires
in traditional HDLs. In SystemC, modules are interconnected using either primitive chan-
nels or hierarchical channels. Both types of channels connect to modules via ports. The
powerful ability to have interchangeable channels is implemented through a component
called an interface, which is implemented in this work [30].

5.4.1. Transmitter and Receiver Models

The wireless communication system that is modelled and designed in this chapter, shown
in Figure (5.5), consists of one transmitter and one or more receiver and channel, which
can be used to create P2P and/or P2M channels. The structural designs for these platforms
are implemented in SystemC using modules, ports, processes and signals, which represent
the fundamental building blocks of SystemC libraries [8]. The transmitter, receiver and
channel models have been implemented using modules and connected through the ports,
which are created from the base class [sc_port <interface[,N]> port_name] and
bound to an interface type [13, 7], as illustrated in the program segment (5.1).

65

5. Modelling of a Noisy Wireless Communication Channel

Algorithm 5.1 Transmitter and receiver modules
SC_MODULE(transmitter) {

sc_port<sc_fifo_out_if<sc_bv<N> >,0 > tpackout;

sc_port<sc_fifo_out_if<sc_bv<N> >,0 >transmitter_data;

...

};

SC_MODULE(receiver) {

sc_port<sc_fifo_in_if<sc_bv<N> > > rpackin;

sc_port<sc_fifo_out_if<sc_bv<N> > > receiver_data;

...

};

5.4.2. Wireless Digital Channel Model

The noisy digital channel being designed here employs FIFOs as an interface type and
elasticity buffer. FIFO is simply a first-in, first-out buffer. Each FIFO has a number of
slots for storing values. The number of slots is by default fixed to sixteen during elabora-
tion time [5, 8]. In this system, FIFO’s size has been kept with the default value, which
is sixteen, because we have found in our simulation experiments that this is more than
enough to buffer information packets as they traverse from point to point in the chain. We
used FIFOs in order to guarantee that all the packets will remain in the correct order during
the transmitting process. For simulation purposes, data packets are represented by binary
vector data type and designed based on HDLC [137].

This channel needs to support P2P and P2M scenarios. It has been constructed using
modules from the SystemC library and connected through ports, as shown in Figure (5.3).
These ports are instantiated from the base class sc_port and bound to an interface type
[8]. Port interfaces employ FIFO queues as the interface type and are used to connect
the system modules to each other. The FIFOs can be accessed using blocking read and
write methods. Therefore, synchronisation is implicit, the methods being automatically
suspended and resumed, depending on the status of the FIFO channels. This guarantees
that no packets get lost [5, 29].

Wireless Channel Module

Noise Class

process (P1)

process (P2)

FIFO & INTERFACE

output port

Input port

Incorporate: noise,

delay, interference

Figure 5.3.: Channel module implementation

66

5. Modelling of a Noisy Wireless Communication Channel

5.4.3. Design of Point-to-Point (P2P) Commnication Channel

The basic design of P2P consists of the source module, the destination module, noise class
and a channel module, as shown in Figure (5.4). The channel has been implemented as
the communication scheme between the source and destination nodes. The source module
sends data packets that are created based on the HDLC format through the channel. Then
the channel module processes and forwards them directly to the destination. The noise
model introduces errors randomly by applying the Stochastic technique, which is used to
simulate the error event [138]. The occurrence of the error event is dependent on the se-
lected distribution, which will be related to the error rate. On the other side, the receiver
module receives data packets with some errors from the channel module and then sends
them to the monitor module. Finally, the monitor module is used to analyse the packets in
order to detect the errors and evaluate the error rate by comparing the packets sent from
the transmitting module with the packets received by the receiving module. The process
continues until all data packets are sent [135].

output port

Input port

process (P1)

process (P2)

FIFO & Interface

process (P3)

process (P4)

Class

Noise

process (P5)

process (P6)

Distination moduleWireless Channel ModuleSource module

Figure 5.4.: Simple point-to-point communication channel structure

5.4.4. Point to Multipoint (P2M) Construction

P2M is more complicated than P2P, because in this case we need to define multiports
and set different noise values and communication parameters for each channel module.
Multiports are created using the port_array feature of SystemC and by providing a sec-
ond parameter N in the base class [sc_port <interface[,N]> port_name] and then
binding them to an interface type [7, 8]. We assume that the source node is connected to
N target nodes via N interface channels; therefore, the receiver modules are assigned a
position in the array to connect the channel modules on a first-come first-served basis, as
shown in Figure (5.5). There are two ways of connecting; the first is known as a shared
channel and the other one as multiple channels. The first method assumes a schematic of
master slave synchronisation mechanism, such that only one slave is allowed to transmit
in the feedback channel at any given time. For the general case it is required to model
the contention whilst accessing the same resource. In the second method, to create the

67

5. Modelling of a Noisy Wireless Communication Channel

Node (N1)

Node (N2)

Node (N3)

Node (Nm)

process (P1)

process (P2)

process (P1)

process (P2)

process (P1)

process (P2)

Wireless Channel (0)

Wireless Channel (1)

Wireless Channel (n)

.

.

output port

Input port

output port

Input port

output port

Input port

process (P3)

process (P4)

process (P6)

process (P5)

process (P6)

process (P5)

process (P6)

process (P5)

Class

Noise

Class

Noise

Class

Noise

Figure 5.5.: Point-to-Multipoint communication channel structure

P2M platform all modules are first created during the elaboration time; namely, the source
module and the N channels and N destinations are dynamically instantiated. Secondly,
the module interfaces are instantiated. Finally, the named port binding of the modules and
interfaces is applied between the source module and the channel modules, as well as be-
tween the channel modules and destination modules. In this work, the latter is selected to
describe P2M, because it assumes there is no correlation between channels. Moreover, this
structure fits well with multiport definition and the module structure of SystemC [5, 22].

In the code segment (5.2), lines (10-14) show how we can create N transmitter modules
by using dynamic instantiation features. Moreover, by using this feature of the modules
we can generate as much as we want from these devices (models). After that, all the
modules that have been instantiated have to bind together. Lines (19-22) illustrate how
the transmitter module has been bound to the channels; in the same manner, a binding
process is applied between receiver modules and channel modules, as shown in lines (24-
27). Finally, we have to note that dynamic instantiation and binding must be done during
elaboration of the simulation [5, 7, 8, 43]. Figure (5.5) shows the block diagram of the
P2M channel platform.

68

5. Modelling of a Noisy Wireless Communication Channel

Algorithm 5.2 Implement P2M platform
SC_MODULE(top) {

SC_CTOR(top){

...

transmitter *Transmitter[NTransmitters];

receiver *Receiver[MReceivers];

channel *Channel[MChannels];

compare *Compare[MChannels];

...

// Generate (N = NTransmitters) Transmitters

for (unsigned i=0; i < NTransmitters; i++) {

std::ostringstream trans_name;

trans_name <�< "Transmitter" <�< i <�< std::ends;

std::string s = trans_name.str();

Transmitter[i] = new transmitter(s.c_str());}

...

...

//this for loop to bind the Transmitter to Channels trough TCh_fifo

Transmitter[0]->clock(Tclock);

for (unsigned i=0; i< MChannels; i++){

//bind fifos to module ports

Transmitter[0]->tpackout(*TCh_fifo[i]);

Transmitter[0]->transmitter_data(*TComp_fifo[i]);}

//this for loop to bind the Receivers to ChR_fifos and Receivers to

RComp_fifos

for (unsigned i=0; i< MReceivers; i++){

Receiver[i]->clock(Rclock);

Receiver[i]->rpackin(*ChR_fifo[i]);

Receiver[i]->receiver_data(*RComp_fifo[i]);}

...

}//end of constractor

};

5.4.5. Multipoint-to-Multipoint (M2M) Construction

At this first stage of the implementation phase, our goal is to construct a channel model
that can be used to support contention and noncontention based shared wireless channel
access, and includes P2M and Multipoint-to-Multipoint (M2M) communication scenarios.
The wireless channel module is responsible for carrying the data packets to all stations,
and represents our communication medium in this work. The wireless channel module,
as shown in Figure (5.6), models the communication medium. It behaves like a multi-tap
bus, where the multiple nodes are connected through it. The behaviour of the link has been
modelled as a wireless communication medium.

In this scenario an external object called a ‘mutual exclusion lock’, or ‘mutex’, has been

69

5. Modelling of a Noisy Wireless Communication Channel

used to control access to the shared medium. The behaviour of a mutual exclusion lock is
used to control access to a resource shared by concurrent processes. A mutex will be in
one of two exclusive states: unlocked or locked. Only one process can lock a given mutex
at one time. Whenever a node has a packet to send, it tries to lock the mutex. When it
locks the mutex it has access to the channel; the rest of the nodes have to wait until the
node has released the channel. The other nodes may be subsequently locked by the mutex
[7, 8]. This scenario is covered in detail in Chapter Nine.

���
���
���
���

output ports

Input port

process

Wireless Channel

port−0

port−1

in−port−0

in−port−1

in−port−2

in−port−N

.

.
.
.
.
.

port−N

signal−rv

Class

Noise

Figure 5.6.: Multipoint-to-Multpoint communication channel

5.5. Data Packetization

In the data transmission process achieved in this system, there is no mechanism to mark
the beginning or end of a packet, so by using HDLC technique, the beginning and end
of each packet must be identified. This is done using a packet delimiter, or flag, which
is a unique sequence of bits that is guaranteed not to be seen inside a packet [137]. In
this system, we have used Asynchronous Balanced Mode (ABM), which combines station
may use to initiate a transfer [139].

5.6. ARQ Communication Protocol

Automatic Repeat reQuest (ARQ) is an error-control approach that can be used for data
transmission. It uses acknowledgements and timeout signals to perform reliable data
transmission over an unreliable service [22, 140]. For example, if the transmitter does
not receive an acknowledgment before the timeout, it usually retransmits the packet un-
til the transmitter receives an acknowledgment or exceeds a predefined number of re-
transmissions. This means that, at any time, if the transmitter detects an error when ex-

70

5. Modelling of a Noisy Wireless Communication Channel

changing data with the receiver, specified packets have to be retransmitted [141]. There
are three types of ARQ protocols, as follows:

• Stop-and-wait ARQ

• Go-Back-N ARQ

• Selective Repeat ARQ

These protocols exist in the Data Link or Transport Layers of the OSI model [141].

5.6.1. Stop-and-wait ARQ

In a backward error control system, a packet is transmitted by a transmitter which then
waits for the receiver to indicate that it has received this packet before transmitting the
next packet. If the packet is corrupted or lost, no acknowledgement will be sent by the
receiver. The transmitter will wait for certain period of time. If the acknowledgement
does not arrive within this time, the transmitter then re-transmits the previous (lost) packet
and waits again for an indication of its receipt. This type of data link protocol is known as a
“stop and wait” ARQ, or idle RQ [140, 141, 142]. As above is referred to as an Automatic
ReQuest protocol, where there is not always a requirement to wait for the receipt of the
ACK associated with a packet before transmitting the next packet. Idle RQ protocol is just
one specific example of an ARQ protocol - one which is quite inefficient as considerable
time is spent waiting for data rather than transmitting.

5.6.2. Window Flow Control

To overcome the inefficiency associated with idle RQ, it is possible to transmit new pack-
ets up until a given limit without waiting for any received ACKs [22, 143]. The number of
outstanding unacknowledged packets is known as the window and is fixed to some maxi-
mum value, and leads to the idea of a sliding window protocol. Idle RQ protocol is often
referred to as a sliding window protocol with a window size of 1. Use of windows in this
manner provides a degree of flow control and prevents a transmitting node overwhelming
a receiver (quite likely in the case of re-transmissions), as well as ensuring an upper limit
on the buffer space required [140, 142].

Therefore, to deal with the lost packets, for every packet transmitted, the transmitting
node maintains a timer. If a particular timer lapses and an acknowledgement has not
been received, the transmitter assumes that the packet is lost and that another has to be

71

5. Modelling of a Noisy Wireless Communication Channel

re-transmitted [141]. Alternatively, breaks in sequences can be used to indicate that a
packet has been lost. There are then two re-transmission options available. Either the node
transmits only the packet that was in error, this approach is called selective re-transmission;
or it also re-transmits all the packets transmitted after the lost packet, this method is called
Go-Back-N transmission [22, 141, 142]. This work simulates the latter approach.

Selective Repeat ARQ

In a selective scheme, the node transmits only the packet that has errors. This has the
advantage of being less wasteful of link capacity, but relies on the receiver being able
to ensure that packets are delivered to the network layer in the correct order. In sliding
window protocols, there is a number called a sequence number; its role is critical [22, 142].
As a packet is transmitted it is given a number identifying when it was output in relation
to other packets. These numbers are used by the receiver to ensure that the packets are
passed onto the network layer in the correct order [140, 141].

The range of sequence numbers allowed is a function of both window size and retrans-
mission method. In the case of a sliding window protocol with a window size of 1, only
a one bit sequence number is required [141]. In general, with a window of K packets,
the range of sequencing numbers required is 0 to 2K+1 for a system utilising selective
re-transmission and 0 to K+1 for Go-Back-N systems. In practice, sequence number fields
within packets are preset, usually to 3 bits or 8 bits.

1 2 3 4 5 62

Figure 5.7.: Selective re-transmission

Go-Back-N ARQ

In a Go-Back-N scheme, which is modelled in this work, the transmitting node also re-
transmits all the packets that were transmitted after the lost packet. Go-back-N retransmis-
sion would be used when no re-sequencing could be done, and the retransmission order
would be preserved at the cost of lost capacity [140, 142, 143]. In a Go-Back-N system
the receiver uses sequence numbers to identify when an error has occurred or when it has
received duplicate packets. If a packet has been received correctly it will have a sequence

72

5. Modelling of a Noisy Wireless Communication Channel

number N, and the next packet received should have sequence number N +1. If the num-
ber received/detected is N +2 , a packet has been lost [22, 141].

1 2 3 4 3 42

N

Figure 5.8.: Go-Back N re-transmission

5.7. Simulation Platform

In SystemC, functional verification is done through simulation by applying stimulus to the
Device Under Test (DUT) and verifying the response against an expected result [135], as
shown in Figure (5.9). In order to test and evaluate the noisy digital channel described in
this work, a test platform consisting of the P2P design described earlier using Go-Back-N
ARQ and a packet format based on HDLC has been constructed, as described in [22]. The
stimulus sends a bit stream to the source module. The bits can then be sent across the
noisy digital channel to the destination module. The monitor module gets these bits from
the destination module in order to test the channel module, i.e. it receives the bits with
some errors from the channel module and then checks, verifies and analyses the bits in
order to detect the errors. The modelled system is assumed to be in a clock locked state.
So there is no need to model a Phase Locked Loop (PLL) for clock recovery.

������������������
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

Testbench

patterns

(Stimulus)

Device Under Test (DUT)

P3

P4

P5

P6

P1

P2

Noise

P2P Communication system

Wireless Channel Node (N2)Node (N1)

Monitor

(Verify response)

Apply input

Figure 5.9.: Simulation platform

73

5. Modelling of a Noisy Wireless Communication Channel

5.8. Results and Analysis

Since a simulation can process only a finite number of bits or packets, the BER needed
for evaluation can only be determined depending on the number of packets [93]. In this
work, the BER is determined by passing a large number of packets through the system
and counting the errors at the destination, i.e. packets with errors observed at the monitor
module divided by the total number of packets sent from the source. We have set our
simulation to run until the BER converges. In the simulation of P2P, we set the BER to
0.02; the result of replicating the random experiment of passing a large number of packets
or bits through the random channel is shown in Figure (5.10). A BER based on any number
of transmissions gives a spread of results, which are evaluated when an error occurs. This
spread is related to the variance of the estimated value in general. In order for simulation
results to be useful, the spread should be small and converge to the given value of BER.
Note that, for the results shown, the variance grows smaller as the number of packets
injected grows larger. This is typical behaviour for a correctly developed estimator. Figure
(5.11) compares the total number of packets received over a noisy wireless channel against
packets successfully received and packets with an error.

Figure 5.10.: Changing in BER versus number of packets in P2P communication channel

74

5. Modelling of a Noisy Wireless Communication Channel

Figure 5.11.: Packets in the noisy communication wireless channel

For the P2M platform we have set 10 ≤ λ ≤ 10000 randomly to ensure different values
of λ ; also, each channel is set to process each data packet with different noise. In this
simulation, we obtained λ1 = 8400, λ2 = 7800 and λ3 = 9100 with number of packets
N = 10,000. Figure(5.12) shows the P2M BER results with three channels and three
receivers.

Figure 5.12.: Changing in BER versus number of packets in P2M communication channel

We have seen that the noisy channel has been simulated correctly and our platform has

75

5. Modelling of a Noisy Wireless Communication Channel

verified the correct simulation of the system and the correct injection of errors in the bit
stream. A sample of the expected throughput for P2P (shown in Figure (5.13)) and for
P2M (shown in Figure (5.14)) has been determined by the monitor with an ARQ window
size set to 7.

Figure 5.13.: System throughput for P2P with ARQ window size 7

Figure 5.14.: System throughput for P2M with ARQ window size 7

76

5. Modelling of a Noisy Wireless Communication Channel

5.9. Summary

This work presents a first step towards the integration of communication modelling into
design modelling at the early stages of system development. The simple noisy digital
channel can be used to model all communication system interactions. This work demon-
strates a simple and computationally efficient way to model a communication channel
within a system level. The model is developed at a high level of abstraction, allowing for
rapid simulation and early estimation, which are necessary for successful system develop-
ment using the SoC design methodology. SystemC has been chosen because it provides
a homogeneous platform for the design and modelling of complex systems. Furthermore,
as systems become more tightly integrated, the ability to evaluate system performance at
early design stages becomes increasingly important. This is facilitated by the SystemC
design methodology and by following an IP-based design. To our knowledge, this is the
first time that the modelling of a wireless communication system has been undertaken in
SystemC and incorporated into a uniform design methodology, suitable for developing
new technologies following the SoC design methodology.

77

Part III.

Case Study: Flocking Behaviour

System

78

6. Modelling of a Flocking

Behaviour System Based on

Shared Variable Communication

At this stage of the work, a demonstration must be created by developing a small appli-
cation and/or test case in order to validate the developed methodology. The application is
known as a flocking behaviour system[18]. By modelling this system, we need to prove
that incorporating and fixing the wireless channel, wireless protocol and/or noise early in
the design methodology is very advantageous, i.e., small changes in the wireless specifi-
cations will create big changes in the system dynamics. Therefore, the system might be
constructed in different ways to investigate the system over different performance param-
eters.

The wireless communication of this system is created through the use of a wireless chan-
nel model in two scenarios. The first is P2P, meaning that there is a channel between every
two particles. In the second scenario, communication between the particles is based on the
shared channel. In the P2P scenario, the approach covered in this chapter for the commu-
nication is modelled at a high abstraction level using shared variables. The communication
is then refined by inserting a noisy wireless channel; this step will be covered in the next
chapter. The second scenario, where communication is based on the shared channel, will
covered in Chapter Nine.

6.1. Informal Description of the Flocking

Behaviour System

Flocking is the term given to a group of particles behaving in a particular way. Each
particle is modelled individually and moves at its own velocity [123, 107]. At any time,
each particle is defined by its position in space and its velocity vector. The velocity of each
particle is updated based on the parameters of the surrounding particles. Even though the

79

6. Modelling of a Flocking Behaviour System Based on Shared Variable Communication

interactions are only local, the flock presents a collective behaviour. In order to maintain
the system stability, all particles should be kept close to each other without colliding. In
this work, the flocking behaviour system is modelled and designed based on Reynolds’
three principles [112]. These are:

• Separation: This refers to collision avoidance. The particles always try to steer
away from other particles near them.

• Cohesion: This is when particles move toward the average position of local flock-
mates.

• Alignment: This refers to velocity matching. The particles must match their veloc-
ity to that of other particles.

At any given moment, a particle only detects other particles located within its surrounding
region. The movement of each particle is evaluated depending on the error value calculated
based on the relative position and absolute position of the particles located within its radius
of perception.

6.2. System De�nition

Consider a flocking behaviour system of one leader and N − 1 particles followers. All
the particles, including the leader, are operating in the same workspace W ⊂ R2. Let
a particle Pn = (Xn,Yn) ∈ R2 denote the position of particle Pn as shown in Figure(6.1).
The configuration space is spanned by P = [P0,,PN−1]. Each of the N particles has a
specific coordination (Xn,Yn) with respect to the global coordinate system [124, 144, 145].
The configuration of each particle is represented by Pk = (Xk,Yk) ∈ R2 , k = 0 to N−1.

����
����
����
����
����
����
����

����
����
����
����
����
����
����

Xn

Yn
nV

Y

X

Particle_P n

Figure 6.1.: The representation of a particle

80

6. Modelling of a Flocking Behaviour System Based on Shared Variable Communication

Each particle is designed to converge to a desired relative configuration with respect to a
certain subset of the rest of the group, in a manner that will lead the whole system to a
desired formation. Specifically, each particle (Pi) is assigned a specific subset (Ni) of the
rest of the group, called particle i’s communication group, with which it can communicate
in order to achieve the desired formation.

6.3. System Model

This system has a large number of particles distributed in the environment. The particles
use wireless communication to communicate with each other and determine each others’
location. They should maintain stability and must stay together. They are controlled by a
leader and should converge in a certain area and be distributed around the leader’s position.
In different scenarios, they can follow the leader to a specific position.

In terms of construction, there are many ways to connect the particles. In this chapter,
the system is investigated by constructing ring topology and fully connected topology.
Different forms of architecture must be explored in order to investigate the system over
different performance parameters. In a ring topology, each particle can communicate only
with its neighbours (Figure (6.2-A)); it can send and receive packets over a dedicated
channel. At this stage, the channel is an abstraction of the transmitting medium, and
connects just two particles; it is a point-to-point channel. The other topology is fully
connected (Figure (6.2-B)). Here each particle is linked to all other particles in the flock.
In other words, each particle can communicate with the other particles, creating the flock
system. Particle P0 is controlled and selected as the leader. In this stage, the system is
constructed at a highly abstracted level of communication, i.e., communication between
particles is done using shared variables.

6.3.1. Flocking Control System

The control algorithm of the whole system is linked to the actual transmission and imple-
mentation. Here, the control refers to the stability of the system. It is represented by a
proportional and derivative controller (PD controller), as shown in Figure (6.3). The main
function of the controller is to update the acceleration and velocity of the particles using
the current position of each particle and the error value that is evaluated based on the data
collected in the previous clock cycle, as shown in Equations (6.1) and (6.2).

xacceleration = εx ∗KP +(εx−oldεx)∗Kd (6.1)

81

6. Modelling of a Flocking Behaviour System Based on Shared Variable Communication

P0

P1

P2

P3

P4

P5

P6

P7

Leader

Particle 6 radius
of perception

Signal
(variable)

P1

P2

P3

P4

P5

P6

P7

P0

Leader

Particles

Scenario (1) Scenario (2)

(b) Fully Connected(a) Ring

Figure 6.2.: Flocking behaviour system constructed at a high abstraction level

yacceleration = εy ∗KP +(εy−oldεy)∗Kd (6.2)

where:

εx: current error in x direction.

εy: current error in y direction.

KP: proportional gain.

Kd: derivative gain.

oldεx: error from the last cycle in x direction.

oldεy: error from the last cycle in y direction.

xacceleration: current acceleration in x direction.

yacceleration: current acceleration in y direction.

6.3.2. Communication Between Particles

‘Communication’ refers to how the particles will communicate. At this stage, the parti-
cles communicate at a highly abstracted level. The particles can ‘know’ the position of
their neighbours by communicating messages. In both topologies mentioned above, each

82

6. Modelling of a Flocking Behaviour System Based on Shared Variable Communication

Find

error
Get

Packet
Σ Σ

Proportional

Output
Update Acceleration

PD−Loop Calculation

Derivative

Kd

Kp

New(Xaccel & Yaccel)

Figure 6.3.: Particle control system

particle can communicate (by transmitting and receiving messages) with the neighbours
located on its radius of perception, as shown in Figure (6.2). In a system constructed based
on ring topology, Figure (6.4) shows how the particles can exchange messages. Particle P5

can send its position to particle P4 and particle P6.

send current position

send current position

send current position

Update Current
Position

Update Current

Position
Update Current

Position

(x4,y4) (x5,y5)Particle_4 Particle_5 Particle_6 (x6,y6)

Figure 6.4.: Transmitting and receiving communication messages between particles

6.3.3. Particle Module Structure

The particle module is constructed based on two processes: transmitting and receiving.
Each particle performs a simple task, which is transmitting its current position to the other
particles located on its radius of perception (as shown in Figure (6.2)) and receiving other
particles’ positions. The particle module consists of three main elements: a transmitter
process that can be used to send data to the other particles and the convergence module,
a PD controller used to move the particles to new positions, and an estimation process
to evaluate error. The particle module structure is illustrated in Figure (6.5). It has the
following ports:

• An input port to send packets.

• An output port to receive packets.

83

6. Modelling of a Flocking Behaviour System Based on Shared Variable Communication

• An output port to send errors to the convergence module.

with New Position

Estimate New

Position

Update
accel & velocity
based on error

Prepare Packet

Control
RATE

RECEIVING

Particle Module

P
a

rtic
le

s
T

o
 O

th
e

r
M

o
d

u
le

T
o

 C
o

n
v

e
rg

e
n

c
e

Output
Port

Port
Output

PROCESS
TRANSMITTING

PROCESS

Input
Port

FIFO
Get Packet

Evaluate
Errors

PD Controller

Create Packet

to Send

FIFO

Figure 6.5.: The structure of the particle module

6.3.4. Convergence Module

The convergence module is designed to receive error values from the particles in order to
evaluate the convergence point, and can then be used to stop simulation at this point. Since
all the particles send their error values at the same time, the convergence module designed
here employs FIFOs as an interface type and elasticity buffer [30, 8]. FIFO is, simply, a
first-in first-out buffer. Each FIFO has a number of slots for storing values. The number
of slots is by default set to sixteen during the elaboration time. In this system, FIFOs have
been used to buffer error values received from all particles, because to reach the optimum
convergence point, we must guarantee that all error values are received and will remain in
the right order during the transmitting process. As shown in Figure (6.6), the convergence
module structure has only one input port which is used to receive error values from the
particles, and one process employed to find the running average of the error values and
check the convergence point of the whole system.

84

6. Modelling of a Flocking Behaviour System Based on Shared Variable Communication

FIFO

Input

Process

of the Errors
Average

Convergence Module

Check Convergence

Point

Stop Simulation

Find Running

Port

Figure 6.6.: The structure of the convergence module

6.3.5. Data Packet

The packet is the unit of data exchanged among particles during the simulation. Its size
has the most profound affect on the number of packets sent across the system (between
the particles), number of particles and relative position. To determine the best packet size
for our system, some empirical testing is required. Its format is shown in Figure (6.7). It
consists of the following fields:

1. Packet number: This represents the total number of packets transmitted by each
particle.

2. Particle number: This is the particle ID; it has a value from 0 to N−1, where N is
the number of particles used to construct the flock.

3. Relative position: Each particle’s relative position has to be defined at the begin-
ning of the simulation, because the particle should have reached this position at the
end of the simulation.

4. Absolute position: This defines the x and y coordinates of each particle with refer-
ence to the starting point (0,0).

85

6. Modelling of a Flocking Behaviour System Based on Shared Variable Communication

Figure 6.7.: Data packet format

6.4. Simulation Platform

In SystemC, the functional verification of the modelled system is performed through sim-
ulation. This process consists of applying a stimulus to the Device Under Test (DUT) and
verifying the response against an expected result. At each time step in the simulation,
the operations shown in Figure (6.9) are applied to all particles simultaneously, and the
positions and velocities of all particles at the next time step are updated accordingly. Sub-
sequently, each particle must send its updated position to the other particles located within
their radius of perception.

6.4.1. Initial Conditions

Various initial conditions may be considered for our modelled system; these conditions
are as follows:

• Relative position: The particles are distributed uniformly in space, with a defined
shape. The shape is created based on the relative position value given to each particle
at the beginning of the simulation; the distance between the relative positions rep-
resents the desired distance (Ld) that should be maintained by each particle in order
to make the system conform to the ideal pattern shown in Figure (6.8). At the final
position, the system has reached the convergence point if each particle maintains the
desired distance from the particles located on its radius of perception.

86

6. Modelling of a Flocking Behaviour System Based on Shared Variable Communication

.

.....

. .

rx0,ry0 rx1,ry1 rx2,ry2 rx3,ry3 rx4,ry4

rx10,ry10 rx9,ry9 rx8,ry8 rx7,ry7 rx6,ry6

rx5,ry5

Ld Ld

rx11,ry11

Ld

Ld

P10 P9 P8 P7 P6

P5

P4P3P2P1P0

P11

X

Y

Figure 6.8.: Relative position for N=12

• Single flock: We start our system by creating a single flock. The topologies under
investigation in this system are the ring and the fully connected, as mentioned above.

• Set leader: At the beginning of the simulation, we must select one of the particles
as the leader. If the leader moves, all the particles should follow; otherwise, (leader-
fixed) all the particles should keep close to each other without colliding and attempt
to conform to the desired pattern around the leader based on their relative positions.
In this work, P0 is selected as the leader.

• PD Controller: The most important parameters for the flocking behaviour system
are the controller parameters (Kp and Kd). The values of these constants affect the
way particles will interact with each other because the controller is responsible for
updating the acceleration and speed of the particles based on the error value.

• Transmission rate R: This is usually expressed as a number of packets per simu-
lation step. In this work, we start the simulation program with the maximum rate
(1 packet/step).

• Flock sizes: The flocking system can be constructed from a huge number of par-
ticles; to simplify the simulation, this system uses twenty particles (N = 20) dis-
tributed in the environment.

87

6. Modelling of a Flocking Behaviour System Based on Shared Variable Communication

Receiving

Process

Packets
received?

Evaluate errors

Update accel. & velocity

based on errors values by

using PD controller

new position

Particle moved to

Create a packet for

new position

Send packet to

 transmit process

Transmitting

Process

rate

Set transmission

Get packet
from receiving

process?

Broadcast packets

based−on system
topology

Waiting for

packets

Y

N

Waiting for

packets

Y

N

Particle Thread

Figure 6.9.: Interaction between the transmitting and receiving process

6.4.2. Boundary Conditions

The acceleration and speed are bounded based on the error value. For example, if the dis-
tance between particle (P1) and particle (P2) is greater than (Ld), each particle should in-
crease their velocity to reduce the distance up to (Ld) value. On the other hand, if the accel-
eration value is greater than the maximum level, it will be cut back to the maximum value,
which means the speed of the particles is limited, or bounded. In this work, the whole
system is optimised with acceleration range (−0.2 to 0.2) and speed range (−1.0 to 1.0)1.

1The choice of acceleration, speed ranges and micro controller parameters from a private correspon-
dence/communication to my supervisor Fernando Rodriguez.

88

6. Modelling of a Flocking Behaviour System Based on Shared Variable Communication

6.4.3. Simulation Scenarios

The equations of motion employed in this simulation are symmetrical because all the par-
ticles are identical. The simulation program affects the particles’ movement by modifying
only their acceleration; their velocity and position will be updated based on the accelera-
tion value. The simulation takes place on a two-dimensional axis (2D). Each particle has
corresponding equations for movement on both X and Y axes. The positions, velocities
and accelerations of the particles are all 2D vectors (x,y).

6.4.4. Evaluating Convergence Point

The convergence point of the whole system (i.e. the point at with the particles in the system
have stabilized into the desired pattern around the particle leader) is evaluated based on the
Cumulative Moving Average (CMA) concept, which is a type of finite impulse response
filter used to analyse a set of data points by creating a series of averages of different subsets
of the full data set [146, 147]. In this system it is simply used to measure the average error
rate of the particles’ positions until the MA is less than a specific error-tolerant value. As
mentioned before, the convergence module is responsible for detecting the convergence
point of the system [148]. As shown in Figure (6.10), all the particles except the leader
should send the total error value of their position at each simulation step, so that as a
first step, a simple moving average (SMA), which is the unweighted mean of the previous
N− 1 error values, can be calculated. Then, at each simulation step we can calculate the
cumulative average (ε) and compare it to a defined error-tolerant value; the result will
decide whether the simulation is to be stopped.

For each particle, the total error is determined depending on errors in x-axis and y-axis
that as expressed in Equations (6.3) and (6.4).

dxk =
1
L ∑Ld−Ld−actual (6.3)

dyk =
1
L ∑Ld−Ld−actual (6.4)

Therefore, the total error is given as indicated in Equation (6.5).

dk =
√

dx2
k +dy2

k , k = 1...N−1, (6.5)

89

6. Modelling of a Flocking Behaviour System Based on Shared Variable Communication

Finally, the cumulative average (ε) can be evaluated as indicated in Equation (6.6).

ε =
1

N−1 ∑dk, k = 1...N−1 (6.6)

where:

dk : RMS error.

dxk : error in x axis.

dyk : error in y axis.

Ld: desired distance.

Ld−actual: actual distance.

L: number of particles located in radius of perception.

P
n−1

P0

P
n−1

P
n−2

P
1

P
2.Particles send

error values to

convergence model

Leader

(N particles)

P4

P3

Flocking system model

P2

P1

Convergence

module

Figure 6.10.: Connecting the convergence module to the particles

6.5. Experimental Results

In this section, several simulation results are presented to illustrate the system behaviour
and dynamics under different conditions, such as the system constructed as ring or fully

90

6. Modelling of a Flocking Behaviour System Based on Shared Variable Communication

connected topology (Figure (6.2)), or whether the leader was fixed or assumed to be move-
able. To simplify the simulation process and easy to visualise the system behaviour, we
ran all experiments with a small number of particles, for example (N = 20). The relative
position of the particles was defined as a rectangle (with ring topology), or as mesh, when
the system was constructed as fully connected (Figure (6.11)). The leader position was
located in the corner or centre of the rectangle. All particles started moving with Vx and
Vy based on the error value, but satisfying velocity constraints. These initial values were
provided to the system by the stimulus. The interaction range between two particles en-
sured the relative distance (Ld) of 1 at the final destination. All the particles began moving
from position (0,0) and distributed themselves around the leader (if the leader was fixed)
in a uniform shape based on the initial values of their relative positions. If the leader
was moveable, the particles followed the leader. All these changes were made in order to
validate the developed methodology and then prove that incorporating wireless commu-
nication at an early stage of the design flow is very advantageous. Multiple simulations
were run to optimise the model parameters, including simulation steps, transmission rate,
communication delay, speed and acceleration of the particles.

In the next section, all the experiments are carried out with the system at a high abstraction
level, which means the communication between the particles is achieved by a SystemC
primitive channel such as signal or FIFO. As mentioned in the beginning of this chapter,
the simulation contains two parts, as follows:

1. System modelled at high abstraction level, meaning communication is modelled
based on a variable (primitive channel).

2. Refine communication by inserting our wireless communication channel, which will
be covered in Chapter Seven.

In each part of the simulation, the flocking system is constructed as ring and fully con-
nected topologies, and both cases are investigated with leader fixed and leader movable.
All the cases of system modelling that were simulated are shown in Figure (6.12).

6.5.1. System Modelling Based on Shared Variable

Communication

This simulation has two scenarios: in the first, the leader is fixed and all the other particles
should be distributed around the leader, based on the initial values of the relative positions.
In the second, the leader is movable and all the other particles should follow the leader to
a specific target. Both cases will be illustrated in detail in the next sections.

91

6. Modelling of a Flocking Behaviour System Based on Shared Variable Communication

(A) Rectangle with leader at the corner

(B) Rectangle with leader at the center

(C) Mesh with leader at the center

Figure 6.11.: The initial values of the relative positions

92

6. Modelling of a Flocking Behaviour System Based on Shared Variable Communication

Behaviour System

Modelling of Flocking

(High abstraction level)

Shared variable communication

(Low abstraction level)

Noisy wireless channel

topology

Ring Fully connected

topology

Fully connected

topologytopology

Ring

Leader fixed

Leader moved

Leader fixed

Leader moved

Insert wireless features

Figure 6.12.: Modelling classification of flocking behaviour system

1- First Scenario: Ring Topology

i- Leader Fixed

In the first part of this experiment, the leader is fixed at position (0,0) and 19 particles
begin at the initial position (0,0). These particles navigate under the proposed control
scheme based on relative position values defined as shown in Figure (6.11-A), and the
system parameters indicated in Table (6.1). The communication sets in this simulation are
based on ring topology, as illustrated in Equation (6.7). The particles aim to converge to
the desired particles’ relative positions defined at the beginning of the simulation. At the
end of the simulation, the system converged and the simulation was stopped when the total
error ratio was less than 0.01. Figure (6.13-A) shows the system behaviour, where each
particle is represented by a different color and it clearly proves that the particles remained
in the same position structure (rectangle) throughout the simulations. Thus it is proven that
particles consistently and effectively avoid contact with one another. Figures (6.13-B, C)
illustrate the positional error curves and the RMS error respectively, while Figure (6.13-
D) illustrates the convergence point of the system, which was obtained at 6,221 simulation
steps. The final position of the particles is illustrated in Figure (6.14).

P0 = {P19,P1}, P1 = {P0,P2} P19 = {P18,P0} (6.7)

93

6. Modelling of a Flocking Behaviour System Based on Shared Variable Communication

Parameters Values
No. of particles (N) 20

Simulation time Convergence Point (steps)
Transmission rate 1 Packets/simulation step
Acceleration range -0.2 to 0.2

Speed range -1.0 to 1.0
Leader Particle P0

Relative position shape Rectangle, Mesh
Error (ε) 0.01

Proportional gain (KP) 0.03
Derivative gain (Kd) 0.1
desired distance (Ld) 1

Table 6.1.: System Parameters

(A) System behaviour (B) Positional error (x-axis)

(C) RMS error (D) Convergence point at 0.01

Figure 6.13.: System behaviour for ring topology with shared variable fixed leader and
with arrangement (A) of Figure(6.11)

94

6. Modelling of a Flocking Behaviour System Based on Shared Variable Communication

Figure 6.14.: The final positions of the particles

We will now investigate the effects of increasing relative position distance from 1 to 2.
The topology is still a ring, as indicated before, but the leader position is changed to the
centre of the rectangle, at position (0,0), as shown in Figure (6.11-B). Also, the number of
particles involved is increased to 21 in order to create a uniform shape. The simulation is
executed based on system parameters indicated in Table (6.1). At the end of the simulation,
the system converged and the simulation was stopped when the error total was less than
0.01.

Figure 6.15.: System behaviour for ring topology with shared variable fixed leader and
with arrangement (B) of figure(6.11)

95

6. Modelling of a Flocking Behaviour System Based on Shared Variable Communication

ii- Leader Moved

This is the second case, where the leader is assumed to be moved and the other particles
will follow the leader to the target. The leader is driven along a defined path on the x and
y axes, as shown in Figure (6.16). The dashed line represents the desired trajectory that
the leader should follow to reach the final target. The leader, with all the other particles,
starts moving from initial position (0,0), and the relative position values that are defined
as a rectangle (Figure (6.11-A)). The values of the parameters in this simulation are the
same as previously indicated in Table (6.1).

In this simulation, the leader starts moving as shown in Figure (6.16) into position (20,20)
in the first phase, then changes direction to position (50,-10) and finally tries to reach the
target at position (180,120). Figure (6.17) depicts screen-shots A-F show the particles’ tra-
jectories on the x−y plane and the achievement of flocking motion. The blue straight line
in the main figure represents the leader’s path, while the other lines with different colors
represent the particles’ paths. It also shows that the positions of all particles will finally
converge to the leader’s final position. Screen-shot A, (0,0) denotes the starting point of
all particles, and other screen-shots (B-E) show how the particles follow the leader. In
the last screen-shot, F, the leader reaches the target position (180,120) and all the parti-
cles follow it. Figures (6.18-A, B) illustrate the positional error curves and RMS error
respectively, while Figure (6.18-C) illustrates the convergence point of the system, which
was obtained at 44,927 simulation steps. The final position of the particles is illustrated in
Figure (6.18-D).

point
Starting

TargetY
−

p
o

s
it

io
n

X−position

(20,20)

(50,−10)

(180,120)

1
2

3

Leader path

Figure 6.16.: Leader’s path to the final destination

96

6. Modelling of a Flocking Behaviour System Based on Shared Variable Communication

(A)

(B)

(C)

(D)

(F)

(E)

(A) (B)

(C) (D)

(E) (F)

Figure 6.17.: Details of system behaviour for ring topology with shared variable moved
leader with arrangement (A) of Figure(6.11)

97

6. Modelling of a Flocking Behaviour System Based on Shared Variable Communication

(A) Positional error (x-axis) (B) RMS error

(C) Convergence point at 0.01 (D) Final position of the particles

Figure 6.18.: System convergence

2- Second Scenario: Fully Connected Topology

In this experiment, the relative position of the particles is distributed as mesh (Figure
(6.11-C)), so each particle can communicate with all the other particles. As indicated in
the first experiment, there are two cases within this scenario, as follows:

i- Leader Fixed

In this simulation, the leader is fixed at position (0,0) and 19 particles start from initial
position (0,0). The relative positions of the particles are shown in Figure (6.11-C), which
is defined as mesh. The communication sets in this simulation are based on fully connected
topology, which means a broadcast mode, as illustrated in Equation (6.8). Figure (6.19-
A) shows the system behaviour based on the system parameters indicated in Table (6.1).
The system behaviour clearly shows that the particles reach the final positions defined in
the relative positions. Thus it is proven that particles consistently and effectively avoid
contact with one another. Figure (6.19-B) illustrates RMS error curves and Figure (6.19-

98

6. Modelling of a Flocking Behaviour System Based on Shared Variable Communication

(A) System behaviour (B) RMS error

(C) Convergence point at 0.01 (D) Final position of the particles

Figure 6.19.: Details of system behaviour for fully connected topology with shared vari-
able fixed leader with arrangement (C) of Figure(6.11)

C) illustrates the convergence point of the system, which was obtained at 4,201 simulation
steps. The final position of the particles is illustrated in Figure (6.19-D).

P0 = {P1...P19}, P1 = {P0,P2....P19} P19 = {P0...P18} (6.8)

ii- Leader Moved

As previously indicated, in this second case the leader is assumed to be moveable and
the other particles will follow it to the target. All of the particles move from initial po-
sition (0,0) and the relative positions values defined as shown in Figure (6.11-C). The
values of the parameters in this simulation are the same as previously indicated in Table
(6.1). Screen-shots A-F in Figure (6.20) show the particles’ evolution in position and the
achievement of flocking motion. Screen-shot A (0,0) denotes the initial position of all the
particles. In the last screen-shot (Figure (6.20-F)), the leader approaches the target posi-

99

6. Modelling of a Flocking Behaviour System Based on Shared Variable Communication

tion (180,120) and all the particles follow it. Figures (6.21-A, B) illustrate the positional
error curves and RMS error respectively, while Figure (6.21-C) illustrates the convergence
point of the system, which was obtained at 20,968 simulation steps. The final position of
the particles is illustrated in Figure (6.21-D).

6.5.2. System Convergence versus Number of Particles in

Terms of Di�erent Transmission Rates

In this experiment, we need to evaluate the system convergence point against the increas-
ing number of particles. Then we investigate effects over different transmission rates,
which means the effect of adding more particles with different transmission rates. The
system parameters of this experiment are illustrated in Table (6.2). The number of parti-
cles is increased from (N = 10) to (N = 500), while the transmission rate (R) is changed
from the maximum value (R = 1 packet/step) to (R = 0.0625 packet/step). The conver-
gence point of the system is evaluated through these two approaches; the first one based
on particle position and the other based on particle energy.

Parameters Values
No. of particles 10 to 500

Transmission rate (1 pkt/step) to (0.0625 pkt/step)
Leader Particle P0 - Fixed

Error (ε) 0.01
desired distance (Ld) 1

shape of relative positions rectangle
Topology ring

Table 6.2.: System convergence versus number of particles in terms of different transmis-
sion rates - system parameters

1- System Convergence Based on Particle Position

In this approach, the total error (dk) is evaluated based on particle position, which means
(dx) and (dy) represent error in particle position. Therefore, dk is expressed as shown in
Equation (6.9). Figure (6.22) illustrates system convergence versus number of particles
with different transmission rates.

dk =
√

dx2 +dy2 (6.9)

100

6. Modelling of a Flocking Behaviour System Based on Shared Variable Communication

(A)

(B)

(C)

(D)

(E)

(F)

(A) (B)

(C) (D)

(E) (F)

Figure 6.20.: Details of system behaviour for fully connected topology with shared vari-
able moved leader with arrangement (C) of Figure(6.11)

101

6. Modelling of a Flocking Behaviour System Based on Shared Variable Communication

(A) Positional error (x-axis) (B) RMS error

(C) System convergence (D) Final position

Figure 6.21.: System convergence

Figure 6.22.: System convergence based on particle position

102

6. Modelling of a Flocking Behaviour System Based on Shared Variable Communication

Figure 6.23.: System convergence based on particle position

2- System Convergence Based on Energy

Here, the total error is determined depending on the particles’ energy, as stated in Equa-
tion (6.10), which means the total error mainly depends on the changing of the particle’s
energy. Figure (6.23) illustrates system convergence versus number of particles with dif-
ferent transmission rates. By using this approach, the system converges more quickly then
the previous approach.

dk = dx2 +dy2 (6.10)

In this experiment, the maximum data rate is 1 packet/step, that we established when
each particle sent a packet every simulation step. We started from the maximum data
rate mentioned above and each time we reduced the transmission rate until we reach the
instability point. Hence, as the data rate decreased, the system took more time to converge,
because the number of packets exchanged between the particles was reduced.

6.5.3. E�ect of Changing Relative Positions

In all the experiments done previously, the relative position distance (Ld) between the
particles has been set to 1 in the beginning of the simulation, as shown in Figure (6.11). In
this experiment, we investigate the effect of changing the relative position by increasing it

103

6. Modelling of a Flocking Behaviour System Based on Shared Variable Communication

to 10, as indicated in Figure (6.24), and then checking the effect on system behaviour, as
shown in Figure (6.25).

Figure 6.24.: Relative position defined with distance 10

Figure 6.25.: System behaviour based on relative position distance (Ld = 10)

On the other hand, Figure (6.26) shows the effect of changing the relative position shape of
rectangle and mesh in terms of data rates. As illustrated in Table (6.3), which summarises
initial values of the system parameters, the data rate changes from the maximum value,
which is 1 step/packet, up to 1000 step/packet. We note that as the data rate decreases,
the system takes more time to converge.

104

6. Modelling of a Flocking Behaviour System Based on Shared Variable Communication

Figure 6.26.: System convergence in terms of relative positions

Parameters Values
No. of particles (N) 20

Topology Ring
Transmission rate (1 pkt/step) to (0.001 pkt/step)

Leader Particle P0 - Fixed
Error (ε) 0.01

desired distance (Ld) 1

Table 6.3.: Effect of changing relative positions - system parameters

6.5.4. System Behaviour in 3D

The results shown above are presented in 2D. In this section, time is added as a third
dimension to present the system behaviour in three dimensions. Consider the flocking
system modelled above, with one leader and nine particles. As stated before, the initial
positions of the particles are set to position (0,0), which represents the starting point.
The simulation is executed based on system parameters indicated in Table (6.1), except
that the number of particles is reduced to ten. In this experiment, the flocking system is
constructed as ring topology and is investigated with two cases: leader fixed and leader
movable. The system converged and the simulation was stopped when the error total (ε)
was less than 0.01. In the first case (leader fixed), Figure (6.27-A) shows the leader fixed

105

6. Modelling of a Flocking Behaviour System Based on Shared Variable Communication

at position (0,0), while Figure (6.27-B) illustrates how the other particles converged to the
leader based on their relative positions.

X position

-0.4
-0.2

0.0
0.2

0.4

Y
po

sit
ion

-0.4

-0.2

0.0

0.2

0.4

Si
m

ul
at

io
n

st
ep

s

100

200

300

400

Leader (Fixed)

(A) Leader fixed at (0,0)

X position

-0.5
0.0

0.5
1.0

1.5

Y
po

sit
ion

-2
-1

0
1

2
3

4
5

6

Si
m

ul
at

io
n

st
ep

s

100

200

300

400

(B) Particles moving around leader

Figure 6.27.: Snapshots of flocking behaviour in 3D with the leader fixed

In the second case (leader moveable), Figures (6.28-A, B) show a flock moving in a 3D
environment with a sinusoid wave profile (sin(t

2), cos(t
2)) that represents the leader’s path

(Figure (6.28-A)). All particles’ initial positions are located at original point (0,0). It is
clear that all flock members eventually move together to follow the sinusoid wave of the
environment (leader path), like a school of fish along ocean currents. A snapshot of two

106

6. Modelling of a Flocking Behaviour System Based on Shared Variable Communication

particles following the leader is illustrated in Figure (6.28-B). Again, at the end of the
simulation, the system converged and the simulation was stopped when the total error
ratio (ε) was less than 0.01.

(A) Leader moving (sin(t
2), Vy = sin(t

2))

(B) Particles follow leader.

Figure 6.28.: Snapshots of flocking behaviour in 3D with the leader moving

107

6. Modelling of a Flocking Behaviour System Based on Shared Variable Communication

6.6. Summary

In this chapter, the developed methodology is applied to the model of a flocking behaviour
system selected as a case study, in order to validate it. The main point of modelling such
system was to state that it is advantageous to have these designs that we are putting forward
together since the early stages of functionality. The wireless communication of this system
was created using P2P, which means there is a channel between every two particles. The
communication was modelled at high abstraction level using a shared variable. To our
knowledge, this is the first time that the modelling of a flocking behaviour system has been
undertaken in SystemC and incorporated into a uniform design methodology, suitable for
developing new technologies following the SoC design methodology. The final results of
the modelled system have been validated and it has been proven that communication has
a big impact in system dynamics, i.e., small changes in the wireless specifications create
big changes in the system dynamics.

108

7. Inserting a Noisy

Communication Channel

The system modelled in the previous chapter is not a practical situation, because the com-
munication is modelled at a high abstraction level and thus cannot be used to incorporate
wireless features or investigate the effects of those features. Therefore, in this chapter we
extend the system to a more general case, in which wireless features such as noise and
communication delay are considered, because the descriptions of such wireless features
are very important aspects of channel modelling. Moreover, it is very important to in-
troduce wireless features early on, because they will have a major effect on the system
stability and system performance. Hence, as a first stage, we must insert a wireless chan-
nel model; then we can investigate the effects of introducing wireless features into the
modelled system.

7.1. Inserting a Wireless Communication Channel

In order to optimise system stability in terms of communication and investigate system
performance under real conditions, the communication aspect of this modelled system is
refined from a high abstraction level (shared variable communication) to a low abstraction
level through the insertion of our wireless channel model [133]. Then the stability and
reliability of the system are investigated in order to attain the best performance under dif-
ferent wireless communication effects. The communication refinement process is carried
out based on our developed wireless methodology described in Chapter Three. Figure
(7.1) illustrates the system diagram after inserting the wireless channel. The main advan-
tage of inserting a wireless channel model into the system is that it allows us to simulate a
more realistic system when inserting noise through the channel. Moreover, it is possible to
determine the effect of communication latency and communication bandwidth while still
maintaining system stability. The key point is to demonstrate that one can successfully use
the developed SystemC methodology to model a complex wireless communication system
and to show the impacts of communication on system stability and system performance.

109

7. Inserting a Noisy Communication Channel

Receiving

Process

Process

Transmitting

Process

Transmitting

Receiving

Process

Receiving

Process

Process

Transmitting

Insert Noise

Insert Delay

Capture

date
Broadcast

packet

Pn−1 P0 P1

X0,Y0 X1,Y1
Xn−1,Yn−1

receive packet

Wireless Channel Wireless Channel

send packet

Wireless ChannelWireless Channel

.

Wireless Channel Module Structure

P1

In
p

u
t

p
o

rt

O
u

tp
u

t
p

o
rt

P2
P3

Figure 7.1.: Inserting a noisy communication channel model

7.2. Incorporating Wireless Features into the

System

In the previous chapter, all the experiments were carried out with an ideal wireless com-
munication channel model, using shared variable communication that is used in the system
without the insertion of delay and noise, hence it does not affect anything and simply be-
haves like a wire. In a real wireless communication system, noise and delay are inherent.
Therefore, inserting these wireless features is a very desirable task, because we need to
simulate the modelled system with real elements, such as noise and delay, which affect
system performance.

7.2.1. Impact of Noise

In communication systems, input signals as well as unwanted noise and interference are
random in nature, and they are modelled by random processes [72, 88]. Impulse noise is

110

7. Inserting a Noisy Communication Channel

a non-stationary stochastic electromagnetic interference which consists of random occur-
rences of energy spikes with random amplitude and spectral content [72, 99]. It is critical
for communication systems; therefore, the modelling of such type of noise is very impor-
tant for the design and modelling of communication systems under real conditions. In this
section we consider a simple digital noise model (Figure(7.2)) by modelling impulsive
noise, in which the individual bits or packets are modified with a given probability (as
described in Chapter Four).

�
�
�
�

�
�
�
�

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

PiParticle

Transmitter

process

process
Receiver

process

PjParticle

generator

Impulsive noise

Wireless channel model

Figure 7.2.: Schematic diagram of incorporating impulsive noise into the wireless channel
model

Hence, to simulate this noisy environment, a deterministic description of the channel to
simulate this type of the noise is not possible; this is why the global information of the
modelled system is affected by the exponential distribution function, which can be used to
reflect the change of environment in a noisy environment (Figure (5.2)) [72, 99]. Mean-
while, for each particle, this information (data packet) is employed to update its state,
although it has been contaminated by the noise. The method of modelling exponential
distribution is based on the method used in [133]. The obtained results, as we see later in
this chapter, provide sufficient conditions for the considered system to achieve flocking in
a noisy environment, as well as proving the effectiveness of our wireless methodology to
model complex wireless systems.

7.2.2. The In�uence of Communication Delay

Delay in communication systems refers to the amount of time it takes for the packet to
travel from the transmitter station to the receiver station over a communication channel
[88]. To model our system in a realistic environment, we consider delay issues. Consider a
time-delay (τ) that influences the system stability as well as convergence of the system. In
this case, it is desirable to explore the impact of incorporating this communication delay
(τ) into the system through our wireless channel model until the critical stability point

111

7. Inserting a Noisy Communication Channel

(τcritical) is reached. We start from an ideal case, representing a zero communication delay
(τ = 0), and we increase delay by small increments. Hence, the modelled system will be
investigated when 0 ≤ τ ≤ τcritical . At each increment, we find the system convergence
point, until we reach (τcritical) , which is our target in this experiment.

7.3. Experimental Results

This section extends the results in Chapter Six by inserting a noisy wireless communica-
tion channel and then by incorporating wireless features such as noise and communication
delay. Therefore, to verify the result of inserting a wireless communication channel, we
provide some computer simulation results to illustrate the system behaviour and dynam-
ics. The values of the parameters in this simulation are illustrated in Table (6.1); they are
the same as those used in Chapter Six. For example, the system is constructed as ring
or fully connected topology (Figure (6.2)), and in some cases the leader is fixed while in
other cases it is assumed to be moveable. Hence, this section illustrates an extension of
the results established in Chapter Six and presents the results of the system behaviour after
communication has been refined by inserting a wireless channel model and then compar-
ing the results in both cases to prove that the developed SystemC methodology has been
used successfully to model wireless systems. The effects of incorporating wireless features
such as communication delay and noise through the channel model are then investigated,
which means there is a great impact between communication and system stability that we
need to show.

7.3.1. Inserting a Wireless Channel

In this section, suppose we have a system of 20 particles, as in Chapter Six. The simulation
has two scenarios, as mentioned before; in the first the leader is fixed and in the second the
leader is moved to a specific location. As a first step, we need to incorporate the channel
in the absence of communication delays and noise in order to test whether it is inserted
successfully into the system. Following that, in the next section we evaluate the system
convergence point in each case, after incorporating wireless features and investigating
changes in the system behaviour.

112

7. Inserting a Noisy Communication Channel

1- First Scenario: Ring Topology

i- Leader Fixed

In this part of the experiment we use the initial values of the parameters used in Chapter
Six, which means the leader is fixed at position (0,0) and 19 particles begin at the initial
position (0,0). The particles navigate under the proposed control scheme based on relative
position values defined in Figure (6.11-A) and system parameters indicated in Table (6.1).

From the experiment of simulation, the system converged and the simulation was stopped
when the total error ratio was less than 0.01. The system behaviour clearly shows that the
particles remained in the same position structure (rectangle) throughout the simulations.
Thus it is proven that particles consistently and effectively avoid contact with one another.
Figure (7.3-A) illustrates the convergence point of the system, which was obtained at 6,221
simulation steps. The final position of the particles is illustrated in Figure (7.3-B). On the
other hand, when we compared the results we obtained in Chapter Six with Figure (7.3-A),
we can see that it is easily verified that inserting a communication channel is successful,
because both behaviours are almost the same, with the same convergence point.

(A) System convergence (B) Final positions of the particles

Figure 7.3.: The final state of the system

ii- Leader Moved

This is the second case; the leader is assumed to be movable and the other particles will
follow the leader to the target. The leader is driven by a defined path on the x and y axes,
as shown in Figure (6.16). The leader and all the other particles start moving from initial
position (0,0), and the relative position values are defined as a rectangle (Figure (6.11-A)).
The values of the parameters in this simulation are kept the same as previously indicated

113

7. Inserting a Noisy Communication Channel

(A) Positional error (x-axis) (B) System convergence

Figure 7.4.: The final state of the system

in Table (6.1). In this experiment, the system behaviour is the same that got in the Figure
(6.17), which is a another prove that the wireless channel model inserted successful. Figure
(7.4-A) illustrates the positional error curves and Figure (7.4-B) illustrates the convergence
point of the system, which was obtained at 44,927 simulation steps.

2- Second Scenario: Fully Connected Topology

In this scenario, the main difference is that the topology is fully connected and the relative
position of the particles is changed from a rectangle to a mesh, as shown in Figure (6.11-
C)). Hence each particle can get information from all other particles. As indicated in the
first experiment, there are two cases within this scenario, as follows:

i- Leader Fixed

This simulation involves 19 particles that try to converge to the leader’s position depend-
ing on the relative position values (Figure (6.11-C)); the leader is fixed at (0,0). Again, the
values of the parameters in this simulation are the same as in Chapter Six (Table (6.1)).
The system behaviour, which is similar to the Figure (6.19-A), clearly showing that the
particles reach the final positions defined in the relative positions. Thus it is proven that
particles consistently and effectively avoid contact with one another and again the chan-
nel model incorporated successful, while Figure (7.5-A) illustrates the convergence point
of the system, which was obtained at 4,201 simulation steps. The final position of the
particles is illustrated in Figure (7.5-B).

114

7. Inserting a Noisy Communication Channel

(A) System convergence (B) The final position of the particles

Figure 7.5.: The final state of the system

ii- Leader Moved

As mentioned in Chapter Six, it is assumed that the leader is moved to specfic location
(Figure(6.16)) and the other particles will follow it to the target. All of the particles move
from initial position (0,0) and the relative positions values defined in Figure (6.11-C).
Again, the values of the parameters in this simulation are the same as previously indicated
in Table (6.1). The system behaviour is the same that got in the Figure (6.20), which
is a another prove that the wireless channel model inserted successful. Figure (7.6-A)
illustrates the convergence point of the system, which was obtained at 20,968 simulation
steps. The final position of the particles is illustrated in Figure (7.6-B).

(A) System convergence (B) The final positions of the particles

Figure 7.6.: The final state of the system

At the end of this experiment, if we compare the results obtained in Chapter Six, which we
use as a reference, with the corresponding results in this section (as shown in Table (7.1)),
we find them to be similar, which proves that a noisy wireless channel model has been

115

7. Inserting a Noisy Communication Channel

incorporated successfully; it also proves the effectiveness of our developed methodology
to model wireless systems. As a result, wireless features such as noise and delay can be
inserted into the system, which we will do in the next sections.

level

Modelling

connected

Fully

connected

Fully

Convergence Point
(simulation steps)

6221

44927

4201

20968

6221

44927

4201

20968

Leader mode

Moved

Fixed

Fixed

Moved

Fixed

Moved

Fixed

Moved

Topology

S
h

a
re

d
 v

a
ri

a
b

le
 c

o
m

m
.

N
o

is
y
 w

ir
e
le

s
s
 c

h
a
n

n
e
l

M
o

d
e
ll
in

g
 o

f
fl

o
c
k
in

g
 b

e
h

a
v
io

u
r

s
y
s
te

m

Ring

Ring

Table 7.1.: System convergence points at different modelling levels

7.3.2. The E�ect of Communication Delay

We present simulation results with communication delay for a system shown in Figure
(6.2-A) and system parameters in Table (6.1). Figure (7.7-A, B, C, D) shows the system
behaviour under the effect of communication delay τ = 1 step.

In this experiment we investigate stability of our system and we obtained τcritical = 6 steps,
which is the maximum delay with which the system remains stable; it is known as the crit-
ical stability point (Figure (7.8)). In this case, the communication delays do not influence
the system stability; they prolong the convergence point instead.

116

7. Inserting a Noisy Communication Channel

(A) System Behaviour (E) System Behaviour

(B) Positional error (F) Positional error

(C) System convergence (G) System convergence

(D) Final position (H) Final position

Figure 7.7.: System behaviour in the presence of delay, 1 step and 7 steps (instability re-
gion) 117

7. Inserting a Noisy Communication Channel

Figure 7.8.: Effect of insert communication delay

For the case where τ > 6 steps, for example τ = 7 steps, the system becomes unstable and
does not converge. The system behaviour is illustrated in Figures (7.7-E, F, G, H), and
Table (7.2) illustrates the convergence points of the system when 0 ≤ τ ≤ 7. The results
concerning inserting a communication delay with τ = 7 steps are interpreted according to
Figure (7.9). In this figure there are three regions, which are described below:

Comm. delay (τ) steps Converging Points (simulation steps)
0 6221 (No delay)
1 7427
2 8630
3 10830
4 15083
5 29098
6 48976
7 System unstable

Table 7.2.: Convergence points of the system in the presence of communication delay

• When the communication delay (τ) is between 0 simulation step and 6 steps, the
system is stable and converges. This region is depicted by number (1) in Figure
(7.9).

• When the communication delay equals (τ = 7 steps), the system becomes unstable;

118

7. Inserting a Noisy Communication Channel

therefore (τ = 6 steps) is known as the critical stability point, represented by number
(2) in Figure (7.9).

• If the communication delay is greater than 6 steps, as represented by number (4),
the convergence point tends to infinity (Figure (7.7-G)), which means the system
enters the unstable region depicted by number (3) in Figure (7.9).

1

2

3

4

Figure 7.9.: Effect of communication delay

7.3.3. E�ect of Noise

In this section we investigate modelled system performance after inserting noise, which we
consider in a case where the system is influenced by bursty, impulsive noise. We consider
a case of the system modelled in section 7.3.1, which is based on ring topology and where
the leader is fixed. We consider independent impulsive noise as random forces depending
on exponential distribution to act on individual particles. The train of noise impulses can
be regarded as a renewal process, i.e. a series of random events in which the intervals
between events are independent and identically distributed. Inter-arrival times between
impulses exhibit statistical behaviour depending on exponential distribution, as shown in
Figure (7.10-C). The effects of the impulsive noise on system behaviour are shown in
Figure (7.10-A), while Figure (7.10-B) illustrates the positional error and Figure (7.10-D)
illustrates the system converging, which indicates the system is not converged, i.e., the
system is unstable. Hence this experiment gives us sufficient conditions for the considered
system to achieve flocking in a noisy environment.

119

7. Inserting a Noisy Communication Channel

(A) System behaviour (B) Positional error

(C) Locations of noise insertion (D) System convergence

Figure 7.10.: The effects of inserting implusive noise

7.3.4. Investigation of Critical Unstable Point in Terms of

Particle Acceleration

This experiment explores the impact of changing particles’ acceleration on the system
stability. We continue to investigate the system modelled in Chapter Six, section 6.5.1
(Figures (6.13) and (6.14)), with the case of ring topology and where the leader is fixed.
Again the particles navigate under the proposed control scheme based on relative position
values defined in Figure (6.11-A) and system parameters indicated in Table (6.1). In this
system, if the acceleration value is out of range, it will be cut back to the maximum value,
which means the speed of the particles is limited, or bounded.

120

7. Inserting a Noisy Communication Channel

Algorithm 7.1 Changing acceleration according to error
xacceleration=dx*accel+(dx-olddx)*kd;

if (xacceleration>0.2)

xacceleration=0.2;

if (xacceleration<-0.2)

xacceleration=-0.2;

yacceleration=dy*accel+(dy-olddy)*kd;

if (yacceleration>0.2)

yacceleration=0.2;

if (yacceleration<-0.2)

yacceleration=-0.2;

In this work, the whole system is optimised with acceleration range (−0.2 to 0.2) and ac-
celeration is limited to±0.2, as illustrated in program segment (7.1) and system behaviour
in Figure (6.13). We start by decreasing the acceleration range and setting the acceleration
of the particles outwith this range as the new maximum (±0.2) as shown in Table (7.3).
Figures (7.11-A, B, C, D) illustrate the system behaviour under the effect of decreasing
the acceleration range to [−0.01,0.01]; the figures indicate that the system is still stable,
while the instability point is reached when the acceleration range is [−0.008,0.008], as
illustrated in Figures (7.11-E, F, G, H) and Figure (7.12).

Acceleration range Particles acceleration Convergence point
(square/step2) (square/step2) (simulation steps)

[-0.2,0.2] ±0.2 6221
[-0.1,0.1] ±0.2 6513

[-0.05,0.05] ±0.2 6975
[-0.04,0.04] ±0.2 7018
[-0.03,0.03] ±0.2 9034
[-0.02,0.02] ±0.2 10099
[-0.01,0.01] ±0.2 14127

[-0.009,0.009] ±0.2 51268
[-0.008,0.008] ±0.2 system unstable

Table 7.3.: Effect of changing acceleration in system convergence

7.4. Summary

The work in this chapter is based on the work begun in Chapter Six by considering ap-
proaches to model communication for this system. The first approach considers the mod-
elling communication at a high abstraction level (shared variable communication), which
is covered in Chapter Six. The second approach consists to refine the communication by

121

7. Inserting a Noisy Communication Channel

(A) System behaviour [-0.01,0.01] (E) System behaviour [-0.008,0.008]

(B) Positional error, range [-0.01,0.01] (F) Positional error, range [-0.008,0.008]

(C) System converge at 14,127 steps (G) System not converge

6
(D) Final position of the particle (H) Final position for unstable system

Figure 7.11.: Investigating instability in terms of changing particle acceleration

122

7. Inserting a Noisy Communication Channel

Figure 7.12.: Investigating changing of particles’ acceleration against system convergence

inserting a noisy wireless channel. Wireless features such as communication delay and
noise are inserted successfully and the system performance is investigated under the new
conditions. The delay-free case shown of Section (7.3.1) shows the system behaviour after
inserting the channel is similar to our earlier results in Chapter Six for a modelled system
based on shared variables, which means the channel is incorporated successfully.

123

8. Measuring and Optimising

Convergence and Stability in

Terms of System Construction

In this chapter, the integration of communication modelling is introduced into the design
modelling during the early stages of system development. We use the flocking behaviour
system modelled in Chapter Six and Chapter Seven to show how the stability of the system
and convergence point are measured and optimised in terms of system construction, using
some important concepts of graph theory. In particular, we focus on an investigation of
the system stability in terms of radius of perception.

8.1. Interaction between Control, Communication

and Implementation

The flocking behaviour system modelled in this research to validate the developed Sys-
temC methodology has a number of parameters, such as control, communication and
implementation, which are interlinked and interact with each other. In this chapter, our
target is to explore the interaction map of these parameters, shown in Figure (8.1). On the
communication side, we need to investigate the effect of inserting a wireless channel into
the system and changing the communication approaches between particles (P2P channel
and shared channel). We also want to evaluate the effects of inserting noise through the
channel to simulate wireless features. This will allow us to determine the effect of the
communication latency and communication bandwidth (BW) to maintain system stability.
On the control side, the system is investigated over different configurations; for instance,
the flocking system can be modelled with the leader moved to specific position, or the
leader fixed and all other particles distributed around it.

The implementation side refers to how to construct the system. This involves another level
of system investigation. We need to explore the effect of changing the system topology,

124

8. Measuring and Optimising Convergence and Stability in Terms of System Construction

for example from ring topology into bus topology, i.e all the nodes will communicate
over the same communication channel, which means the communication also changes, as
mentioned above. Some of these issues have been covered in Chapter Six and Chapter
Seven; the rest will be covered in this chapter and the next chapter.

System Stability

Introduce noise

wireless channel

High Abstraction Level (variable)

P2P and shared channel

Communication

Control

Leader moved

Leader fixed

Implementation

System Construction

Interaction

Figure 8.1.: The interaction between communication, control and implementation

8.2. Investigating System Stability in Terms of

Radius of Perception

The flocking behaviour system modelled in Chapter Six and Chapter Seven is introduced
to simulate the behaviour of the particles (mobile units) that form a mobile ad hoc com-
munication network. One of the fundamental and most important issues of the ad hoc
network is scalability. Scalability is the study of network stability; whenever the number
of nodes and the links between these nodes changes, the topology of the network changes
[149, 150]. It is meant the ability of the network to maintain its performance and effi-
ciency as the values of some parameters of the network such as node mobility and nodal
density become very large [151]. This is one of the important issues in ad hoc networks,
because of the mobility of the nodes in the network. One of the fundamental questions
arising during this topology change is how network performance will be affected. In this
chapter we use a flocking behaviour system to show how the stability of the system and
the convergence point are measured and optimised in terms of system construction, using
some important concepts of graph theory [152, 153].

We begin with the basic topology (ring), and in each cycle the number of connections
between particles is increased until a fully connected topology, or a fully connected graph,

125

8. Measuring and Optimising Convergence and Stability in Terms of System Construction

is created. Thus, one of the first things this chapter does is measure the convergence and
stability each time connections are added. Both converging points and stability are related
to how quickly the particles assume their positions. Based on previous works [154, 155], it
is apparent that graph theory concepts can play a significant role in the study and design of
ad hoc networks. This work is limited to topological features of the system, i.e. we omit
issues such as energy consumption. Moreover, we show how communication can have
a big impact on system dynamics and should therefore be incorporated into the design
process early in order to create an optimal design.

On the other hand, since a network can be modelled mathematically as a graph, therefore
graph theory concepts play an important role in analysing the issues mentioned above.
Graphs can be algebraically represented as matrices; hence, the study of the network can
be automated through algorithms. In this chapter, to evaluate and optimise the convergence
point and stability in terms of changing topology from a ring to a fully connected graph,
graph theory concepts (particularly random graph theory and small world model [156,
157]) are utilised, and the matrices are employed to represent the number of connections
increasing towards a fully connected graph [152, 158]. For example, consider a flock with
m particles whose matrix of connection (Mc) is illustrated in Equation(8.1). This will be
illustrated in greater detail later.

Mc =

× (N0−N1) (N0−N2) . . . (N0−Nm−1)

(N1−N0) × (N1−N2) . . . (N1−Nm−1)

(N2−N0) (N2−N1) × . . . (N2−Nm−1)
...

...
...

(Nm−1−N0) (Nm−1−N1) (Nm−1−N2) . . . ×

(8.1)

where:

Ni−N j : Node Ni connected to Node N j.

m : Number of nodes.

× : Matrix elements not used.

According to graph theory concepts, any kind of network can be represented by a graph
composed of nodes or vertices and a set of lines or links joining the nodes [152, 153]. This
system uses a vertex to represent a particle and an edge to represent a link between any
two particles, as shown in Figure (8.2). The set V = {vk} ,k = 0,1, ...,m− 1 includes all
vertices. As mentioned above, the particles in the beginning are connected to form a ring
topology. Further analysis in this chapter assumes the number of particles is too small to

126

8. Measuring and Optimising Convergence and Stability in Terms of System Construction

simplify the graphics shapes, but a large number of particles can be used to construct a
large system. To measure the convergence points in terms of different system topologies,
we start with a basic topology consisting of eight particles that are connected as a ring.
The number of connections between the particles increases randomly, as shown in Figure
(8.3), by creating more connections, until the fully connected topology or fully connected
graph is created.

edge

(communication link)

vertex

(particle)

Figure 8.2.: Vertex-Edge graph components

When we evaluate and draw the RMS error of the system, a single number can be defined
and measured based on total error (ε). This number represents the convergence point,
which is defined in Equation (6.6). This number represents how quickly the whole system
(all the particles) will converge under different conditions that will be illustrated later in
the chapter. Initially, ε has a high value, but if the system is modelled successfully, the
value of ε will decrease, which means the system will reach the convergence point in the
next few cycles. Therefore, we can approach the convergence point, which represents
how long the particles take to achieve their target. However, if the whole thing becomes
unstable, the system will not converge.

8.3. Simulation Platform

We start with a ring topology, as shown in Figure (8.3). A parameter ρ is defined as the
density of connections, as shown in Equation (8.2). This parameter represents the per-
centage of the number of random connections added to the system. Random connections
are added in order to determine the value of ρ , which lies between 0 and 1. The number
of edges depends on the number of particles and topology. As shown in Figure (8.3), we
start from a ring topology where the number of particles equals eight and the number of
connections employed to link the particles in order to create this topology is also equal

127

8. Measuring and Optimising Convergence and Stability in Terms of System Construction

Figure 8.3.: Increasing system connections

to eight; this is equivalent to ρ = 0. If we randomly increase the number of connections
between particles, ρ will increase. When all the particles are connected (fully connected
graph), ρ = 1. This means that the value of ρ will change (while remaining between 0
and 1), depending on the number of links added. For this reason is called the density of
connection [156, 157].

ρ =
ec−gc
mc−gc

(8.2)

Where:

ρ = Density of connections and its value from 0 to 1.

ec = Existing connections = given connections+randomly added connections

gc = Given connections = N (number of connections in ring topology).

mc = Maximum number of connections = (N∗(N−1))
2

In SystemC, a functional verification of the modelled system is done through simulation.
This process consists of applying a stimulus to the Device Under Test (DUT) and verifying
the response against an expected result. At each time step in the simulation, the processes
in Figure (8.4) are applied to all particles simultaneously, and the positions and velocities
of all particles at the next time step are updated accordingly.

As indicated above, this work investigates the effects of increasing the number of connec-
tions between particles against the convergence time. The number of particles is (N = 8),
so in a basic topology the number of connections is 8 links. Based on Equation (8.3), we

128

8. Measuring and Optimising Convergence and Stability in Terms of System Construction

Figure 8.4.: Data Flow within the particle model

must increase the number of connections to 28 links, which represents a fully connected
graph (maximum number of connections).

maxNoO fConnections = (N ∗ (N−1))/2 (8.3)

In order to create connection matrices that can be employed to represent the increasing
number of connections, we implement a small C++ program to generate the connections
randomly, but within the range based on the maximum number of connections (MaxNoOf-
Connections), i.e. ranging from eight links to 28 links. The connections are provided to
the SystemC program in the form of matrix (8× 8), as shown in Figure (8.5), where (0)
represents particle (Pi) is not connected to particle (Pj) and (1) means they are connected.
Before running the simulation program, we expect the convergence time to decrease while
the number of connections increases. That is to say, by increasing the number of connec-
tions, the system will reach the stability point more quickly.

8.4. Experimental Results

8.4.1. System Behaviour

The simulated platform considers eight particles (N = 8) constructing a flocking behaviour
system with a leader and with initial absolute positions for all the particles at (0,0). The
relative positions are arranged in a square shape, with the basic topology as a ring. These
initial values were provided to the system by the stimulus. In this experiment, we assume

129

8. Measuring and Optimising Convergence and Stability in Terms of System Construction

Fully connected

(C)

Topology

(B)

Increase some
connections

randomly

Ring Topology

(A)

1 : connection exists

0 : no connection

X : ignorable values

: connections added

P0 P1 P2 P3 P4 P5 P6 P7

X 1 0 1

X

X

X

0

0 0 0

00

X1 1

1 1

1 1

1 1

1 1

11 X

X

0 0 0 0

0000

0 0

00

000 0

000

11

0 X 0

P2

P3

P4

P5

P6

P7

P1

P0

P0 P1 P2 P3 P4 P5 P6 P7

X 1 1

X

X

X

X1 1

1 1

1 1

1 1

1 1

11 X

X

11

X

P2

P3

P4

P5

P6

P7

P1

P0

Add more connections

Add more connections

P0 P1 P2 P3 P4 P5 P6 P7

X 1 0 1

X

X

X

0 0

0 0 0 00

00

X1 1

1 1

1 1

1 1

1 1

11 X

X

0 0 0 0 0

00000

0 0

00

0000 0

00000

11000

0 X 0 0

P2

P3

P4

P5

P6

P7

P1

P0

Particle

Connected to a Particle

Connected to a Particle

Particle

Connected to a Particle

Particle

1

1 1

1

1

1

111

1 1

1

1

1 1

1

1

1

111

1 1

1

111 1

1 1 1

11 1 1

1 111

1 1 1 1

11

11 1

1111

1

Figure 8.5.: Connection matrix

130

8. Measuring and Optimising Convergence and Stability in Terms of System Construction

the leader is fixed and the particles begin moving from (0,0), distributing themselves
around the leader in a uniform shape depending on the shape created by the relative po-
sition of the particles. Multiple simulations were run to find the convergence time of the
system at each level of interconnection. Figure (8.6) shows the system behaviour based on
the system parameters indicated in Table (8.1). The system behaviour clearly shows that
the particles remained in the same position structure (square) throughout the simulations.
Thus it is proven that particles consistently and effectively avoid contact with one another.
Figure (8.7-A) illustrates the changing particle velocities (for example, particles P1, P2 and
P3). But if the velocity value is greater than the maximum level, it will be cut back to the
maximum value as shown in Figure (8.7-B).

Parameters Values
No. of particles (N) 8

Error (ε) 0.01
Transmission rate 1 Packets/simulation step
Acceleration range -0.2 to 0.2

Speed range -1.0 to 1.0
Proportional gain (KP) 0.03
Derivative gain (Kd) 0.1

Leader (P0) Fixed
Relative positions shape square

Table 8.1.: System parameters

Figure 8.6.: System behaviour

131

8. Measuring and Optimising Convergence and Stability in Terms of System Construction

(A): Unbounded (B): Bounded

Figure 8.7.: The velocity of the particle P1 in X direction

8.4.2. System Converging Point against Number of

Connections

The main aim of this experiment is to measure the convergence points and then investigate
the effects of increasing the number of links between particles against the convergence
points, starting with ring topology, which consists of eight particles and eight links. The
number of links between particles is increased randomly by adding more links, until the
fully connected topology is created. After running the simulation program, the conver-
gence time decreases against an increase of the number of connections, as illustrated in
Table (8.2) and Figure (8.8). This means that by increasing the number of connections,
the system will reach the stability point more quickly, because each particle is able to get
more information from the other particles.

No. of Connections Converging Points ρ

8 2530 (Ring) 0
10 2461 0.1
12 2427 0.2
14 2401 0.3
16 2384 0.4
18 2381 0.5
20 2379 0.6
22 2375 0.7
24 2371 0.8
26 2366 0.9
28 2363 (Fully Connected) 1.0

Table 8.2.: Converging time against density of connections

132

8. Measuring and Optimising Convergence and Stability in Terms of System Construction

Figure 8.8.: Number of connections versus converging time

8.4.3. System Convergence Against Density of Additional

Connections

Parameters Values
No. of particles 10 to 200

Transmission speed 1 packet/step
Leader Particle P0 - Fixed

Error (ε) 0.01
Desired distance (Ld) 1

Shape of relative positions mesh

Table 8.3.: System convergence against density of additional connections - system param-
eters

1- Evaluating Convergence Point Based on Particle Position

In this approach, the RMS error is evaluated based on particle position, as indicated in
Equation (8.4).

dk =
√

dx2 +dy2 (8.4)

133

8. Measuring and Optimising Convergence and Stability in Terms of System Construction

Figure 8.9.: Evaluate convergence point based on particle position

2- Evaluating Convergence Point Based on Energy

Here, the RMS error is calculated depending on particle energy, as stated in Equation (8.5).

dk = dx2 +dy2 (8.5)

Figure 8.10.: Evaluate convergence point based on particle energy

134

8. Measuring and Optimising Convergence and Stability in Terms of System Construction

8.5. Summary

This chapter illustrates a model for a flocking behaviour system using SystemC, and shows
how the system stability is optimised using some important concepts of graph theory.
Based on this work, it is apparent that graph theory concepts can play an important role
in the study and design of ad hoc networks. The work here is limited to topological fea-
tures of the system, i.e. issues such as energy consumption have been omitted. Moreover,
this work demonstrates a simple and computationally efficient way to model a wireless
communication system at system level. The model is developed at a highly abstract level,
allowing for rapid simulation and early estimation, both of which are necessary for suc-
cessful system development using SoC design methodology. The system has been mod-
eled successfully; positive results representing system behaviour and system dynamics
were established, which means that the developed methodology has been employed to
model wireless system in an efficient manner.

135

9. Modelling Communication

Based-on Multiple Access

Protocol

The modelling of the flocking behaviour system and all its experiments described in Chap-
ter Six, Chapter Seven and Chapter Eight are implemented based on multiple orthogonal
channels, so that the wireless channel between a pair of particles can be seen as a link
(P2P link), and the ignores all other transmissions and focuses only on the communication
between each pair or particles. This approach is used in order to model and design a robust
radio-based wireless network and to manage the complexity of the system. However, the
problem with this approach is that it does not allow the modelling of the Medium Access
Control (MAC) layer of any wireless protocol for the contention of the wireless medium,
in the sense that it does not eliminate the channel-sharing issues that must be solved in
order to maximise the aggregate data delivery capacity of the wireless system. It is a pri-
ority to allocate that capacity in a reasonably fair manner. Hence, to model and simulate a
more efficient system, this chapter illustrates in detail how the flocking behaviour system
can be modelled based on a shared channel, and it is better to use the new modelled sys-
tem to validate the developed methodology. However, to make a transmission successful
over such approach i.e, shared channel, interference and contention between the particles
must be avoided or at least controlled. The channel becomes the shared resource whose
allocation is critical for proper operation of the target system. Therefore, we need to used
access schemes to such channels known as multiple access protocols.

9.1. Multiple Access Protocols

Multiple access protocols can be defined as approaches that allow multiple users (mul-
tiple transmitter-receiver pairs) to share a common channel [98]. The main goal of this
approach is to maximise the capacity within the “local neighborhood” by trying to make
every transmission count and, moreover, to allow many users to share a finite amount of

136

9. Modelling Communication Based-on Multiple Access Protocol

radio spectrum at the same time but without severe degradation in the system performance
[89]. Because concurrent transmissions may collide and cause packet corruption, the goal
is to manage which nodes are allowed to send simultaneously. These protocols do not
take a network-wide view of the sharing problem, focusing instead only on “local” radio
regions. They are called multiple access protocols because they arbitrate transmissions
amongst multiple concurrent users [81, 89, 159].

As mentioned before, the wireless communication of this system is created through using a
wireless channel model in two scenarios: the first scenario is based on multiple orthogonal
channels, meaning there is a channel between every two particles – this scenario is covered
in Chapters Six, Seven and Eight, and also in [19, 20, 21]; and the other is shared channel
scenario, which can be used to achieve communication between all particles based on mul-
tiple access protocols; this scenario is covered in this chapter. These protocols have been
designed to handle access to the shared channel and are classified into three categories as
shown in Figure (9.1). In this chapter, two multiple access protocols from different cat-
egories are selected in order to validate the developed methodology over shared channel
approach, because we do not need to investigate these protocols, but we need to prove
our methodology under different conditions. The first protocol is Time Division Multiple
Access (TDMA), which is classified as a channelisation protocol in which the available
bandwidth of the channel is shared in time [22, 160]. The second protocol is Carrier Sense
Multiple Access (CSMA), which is classified as a random access protocol. It was devel-
oped to minimise the chance of collision and therefore increase system performance. It
uses a contention-based approach to channel access, and does not require time synchro-
nization [23, 24]. The results of both cases are discussed and compared. Finally, we must
mention that in this research, we do not need to investigate multiple access protocols, but
we have to prove our methodology under different conditions, one of which is how to inte-
grate communication with different approaches, such as P2P and shared channel to system
alternative, at an early stage of the design flow.

MAC protocols

Controlled access

protocols

Random access

protocols

Channelisation

protocols

bus
Token

Token
ring

ALOHA−MA

CSMA

CSMA/CD

CSMA/CA

Polling Token
FDMA TDMA CDMA

Figure 9.1.: Multiple access techniques

137

9. Modelling Communication Based-on Multiple Access Protocol

9.1.1. TDMA

TDMA is a channel access method for sharing wireless channels by time. It allows several
users to share the same frequency channel by dividing the signal into different time slots.
The users transmit in rapid succession, one after the other, each using their own time slot.
This allows multiple stations to share the same transmission medium. In this approach,
time is segmented into intervals called frames. Each frame is further partitioned into
assignable user time slots, as shown in Figure (9.2). The frame structure repeats, so that
a fixed TDMA assignment constitutes one or more slots that periodically appear during
each time frame. Each station transmits its data in bursts, timed so as to arrive at the
shared channel in its designated time slot(s) [24]. When the bursts are received by the
shared channel, they are retransmitted on the receiving station, together with the bursts
from other stations. The receiving station detects the appropriate bursts and processes the
received data [159]. TDMA is used in digital second generation (2G) cellular systems,
such as Global System for Mobile Communications (GSM).

Transmitter−1

Transmitter−2

Transmitter−3

1

1

1

3

3

3

shared

channel Receiver

station

frame
time slot

2 2 2

Figure 9.2.: A diagram of the TDMA approach

9.1.2. CSMA

A popular MAC protocol design, CSMA uses the carrier sense mechanism. Before trans-
mitting a packet, the sender listens on the channel to determine if any other transmission
is in progress. If it is, the sender defers, waiting until the channel becomes idle. There
is a rich literature of CSMA protocols: schemes differ based on how persistently they try
when the channel is idle (e.g., a node may send with probability p when the channel is
idle), and in how nodes detect collisions [22, 141]. Wireless MAC protocols must handle
the following problems:

138

9. Modelling Communication Based-on Multiple Access Protocol

1. Using suitable collision avoidance schemes to reduce the number of wasted trans-
missions.

2. Providing reasonable fairness among contending nodes.

3. Coping with hidden terminals.

4. Taking advantage of exposed terminals.

No existing MAC protocol successfully solves all these problems. Most practical MAC
protocols favor reducing collisions over maximising every bit of available capacity [89,
98, 159].

9.2. System Model

This system has a large number of particles distributed in the environment. The particles
use a shared wireless communication channel to communicate with each other and deter-
mine each others’ location. They should maintain stability and must stay together. They
are controlled by a leader and should converge in a certain area and distribute around the
leader’s position. In different scenarios, they can follow the leader to a specific position.

In terms of construction, there are many ways to connect the particles. In this work, the
system is investigated by constructing a fully connected topology over shared bus. Dif-
ferent forms of architecture are explored [19, 20] in order to investigate the system over
different performance parameters. In this topology, each particle is linked to all other par-
ticles in the flock. In other words, each particle can communicate with all other particles,
creating the flock system. Particle P0 is controlled and selected as the leader. In this part
of the work, the system is constructed in two stages. The first, Communication, is mod-
elled at a high abstraction level, meaning communication between particles is done using
a shared variable, as shown in Figure (9.3). In the other stage communication is refined by
the insertion of a noisy wireless communication channel, as explained later.

9.3. Communication Scenarios Based on

Multichannel Access Protocols

To meet the requirements of designing an efficient communication system, multiple access
communication protocols are necessary to allow multiple resources to use a shared trans-
mission medium simultaneously, meaning these multiple access schemes are employed

139

9. Modelling Communication Based-on Multiple Access Protocol

Shared medium [FIFO]

Particle Particle

ParticleParticleParticle

Particle

Particle
0 1 2 3

4 N−2 N−1
.

Leader

Figure 9.3.: Flocking behaviour system over shared bus

to manage multiple access issues based on a multiplexing technique. Moreover, these
schemes determine how data streams can be read efficiently from each communication
node, then transmitted over a shared medium and finally broadcast to all network nodes
[22]. In this section we illustrate how these techniques are used to construct communi-
cation between the particles in a flocking behaviour system based on a shared medium.
There are two strategies to sharing the medium: controlled access technique and con-
tention based protocols [161]. We must show that our target is not to investigate protocol
issues but rather, as mentioned above, to prove that incorporating wireless features early
in the developed methodology is very advantageous. We must also show how to integrate
communication modelling and design modelling early in the system development, and
how this allows us to investigate the system very easily and make changes quickly.

9.3.1. TDMA Modelling

In this scenario, the system model consists of (N) particles communicating over our wire-
less channel model [133]. Here the wireless channel is typically shared based on TDMA.
TDMA is appealing as it eliminates collision and is perfectly fair: each particle has a ded-
icated transmission rate of R

N bps during each time slot, where (R) is the transmission rate
of the channel [24]. As shown in Figure (9.4), the main component needed to model the
TDMA technique in SystemC is sc_signal resolved [8]. It allows the particles to behave as
multiple writers to access the wireless channel. The time is divided into non-overlapping
time slots that are allocated to different particles. All the particles have access to the total
band. In this system we assume all particles to be identical, so TDMA assigns a fixed
predetermined channel time slot to each particle; it results in assigning a fraction 1

N of
the total channel capacity. Program segment (9.1) illustrates how the TDMA approach is
modelled in this system.

140

9. Modelling Communication Based-on Multiple Access Protocol

Capture

Data

Insert Noise

Insert Delay

Rate ControlRate ControlRate ControlRate Control

Send
Broadcast

Wireless Channel Model Structure

. . . .

P1 P2
P3

TDM Stream

SystemC Resolved

Signal

PmP2P1P0

Packet

Figure 9.4.: System constructed based on TDMA scenario

Algorithm 9.1 Modelling TDMA approach
if(!get_node_name.compare(node_name))

{

offset=node_index;

}

while (true)

{

....

....

if(offset%N==0)

{

out->write(info);

offset=N-1;

}

else

{

offset=offset-1;

}

....

....

}

9.3.2. Non-persistent CSMA Modelling

The CSMA protocol is a network arbitration protocol which regulates communication be-
tween several resources that communicate over a unique channel. It is widely studied
using various techniques [22]. This part of the work focuses on non-persistent CSMA

141

9. Modelling Communication Based-on Multiple Access Protocol

technique because of its simplicity and good performance. We assume here that the parti-
cles are not limited by transmit power, which means that each particle can transmit at any
power required to reach all the other particles in the system (fully connected topology).

The system model consists of N particles distributed uniformly and communicating over
the wireless channel model [133]. As shown in Figure (9.5), the non-persistent CSMA is
modelled in SystemC using two main elements, the mutual exclusion object (Mutex) and
sc_signal resolved [8]. The first element lets particles share the wireless channel model
without colliding by allowing just one particle to send data packets; the other element
allows the particles to act as multiple writers to access the wireless channel. A particle
that has a packet to send senses the channel by checking the Mutex. If the channel is idle,
the particle sends immediately. If the channel is busy, the particle waits a random amount
of time and then senses the channel again, but, in this case, the packet is rescheduled with
the new value of the current position [23]. Program segment (9.2) illustrates how CSMA
approach is implemented based on SystemC in this system.

�������
�������
�������
�������

�������
�������
�������
������� Capture

Data

Insert Noise

Insert Delay

Particle
N0

SystemC Signal

Resolved

Transmit

Process

Particle
N1

Particle

N2

Particle

Nm

Create new packet

Prepare
Broadcast

Wireless Channel Model Structure

. . . .

sc_signal_rv

P1 P2
P3

Check Channel

Availability

mutex

Particle Model Structure

Receive

Process

Packet

Figure 9.5.: System constructed based on CSMA scenario

142

9. Modelling Communication Based-on Multiple Access Protocol

Algorithm 9.2 Modelling CSMA approach
....

while (true)

{ randno = RNG();

wait(randno,SC_MS);

if(node_name.compare("Node0"))

{ if(access->trylock()!=-1) {

....

out->write(info);

access->unlock();

....

} }

else

{

out->write(info); // particle P0 is leader, so always sending

packets.

}

....

}

9.4. Experimental Results

In order to simplify the simulation, only fifteen particles (N = 15) are created to run the
experiments. As shown in Figure (9.6), the relative positions of these particles are defined
as a mesh and the leader position is located in the corner. The packet length is fixed (16
bytes). The simulation in this experiment contains the following parts: the first investigates
the system behaviour and system dynamics based on the TDMA scenario; the second is
based on the non-persistent CSMA scenario; and in the last part, we also investigate the
effects of inserting noise and communication delay.

Figure 9.6.: The initial values of the relative positions

143

9. Modelling Communication Based-on Multiple Access Protocol

9.4.1. TDMA

i- Leader Fixed

In the first stage of this experiment, the leader is fixed at position (0,0) and the other 14
particles start moving from the initial position (0,0). These particles navigate under the
proposed control scheme based on the relative position values defined at the beginning
of the simulation, as shown in Figure (9.6), and the system parameters indicated in Table
(9.1). The particles aim to converge to the desired particles’ relative positions defined
at the beginning of the simulation. At the end of the simulation, the system converged
and the simulation was stopped when the total error value was (ε < 0.01). The system
behaviour (Figure (9.7-A)) clearly shows that the particles remained in the same position
structure (mesh) throughout the simulation. Thus it is proven that the particles consistently
and effectively avoid contact with one another. Figure (9.7-B) illustrates the RMS error
and Figure (9.7-C) illustrates the convergence point of the system, which was obtained at
65,551 simulation steps.

(A): System behaviour (B): RMS error

(C): Convergence point at 0.01 (D): The final positions of the particles

Figure 9.7.: System behaviour for TDMA with fixed leader and with arrangement of
Figure(9.6)

144

9. Modelling Communication Based-on Multiple Access Protocol

Parameters Values
No. of Particles 15

Multiple Access Protocols TDMA, CSMA
Transmission Speed 1 Packets/simulation step
Acceleration Range -0.2 to 0.2

Speed Range -1.0 to 1.0
Leader Particle P0

Relative Position Shape Mesh
Error (ε) 0.01 and 0.05

Proportional Gain (Kp) 0.03
Derivative Gain (Kd) 0.1
Desired Distance (Ld) 1

Table 9.1.: System Parameters

ii- Leader Moved

In the second case, the leader is assumed to be moveable and the other particles will follow
the leader to the specific target, as shown in Figure (6.16). The relative position values are
defined as mesh (Figure (9.6)). In the beginning of the simulation, the leader and all
the other particles start moving from initial position (0,0), as shown in Figure (9.8-A).
The values of the parameters in this simulation are the same as previously indicated in
Table (9.1). In the first phase of this experiment, the leader is assumed to be moved into
position (20,20), then changes direction into position (50,-10) and finally into the target
position at (180,120). This leader’s path is selected as the same path that the leader follows
in Chapters Six and Seven (Figure (6.16)), because we can easily compare between the
different communication approaches used in this system.

Screen-shots A-F of Figure (9.8) show the particles’ evolution in position and the achieve-
ment of flocking motion. In screen-shots A-E, position (0,0) denotes the starting point of
all particles and also shows how the particles follow the leader. In the last screen-shot,
F, the leader approaches the target position and all the particles follow it and converge
around the target. Figures (9.9-A, B) illustrate the positional error curve and RMS error
respectively, while Figure (9.9-C) illustrates the convergence point of the system, which
was obtained when ε < 0.05. The final positions of the particles are illustrated in Figure
(9.9-D).

145

9. Modelling Communication Based-on Multiple Access Protocol

(A)

(B)

(C)

(D)

(E)

(F)

(A) (B)

(C) (D)

(E) (F)

Figure 9.8.: Details of system behaviour for TDMA approach with moved leader and with
arrangement of Figure (9.6)

146

9. Modelling Communication Based-on Multiple Access Protocol

(A): Positional error (B): RMS error

(C): Convergence point at 0.05 (D): The final positions of the particles

Figure 9.9.: System behaviour for TDMA with moved leader

9.4.2. Non-persistent CSMA

i- Leader Fixed

In the second part of the simulation, the particles communicate using a non-persistent
CSMA scheme. The experiment is done under the same conditions illustrated above, with
the system parameters indicated in Table (9.1 on page 145). The system behaviour shown
in Figure (9.10-A) is most likely obtained from the TDMA scenario, except that simulation
time is less than in the TDMA experiment. The RMS error in Figure (9.10-B) illustrates
the simulation time, and when the system convergence is shown in Figure (9.10-C). The
final position of the particles is illustrated in Figure (9.10-D).

147

9. Modelling Communication Based-on Multiple Access Protocol

(A): System behaviour (B): RMS error

(C): Convergence point at 0.01 (D): The final positions of the particles

Figure 9.10.: System behaviour for non-persistent CSMA approach with fixed leader

ii- Leader Moved

In the second case, the leader is assumed to be moveable and the other particles will
follow the leader to the specific target, as shown in Figure (9.11 on the next page), and
the system uses the same initial parameter values as shown by Table (9.1). All particles’
initial positions are at original point (0,0) and velocities are based on the error value of
each particle. The environment is assumed to have an identical effect on all particles.
Again the leader’s path is selected as the same path that the leader follows in Chapters Six
and Seven (Figure (6.16)), in order to compare the results of all the cases.

Figure (9.11 on the following page) depicts screen-shots A-F show the particles’ trajec-
tories on the x− y plane and the achievement of flocking motion. The blue straight line in
the main figure represents the leader’s path, while the other lines represent the particles’
paths. Also, Figure (9.12 on page 150-C) illustrates the convergence of the particles’ po-
sitions; it is clear that all particles converge to the positions defined at the beginning of the
simulation (Figure (9.12 on page 150-D)).

148

9. Modelling Communication Based-on Multiple Access Protocol

(A)

(B)

(C)

(D)

(E)

(F)

(A) (B)

(C) (D)

(E) (F)

Figure 9.11.: Details of system behaviour for CSMA approach with moved leader and with
arrangement of Figure (9.6)

149

9. Modelling Communication Based-on Multiple Access Protocol

(A): Positional error (B): RMS error

(C): Convergence point at 0.05 (D): The final positions of the particles

Figure 9.12.: System dynamics for CSMA, movable leader

In this work, the most important finding of this chapter constitute more proof that wireless
features are incorporated successfully into SystemC design methodology, which can be
used from now to model and design complex wireless communication systems. TDMA
and non-persistent CSMA protocols have been modelled before, but the ways and purposes
of modelling these protocols are unlike ours, because our aim here is not to investigate
these protocols but to prove that inserting wireless communication into the developed
methodology is very advantageous. The final results have been validated and it has been
proven that communication has a big impact on system dynamics, i.e., small changes in
the wireless specifications create big changes in the system dynamics.

9.4.3. Impact of Noise

In this section we investigate the effect of inserting noise on system behaviour and sys-
tem performance. We consider a case of the system modelled in section 9.4.2, which is

150

9. Modelling Communication Based-on Multiple Access Protocol

Algorithm 9.3 Inserting impulsive Noise
...

lamda = 0.01;

next_error_position = rng.exponential(lamda);

while(true)

{

...

packet_counter++;

if (packet_counter >= next_error_position) {

packet_counter =0;

i_frame = ~i_frame;

next_error_position = rng.exponential(lamda);

...

}

...

}//end while

modelled based on the CSMA approach. We consider independent impulsive noise as ran-
dom forces depending on exponential distribution to act on individual particles. The train
of noise impulses can be regarded as a renewal process, i.e. a series of random events
in which the intervals between events are independent and identically distributed. Inter-
arrival times between impulses exhibit statistical behaviour depending on exponential dis-
tribution as illustrated in the program segment (9.3). The effects of the impulsive noise
on system behaviour are shown in Figure (9.13-A), while Figure (9.13-B) illustrates the
system converging, which indicates the system is taken a more time to get converge when
compare to the case without inserting the noise. Hence this experiment gives us sufficient
conditions for the considered system to achieve flocking behaviour system based on the
CSMA approach in a noisy environment.

(A) System behaviour (B) System convergence

Figure 9.13.: Effect of noise on the system based on non-persistent CSMA approach with
fixed leader

151

9. Modelling Communication Based-on Multiple Access Protocol

(A) (B)

Figure 9.14.: System convergence and final position of the particles

In the second case, the leader is movable. Figure (9.15 on the next page) illustrates a
flock with (N = 15) moving in a 2D linear environment under the effect of noise. The
figure shows that the distance between the particles and the leader is greater than that of
Figure (9.11 on page 149), because some packets sent from the leader are distorted, which
leads the particles to change their path, as indicated in Figure (9.15 on the next page-C,
G). But once the particles receive the correct packet, they try to converge again to the
leader. Screen-shots A-H of Figure (9.15 on the following page) show the positions of
the particles at several simulation steps. It can also be seen in Figure (9.14-A, B) that the
particles do not converge to the leader’s path (desired path) and then to the final positions.

9.5. Summary

In this chapter, the developed methodology is applied to the model of a flocking behaviour
system selected as a case study in order to validate it. The communication between the
particles is addressed based on a shared channel with two scenarios. The first is TDMA,
which is a controlled access technique, and the other is non-persistent CSMA, which is
a contention-based protocol. Modelling TDMA and CSMA protocols with SystemC al-
lows us to build up software components that are ready-to-use in wireless development
prototyping. These software components can be conveniently used as a substitution for
hardware and can consequently reduce costs.

152

9. Modelling Communication Based-on Multiple Access Protocol

(A) (B)

(C) (D)

(E) (F)

(G) (H)

Figure 9.15.: Details of system behaviour of Figure (9.11) under noise effect

153

10. Conclusions

This research illustrates how wireless features can be incorporated into the existing Sys-
temC design methodology, including an efficient simulation of wireless systems. To date,
the SystemC modelling language lacks a standard framework that supports modelling of
wireless communication systems (in particular the use of wireless communication chan-
nels). The components to be investigated in order to achieve this target are divided into
three parts: developing a system-level model of a digital wireless communication channel
that represents the core of any communication system; creating a small library of dedicated
elements at system level, such as PLL (Phased Locked Loop), 8B/10B Encoder/Decoder
and several modelling communication protocols; and concluding with a case study of a
flocking behaviour system to validate the wireless extension methodology.

Hence, it is very important for designers to develop a SystemC environment to support
wireless, because SystemC provides a consistent methodology and a homogeneous design
flow for the design and refinement of complex digital systems; it is also essential to man-
age complexity and enhance designer productivity. Therefore, once we have incorporated
wireless features into existing SystemC environments, we can investigate the changing
behaviour of complex wireless communication systems very quickly, allowing us to im-
plement the system as we wish, view designs at different levels of abstraction and evaluate
system performance early in the design cycle (early modelling). All this can be done be-
cause SystemC is a unified environment, which means everything can be modelled in the
same platform.

10.1. Summary of contributions

In this research, we present how existing SystemC design methodology can be developed
to support wireless communications systems. The work is done based on a number of
stages that are summarised as follows:

• As the first phase of this research, the modelling of a noisy digital communication
channel in SystemC is presented. This model is the most important model needed

154

10. Conclusions

to extend SystemC methodology to support wireless systems, because it represents
what is missing in the SystemC language to support wireless systems. This work
demonstrates a simple and computationally efficient way to model a communication
channel within a system level. The model is developed at a high level of abstraction,
which allows for rapid simulation and early estimation, which are necessary for suc-
cessful system development using the SoC design methodology. For instance, the
wireless communication channel model becomes a part of the developed methodol-
ogy and can then be inserted into any system.

• We have also presented an RTL-level SystemC model of an 8B/10B Encoder/Decoder
core. The use of 8B/10B coding is an important technique in the construction of high
performance serial interfaces. Moreover, as systems become more tightly integrated
(as in, for example, SoC) the ability to evaluate system performance at early stages
of design becomes increasingly important. This is facilitated by the SystemC design
methodology, and by following an IP-based design.

• We present a development of existing SystemC design methodology that can be used
to model wireless systems. The developed methodology is proposed based on two
approaches: a hierarchical partitioning of steps in the System/Communication as-
pects, or a leading into Naïve Structure, which means one partitioning step. In both
cases, Communication comes to be a new branch of the System aspect in traditional
SystemC methodology.

• In the third stage of this research, the developed methodology is applied to the model
of a flocking behaviour system selected as a case study, in order to validate it. The
communication aspects are modelled based on a P2P link, which means the wireless
channel between a pair of particles starts to look like a link. The final results of the
modelled system have been validated and it has been proven that communication has
a big impact in system dynamics, i.e., small changes in the wireless specifications
create big changes in the system dynamics.

• After that, the work is taken in another direction of research, investigating the in-
teraction between communication and system stability; we evaluate how the system
parameters affect system behaviour. we investigate how the stability of the flock-
ing behaviour system is optimised using some important concepts of graph theory.
The system has been modelled successfully; positive results representing system
behaviour and system dynamics were established.

• On the other hand, in order to investigate the system under different communication
approaches that support MAC protocols, the communication between particles is
addressed based on a shared channel with two scenarios: TDMA and non-persistent

155

10. Conclusions

CSMA. Modelling TDMA and CSMA protocols with SystemC allowed us to build
up software components that are ready-to-use in wireless development prototyp-
ing. Our aim here is not to investigate these protocols but to prove that inserting
wireless communication into the developed methodology is very advantageous. The
final results of the modelled system have been validated and it has been proven that
communication has a big impact on system dynamics.

Therefore, incorporating wireless features into existing SystemC design methodology (as
done in this research) is a very important task, because by developing SystemC as a design
tool to support wireless systems, HW, SW and communication can be modelled, refined
and validated simultaneously on the same platform, and the design space expanded into a
two-dimensional design space: system and communication.

10.2. Future Work

There are different ways to extend the research work that has been presented in this thesis
as following:

• For example, an FPGA could be used for 8B/10B encoder/decoder model that cov-
ered in Chapter Three. RTL-level model of an 8B/10B encoder/decoder block could
be converted to a hardware description language such as VHDL or Verilog to build
an application and test it on FPGA.

• Another possibility for future research would be considered is required to complete
the model of the wireless channel using SystemC by modelling more wireless fea-
tures such as fading effects and other noise types in order to create more efficient
simulations.

• Finally, we can try to explore efficient SystemC to RTL translators. Currently avail-
able tools like the SC2V translator do not support translation of all SystemC con-
structs. Adding capabilities of modeling Thread and Clocked Thread processes to
existing tools would greatly enhance design productivity and time to market.

156

Appendix A : 8B/10B Encoder -

Decoder RTL Model

This appendix contains the SystemC source code for the RTL model of 8B/10B Encoder
Decoder. The model was developed and compiled using the SystemC 2.0.1 library. All
model simulations were done using the reference simulator provided by OSCI.

8B/10B Encoder Model

File: encoder.h

#include "systemc.h"

SC_MODULE (enc_eight_ten) {

sc_in<sc_logic> RESET;

sc_in<bool> SBYTECLK;

sc_in<sc_logic> KI;

sc_in<sc_logic> AI,BI,CI,DI,EI,FI,GI,HI;

sc_out<sc_logic> AO,BO,CO,DO,EO,IO,FO,GO,HO,JO;

// Signals to tie things together

sc_signal<sc_logic> XLRESET, LRESET;

sc_signal<sc_logic> L40 ,L04, L13, L31, L22;

sc_signal<sc_logic> F4, G4, H4, K4, S, FNEG;

sc_signal<sc_logic> PD1S6, ND1S6, PD0S6, ND0S6;

157

sc_signal<sc_logic> ND1S4, ND0S4, PD1S4, PD0S4;

sc_signal<sc_logic> COMPLS4, COMPLS6, NDL6;

sc_signal<sc_logic> PDL6, LPDL6, PDL4, LPDL4;

sc_signal<sc_logic> NAO, NBO, NCO, NDO, NEO, NIO;

sc_signal<sc_logic> NFO, NGO, NHO, NJO, SINT;

//PROCESS: SYNCRST; Synchronize and delay RESET one clock for startup

void SYNCRST();

void enc_5b(void);

void FN3B(void);

void FNS (void);

void disparity(void);

void CMPLS4(void);

void CMPLS6(void);

// PROCESS: ENC5B6B; Generate and latch LS 6 encoded bits

void ENC5B6B(void);

void ENC3B4B (void);

// Constructors

SC_CTOR(enc_eight_ten) {

SC_THREAD(SYNCRST);

sensitive <�< XLRESET <�< SBYTECLK <�< RESET;

dont_initialize();

SC_THREAD(enc_5b);

sensitive <�< KI <�< SBYTECLK;

dont_initialize();

SC_THREAD(FN3B);

158

sensitive <�< SBYTECLK <�< FI <�< GI <�< HI <�< KI;

dont_initialize();

SC_THREAD(FNS);

sensitive <�< LRESET <�< SBYTECLK <�< PDL6 <�< L31 <�< DI <�< EI <�< NDL6 <�< L13;

dont_initialize();

SC_THREAD(disparity)

sensitive <�< FNEG <�< F4 <�< G4 <�< H4 <�< SBYTECLK;

dont_initialize();

SC_THREAD(CMPLS4);

sensitive <�< LRESET <�< SBYTECLK <�< PDL6;

dont_initialize();

SC_THREAD(CMPLS6);

sensitive <�< LRESET<�< SBYTECLK <�< PDL4;

dont_initialize();

SC_THREAD(ENC5B6B);

sensitive <�< LRESET <�< SBYTECLK <�< COMPLS6;

dont_initialize();

SC_THREAD(ENC3B4B);

sensitive <�< LRESET <�< SBYTECLK <�< COMPLS4;

dont_initialize();

} // End of Constructor

}; // End of Module

159

File: encoder.cpp

#include "enc_8b10b.h"

void enc_eight_ten::SYNCRST(){

while(true) {

wait();

if(SBYTECLK.posedge()){

XLRESET = RESET ;

}else if (SBYTECLK.negedge()){

LRESET = XLRESET ;

}

}//while

} //end process SYNCRST

//

// 5b Input Function (Reference: Figure 3)

//

void enc_eight_ten::enc_5b(void) {

while(true) {

wait(1); // Wait for the event in sensitivity list to occure

// Four 1's

L40.write(AI & BI & CI & DI); // 1,1,1,1

wait(SC_ZERO_TIME);

// Four 0's

L04.write(~((sc_logic)AI) & ~((sc_logic)BI) & ~((sc_logic)CI) & ~((sc_logic)DI));

wait(SC_ZERO_TIME);

// One 1 and three 0's

160

L13.write((~((sc_logic)AI) & ~((sc_logic)BI) & ~((sc_logic)CI) & DI)

|(~((sc_logic)AI) & ~((sc_logic)BI) & CI & ~((sc_logic)DI))

|(~((sc_logic)AI) & BI & ~((sc_logic)CI) & ~((sc_logic)DI))

|(AI & ~((sc_logic)BI) & ~((sc_logic)CI) & ~((sc_logic)DI)));

wait(SC_ZERO_TIME);

// Three 1's and one 0

L31.write((AI & BI & CI & ~((sc_logic)DI))

|(AI & BI & ~((sc_logic)CI) & DI)

|(AI & ~((sc_logic)BI) & CI & DI)

|(~((sc_logic)AI) & BI & CI & DI));

wait(SC_ZERO_TIME);

// Two 1's and two 0's

L22.write((~((sc_logic)AI) & ~((sc_logic)BI) & CI & DI)

|(~((sc_logic)AI) & BI & CI & ~((sc_logic)DI))

|(AI & BI & ~((sc_logic)CI) & ~((sc_logic)DI))

|(AI & ~((sc_logic)BI) & ~((sc_logic)CI) & DI)

|(~((sc_logic)AI) & BI & ~((sc_logic)CI) & DI)

|(AI & ~((sc_logic)BI) & CI & ~((sc_logic)DI)));

wait(2);

}//while

} // End of function send_data

// PROCESS: FN3B; Latch 3b and K inputs

void enc_eight_ten::FN3B(void){

while(true) {

wait(1);

161

// Falling edge of clock latches F,G,H,K inputs

if(SBYTECLK.negedge()){

F4.write(FI);

G4.write(GI);

H4.write(HI);

K4.write(KI);

wait(SC_ZERO_TIME);

FNEG.write(F4 ^ G4);

wait(2);

}

}//while

}// end process FN3B

// PROCESS: FNS; Create and latch "S" function

void enc_eight_ten::FNS (void){

while(true) {

wait(); // Wait for the event in sensitivity list to occure

if (LRESET == SC_LOGIC_1){

S.write(SC_LOGIC_0);

}else if (SBYTECLK.posedge()) {

wait(SC_ZERO_TIME);

S.write((PDL6 & L31 & DI & ~((sc_logic)EI))

|(NDL6 & L13 & EI & ~((sc_logic)DI)));

}// end if

wait(2);

}//while

162

}// end process FNS

//Intermediate term for "F4 is Not Equal to G4"

void enc_eight_ten::disparity(void)

{

while(true) {

wait(1);

PD1S6.write((~((sc_logic)L22) & ~((sc_logic)L31) & ~((sc_logic)EI))|(L13 & DI

& EI));

ND1S6.write((L31 & ~((sc_logic)DI) & ~((sc_logic)EI))|(EI & ~((sc_logic)L22)

& ~((sc_logic)L13))| K4);

PD0S6.write((~((sc_logic)L22) & ~((sc_logic)L13) & EI)| KI);

ND0S6.write((~((sc_logic)L22) & ~((sc_logic)L31) & ~((sc_logic)EI)) |(L13 &

DI & EI));

ND1S4.write((F4 & G4));

ND0S4.write((~((sc_logic)F4) & ~((sc_logic)G4)));

PD1S4.write((~((sc_logic)F4) & ~((sc_logic)G4)) | (FNEG & K4));

PD0S4.write((F4 & G4 & H4));

wait(SC_ZERO_TIME);

PDL6.write((PD0S6 & ~((sc_logic)COMPLS6))

| (COMPLS6 & ND0S6)

| (~((sc_logic)ND0S6) & ~((sc_logic)PD0S6) & LPDL4));

wait(SC_ZERO_TIME);

NDL6.write(~((sc_logic)PDL6));

wait(SC_ZERO_TIME);

PDL4.write((LPDL6 & ~((sc_logic)PD0S4) & ~((sc_logic)ND0S4))

|(ND0S4 & COMPLS4)

163

| (~((sc_logic)COMPLS4) & PD0S4)) ;

}//while

}

void enc_eight_ten::CMPLS4(void){

while(true) {

wait(1); // Wait for the event in sensitivity list to occure

if (LRESET == SC_LOGIC_1){

LPDL6.write(SC_LOGIC_0);

wait(SC_ZERO_TIME);

}else if (SBYTECLK.posedge()) {// Rising edge

LPDL6.write(PDL6); // .. latches S4

wait(SC_ZERO_TIME);

}

COMPLS4.write((PD1S4 & ~((sc_logic)LPDL6)) ^ (ND1S4 & LPDL6));

wait(SC_ZERO_TIME);

}//while

} //end process CMPLS4 ;

void enc_eight_ten::CMPLS6(void){

while(true) {

wait(2);

if (LRESET == SC_LOGIC_0){

LPDL4.write(SC_LOGIC_0);

}else if (SBYTECLK.negedge()){ // Falling edge

LPDL4.write(PDL4); //.. latches S6

}

164

wait(SC_ZERO_TIME);

COMPLS6.write((ND1S6 & LPDL4)^ (PD1S6 & ~((sc_logic)LPDL4)));

wait(SC_ZERO_TIME);

}//while

}// end process CMPLS6;

// PROCESS: ENC5B6B; Generate and latch LS 6 encoded bits

void enc_eight_ten::ENC5B6B(void){

while(true) {

wait(2);

NAO.write(AI);

NBO.write(L04 |(BI & ~((sc_logic)L40)));

NCO.write(CI | L04 | (L13 & DI & EI));

NDO.write(DI & ~((sc_logic)L40));

NEO.write((EI & ~((sc_logic)(L13 & DI & EI))) | (L13 & ~((sc_logic)EI)));

NIO.write((L22 & ~((sc_logic)EI)) | (L04 & EI) | (L13 & ~((sc_logic)DI) & EI)

| (L40 & EI) | (L22 & KI)) ;

if (LRESET == SC_LOGIC_1){

AO.write(SC_LOGIC_0);

BO.write(SC_LOGIC_0);

CO.write(SC_LOGIC_0);

DO.write(SC_LOGIC_0);

EO.write(SC_LOGIC_0);

IO.write(SC_LOGIC_0);

}else if (SBYTECLK.posedge()){

AO.write(COMPLS6 ^ NAO);

165

BO.write(COMPLS6 ^ NBO);

CO.write(COMPLS6 ^ NCO);

DO.write(COMPLS6 ^ NDO);

EO.write(COMPLS6 ^ NEO);

IO.write(COMPLS6 ^ NIO);

}

wait(SC_ZERO_TIME);

}//while

} //end process ENC5B6B;

// PROCESS: ENC3B4B; Generate and latch MS 4 encoded bits

void enc_eight_ten::ENC3B4B (void){

while(true) {

wait(2); // Wait for the event in sensitivity list to occure

SINT.write((S & F4 & G4 & H4) | (K4 & F4 & G4 & H4));

NFO.write((F4 & ~((sc_logic)SINT)));

NGO.write(G4 | (~((sc_logic)F4) & ~((sc_logic)G4) & ~((sc_logic)H4)));

NHO.write(H4);

NJO.write(SINT | (FNEG & ~((sc_logic)H4)));

if (LRESET == SC_LOGIC_1){

FO.write(SC_LOGIC_0);

GO.write(SC_LOGIC_0);

HO.write(SC_LOGIC_0);

JO.write(SC_LOGIC_0);

}else if (SBYTECLK.posedge()){

FO.write(COMPLS4 ^ NFO);

166

GO.write(COMPLS4 ^ NGO);

HO.write(COMPLS4 ^ NHO);

JO.write(COMPLS4 ^ NJO);

}

wait(SC_ZERO_TIME);

}//while

}//end process ENC3B4B ;

8B/10B Decoder Model

File: decoder.h

#include "systemc.h"

SC_MODULE(dec_8b10b){

sc_in<sc_logic> RESET;

sc_in<bool> RBYTECLK;

sc_in<sc_logic> AI, BI, CI, DI, EI, II;

sc_in<sc_logic> FI, GI, HI, JI;

sc_out<sc_logic> KO;

sc_out<sc_logic> HO, GO, FO, EO, DO, CO, BO,AO;

// Signals to tie things together

sc_signal<sc_logic> ANEB, CNED, EEI, P13, P22, P31;

sc_signal<sc_logic> IKA, IKB, IKC;

sc_signal<sc_logic> XA, XB, XC, XD, XE;

sc_signal<sc_logic> OR121, OR122, OR123, OR124, OR125, OR126, OR127;

sc_signal<sc_logic> XF, XG, XH;

167

sc_signal<sc_logic> OR131, OR132, OR133, OR134, IOR134;

// events declaration

sc_event output;

void DEC_6B_IN(void);

void DEC5B(void);

void DEC3B (void);

// Module Constructor start here

SC_CTOR(dec_8b10b) {

SC_THREAD(DEC_6B_IN);

sensitive <�< RBYTECLK;

dont_initialize();

SC_THREAD(DEC5B);

sensitive <�< RESET <�< RBYTECLK <�< XA <�< XB <�< XC <�< XD <�< XE <�< AI <�< BI <�< CI

<�< DI <�< EI;

dont_initialize();

SC_THREAD(DEC3B);

sensitive <�< RESET<�< RBYTECLK<�< XF <�< XG <�< XH <�< FI<�< GI<�< HI;

dont_initialize();

} // End of Constructor

}; // End of Module TransmitReceive

File: decoder.cpp

#include "8b10b_dec.h"

void dec_8b10b::DEC_6B_IN(void) {

while(true) {

168

wait(1);

// One 1 and three 0's

P13.write((ANEB & (~((sc_logic)CI) & ~((sc_logic)DI)))

| (CNED & (~((sc_logic)AI) & ~((sc_logic)BI))));

P31.write((ANEB & CI & DI)

| (CNED & AI & BI));

// Two 1's and two 0's

P22.write((AI & BI & (~((sc_logic)CI) & ~((sc_logic)DI)))

| (CI & DI & (~(((sc_logic)AI) & ~(sc_logic)BI)))

| (ANEB & CNED)) ;

// Intermediate term for "AI is Not Equal to BI"

ANEB.write(AI ^ BI);

// Intermediate term for "CI is Not Equal to DI"

CNED.write(CI ^ DI) ;

// Intermediate term for "E is Equal to I"

EEI.write(~((sc_logic)(EI ^ II))) ;

IKA.write((CI & DI & EI & II)

| (~((sc_logic)CI) & ~((sc_logic)DI) & ~((sc_logic)EI) & ~((sc_logic) II)));

IKB.write(P13 & (~((sc_logic)EI) & II & GI & HI & JI)) ;

IKC.write(P31 & (EI & ~((sc_logic)II) & ~((sc_logic)GI) & ~((sc_logic)HI) &

~((sc_logic)JI)));

if(RESET == SC_LOGIC_1){

KO.write(SC_LOGIC_0);

}else if(RBYTECLK.negedge()){

KO.write(IKA | IKB | IKC);

169

} //end if

// Logic for complimenting F,G,H outputs

OR131.write((GI & HI & JI)

| (FI & HI & JI)

| (IOR134));

OR132.write((FI & GI & JI)

| (~((sc_logic)FI) & ~((sc_logic)GI) & ~((sc_logic)HI))

| (~((sc_logic)FI) & ~((sc_logic)GI) & HI & JI));

OR133.write((~((sc_logic)FI) & ~((sc_logic)HI) & ~((sc_logic)JI))

| (IOR134)

| (~((sc_logic)GI) & ~((sc_logic)HI) & ~((sc_logic)JI)));

OR134.write((~((sc_logic)GI) & ~((sc_logic)HI) & ~((sc_logic)JI))

| (FI & HI & JI)

| (IOR134));

IOR134.write((~((sc_logic)(HI & JI)))

& (~((sc_logic) (~((sc_logic) HI) & ~((sc_logic) JI))))

& (~((sc_logic)CI) & ~((sc_logic)DI) & ~((sc_logic)EI) & ~((sc_logic)II)));

XF.write(OR131

| OR132);

XG.write(OR132

| OR133);

XH.write(OR132

| OR134);

OR121.write((P22 & (~((sc_logic)AI) & ~((sc_logic)CI) & EEI))

| (P13 & ~((sc_logic)EI))) ;

170

OR122.write((AI & BI & EI & II)

| (~((sc_logic)CI) & ~((sc_logic)DI) & ~((sc_logic)EI) & ~((sc_logic)II))

| (P31 & II));

OR123.write((P31 & II)

| (P22 & BI & CI & EEI)

| (P13 & DI & EI & II)) ;

OR124.write((P22 & AI & CI & EEI)

| (P13 & ~((sc_logic)EI))) ;

OR125.write((P13 & ~((sc_logic)EI))

| (~((sc_logic)CI) & ~((sc_logic)DI) & ~((sc_logic)EI) & ~((sc_logic)II))

| (~((sc_logic)AI) & ~((sc_logic)BI) & ~((sc_logic)EI) & ~((sc_logic)II))) ;

OR126.write((P22 & ~((sc_logic)AI) & ~((sc_logic)CI) & EEI)

| (P13 & ~((sc_logic)II))) ;

OR127.write((P13 & DI & EI & II)

| (P22 & ~((sc_logic)BI) & ~((sc_logic)CI) & EEI)) ;

XA.write(OR127 | OR121 | OR122) ;

XB.write(OR122 | OR123 | OR124);

XC.write(OR121 | OR123 | OR125);

XD.write(OR122 | OR124 | OR127);

XE.write(OR125 | OR126 | OR127);

output.notify(1.5,SC_NS);

}//while

} // end process DEC_6B_IN

void dec_8b10b::DEC5B(void){

wait(output);

171

while(true) {

wait(1);

if (RESET == SC_LOGIC_1){

AO.write(SC_LOGIC_0) ;

BO.write(SC_LOGIC_0) ;

CO.write(SC_LOGIC_0) ;

DO.write(SC_LOGIC_0) ;

EO.write(SC_LOGIC_0) ;

}else if(RBYTECLK.negedge()){

AO.write(XA ^ AI);

BO.write(XB ^ BI);

CO.write(XC ^ CI);

DO.write(XD ^ DI);

EO.write(XE ^ EI);

} //end if

}//while

} //end process DEC5B

void dec_8b10b::DEC3B (void){

wait(output);

while(true) {

wait(1);

if (RESET == SC_LOGIC_1){

FO.write(SC_LOGIC_0) ;

GO.write(SC_LOGIC_0) ;

HO.write(SC_LOGIC_0) ;

172

}else if(RBYTECLK.negedge()){

FO.write(XF ^ FI) ;

GO.write(XG ^ GI) ;

HO.write(XH ^ HI) ;

} //end if

wait(SC_ZERO_TIME);

}//while

} //end process DEC3B

Testbench

#include "stimulus.h"

int sc_main (int argc, char* argv[]) {

sc_report_handler::set_actions("/IEEE_Std_1666/deprecated", SC_DO_NOTHING);

sc_clock clock("TSBYTECLK",0.5,0.5); //Master synchronous send byte clock

sc_signal<sc_lv<8> > input_v;

sc_signal<sc_lv<10> > output_v;

sc_signal<sc_lv<10> > dec_input_v;

sc_signal<sc_lv<8> > dec_output_v;

//instantaition stimulus

stimulus stim("STIM");

// Connect the Stimulus

stim.clock(clock);

stim.input_v(input_v);

stim.output_v(output_v);

stim.dec_input_v(dec_input_v);

173

stim.dec_output_v(dec_output_v);

//Open SystemC Trace files

sc_trace_file *EN = sc_create_vcd_trace_file("encoder_trace_file");

sc_trace(EN, clock, "clock");

sc_trace(EN,input_v,"8bit_Enc");

sc_trace(EN,output_v,"10bit_Enc");

sc_trace(EN,dec_input_v,"10bit_Dec");

sc_trace(EN,dec_output_v,"8bit_Dec");

sc_start(400);

sc_close_vcd_trace_file(EN);

return 0; //Terminate simulation

} //END MAIN

174

Appendix B : Wireless Channel

Model

Node Model

File: Node.h

#include "systemc.h"

// Transmiter Module

SC_MODULE(transmitter) {

sc_in<bool> clock;

// output port

sc_port<sc_fifo_out_if<sc_bv<48> >,0 > tpackout;

// input port

sc_port<sc_fifo_in_if<sc_bv<48> >,0 > ack;

// Local variables

sc_bv <16> old_data[8];

sc_event e_transmitter;

sc_uint<64> i_fram_transmit_time;

sc_uint<64> ack_time_out[8];

sc_int<32> Transmiter_packet_count ;

sc_uint<3> N;

175

sc_uint<3> SNmin;

sc_uint<3> SNmax;

sc_uint<3> resend_couter;

// process

void snd_proc();

void snd_ack_proc();

// function

int RNG();

SC_CTOR(transmitter){

cout <�< "creating Transmitter name = " <�< name() <�< endl;

SC_THREAD(snd_proc);

sensitive <�< clock.pos();

dont_initialize();

SC_THREAD(snd_ack_proc);

sensitive <�< clock.neg();

dont_initialize();

Transmiter_packet_count = 1;

}

};

// Receiver Module

SC_MODULE(receiver) {

sc_in<bool> clock;

// input port

sc_port<sc_fifo_in_if<sc_bv<48> > > rpackin;

// output port

176

sc_port<sc_fifo_out_if<sc_bv<48> > > ack;

// Local variables

sc_bv<48> i_frame;

sc_bv<48> old_i_frame;

sc_bv<48> i_frame_ack;

sc_int<32> Receive_packet_count;

sc_uint<32> packet_error_count;

sc_uint<32> packet_successful_count;

double PE;

double throughput;

sc_uint<64> simTime;

sc_uint<3> RN;

sc_uint<3> SN;

// process

void receiver_proc();

SC_CTOR(receiver){

cout <�< "creating Receiver name = " <�< name() <�< endl;

SC_THREAD(receiver_proc);

sensitive <�< rpackin <�< clock.neg();

dont_initialize();

Receive_packet_count = 0;

packet_error_count = 0;

packet_successful_count = 0;

PE = 0.0;

throughput = 0.0;

simTime = 0;

}

};

177

File: Node.cpp

#include <string.h>

#include "node.h"

#include "sc_string.h"

#include <iomanip>

using namespace std;

void transmitter::snd_proc() {

int randno = 0;

sc_bv<48> i_frame;

sc_bv<8> address = "00000000";

sc_bv<8> control = "00000000";

sc_bv<16> i1 = "0000000000000000";

sc_bv<16> i2 = "0000000000000000";

sc_bv<16> checksum = "0000000000000000";

sc_bv<16> temp_data;

std::string get_node_name;

wait(10, SC_NS);

SNmin = 0;

SNmax = 0;

N = 7;

resend_couter = 0;

while(true){

wait();

randno = RNG();

wait(randno, SC_PS);

178

get_node_name = name();

temp_data = RNG();

if(SNmax < (SNmin + N)){

//Send next packet SNmax

if(resend_couter <= 0){

for (int count=0; count != tpackout.size(); count++) {

i_frame.range(47,40) = count;

i_frame.range(31,16) = temp_data;

i_frame.range(34,32) = SNmax;

i1 = i_frame.range(47,32);

i2 = i_frame.range(31,16);

// Checksum calculation

checksum = ~(i1 ^ i2);

i_frame.range(15,0) = checksum;

tpackout[count]->write(i_frame);

cout<�<"@"<�<sc_time_stamp()<�<"Address"<�<i_frame.range(47,40).to_int()<�<endl;

cout<�<"@"<�<sc_time_stamp()<�<"control"<�<i_frame.range(34,32).to_uint()<�<endl;

cout<�<"@"<�<sc_time_stamp()<�<"information"<�<i_frame.range(31,16).to_int()<�<endl;

cout<�<"@"<�<sc_time_stamp()<�<"checksum�<�< i_frame.range(15,0).to_int()<�<endl;

} // end for loop

old_data[SNmax] = temp_data;

}else{

for (int count=0; count != tpackout.size(); count++) {

i_frame.range(47,40) = count;

i_frame.range(31,16) = old_data[SNmax];

179

i_frame.range(34,32) = SNmax;

i1 = i_frame.range(47,32);

i2 = i_frame.range(31,16);

checksum = ~(i1 ^ i2);

i_frame.range(15,0) = checksum;

tpackout[count]->write(i_frame);

}

cout <�<"@"<�<sc_time_stamp()<�<"<><> i_fram RETRANSMITION <><>\n"<�<endl;

resend_couter--;

}

i_fram_transmit_time = sc_time_stamp().value();

ack_time_out[SNmax] = i_fram_transmit_time + 150000;//300000;

cout<�<" Transmitter send i_frame["<�<SNmax<�<"] = "<�<i_frame<�<endl;

SNmax++;

}else{

wait(e_transmitter);

}

// }// end for

cout<�<"number of packets transmitted="<�< Transmiter_packet_count<�<"\n"<�<endl;

Transmiter_packet_count = Transmiter_packet_count + 1;

}// end while

} // end snd_proc

void transmitter::snd_ack_proc() {

sc_bv<48> i_frame;

sc_uint<3> RN;

180

sc_uint<3> R;

int address;

int rn=0;

int check_rn[8][2]={{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}};

//sc_uint<3> old_SNmax = 0;

while(true){

wait();

for (int count=0; count <2; count++) {

if (ack[count] -> nb_read(i_frame)) {

RN = i_frame.range(34,32).to_uint();

cout<�< " RN (ack Process) = "<�< RN <�< endl;

rn = RN;

address = i_frame.range(47,40).to_uint();

// fill RN table

cout<�<"***** rn = "<�< rn <�< " ****** address = "<�< address <�<endl;

check_rn[rn][address]=1;

// printout the table

cout<�<"check_rn["<�<rn<�<"]["<�<address<�<"]="<�<check_rn[rn][address]<�<endl;

for(int i=0;i<8;i++)

{

cout<�<check_rn[i][0]<�<" "<�< check_rn[i][1]<�<endl;

}

if(check_rn[rn][0]*check_rn[rn][1])

{

SNmin = RN;

181

R = RN;

cout<�< " RN (inside IF) = "<�< RN <�< endl;

check_rn[rn][0]=0;

check_rn[rn][1]=0;

}

}else if (ack_time_out[R] <= (sc_time_stamp().value())){

cout <�< "\n@" <�< sc_time_stamp()<�< "<><><> TIME OUT <><><> "<�<endl;

cout<�<" ack_time_out-R["<�<R<�<"]="<�< ack_time_out[R]<�<endl;

SNmax = R;

resend_couter = 7;

}// elseif

}// end for

}// end while

} // end snd_ack_proc

////////////RECEIVER PROCESS//////////////////////

void receiver::receiver_proc() {

std::string get_node_name;

sc_bv<16> i1 ="0000000000000000";

sc_bv<16> i2 ="0000000000000000";

sc_bv<16> checksum ="0000000000000000";

sc_bv<16> temp ="0000000000000000";

old_i_frame.range(39,32)="00000001";

RN = 0;

//create a file name

std::ostringstream file_name;

182

file_name <�< "ber" <�< name() <�<".dat"<�< std::ends;

std::string s = file_name.str();

ofstream myfile (s.c_str());

myfile <�<"ST\t\tRPC\t\tPSC\t\tPEC\t\tTP\t\tPE"<�<endl;

while(true) {

wait();

i_frame = rpackin->read(); // read input port

Receive_packet_count++;

simTime = sc_time_stamp().value();

cout<�<" "<�<endl;

cout<�<sc_time_stamp()<�<"address"<�<i_frame.range(47,40).to_int()<�<endl;

cout<�<sc_time_stamp()<�<"control"<�<i_frame.range(34,32).to_uint()<�<endl;

cout<�<sc_time_stamp()<�<"info"<�<i_frame.range(31,16).to_int()<�<endl;

cout<�<sc_time_stamp()<�<"checksum �<�< i_frame.range(15,0).to_int()<�<endl;

i1 = i_frame.range(47,32);// firest 16 bit section of i_frame

i2 = i_frame.range(31,16);// second 16 bit section of i_frame

checksum = i_frame.range(15,0);

// Checksum calculation

temp = ~((i1 ^ i2) ^ checksum);

if(temp == 0){

cout <�< "\n ************\n successful Transmition"<�<endl;

cout <�< " ********************\n" <�< endl;

SN = i_frame.range(34,32).to_uint();

if (SN == RN){

// Packet Accepted

183

packet_successful_count++;

RN++;

get_node_name = name();

if(get_node_name.compare("Receiver1"))

{ i_frame_ack.range(47,40) = "00000000"; }

else

{ i_frame_ack.range(47,40) = "00000001"; }

i_frame_ack.range(31,16) = "0000000000000000";

i_frame_ack.range(34,32) = RN;

ack -> write(i_frame_ack);

} else {

cout<�<"\n Frame discarded in : "<�< name()<�<" RN not equal SN "<�<endl;

cout<�<" Because SN = "<�< SN <�<" RN = "<�< RN<�<endl; }

} else {

packet_error_count++;

cout <�< "\n Transmition failer"<�<endl;

cout <�< "\n" <�< endl;

// suspend til new i_frame arrive

wait(rpackin->data_written_event());

throughput = (packet_successful_count.to_double()) /

(Receive_packet_count.to_double());

PE = (packet_error_count.to_double()) /

(Receive_packet_count.to_double());

}//end else

if(Receive_packet_count>=200)

184

{sc_stop(); cout<�<"Program terminated by number of packets"<�<endl;}

}//while

myfile.close();

} // end of receiver_proc

int transmitter::RNG() {

int min =0;

int max =1000;

int randomNumber;

randomNumber = min + int(1.0*(max-min+1)*rand()/(RAND_MAX+1.0));

return randomNumber;

}

Channel Model

File: channel.h

#include "node.h"

#include "rng.h"

SC_MODULE(channel) {

sc_in<bool> clock;

//input ports

sc_port<sc_fifo_in_if<sc_bv<48> > > channel_in;

sc_port<sc_fifo_in_if<sc_bv<48> > > ack_in;

// output ports

sc_port<sc_fifo_out_if<sc_bv<48> > > channel_out;

sc_port<sc_fifo_out_if<sc_bv<48> > > ack_out;

185

// data frames process

void transfer();

// Acknowledgement fram process

void ack_process();

SC_CTOR(channel) {

cout <�< "creating Channel name = " <�< name() <�< endl;

SC_THREAD(transfer); // THREAD Process

sensitive <�< channel_in<�< clock.pos();

dont_initialize();

SC_THREAD(ack_process); // THREAD Process

sensitive <�< ack_in<�<clock.pos();

dont_initialize();

}

private:

MyRNG rng; // Random number class instantuation .

};

File: channel.cpp

#include "channel.h"

void channel::transfer() {

// local variables

sc_bv<48> i_frame;

sc_uint<64> next_error_position = 0;

double lamda = 0.0;

sc_uint<64> simTime = 0;

186

sc_uint<64> packet_counter =0;

lamda = rng.uniform(0.0001,0.01);

next_error_position = rng.exponential(lamda);

simTime = sc_time_stamp().value();

cout<�<"\n"<�<name()<�<" initial error position"<�<endl;

cout<�<"next_error_position="<�<next_error_position<�<"Lamda="<�<lamda<�< endl;

while(true) {

wait();

i_frame = channel_in->read();

packet_counter++;

cout<�<sc_time_stamp()<�<"address="<�<i_frame.range(47,40).to_int()<�<endl;

cout<�<sc_time_stamp()<�<"control="<�<i_frame.range(39,32).to_int()<�<endl;

cout<�<sc_time_stamp()<�<"information="<�<i_frame.range(31,16).to_int()<�<endl;

cout<�<sc_time_stamp()<�<"checksum="<�<i_frame.range(15,0).to_int()<�<endl;

simTime = sc_time_stamp().value();

if (packet_counter >= next_error_position){

packet_counter =0;

i_frame = ~i_frame;

next_error_position = rng.exponential(lamda);

simTime = sc_time_stamp().value();

}

channel_out -> write(i_frame);

}//end while

} // Transfer process

// Acknowledgement process

187

void channel::ack_process() {

// local variables

sc_bv<48> i_frame;

while(true) {

wait();

i_frame = ack_in->read();

cout<�<"Acknowledgement in Channel:"<�<name()<�<"received"<�<i_frame.range(47,35)<�<

"["<�<i_frame.range(34,32)<�<"]"<�<i_frame.range(31,0)<�<endl;

ack_out -> write(i_frame);

}//end while

} // Acknowledgement process

File: main.cpp

#include "channel.h"

int sc_main (int argc, char* argv[]) {

sc_report_handler::set_actions("/IEEE_Std_1666/deprecated", SC_DO_NOTHING);

sc_clock Tclock ("TCLOCK",100,0.5);

sc_clock Rclock ("RCLOCK",100,0.5);

sc_clock channel_clock ("CHANNEL_CLOCK",100,0.5);

// modules instantiations

unsigned NTransmitters = 1;

unsigned MReceivers = 2;

unsigned MChannels = 2;

transmitter *Transmitter[NTransmitters];

receiver *Receiver[MReceivers];

188

channel *Channel[MChannels];

sc_fifo<sc_bv<48> > *TCh_fifo[MReceivers];

sc_fifo<sc_bv<48> > *ChR_fifo[MReceivers];

sc_fifo<sc_bv<48> > *ChTAck_fifo[MReceivers];

sc_fifo<sc_bv<48> > *RChAck_fifo[MReceivers];

for (unsigned i=0; i < NTransmitters; i++) {

//create a module

std::ostringstream trans_name;

trans_name <�< "Transmitter" <�< i <�< std::ends;

std::string s = trans_name.str();

Transmitter[i] = new transmitter(s.c_str());

}

// Generate M Receiver, M Channel, M TCh_fifo and M ChR fifo

for (unsigned i=0; i < MReceivers; i++) {

//create a receivers modules

std::ostringstream recev_name;

recev_name <�< "Receiver" <�< i <�< std::ends;

std::string s1 = recev_name.str();

Receiver[i] = new receiver(s1.c_str());

// create Channels modules

std::ostringstream ch_name;

// create fifos

ch_name <�< "Channel" <�< i <�< std::ends;

std::string s2 = ch_name.str();

Channel[i] = new channel(s2.c_str());

189

// create TCh_fifos

TCh_fifo[i] = new sc_fifo<sc_bv<48> >;

// create ChR_fifos

ChR_fifo[i] = new sc_fifo<sc_bv<48> >;

// create TChAck_fifos

ChTAck_fifo[i] = new sc_fifo<sc_bv<48> >;

// create ChRAck_fifos

RChAck_fifo[i] = new sc_fifo<sc_bv<48> >;

}

// this for loop to bind the Transmitter to Channels trough TCh_fifo

Transmitter[0]->clock(Tclock);

for (unsigned i=0; i< MChannels; i++){

//bind fifo to module port

Transmitter[0]->tpackout(*TCh_fifo[i]);

cout<�<"\nTransmitter"<�<0<�<"->Tpackout(*TCh_fifo["<�<i<�<"])"<�<endl;

Transmitter[0]->ack(*ChTAck_fifo[i]);

cout<�<"\nTransmitter"<�<0<�<"->ack(*ChAck_fifo["<�<i<�<"])"<�<endl;

}

//to bind the Receivers to ChR_fifos and Receivers to RComp_fifos

for (unsigned i=0; i< MReceivers; i++){

Receiver[i]->clock(Rclock);

//bind fifo to module port

Receiver[i]->rpackin(*ChR_fifo[i]);

cout<�<"\nReceiver"<�<i<�<"->rpackin(*ChR_fifo["<�<i<�<"])"<�<endl;

Receiver[i]->ack(*RChAck_fifo[i]);

190

cout<�<"\nReceiver"<�<i<�<"->ack(*RChAck_fifo["<�<i<�<"])"<�<endl;

}

// this for loop to bind the Channels to ChR_fifos and TCh_fifos

for (unsigned i=0; i< MChannels; i++){

Channel[i]->clock(channel_clock);

//bind fifo to module port

Channel[i]->channel_in(*TCh_fifo[i]);

cout<�<"\nChannel"<�<i<�<"->channel_in(*TCh_fifo["<�<i<�<"])"<�<endl;

Channel[i]->channel_out(*ChR_fifo[i]);

cout<�<"\nChannel"<�<i<�<"->channel_out(**ChR_fifo["<�<i<�<"])"<�<endl;

Channel[i]->ack_out(*ChTAck_fifo[i]);

cout<�<"\nChannel"<�<i<�<"->ack_out(*ChTAck_fifo["<�<i<�<"])"<�<endl;

Channel[i]->ack_in(*RChAck_fifo[i]);

cout<�<"\nChannel"<�<i<�<"->ack_in(**ChR_fifo["<�<i<�<"])"<�<endl;

}

sc_start();

return(0);

}

191

Appendix C : Flocking Behaviour

System

File: Node.h

#ifndef NODE_H

#define NODE_H

#include "systemc.h"

#include <iostream.h>

#include <iomanip>

#include "channel.h"

#include "uniform.h"

#include "node_average.h"

// N is the Number of particles

#define RATE 1

SC_MODULE(node) {

// input port

sc_port<sc_fifo_in_if<packet_type> > input;

sc_port<sc_fifo_in_if<packet_type> > input2;

// output port

sc_port<sc_fifo_out_if<packet_type> > output;

sc_port<sc_fifo_out_if<packet_type> > output2;

192

sc_port<sc_fifo_out_if<double> > average_port;

sc_port<sc_fifo_out_if<int> > simtime_port;

// process

void snd_proc();

void receiver_proc();

// variables and functions

int relposx;

int relposy;

double xspeed;

double yspeed;

double xspeedold;

double yspeedold;

double accel;

double kd;

bool leader;

bool exit;

double total_speed;

void estimatePosition(double *accx, double *accy);

double x;

double y;

double accx;

double accy;

void setLeader(double xposL,double yposL,double xvel,double yvel);

//void actions(void);

double dx;

193

double dy;

double d_total;

double olddx;

double olddy;

double xacceleration;

double yacceleration;

// node data variables

std::string get_node_name;

packet_type info;

packet_type read_input_port[2];

sc_uint<64> simTime;

double max_delay;

int packet_number1;

int packet_number2;

randomNumber test;

SC_HAS_PROCESS(node);

node(sc_module_name nm, packet_type nodeData) : sc_module(nm)

{

cout <�< "Constructor : creating particle --> " <�< name() <�< endl;

info.id = nodeData.id;

info.relposx = nodeData.relposx;

info.relposy = nodeData.relposy;

info.xpos = nodeData.xpos;

info.ypos = nodeData.ypos;

// Initial values

194

cout <�< "Initial Values for node --> " <�< name() <�< endl;

cout<�<" id = "<�< nodeData.id <�<endl;

cout<�<" relposx = "<�< nodeData.relposx <�<endl;

cout<�<" relposy = "<�< nodeData.relposy <�<endl;

cout<�<" xpos = "<�< nodeData.xpos <�<endl;

cout<�<" ypos = "<�< nodeData.ypos <�<endl;

xspeed=0.0;

yspeed=0.0;

xspeedold=0.0;

yspeedold=0.0;

accel=0.03;

kd=0.1;

leader=false;

exit=false;

SC_THREAD(snd_proc);

SC_THREAD(receiver_proc);

}

private: sc_uint<64> count_step;

sc_uint<64> cycle_number;

};

#endif

195

File: Node.cpp

#include "node.h"

using namespace std;

// SEND PROCESS

void node::snd_proc() {

std::string node_name;

node_name=name();

double starting_delay=test.uniform(0.0,RATE);

cycle_number=1;

count_step=RATE;

int convert;

convert=static_cast<int> (starting_delay);

std::ostringstream file_name55;

file_name55 <�< "CHECK-RATE_"<�< name() <�<".dat"<�< std::ends;

std::string s55 = file_name55.str();

ofstream myfile55 (s55.c_str());

while(true) {

wait(1,SC_MS);

//TO CONTROL TRANSMISSION RATE and ADD INITIAL DELAY

if((convert+count_step)%RATE==0)

{

myfile55 <�< sc_time_stamp() <�< setiosflags (ios::left) <�< setw(8) <�<

" TRANSMISSION @ cycle-number � <�< cycle_number++ <�< "count_step = "

<�< count_step <�< endl;

output->nb_write(info);

196

output2->nb_write(info);

}

count_step++;

}// end while

}// end process

// RECEIVER PROCESS

void node::receiver_proc() {

double tempx;

double tempy;

std::string node_name;

node_name=name();

dx=0.0;

dy=0.0;

std::ostringstream file_name;

file_name <�< "practicle_behaviour_"<�< name() <�<".dat"<�< std::ends;

std::string s = file_name.str();

ofstream myfile (s.c_str());

std::ostringstream file_name1;

file_name1 <�< "practicle_dynamics_"<�< name() <�<".dat"<�< std::ends;

std::string s1 = file_name1.str();

ofstream myfile1 (s1.c_str());

std::ostringstream file_name2;

file_name2 <�< "practicle_converge_"<�< name() <�<".dat"<�< std::ends;

std::string s2 = file_name2.str();

ofstream myfile2 (s2.c_str());

197

std::ostringstream file_name5;

file_name5 <�< "temp_"<�< name() <�<".dat"<�< std::ends;

std::string s5 = file_name5.str();

ofstream myfile5 (s5.c_str());

while(true) {

wait(input->data_written_event()|input2->data_written_event());

simTime = sc_time_stamp().value()/1000000000;

olddx=dx;

olddy=dy;

input ->nb_read(read_input_port[0]); // read value

input2 ->nb_read(read_input_port[1]); // read value

// CALL ESTIMATE_POSITION Function

estimatePosition(&dx, &dy);

if (leader)

{

dx=0;

dy=0;

}// end if

if (!leader)

{

//#move towards my goal; so move speed according to error:

xacceleration=dx*accel+(dx-olddx)*kd;

if (xacceleration>0.2)

xacceleration=0.2;

if (xacceleration<-0.2)

198

xacceleration=-0.2;

yacceleration=dy*accel+(dy-olddy)*kd;

if (yacceleration>0.2)

yacceleration=0.2;

if (yacceleration<-0.2)

yacceleration=-0.2;

xspeed+=xacceleration;

yspeed+=yacceleration;

//#should probably saturate acceleration

if (xspeed>1.)xspeed=1.0;

if (xspeed<-1.)xspeed=-1.;

if (yspeed>1.)yspeed=1.;

if (yspeed<-1.)yspeed=-1.;

}// end if

total_speed= sqrt(pow(xspeed,2)+pow(yspeed,2));

//#Now, calculate new position for next time we are called;

//#So at end of this clock cycle our position would be:

info.xpos+=xspeed;

info.ypos+=yspeed;

cout<�<sc_time_stamp() <�<" LAST OUTPUT:" <�< " xpos = "<�< info.xpos <�< ",ypos=

"<�< info.ypos <�< endl;

tempx= abs(info.xpos-static_cast<double>(info.relposx));

tempy= abs(info.ypos-static_cast<double>(info.relposy));

myfile5<�< setiosflags(ios::left) <�< setw(8) <�< tempx <�< "\t" <�< setw(8) <�< tempy

<�< "\t"<�< setw(8) <�< info.relposx <�< "\t" <�< setw(8) <�< info.xpos <�< "\t" <�<

setw(8) <�< info.relposy <�< "\t" <�< setw(8) <�< info.ypos <�< endl;

199

// writing output data to file

// 1) Create a file for xpos and ypos

myfile <�< setiosflags(ios::left) <�< setw(8) <�< info.xpos <�< "\t" <�< setw(8) <�<

info.ypos <�< endl;

// 2) create a file for dx and dy

myfile1 <�< setiosflags(ios::left) <�< setw(8) <�< simTime <�< "\t" <�< setw(8) <�<

dx <�< endl;

d_total= sqrt(pow(dx,2)+pow(dy,2));

// create a file for dx and dy

myfile2<�< setiosflags(ios::left) <�< setw(8) <�< simTime <�< "\t" <�< setw(8) <�<

d_total <�< endl;

if(!node_name.compare(name())&& node_name.compare("Node0"))

{

if(simTime > 10)

{

average_port->nb_write(d_total);

simtime_port->nb_write(simTime);

}

}// end outer if

}// end while

}// end process

//**************************

// function estimatePosition

//**************************

void node::estimatePosition(double *accx, double *accy)

{

200

*accx=0.0;

*accy=0.0;

//Estimates my *relative* position according to my links

// We have to link this variable with number of nodes

int links =2;

for(int adove =0; adove<links; adove++)

{

x=info.xpos-read_input_port[adove].xpos; ///relposx);

y=info.ypos-read_input_port[adove].ypos; //relposy);

*accx+=-read_input_port[adove].relposx+info.relposx-x;

*accy+=-read_input_port[adove].relposy+info.relposy-y;

}

*accx/=static_cast<float>(links);

*accy/=static_cast<float>(links);

}// end estimatePosition function

//********************

// function setLeader

//********************

void node::setLeader(double xposL,double yposL,double xvel,double yvel)

{

info.xpos=xposL;

info.ypos=yposL;

xvel=xvel;

yvel=yvel;

leader=true;

}// end setLeader function

201

File : channel.h

#include "systemc.h"

#include "packet_type.h"

SC_MODULE(channel) {

// input port

sc_port< sc_fifo_in_if<packet_type> > channel_input;

// output port

sc_port< sc_fifo_out_if<packet_type> > channel_output;

// process1

void p1();

// variables

packet_type get_data1;

packet_type lost_packet;

SC_CTOR(channel)

{

cout <�< "creating Channel name = " <�< name() <�< endl;

SC_THREAD(p1); // THREAD Process

}

};

File : channel.cpp

#include "channel.h"

void channel::p1() {

while(true)

{

202

wait(channel_input->data_written_event());

get_data1 = channel_input->read();

cout <�< sc_time_stamp() <�< "Channel get the value from transmitter:"

<�< get_data1 <�< endl;

channel_output-> write(get_data1);

}//end while

}// end process

File : converge.h

#ifndef NODE_AVERAGE_H

#define NODE_AVERAGE_H

#include "systemc.h"

#include <iostream.h>

#include <iomanip>

// N is the Number of particles

#define N 10

SC_MODULE(node_average) {

/// input port

sc_port<sc_fifo_in_if <double> ,0> one_input_port[N];

sc_port<sc_fifo_in_if <int> ,0> simtime_input_port[N];

double read_error[N];

int simtime_converge[N];

double total_error;

int total_simtime;

void average_proc();

203

SC_CTOR(node_average) {

total_error=0.0;

total_simtime=0;

SC_THREAD(average_proc);

}

};

#endif

File : converge.cpp

#include "node_average.h"

using namespace std;

void node_average::average_proc() {

std::ostringstream file_final;

file_final<�<"error_final_" <�< name() <�<".dat"<�< std::ends;

std::string s99 = file_final.str();

ofstream myfile99 (s99.c_str());

int noo=1;

double CAA,CAA1;

CAA=0.0;

while(true) {

wait(1,SC_MS);

for(int i = 1; i<N;i++)

{

one_input_port[i]->read(read_error[i]);

simtime_input_port[i]->read(simtime_converge[i]);

204

total_error=total_error + read_error[i];

total_simtime=total_simtime + simtime_converge[i];

}

total_error = total_error/N;

total_simtime = total_simtime/N;

CAA1=CAA+(total_error-CAA)/noo;

myfile99 <�< setiosflags(ios::left) <�< setw(8) <�< total_simtime <�< "\t"

<�< setw(8) <�< CAA1 <�< endl;

if(CAA1<0.005)

{

cout <�< "Converging Time=" <�< total_simtime <�< "@ Average Error Value="

<�< total_error <�< endl;

cout <�< name() <�< "****** Simulation Stopped by US" <�< endl;

sc_stop();

}

CAA=CAA1;

noo++;

}// end while

}// end process

File :main.cpp

#include "node.h"

#include "systemc.h"

using namespace std;

int sc_main (int argc, char* argv[])

205

{

sc_report_handler::set_actions("/IEEE_Std_1666/deprecated",SC_DO_NOTHING);

// create array of FIFOs

sc_fifo<packet_type> fifo_chan[4*N];

sc_fifo<double> fifo_chan3[N];

sc_fifo<int> fifo_chan4[N];

// create object from datavxy class

packet_type startingData;

// particles instantiations

unsigned adove_N = N;

node *adove[adove_N];

channel *ch[N];

channel *ch2[N];

node_average *average;

std::ostringstream file_name_main;

file_name_main <�< "relative"<�<".dat"<�< std::ends;

std::string s_main = file_name_main.str();

ofstream myfile_main (s_main.c_str());

startingData.relposx = 0;

startingData.relposy = 0;

for (unsigned i=0; i < adove_N; i++)

{

std::ostringstream particle_name;

particle_name <�< "Node" <�< i <�< std::ends;

std::string s = particle_name.str();

206

startingData.id = i;

startingData.xpos = 0.0;

startingData.ypos = 0.0;

if(i==0)

{startingData.relposx = 0;

startingData.relposy = 0;}

if(i==1)

{startingData.relposx = 1;

startingData.relposy = 0;}

if(i==2)

{startingData.relposx = 2;

startingData.relposy = 0;}

if(i==3)

{startingData.relposx = 3;

startingData.relposy = 0;}

if(i==4)

{startingData.relposx = 4;

startingData.relposy = 0;}

if(i==5)

{startingData.relposx = 5;

startingData.relposy = 0;}

if(i==6)

{startingData.relposx = 5;

startingData.relposy = 1;}

if(i==7)

207

{startingData.relposx = 5;

startingData.relposy = 2;}

if(i==8)

{startingData.relposx = 5;

startingData.relposy = 3;}

if(i==9)

{startingData.relposx = 5;

startingData.relposy = 4;}

if(i==10)

{startingData.relposx = 5;

startingData.relposy = 5;}

if(i==11)

{startingData.relposx = 4;

startingData.relposy = 5;}

if(i==12)

{startingData.relposx = 3;

startingData.relposy = 5;}

if(i==13)

{startingData.relposx = 2;

startingData.relposy = 5;}

if(i==14)

{startingData.relposx = 1;

startingData.relposy = 5;}

if(i==15)

{startingData.relposx = 0;

208

startingData.relposy = 5;}

if(i==16)

{startingData.relposx = 0;

startingData.relposy = 4;}

if(i==17)

{startingData.relposx = 0;

startingData.relposy = 3;}

if(i==18)

{startingData.relposx = 0;

startingData.relposy = 2;}

if(i==19)

{startingData.relposx = 0;

startingData.relposy = 1;}

myfile_main <�< setiosflags(ios::left) <�<setw(8) <�< startingData.relposx <�< "\t"

<�< setw(8)<�< startingData.relposy <�< endl;

adove[i] = new node(s.c_str(),startingData);

}

average = new node_average("node_average");

// Creating channel

cout<�<"\n*************** CREATING CHANNEL***********\n"<�<endl;

for (unsigned i=0; i < N; i++)

{

//create particles (or nodes)

std::ostringstream ch_name;

ch_name <�< "Channel" <�< i <�< std::ends;

209

std::string s1 = ch_name.str();

ch[i] = new channel(s1.c_str());

}

for (unsigned i=0; i < N; i++)

{

//create particles (or nodes)

std::ostringstream ch_name2;

ch_name2 <�< "Channel2" <�< i <�< std::ends;

std::string s2 = ch_name2.str();

ch2[i] = new channel(s2.c_str());

}

//Binding

for (unsigned i=0; i < N; i++)

{

adove[i]->average_port(fifo_chan3[i]);

average->one_input_port[i](fifo_chan3[i]);

adove[i]->simtime_port(fifo_chan4[i]);

average->simtime_input_port[i](fifo_chan4[i]);

}

//port Node: input

for (unsigned i=0; i < adove_N; i++)

{

adove[i]->input(fifo_chan[4*i+1]);

}

//port Node: input2

210

for (unsigned i=1; i <= adove_N; i++)

{

adove[i%adove_N]->input2(fifo_chan[4*i-2]);

}

//port Node: output

for (unsigned i=0; i < adove_N; i++)

{

adove[i]->output(fifo_chan[4*i]);

}

//port Node: output2

for (unsigned i=1; i <= adove_N; i++)

{

adove[i%adove_N]->output2(fifo_chan[4*i-1]);

}

// Binding Channels

//port ch: input

for (unsigned i=0; i < adove_N; i++)

{

ch[i]->channel_input(fifo_chan[4*i]);

}

//port ch: output

for (unsigned i=1; i <= adove_N; i++)

{

ch[i-1]->channel_output(fifo_chan[4*i-2]);

}

211

//port ch2: input

for (unsigned i=1; i <= adove_N; i++)

{

ch2[i-1]->channel_input(fifo_chan[4*i-1]);

}

//port ch2: output

for (unsigned i=0; i < adove_N; i++)

{

ch2[i]->channel_output(fifo_chan[4*i+1]);

}

// select leader

adove[0]->setLeader(0.,0.,0.,0.);

for (unsigned i=0; i < adove_N; i++)

{

cout<�<"\nadove["<�< i <�<"] - LEADER ---> "<�<adove[i]->leader<�<endl;

}

cout<�< " "<�<endl;

sc_start();

return(0);

}

212

Bibliography

[1] L. Cai, S. Verma, and D. Gajski, “Comparison of specc and systemc languages for
system design,” tech. rep., Center for Embedded Computer Systems, University of
California, Irvine, 2003.

[2] M. C. Newsletter, “C2000 dsc tips and tricks,” tech. rep., Texas Instruments, 2004.

[3] R. Domer, D. Gajski, and A. Gerstlauer, “Specc methodology for high-level mod-
elling,” IEEE Electronic Design Processes Workshop EDP 2002, 2002.

[4] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. Zhao, Spec C:Specification

Language and Methodology. 2000.

[5] IEEE_Computer_Society, “Ieee standard systemc language reference manual,”
IEEE Std 1666-2005, pp. 1–423, Mar. 2006.

[6] OSCI, SystemC User’s Guide. Open SystemC Initiative, 2002.

[7] T. Groetker, S. Liao, G. Martin, and S. Swan, System Design with SystemC. 2002.

[8] D. Black and J. Donovan, SystemC: From the Ground-up. Kluwer Academic Pub-
lishers, first ed., 2004.

[9] SystemC-AMS, “http://www.systemc-ams.org/,” Accessed on 27/05/2008.

[10] A. Vachoux, C. Grimm, and K. Einwick, “Analog and mixed signal modelling with
systemc-ams,” IEEE, 2003.

[11] C. Haubelt, J. Falk, J. Keinert, T. Schlichter, M. Streubuhr, A. Deyhle, A. Hadert,
and J. Teich, “A systemc-based design methodology for digital signal processing
systems,” EURASIP Journal on Embedded Systems, vol. 2007, no. 1, 2007.

[12] F. Stefanni, D. Quaglia, and F. Fummi, “Systemc simulation of networked embed-
ded systems,” Springer Netherlands, vol. 36, pp. 201–211, May 2009.

[13] A. Ghosh, S. Tjiang, and R. Chandra, “System modeling with systemc,” in ASIC,
2001.

213

[14] L. Cai and D. Gajski, “Transaction level modelling in system level design,” CECS

Technical Report 03-10, 2003.

[15] N. Bombieri, F. Fummi, and D. Quaglia, “System/network design-space exploration
based on tlm for networked embedded systems,” ACM Transactions on Embedded

Computing Systems, vol. 9, Mar. 2010.

[16] DARPA and NSF, “The network simulator ns2.”

[17] “Opnet - network simulation.”

[18] D. Bourg and G. Seemann, AI for Game Developers. July 2004.

[19] I. Aref, N. Ahmed, F. Rodriguez-Salazar, and K. Elgaid, “Measuring and optimising
convergence and stability in terms of system construction in systemc,” 17th IEEE

International Conference and Workshops on the Engineering of Computer-Based

Systems (ECBS-2010), March 2010.

[20] I. Aref, N. Ahmed, F. Rodriguez-Salazar, and K. Elgaid, “Modeling of flocking be-
haviour system in systemc,” Sixth Advanced International Conference on Telecom-

muincations (AICT-2010), May 2010.

[21] I. Aref, N. Ahmed, F. Rodríguez-Salazar, and K. Elgaid, “Wireless extension into
existing systemc design methodology,” The 2nd International Conference on Com-

puter Engineering and Technology (ICCET 2010), April 2010.

[22] B. A. Forouzan, Data Communications and Networking. McGraw-Hill Sci-
ence/Engineering/Math, forth ed., 2006.

[23] W. Yue and Y. Matsumoto, Performance Analysis of Multi-Channel and Multi-

Traffic on Wireless Communication Networks. Kluwer Academic Publishers,
first ed., 2002.

[24] S. Glisic and P. Leppänen, Wireless Communications: TDMA versus CDMA.
Kluwer Academic Publishers, 1997.

[25] R. Yuce, P. C. Ng, C. Lee, J. Khan, and W. Liu, “A wireless medical monitoring over
a heterogeneous sensor network,” Engineering in Medicine and Biology Society

(EMBS-2007), 2007.

[26] J. Bhasker, A SystemC Primer. Star Galaxy Publishing, 2002.

[27] A. Sangiovanni-Vincentelli, “Is a unified methodology for system-level design pos-
sible?,” IEEE Design and Test of Computers, 2008.

214

[28] Synopsys, Describing Synthesizable RTL in SystemC. 2002.

[29] W. Muller, W. Rosenstiel, and J. Ruf, SystemC Methodologies and Applications.
Mar. 2003.

[30] OSCI, “Open systemc initiative (osci).”

[31] S. Swan, “An introduction to system level modeling in systemc 2.0,” Open SystemC

Initiative (OSCI), May 2001.

[32] J. Gipper, “Systemc: the soc system-level modeling language,” Embedded Comput-

ing Design, 2007.

[33] P. Panda, “Systemc - a modeling platform supporting multiple design abstractions,”
The 14th International Symposium on System Synthesis, 2001.

[34] J. DeGroat, A. Raman, and B. Younis, “A design project for system design with
systemc,” Proceedings of the IEEE International Conference on Microelectronic

Systems Education (MSE), 2003.

[35] D. Maliniak, “Systemc bridges the gap,” OSCI/OCP-IP Special Report - A Penton

Publication, Jan. 2005.

[36] The-MathWorks, “Matlab-the language of technical computing,” 1996.

[37] The-MathWorks, “Simulink-simulation and model-based design,” 1996.

[38] Celoxica, Handle-C Language Reference Manual, 2005.

[39] K. Ramamritham, K. Arya, and G. Fohler, “System software for embedded appli-
cations,” the 17th International Conference on VLSI Design (VLSID-04), 2004.

[40] L. Franzens, “Systemc for embedded system design,” University of Innsbruck, In-

stitue for Informatics, 2006.

[41] C. Widtmann, High-level System Modeling with SystemC and TLM. VDM Verlag,
2009.

[42] G. Domer and P. Gajski, System Design: A Practical Guide with SpecC. Kluwer
Academic Publishers, 2001.

[43] R. Walstrom, J. Schneider, and D. Rover, “Teaching system-level design using
specc and systemc,” Proceedings of the IEEE International Conference on Micro-

electronic Systems Education (MSE), 2005.

215

[44] L. Cai, D. Gajski, M. Olivares, and P. Kritzinger, “C/c++ based system design flow
using specc, vcc and systemc,” tech. rep., Center for Embedded Computer Systems,
University of California, Irvine, 2002.

[45] L. Cai and D. Gajski, “Transaction level modeling: An overview,” CODES+ISSS,
2003.

[46] F. Ghenassia, Transaction Level Modeling with SystemC - TLM Concepts and Ap-

plications for Embedded Systems. Springer, 2005.

[47] B. Jonsson, “A jpeg encoder in systemc,” Master’s thesis, Lulea University of Tech-
nology, Department of Computer Science and Electrical Engineering, Division of
EISLAB, 2005.

[48] R. Domer, A. Gerstlauer, P. Kritzinger, and M. Olivarez, “The specc system-level
design language and methodology, part 2,” Embedded Systems Conference San

Francisco, 2002.

[49] D. Gajski and F. Vahid, “Specfication design of embedded hardware-software sys-
tems,” IEEE Design and Test of Computers, 1995.

[50] M. Pellmann, Transaction Level Modelling Using SystemC. VDM Verlag, 2008.

[51] J. Bjornsen and T. Ytterdal, “Behavioral modeling and simulation of high-speed
analog-to-digital converters using systemc,” IEEE Circuits and Systems, ISCAS ’03,
vol. 3, pp. III–906–III–909, May 2003.

[52] N. Calazans, E. Moreno, F. Hessel, V. Rosa, F. Moraes, and E. Carara, “From vhdl
register transfer level to systemc transaction level modeling: a comparative case
study,” IEEE International Symposium on Circuits and Systems, 2003.

[53] S. Suresh, “System level design of a turbo decoder for communication systems,”
Master’s thesis, Faculty of North Carolina State University, Electrical Engineering,
2005.

[54] R. Walstrom, “System-level design refinement using systemc,” Master’s thesis,
Iowa State University, Ames, Iowa, 2005.

[55] Y. Qu, System-level design and configuration management for run-time reconfig-

urable devices. PhD thesis, Department of Information Technology, Tampere Uni-
versity of Technology, Nov. 2007.

[56] Y. Qu, K. Tiensyrja, and J. Soininen, “Systemc-based design methodology for re-
configurable system-on-chip,” 8th Euromicro conference on Digital System Design

(DSD), 2005.

216

[57] A. Vachoux, C. Grimm, and K. Einwick, “Towards analog and mixed-signal soc
design with systemc-ams,” The second IEEE International Workshop on Electronic

Design, Test and Applications (DELTA), 2004.

[58] A. Vachoux, C. Grimm, and K. Einwick, “Systemc-ams requirements, design ob-
jectives and rationale,” Design, Automation and Test in Europe, DATE03, 2003.

[59] A. Vachoux, C. Grimm, and K. Einwick, “Extending systemc to support mixed
discrete-continuous system modeling and simulation,” IEEE, 2005.

[60] “Requirements specification for systemc analog mixed signal (ams) extensions,”
tech. rep., Open SystemC Initiative (OSCI), Dec. 2008.

[61] S. Orcioni, M. Ballicchia, G. Biagetti, R. Aparo, and M. Conti, “System level
modelling of rf ic in systemc-wms,” EURASIP Journal on Embedded Systems,
no. 371768, 2008.

[62] G. Biagetti, M. Conti, and S. Orcioni, “Systemc-wms -
http://www.deit.univpm.it/systemc-wms/,” Sept. 2005.

[63] F. Fummi, S. Martini, and G. Perbellini, “Heterogeneous co-simulation of net-
worked embedded systems,” Proceedings of the Design, Automation and Test in

Europe Conference and Exhibition (DATE), vol. 3, 2004.

[64] N. Drago, F. Fummi, and M. Poncino, “Modeling network embedded systems with
ns-2 and systemc,” 1st IEEE International Conference on Circuits and Systems for

Communications (ICCSC), 2002.

[65] F. Fummi, P. Gallo, S. Martini, G. Perbellini, M. Poncino, and F. Ricciato, “A
timing-accurate modeling and simulation environment for networked embedded
systems,” Annual ACM IEEE Design Automation Conference, pp. 42–47, 2003.

[66] F. Fummi, D. Quaglia, F. Ricciato, and M. Turolla, “Modeling and simulation of
mobile gateways interacting with wireless sensor networks,” Proceedings of the

conference on Design, automation and test in Europe, pp. 106–111, Mar. 2006.

[67] N. Bombieri, F. Fummi, and D. Quaglia, “System/network design-space exploration
based on tlm for networked embedded systems,” ACM Transactions on Embedded

Computing Systems (TECS), vol. 9, Mar. 2010.

[68] E. Alessio, F. Fummi, D. Quaglia, and M. Turolla, “Modeling and simulation alter-
natives for the design of networked embedded systems,” Proceedings of the confer-

ence on Design, automation and test in Europe, pp. 1030–1035, Apr. 2007.

217

[69] F. Fummi, D. Quaglia, and F. Stefanni, “A systemc-based framework for modeling
and simulation of networked embedded systems,” Forum on Specfication, Verifica-

tion and Design Languages, pp. 49–54, Sept. 2008.

[70] C. Smith and C. Gervelis, Wireless network performance handbook. McGraw-Hill
Network Engineering, 2003.

[71] M. Schiff, Introduction to Communication Systems Simulation. Artech House,
2006.

[72] R. Freeman, Fundamentals of Telecommunications. John Wiley and Sons, 1999.

[73] I. Glover and P. Grant, Digital Communication. Prentice Hall, 2000.

[74] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. 2005.

[75] A. Arsal, “A study on wireless channel models: Simulation of fading, shadowing
and further applications,” Master’s thesis, School of Engineering and Sciences of
Izmir Institute of Technology, Aug. 2008.

[76] V. Kuhn, Wireless Communications over MIMO Channels. 2006.

[77] V. Lau and Y. Kwok, Channel-Adaptive Technologies and Cross-Layer Designs for

Wireless Systems with Multiple Antennas. John Wiley and Sons, 2006.

[78] D. Johnson, “Channel models,” tech. rep., Connexions Project, June 2009.

[79] R. Jain, “Channel models - a tutorials,” tech. rep., Feb. 2007.

[80] M. Lindhe, “On communication and flocking in multi-robot systems,” Master’s the-
sis, KTH School of Electrical Engineering-Stockholm, 2007.

[81] H. Harada and R. Prasad, Simulation and Software Radio for Mobile Communica-

tions. Universal personal communications, 2002.

[82] D. Matolak, “Wireless channel characterization in the 5 ghz microwave landing sys-
tem extension band for airport surface areas,” tech. rep., Ohio University, Athens,
Ohio, May 2007.

[83] L. Ahlin, J. Zander, and B. Slimane, Principles of Wireless Communications. Stu-
dentlitteratur AB, Aug. 2006.

[84] C. Haslett, Essentials of Radio Wave Propagation. Cambridge University Press,
2008.

218

[85] A. Garrido and D. Romera, “Radio wave propagation,” tech. rep., Linköping Uni-
versity, Linköping, Sweden, 2007.

[86] “Communications-electronics fundamentals: Wave propagation, transmission lines,
and antennas,” tech. rep., Headquarters Department of the Army, July 2004.

[87] A. Goldsmith, Wireless Communications. Cambridge University Press, 2005.

[88] B. Sklar, Digital Communications Fundamentals and Applications. Prentice Hall,
2003.

[89] F. Halsall, Data Communication, Computer Networks and Open Systems. Addison-
Wesley, 1995.

[90] A. Kumar, D. Manjunath, and J. Kuri, Communication Networking An Analytical

Approach. Elsevier, 2004.

[91] H. Bidgoli, The Handbook of Computer Networks. John Wiley and Sons, 2008.

[92] M. Engels, Wireless OFDM Systems-How to make them work. Kluwer Academic
Publishers, 2002.

[93] M. Jeruchim, P. Balaban, and K. Shanmugan, Simulation of Communication Sys-

tems - Modeling, Methodology and Techniques. Kluwer Academic Publishers,
2002.

[94] M. Simon and M. Alouini, Digital Communications over Fading Channels. Wiley
Interscience, 2005.

[95] M. Ghavami, L. Michael, and R. Kohno, Ultra Wideband - signals and systems in

communication engineering. John Wiley and Sons, 2004.

[96] H. Schulze and C. Luders, Theory and Applications of OFDM and CDMA Wide-

band Wireless Communications. John Wiley and Sons, 2005.

[97] M. Patzold, Mobile Fading Channels. John Wiley and Sons, 2002.

[98] J. Irvine and D. Harle, Data Communications and Networks. John Wiley and Sons,
2002.

[99] A. Ahmad, Data Communication Principles For Fixed and Wireless Networks.
first ed., Jan. 2003.

[100] Y. Fan and Z. Zilic, “A novel scheme of implemening high speed awgn commu-
nication channel emulators in fpga,” IEEE-Proceedings of the 2004 International

Symposium on Circuits and Systems ISCAS, vol. 2, pp. 877–880, May 2004.

219

[101] F. Xiong, Digital Modulation Techniques. Artech House, 2000.

[102] H. Harada and R. Prasad, Simulation and Software Radio for mobile communica-

tions. second ed., May 2001.

[103] J. Zyren and A. Petrick, “Tutorial on basic link budget analysis,” tech. rep., Intersil
Corporation, 1998.

[104] N. Travers, “Simulated flocking behavior,” tech. rep., Department of Mathematics,
UC Davis, 2007.

[105] C. Hartman and B. Benes, “Autonomous biods,” Journal of Visualization and Com-

puter Animation, 2006.

[106] D. Sinkovits, “Flocking behaviour,” tech. rep., University of Illinois at Urbana-
Champaign, United States, 2006.

[107] D. Bourg and G. Seemann, AI for Game Developers. O’Reilly Media, July 2004.

[108] A. Davison, Killer Game Programming in Java. O’Reilly Media, May 2005.

[109] H. Su, NewAuthor2, and G. Chen, “A connectivity-preserving flocking algorithm
for multi-agent systems based only on position measurements,” International Jour-

nal of Computers, Communications and Control, vol. 82, pp. 1334–1343, July 2009.

[110] H. Su, Y. Zhou, and X. Wang, “Simulation platform for flocking in multi-agent
systems with a virtual leader,” Proceedings of the IEEE Systems and Information

Engineering Design Symposium, Apr. 2008.

[111] Z. Wang and D. Gu, “Distributed leader-follower flocking control,” Asian Journal

of Control, vol. 11, pp. 396–406, July 2009.

[112] C. Reynolds, “Flocks, herds, and schools: A distributed behaviour model,” Symbol-

ics Graphics Division - Siggraph, 1987.

[113] L. Qi-Shao and Y. Ji-Chen, “Flocking of multi-agent systems following virtual
leader with time-varying velocity,” Chinese Phys. Letter, vol. 26, no. 2, 2009.

[114] Z. Li, Y. Jia, J. Du, and S. Yuan, “Flocking for multi-agent systems with switching
topology in a noisy environment,” American Control Conference, June 2008.

[115] C. Reynolds, “Steering behaviors for autonomous characters,” Game Developers

Conference, 1999.

220

[116] C. Reynolds, “Flocks, herds, and schools: A distributed behavioral model,” Com-

puter Graphics, ACM SIGGRAPH Conference Proceedings, vol. 21, no. 4, pp. 25–
34, 1987.

[117] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet, “Novel type of phase
transition in a system of self-driven particles,” Physical Review Letter, vol. 75, Aug.
1995.

[118] J. Toner, Y. Tu, and S. Ramaswamy, “Hydrodynamics and phases of flocks,” Annals

of Physics, vol. 318, pp. 170–244, July 2005.

[119] L. Xiaoli and X. Yugeng, “Flocking of multi-agent dynamic systems with guaran-
teed group connectivity,” Proceedings of the 27th Chinese Control Conference, July
2008.

[120] A. Jadbabaie, J. Lin, and A. Morse, “Coordination of groups of mobile agents using
nearest neighbor rules,” IEEE Transactions on Automatic Control, vol. 48, no. 6,
pp. 988–1001, 2003.

[121] H. Shi, L. Wang, and T. Chu, “Virtual leader approach to coordinated control of
multiple mobile agents with asymmetric interactions,” Physica D,, vol. 213, pp. 51–
65, 2006.

[122] N. Leonard and E. Friorelli, “Virtual leaders, artificial potentials and coordinated
control of groups,” the 40th IEEE Conference on Decision and Control, pp. 2968–
2973, Dec. 2001.

[123] Z. Wang, D. Gu, and H. Hu, “Leader-follower flocking experiments using estimated
flocking center,” Proceedings of the IEEE International conference on Mechatron-

ics and Automation, Aug. 2009.

[124] J. Zhou, W.Yu, X. Wu, M. Small, and J. Lu, “Flocking of multi-agent dynamical
systems based on pseudo-leader mechanism,” Nonlinear Sciences, May 2009.

[125] A. Widmer and P. Franaszek, “A dc-balanced partitioned-block 8b/10b transmission
code,” IEEE, vol. 27, pp. 440–451, Sep. 1983.

[126] Lattice, “8b/10b encoder/decoder,” Lattice Semiconductor, vol. Reference Design
RD1012, Nov. 2002.

[127] J. Wu and Y. Hsu, “8b/10b codec for efficient papr reduction in ofdm communica-
tion systems,” IEEE International Conference on Wireless Communications, Net-

working and Mobile Computing, pp. 1198–1201, 2005.

221

[128] L. Cai, P. Kritzinger, M. Olivares, and D. Gajski, “Top-down system level design
methodology using specc, vcc and systemc,” Proceedings of the Design, Automa-

tion and Test in Europe Conference and Exhibition (DATE), 2002.

[129] S. Sumner, “A brief overview of 10 gigabit ethernet,” tech. rep., EXFO, 2005.

[130] J. Booth and J. Booth, “Systemc modeling of a parallel processor broadcast inter-
connection system,” SoutheastCon, 2002. Proceedings IEEE, pp. 76–81, 2002.

[131] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, and
G. D. Micheli, “Noc synthesis flow for customized domain specific multiproces-
sor systems-on-chip,” IEEE Transactions on Parallel Distribution System, vol. 16,
pp. 113–129, Feb. 2005.

[132] M. Conti and D. Moretti, “System level analysis of the bluetooth standard,” IEEE

DATA, vol. 3, pp. 118–123, Mar. 2005.

[133] N. Ahmed, I. Aref, F. Rodriguez, and K. Elgaid, “Wireless channel model based
on soc design methodology,” Fourth International Conference on Systems and Net-

works Communications (ICSNC), September 2009.

[134] I. Aref, N. Ahmed, F. Rodriguez, and K. Elgaid, “Rtl-level modeling of an 8b/10b
encoder-decoder using systemc,” The Fifth IEEE and IFIP International Confer-

ence on Wireless and Optical Communication Networks (WOCN2008), 2008.

[135] P. Rashinkar, P. Paterson, and L. Singh, System-on-a-Chip Verification: Methodol-

ogy and Techniques. 2002.

[136] M. Petrov, T. Murgan, P. Zipf, and M. Glesner, “Functional modeling techniques
for a wireless lan ofdm transceiver,” IEEE International Symposium on Circuits

and Systems, vol. 4, pp. 3973–3973, May 2005.

[137] HP, HDLC Frame Protocol Users Guide. HP invent, 1 ed., Feb. 2004.

[138] W. H. Tranter, K. S. Shanmugan, T. S. Rappaport, and K. L. Kosbar, Principles of

Communication Systems Simulation with Wireless Applications. first ed., 2004.

[139] W. Stallings, Data and Computer Communications. Pearson Prentice Hall, 2007.

[140] V. Bagad and I. Dhotre, Data Communication and Networking. Technical Publica-
tions Pune, Jan. 2006.

[141] A. Leon-Garcia and I. Widjaja, Communication networks: fundamental concepts

and key architectures. McGraw Hill, 2004.

222

[142] B. Walke, S. Mongold, and L. Berlemann, IEEE-802 Wireless Systems. John Wiley
and Sons, 2006.

[143] S. Iyengar, N. Parameshwaran, V. Phona, N. Balakrishnan, and C. Okoye, Funda-

mentals of Sensor Network Programming - Applications and Technology. Wiley,
2010.

[144] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms and the-
ory,” IEEE Transactions on Automatic Control, June 2004.

[145] H. Tanner and G. Pappas, “Flocking in fixed and switching networks,” IEEE Trans-

actions on Automatic Control, Apr. 2005.

[146] E. Whittaker and G. Robinson, The calculus of observations: An introduction to

numerical analysis. 4th edition ed., 1967.

[147] J. Kenney and E. Keeping, Mathematics of statistics. 3rd edition ed., 1964.

[148] F. Johnston, J. Boylan, M. Meadows, and E. Shale, “Some properties of a simple
moving average when applied to forecasting a time series,” Journal of the Opera-

tional Research Society, 1999.

[149] M. Rajan, M. Chandra, L. Reddy, and P. Hiremath, “Concepts of graph theory rel-
evant to ad-hoc networks,” International Journal of Computers, Communications

and Control, vol. III, no. ISSN 1841-9836, pp. 465–469, 2008.

[150] B. Kwak, N. Song, and L. Miller, “On the scalability of ad hoc networks: a traf-
fic analysis at the center of a network,” Wireless Communication and Networking

Conference (WCNC-2004), Mar. 2004.

[151] J. Osmundson and T. Huynh, “Scalability of wireless ad hoc netwroks by simula-
tion,” 2004.

[152] G. Chartrand, Introductory graph theory. Courier Dover Publications, 1985.

[153] R. Trudeau, Introduction to graph theory. Courier Dover Publications, 1994.

[154] L. Ding and Z.-H. Guan, “Modeling wireless sensor networks using random graph
theory,” Elsevier B.V., 2008.

[155] M. A. Rajan, M. G. Chandra, L. C. Raddy, and P. Hiremath, “Concepts of graph
theory relevant to ad-hoc networks,” International Journal of Computers, Commu-

nications and Control, 2008.

223

[156] J. Prizmic and R. Podgornik, “Models of the small world,” 2001.

[157] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-world networks,”
1998.

[158] E. Weisstein, “Adjacency matrix,” tech. rep., Math-World, 1999.

[159] B. Sklar, Digital Communications:Fundamentals and Applications. Prentice Hall,
Jan. 2001.

[160] D. Falconer, F. Adachi, and B. Gudmundson, “Time division multiple access meth-
ods for wireless personal communications,” IEEE Communication Magazine, Jan.
1995.

[161] J. Kurose and K. Ross, Computer Networking: A Top-Down Approach. Addison-
Wesley, fifth ed., 2009.

224

