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Abstract

Industrial devices in the industrial automation domain have undergone a steep increase
in their complexity during the last 20 years. They have evolved from simple acquisition
devices with point-to-point communication up to complex processing units with multiple
computation and communication functionalities. This has given rise to a new series of
design challenges for the embedded systems used to implement them.

Simulation based techniques are widely used for the design and veri�cation of embed-
ded systems for industrial devices. These systems are heterogeneous from a system level
perspective due to the combination of digital systems, analog and mixed-signal systems
and multi-domain physical systems. Various domain-speci�c modeling languages and
simulation tools are available for this purpose. However, these tools focus on speci�c
aspects of a design, which makes it very challenging to predict the behavior of full
systems. This is done in late design stages, namely in the integration and tests phase, and
often leads to time-consuming redesign cycles that a�ect the cost and time-to-market of
a product.

This dissertation presents a virtual prototyping methodology for the design and
veri�cation of heterogeneous embedded systems. The targeted applications are industrial
device such as sensor, actuators and close-loop controllers used to interact with physical
processes in the �eld level of industrial automation systems. This methodology provides
multidisciplinary team members with enhanced modeling and simulation capabilities
in order to identify and solve design problems during early development stages. It also
provides supporting modeling guidelines and a problem-oriented veri�cation approach
which can be applied in di�erent development stages.

The virtual prototypes described in this work provide a pragmatic solution for emu-
lating the behavior of hardware prototypes and experimental setups. The underlying
simulation models used can be described in varying granularities according to the devel-
opment stage, and using di�erent modeling formalisms and simulation tools. This work
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demonstrates that virtual prototypes can help increase the con�dence in the correct-
ness of a design thanks to a deeper understanding of the complex interactions between
hardware, software, analog and mixed-signal components of embedded systems and the
physical processes they interact with.



Kurzfassung

Industrielle Geräte in der Automatisierungstechnik sind in den letzten 20 Jahren
deutlich komplexer geworden. Sie haben sich von einfachen Messgeräten mit Punkt-
zu-Punkt Kommunikation zu Einheiten mit mehreren Kommunikations- und Ver-
arbeitungsfunktionen entwickelt. Ihre zunehmende Komplexität führt zu neuen Heraus-
forderungen in der Entwicklung derartiger eingebetteter Systeme.

Diese eingebetteten Systeme werden auf Systemebene als heterogen bezeichnet, da
digitale, analoge und mixed-Signal Komponenten mit Multidomain-physikalischen Sys-
temen zusammenwirken. Zur Entwicklung und Veri�kation solcher Systeme werden
häu�g simulationsbasierte Verfahren eingesetzt. Diese Verfahren erfolgen durch mehrere
domain-spezi�sche Modellierungssprachen und Werkzeuge, die auf spezi�schen Teilen
des Systems ausgerichtet sind. Das Gesamtverhalten kann daher erst in einer späteren
Entwicklungsphase, nämlich der Integrationsphase, getestet werden. Dabei kommt es
oft zu zeitaufwendigen Redesign-Zyklen, die sich auf Kosten und time-to-market eines
Produkts auswirken.

In dieser Dissertation wird eine auf Virtual Prototyping basierende Vorgehensweise
für die Entwicklung und Veri�kation heterogener eingebetteter Systeme vorgeschlagen.
Gezielte Anwendungen sind industrielle Geräte wie Sensoren, Aktoren und Regler, die
mit physikalischen Prozessen auf der Feldebene von industriellen Automatisierungssyste-
men zusammenwirken. Die entwickelte Methode gibt multidisziplinären Arbeitsgruppen
verbesserte Modellierungs- und Simulationsfähigkeiten zur Identi�zierung und Lösung
von Entwicklungsproblemen in frühen Entwicklungsphasen an die Hand. Dabei wer-
den auch Modellierungsrichtlinien und ein problem-basiertes Veri�kationsverfahren,
welches in verschiedenen Entwicklungsphasen anwendbar ist, beschrieben.

Die in dieser Arbeit dargestellten virtuellen Prototypen bieten eine pragmatische
Lösung für die Simulation von Hardwareprototypen und Testaufbauten. Die zugrunde
liegenden Simulationsmodelle werden, entsprechend der Entwicklungsphase, mit ver-

v



vi

schiedenen Modellierungssprachen in variierendem Detaillierungsgrad beschrieben.
Diese Arbeit zeigt, dass virtuelle Prototypen das Vertrauen in die Richtigkeit eines
Designs stärken können, da sie zu einem tieferen Verständnis für die Wechselwirkun-
gen zwischen der Komponenten von heterogenen eingebetteten Systemen und den
physikalischen Systemen, mit denen sie zusammenwirken, führen.
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1
Introduction

1.1 Industrial devices in automation systems

The day-to-day operations of most production and manufacturing plants are possible
thanks to industrial automation systems. They form part of many industry sectors,
including chemical and petrochemical, food and beverage, pulp and paper, oil and gas,
power generation, mining, among many others. Their goal is to make production
processes more e�cient, cost e�ective and fast enough to keep up with market demands.

The primary activities performed by industrial automation systems are the monitoring
and control of industrial processes. A wide range of industrial devices, interconnected
by industrial networks and �eld buses, are used for this purpose. Figure 1.1 illustrates a
typical example in the process automation domain. It also shows the di�erent levels of
an industrial automation system and its interconnection topology. The station level is
responsible for monitoring and process optimization tasks, the control level is responsible,
as its name speci�es, for control tasks, and the �eld level is responsible for sensing
and actuation tasks. This clear separation of tasks, in hand with available means for
sharing information between them, makes it possible to automate even the most complex
industrial processes.

Industrial devices, also called industrial instruments or �eld devices, are highly reliable
and robust sensors, actuators and controllers located in the �eld level of industrial
automation systems. Some examples in the process automation domain are illustrated

1
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Controller

I/Os I/Os I/Os

Drives

I/Os

Figure 1.1: Industrial automation system

in the bottom part of Figure 1.1. They are sensing devices such as temperature sensors,
�ow sensors and pressure sensors. They are also actuators such as valves and motor
drives, as well as local controllers such as industrial PID controllers. Another example
from a di�erent application domain are IEDs (Intelligent Electronic Devices) used in
power systems. They are highly complex sensing devices for electric measurements
and are used in electrical substations for monitoring and protection purposes. All these
devices act as the eyes and hands of higher level control and monitoring systems. Their
communication with upper levels of automation networks is implemented by a variety
of �eld buses and communication protocols.

1.2 Design challenges for industrial devices

During the last 20 years, the amount of computation and communication functionalities
embedded into industrial devices has considerably increased [100]. Figure 1.2 helps to
illustrate the evolution of industrial devices during this time. Devices that where once
point-to-point transmitters of process variables are now intelligent devices capable of
performing multiple additional functionalities. For instance, they are equipped with
advanced signal processing capabilities, they perform multiple self-diagnostic function-
alities, they perform distributed control functions and they are able to communicate
independently with other devices.
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Figure 1.2: Increasing functionality of industrial devices

The design of embedded systems for industrial devices is a multidisciplinary activity
that requires domain experts on digital and physical aspects of a design. Digital aspects
refer to hardware and software components. Meanwhile, physical aspects refer to the
physics behind the plant or process involved, as well as the analog and mixed-signal
components used to interact with it. This combination of digital, mixed-signal, analog
and physical systems lead to their classi�cation as heterogeneous embedded system.

Certain assumptions must be done to separate digital and physical aspects of a design.
The purpose of this separation is to reduce the complexity of a system by breaking it
down into smaller and more manageable parts. For instance, a common approach in
HW/SW (Hardware/Software) co-design of digital systems is the use of test benches. A
common simpli�cation is to consider test benches as static elements, such as sinks and
sources. This is not valid when the execution of HW/SW components being developed is
dependent on the behavior of physical processes they interact with. Physical processes
are dynamic systems sensitive to a number of factors, such as feedback control, distur-
bances and particular operation points. Ignoring the intrinsic dynamic characteristics
of physical processes in test benches is commonly a reason for integration problems
that happen in later design stages. This results in unforeseen interactions between
physical processes and components of embedded systems that can lead to costly and
time-consuming redesign cycles.

A similar premise is used by authors such as Branicky [23] for describing hybrid
systems, as well as Lee [82] and Karsai [75] for describing CPS (Cyber-Physical Systems).
Their premise states that from a system level perspective, the execution of computation
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Figure 1.3: Example of an integrated design approach for embedded systems

and communication tasks performed by an embedded system are directly a�ected by
the behavior of the physical process it interacts with and vice versa.

Industrial devices evidently fall into the classi�cation of hybrid or cyber-physical
systems since heterogeneous embedded systems are used for the measurement and
control of physical processes. Similar examples can be found in other industries such
as automotive, avionics, medicine technology, etc. The design challenges are to ensure
the predictability and reliability of such systems, while at the same time keeping up
with constraining time-to-market requirements. These challenges arise when digital and
physical domains are closely coupled.

The assumptions made on early design stages due to the partitioning and simpli�cation
of digital and physical domains may not always be valid. They lead to inconsistencies in
the speci�cations by which embedded systems are designed. The result is an increased
number of iterative redesign cycles, which consequently leads to long times-to-market
and costly development processes.

An improved design approach is needed. This is exemplary illustrated in Figure 1.3.
It is an integrated design approach that envisions design teams working in parallel
and being able to share and test their results together at di�erent design stages. The
advantage with respect to traditional design approaches is the possibility to perform
veri�cation and validation of complete systems at di�erent designs stages. Higher quality
results, in a shorter time-to-market, can be obtained thanks to the identi�cation and
resolution of design errors in earlier design stages.
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In practice, an ideal design �ow such as the one illustrated in Figure 1.3 does not exist.
Many technical tradeo�s must be considered, for example, the type of embedded systems
being designed, their complexity, and the tools and modeling formalisms used. External
factors must also be considered, such as the acceptance of development teams to adopt
new design approaches and the overhead that this might bring.

1.3 Goals of this work

Traditional design approaches for embedded systems are characterized by their depen-
dency on hardware prototypes and experimental setups for veri�cation and validation
purposes. More recent approaches such as Rapid Prototyping and Hardware-in-the-Loop
testing are available that can help make this veri�cation and validation process more
reliable and e�cient. A third and more recent approach is Virtual Prototyping. Virtual
prototyping stands for the veri�cation and validation of embedded systems using system
level simulation models that emulate (mimic) the behavior of hardware prototypes and
experimental setups.

Simulation techniques are an established aid during the development of embedded
systems. They are used by various domains experts (hardware engineers, embedded
software developers, physicist, etc.) for understanding and designing particular parts of
a system. However, the impact of crossing simulation boundaries is rarely considered.
Virtual prototypes o�er the possibility to bridge the simulation boundaries between
digital, analog and physical domains in order to have a better understanding of the
systems being developed and of the complex interactions among them.

Related work on virtual prototyping include Ptolemy II [38, 44], the CODIS co-
simulation framework [21, 51], the work from Kirchner et al. [77, 78] and the dissertation
from Verhoef [134]. In these, the following points have not been fully addressed:

• The use of virtual prototypes for supporting various stages of the development
life-cycle of heterogeneous embedded systems have not been investigated

• The possibility to reuse and test existing device �rmware inside virtual prototypes
has not been considered. This includes embedded legacy code and hardware
dependent software (drivers and real time operating systems).

• The simulation of overall systems, which includes digital and physical domains,
using processor emulation tools has not been addressed until now
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Figure 1.4: Virtual prototyping in the design of industrial devices

These points and their appropriate solutions will be addressed in this dissertation.
This work proposes a virtual prototyping methodology for the design and veri�cation
of heterogeneous embedded systems. Its role in the design �ow of industrial devices
is illustrated in Figure 1.4. It is a model-based design approach that brings together
hardware, software, analog and mixed-signal component models of embedded systems
with physical models of their environment. It enables a new dimension of testing and
veri�cation capabilities by considering the e�ects that functional, structural and physical
speci�cations have in the behavior of full systems. It also speeds up the design process
since iterative design cycles are performed in a virtual environment, which is much
faster than with real hardware prototypes and experimental setups.

The goal of this dissertation is to enable the use of overall system simulation ap-
proaches throughout the development process of heterogeneous embedded systems for
industrial devices and to provide a supporting methodology for it. This work is intended
to provide multidisciplinary team members with enhanced veri�cation capabilities to
identify and solve design problems during early development stages. This is possible by
coupling the execution of di�erent simulators, each one responsible for obtaining the
behavior of part of a system. The combined execution of simulators can help increase
the understanding of interdependencies between di�erent system components. This
eventually helps increase the con�dence in the correctness of a design, thereby reducing
risks in a project and leading to hardware prototypes and experimental setups that are
built right the �rst time. Thereby, the following points will be addressed in this work:
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1. A multi-domain simulation framework where digital and physical system level
models can interact in a correct and reproducible manner. The selected tools and
modeling formalisms must be compatible with best-practices used in the industrial
automation domain.

2. A set of modeling guidelines intended to decrease the implementation e�ort of the
proposed design methodology. The guidelines must provide a set of rules for the
construction of consistent and meaningful virtual prototypes. They should ease
the creation of virtual prototypes and help increase the reusability of designs.

3. A problem-oriented veri�cation methodology for identifying and solving design
problems before they propagate into further development stages. It should allow
for top-down or bottom-up veri�cation approaches in order to target speci�c
veri�cation goals. This should help increase the con�dence in the correctness of
heterogeneous embedded system designs.

1.4 Outline of this work

Chapter 2 gives an overview of the applications of industrial devices, their embedded
systems and some of the best-practices used during their design. The initial requirements
are identi�ed and used as driving force for the work presented in the following chapters.

Chapter 3 and Chapter 4 describe the state-of-the-art on model based design ap-
proaches for heterogeneous embedded systems. This includes approaches for describing
digital systems, analog and mixed-signal systems and physical systems. The state-of-
the-art is evaluated regarding requirement for the design of industrial devices in order
to de�ne the scope of this dissertation.

Chapter 5 and Chapter 6 describe the proposed virtual prototyping methodology
for the design, veri�cation and test of industrial devices. These chapters de�ne mod-
eling guidelines for creating virtual prototypes and a problem-oriented veri�cation
methodology applicable to di�erent design stages.

Chapter 7 describes a multi-domain simulation framework that enables the veri�cation
strategies of the above-mentioned virtual prototypes. It describes a generic and e�cient
co-simulation algorithm for coupling continuous-time and discrete-event simulators. It
also describes its implementation for coupling SystemC/Simulink and SystemC/VHDL-
AMS simulation engines.
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Chapter 8 describes the evaluation of the work presented in this dissertation. Two
application examples are presented: the �rst one is based on an academic example and
the second on an ongoing industrial project.

Chapter 9 presents the conclusions of this work and an outlook for further research on
applications for virtual prototyping methodologies in the industrial automation domain.



2
Industrial Devices

This chapter provides the necessary background for understanding the challenges en-
countered during the design of industrial devices used in the �eld level of industrial
automation systems. These devices are complex heterogeneous embedded systems re-
sponsible for the monitoring, measurement and manipulation of physical processes in
the �eld level. This chapter gives an overview of the applications of industrial devices,
their embedded systems and some of the best-practices used during their design. The
initial requirements for this dissertation are identi�ed and are used as driving force for
the work presented in the following chapters.

2.1 Industrial devices in automation systems

The overall goal of industrial automation systems is to optimize processes and assets in
all levels of an organization. This is archived by various electronic systems that gather
information from physical processes in order to control them in a safe, reliable and
e�cient manner. Industrial automation systems can be found in any major industrial
sector. Some examples are listed in Table 2.1.

Industrial automation systems are distributed across all layers of an organization as
shown in Figure 2.1. This helps identify the di�erent levels of an industrial automation
system, as well as the main activities performed in each of them. Since the scope of this
dissertation is on industrial devices on the �eld level, only the three bottom levels of

9
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Sector Industries
Power generation coal, gas, wind, solar
Distribution water, gas, oil, electricity
Process manufacturing food & beverage, chemical, pharmaceutical
Discrete manufacturing automotive, electronic appliances
Buildings HVAC, lighting
Transportation railways, maritime ports, airports

Table 2.1: Example of industries relying on industrial automation systems

Level 4

Level 1

Level 2

Level 3

Business Planning 
& Logistics

Plant Production Scheduling,
Business Management, etc

Manufacturing
Operations Management

Dispatching Production, Detailed Production
Scheduling, Reliability Assurance, ...

Manufacturing Control
Basic Control, Supervisory Control,

Process Sensing, Process Manipulation,… 1 - Sensing the production process, manipulating
the production process

2 - Monitoring, supervisory control and automated 
control of the production process

3 - Work flow / recipe control to produce the 
desired end products. Maintaining records and 
optimizing the production process. 

Time Frame
Shifts, hours, minutes, seconds

4 - Establishing the basic plant schedule -
production, material use, delivery, and shipping. 
Determining inventory levels.

Time Frame
Months, weeks, days, shifts

Level 0 0 - The physical production process

Figure 2.1: Hierarchy of industrial automation system according to ISA-95 [19]

Figure 2.1, corresponding to manufacturing control activities, will be described ahead.

2.1.1 Industrial processes

This section describes in more detail the physical production processes corresponding to
Level-0 of Figure 2.1. According to the DIN19222 [39] control technology terminology, a
process is de�ned as a set of concurrent operations acting upon a system in which mater,
energy or information is transformed, transported or stored. The de�nition applies to
any type of industrial process, e.g. a petrochemical process in a re�nery plant or an
assembly process in the automotive industry. Moreover, the ISA-95 standard [74] further
classi�es processes into three types: continuous, discrete and batch processes.
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Continuous processes

Continuous processes are associated with the transformation of raw materials into
products. The transformation process results in a product that cannot be separated
into its raw materials, e.g. oil re�nement, electricity generation, food and beverage
products. Such systems require sensors and actuators that determine and regulate
physical properties of raw materials, and control systems that monitor and control the
overall transformation process. Continuous control systems are used extensively in
industrial applications such as: food & beverage, pulp & paper, oil & gas, chemical
processing, power generation and distribution, etc.

From a mathematical point of view, the behavior of continuous processes is described
by continuous states and state transitions. They are monotone and reversible [95],
which makes them controllable by techniques such as feedback control. Thereby, control
tasks for continuous processes focus mainly on the regulation of measurable physical
properties.

Discrete processes

Discrete processes are associated with the assembly of parts into a �nal product. The
transformation process is reversible, thus individual parts can be identi�ed in the �nal
product. Such systems require sensors and actuators that can determine and alter the
state of a system according to commands from a control system. Discrete control systems
are used extensively in the automotive industry, for example, to assemble parts in a
car and to transport it to di�erent locations inside a plant. Many industries rely on
discrete control systems for activities such as printing, sorting, packing and transport of
materials or products via conveyor belts or cranes.

From a mathematical point of view, the behavior of discrete processes is described by
discrete states and abrupt state transitions from one state to the next caused by input
events. They are reversible and not monotone [95], meaning that the removal of an
input stimuli will not necessarily bring a process back to its previous state. Thereby,
control tasks for discrete processes focus mainly on the calculation of discrete sets of
commands that can bring a process to a desired state.

Batch processes

Batch processes are systems with continuous and discrete processes. Pharmaceutical
and chemical industries are classical examples of applications with dominantly batch
processes. In this context, a control task is represented by a sequence of discrete steps
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needed to carry out a recipe, while each step is described by a continuous process
particular to the assigned resource (e.g. heating, �lling, mixing). For example, in a
bottle-�lling application a discrete process describes the sequence of events for bottles
transported on a conveyor belt, while a continuous process describes the �lling process
(pour a certain volume of liquid into each bottle).

2.1.2 Industrial devices

This section describes in more detail the industrial devices used for sensing and manip-
ulation activities corresponding to Level-1 of Figure 2.1. Industrial devices are highly
specialized electronic devices responsible for the measurement and control of industrial
processes. They are further classi�ed as discrete and continuous instruments, according
to the type of industrial processes they interact with.

Discrete instruments

Discrete instrumentation devices are sensors and actuators used to identify and manipu-
late discrete states of a process. Examples of such devices are proximity detectors. They
are micro-switches, optical sensors or magnetic sensors that communicate binary values
about the presence or absence of an object. Further examples are pushbuttons, position
encoders and identi�cation solutions (bar code scanners, RFID detectors, machine vision,
etc.).

Continuous instruments

Instrumentation devices for continuous processes are responsible for the measurement,
manipulation and local control of continuous processes. Figure 2.2 shows classical
examples of industrial devices for continuous process in the process automation market.
They correspond to one of the categories listed below:

• Sensors.- Measurement devices that extract process variables and transmit them to
control and automation systems. Such variables are related to physical properties
of a system, thereby requiring specialized sensing elements and measurement
principles. Some examples are sensors for temperature, pressure, �ow and level.

• Actuators.- Responsible for executing manipulation tasks coming from control and
automation systems. Some examples of actuators in industrial applications are
electric contactors, heating elements, pneumatic and hydraulic positioners and
electric motors.
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• Recorders and controllers.- They provide data visualization and control capabilities
of continuous processes. They are installed directly in the �eld level, in proximity
with sensing devices and actuators. The most common example are PID process
controllers.

(a) CoriolisMaster
mass �owmeter

(b) EDP300 digital
positioner

(c) ControlMaster
PID controllers

Figure 2.2: Examples of continuous instruments o�ered by ABB

2.1.3 Industrial controllers

This section describes in more detail the industrial controllers used for monitoring,
supervision and control activities corresponding to Level-3 of Figure 2.1. The distinction
between continuous, discrete and batch processes has led to the specialization of indus-
trial automation systems. Figure 2.3 illustrates the classi�cation of industrial automation
systems according to the type of process they interact with. Each market specializes on
speci�c type of processes: factory automation on discrete processes, hybrid automation
on batch processes and process automation on continuous processes. It is also interest-
ing to notice that not only the type of processes determines the most adequate control
system, but also the size and complexity of a process.

In the factory automation market, monitoring and control tasks are carried out by
the combination of SCADA (Supervisory Control and Data Acquisition) systems and
PLC (Programmable Logic Controller) systems. PLC controllers are a�ordable indus-
trial controllers specializing on medium to low complexity tasks related with discrete
processes. Various PLC controllers may be utilized in a plant according to its size and
control requirements. An example of a PLC controller, the AC500 from ABB, is presented
in Figure 2.4a. SCADA systems provide an overview of the control operations carried
out by PLC controllers. Their task is the supervision and collection of all data coming
from PLC controllers. Often, they are accompanied with data visualization solutions
useful to present the state of a process in real-time.
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Size

Process
Automation

Factory
Automation

Hybrid
Automation

Market

Complexity

Figure 2.3: Classi�cation of markets for industrial automation systems [3]

In the process automation market, monitoring, data acquisition and control tasks
are carried out by DCS (Distributed Control Systems) systems. DCS systems are more
complex than their SCADA/PLC counterparts in factory automation. In comparison
to SCADA/PLC combinations, DCS systems centralize distributed control operations,
provide advanced functionalities and can handle more I/O modules. Another di�erence
to SCADA/PLC combinations is that DCS systems provide diagnosis information of
processes and enable remote access to �eld devices from an operator console. This is
possible thanks to more intelligent �eld devices and more advanced communication
protocols. The application market of DCS control systems are plants with complex
continuous and batch processes. An example of a DCS controller is the 800M controller
from ABB showed in Figure 2.4c.

The hybrid automation market o�ers monitoring and control solutions for contin-
uous/discrete and batch processes of middle complexity. Such solutions may include
SCADA/PLC and DCS combinations or dedicated systems such as the Freelance controller
from ABB showed in Figure 2.4b.

   
   

   

   

   

   

             
      

    

      

      

         

(a) AC500 PLC (b) 800F Freelance (c) 800M DCS

Figure 2.4: Examples of industrial automation systems o�ered by ABB
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2.1.4 Industrial communication

The communication requirements for each level of an automation system are very di�er-
ent. For instance, at the �eld level hundreds or thousands of instruments communicate
data via dedicated lines or shared �eldbuses. This requires robust communication net-
works with various data rates and real-time constraints. Data is then gathered in the
control level where new commands are issued. This requires communication networks
that support high data rates and real-time constraints. Finally, communication networks
in the station level have even higher data rates, but no real-time constraints since mainly
monitoring activities are performed.

Various communication standards are available in the industrial automation domain.
Some of the most signi�cant industrial communication standards are listed in Table 2.2.
The most relevant of these are described ahead.

4-20mA

The simplest industrial communication standard available is the 4-20mA hardwire com-
munication. It has been used for decades in the process automation market and is still
widely implemented. It enables the transmission of primary process variables encoded
as a 4-20mA analog current. Basic error signalization is possible by transmitting current
values on de�ned ranges outside the 4-20mA range [43]. The physical mediums are
point-to-point 2-wire or 4-wire cables between �eld devices and I/O modules of a con-
troller. This creates a current loop for the transmission of analog data. The key elements
of current loops are analog transmitters. These can be sensing elements, such as temper-
ature transmitters, or I/Os from a controller. The advantage of 4-20mA current loops is
that they provide a simple and robust communication medium for transferring analog
data. Since the information is an electrical current value, it is insensitive to the line
resistance or voltage variations. The disadvantages are the amount of cabling required
for their installation, the limited amount of information that can be transferred (only

Field Level 4-20mA, HART, FOUNDATION Fieldbus, Pro�bus
DP/PA, PROFINET IO, Modbus RTU, CANopen, IEC
61850-9-2

Control Level FOUNDATION Fieldbus, PROFINET, Modbus TCP,
IEC 61850-8

Station Level Ethernet TCP/IP

Table 2.2: Examples of industrial communication networks



16 2 Industrial Devices

one process variable), and that the communication is unidirectional (sensor-controller
or controller-actuator).

HART

The HART (Highway Addressable Remote Transducer) industrial communication pro-
tocol is widely used in the process automation market. It is backwards compatible
with 4-20mA communication standard in order to reuse available cabling from existing
installations. The HART communication protocol uses a frequency shift keying principle
to modulate digital signals onto a 4-20 mA DC analog current [58]. Physical connections
between �eld devices and I/Os of controllers can be point-to-point or multi-drop. In
point-to-point connections, primary process variables are transmitted as analog currents
and secondary process variables from intelligent �eld devices are transmitted as modu-
lated digital signals. In multi-drop connections, multiple �eld devices can be connected
to the same current loop. Since all devices share the same physical medium, primary
and secondary process variables from intelligent �eld devices are transmitted digitally
upon polling requests from a controller.

Fieldbuses

A variety of �eldbus communication standards from di�erent standardization organiza-
tions are available. In the factory automation market, simple �eldbuses are required since
the data transferred are discrete values. Examples of �eldbuses with low overhead and
small data packets are Seriplex, Interbus-S, and AS-I (AS-Interface), which are sometimes
called sensor buses or bit level buses [16]. Other more advanced �eldbuses are DeviceNet,
ControlNet, and PROFIBUS DP, which are referred to as device buses or byte-level buses
[16].

In the process automation market, digital communication protocols such as FOUN-
DATION Fieldbus and Pro�bus are widely used. In comparison to HART, they are fully
digital and are not backwards compatible with 4-20mA installations. Instead, they rely
on a bus topology where instrumentation devices and controllers are connected to.

The substation automation market uses industrial communication standards which
are similar to �eldbuses in the process automation market. Since 2002, various device
manufacturers have started to follow a new Ethernet-based communication standard
called IEC 61850 [22]. The IEC 61850 solves interoperability problems between devices
developed by di�erent manufacturers and enables the use of more intelligent devices
called IEDs (Intelligent Electronic Devices). They are used for protection, control and
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Figure 2.5: Integrated process and power automation [56]

electrical metering. They connect to instrument transformers and primary equipment in
switchyards, such as switchgear and power transformers. IEDs are similar in terms of
computation and communication capabilities to �eld devices in the process automation
market. Figure 2.5 shows an example of how �eldbuses for process automation and the
IEC 61850 for substation automation are able to coexist in a plant thanks to advanced
DCS control systems.

2.2 Embedded systems for industrial devices

Each level of an industrial automation system relies on di�erent underlying technolo-
gies. They are selected according to requirements such as processing power, memory,
communication data rates and real-time behavior. For instance, in the station level, tasks
are highly data oriented. Large amounts of information, generated by the control and
�eld levels, need to be stored, transferred and monitored. The underlying technologies
are typically general purpose, such as PCs, data servers and high bandwidth networks.
In the case of the control level, multiple industrial processes, sometimes strictly depen-
dent on each other, need to be carefully orchestrated and synchronized. This requires
the execution of multiple control cycles with real-time processing and communication
constraints. The underlying technologies are industrial computers relying on powerful
processor architectures, as well as various types of industrial networks. Lastly, in the
�eld level, highly specialized sensing, manipulation and local control tasks need to be
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Figure 2.6: Basic structure and functionality of an industrial measurement device

performed. Real-time processing and communication constraints apply here as well. The
underlying technologies are embedded systems with strict limitations regarding their
processing and communication capabilities, memory and power consumption.

Figure 2.6 shows the basic structure and functionality of an industrial measurement
device. It relies on three main components for its operation: an analog front-end, a device
intelligence module and a communication front-end. The analog front-end is responsible
for interacting with transducers and other sensing/actuating elements. It performs
function such as signal adaption, �ltering and quantization. The device intelligence is
responsible for the execution of measurement tasks and for performing data analysis
on acquired data sets. It may also be responsible for the execution of communication
stacks. Finally, the communication front-end is responsible for the communication with
higher levels of an automation system using industrial communication standards such
as 4-20mA, HART or some digital �eldbus.

The structure and functionality of modern industrial devices is in reality more complex.
In general, they all rely on the three basic modules explained above (analog front-end,
device intelligence and communication front-end). However, each of these modules must
be tailored according to particular applications and requirements. They also support
a number of additional functionalities which are constantly evolving in new product
lines. Such increase in functionality is intended to provide a better handling of industrial
devices themselves (e.g. useful during commissioning, maintenance, diagnosis) and
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to make the operation of an industrial automation system more e�cient (e.g. higher
accuracy, better transient response, lower power consumption).

2.2.1 Hardware platforms

Industrial devices are designed for particular measurement and control applications.
They are also designed according to particular hardware safety requirements such as
SIL (Safety Integrity Level) certi�cation and explosion safety protection. Therefore, the
complexity and heterogeneity of hardware platforms for industrial devices can vary
signi�cantly. They may include a variety of software programmable components (e.g.
microcontrollers, DSPs, hard/soft cores in FPGAs), hardware programmable components
(e.g. FPGAs), digital and mixed-signal o�-the-shelf components (e.g. memories, A/D
and D/A converters, transceivers) and analog circuitry (e.g. protection circuits, �lters,
multiplexers, voltage regulators, transducers).

Figure 2.7 shows an example of a hardware platform of an industrial temperature
transmitter. It is a 2-wire platform, where a device is powered by the same two wires
used for 4-20mA communication. The block diagram shows in a simpli�ed way the
digital, analog and mixed-signal components that make up its structure. The analog
front-end is implemented by analog and mixed-signal components such as analog �lters,
a multiplexer, an A/D converter and other analog circuitry. The device intelligence is
implemented by digital components, in this case two microcontrollers due to the galvanic
isolation between circuitry on the process side and circuitry on the automation network
side. The communication front-end is implemented by further mixed-signal components
such as a voltage-to-current converter, a D/A converter and a frequency shift keying
signal modulator for HART communication. In this example, a typical distribution of
tasks are signal adaption and sensing tasks in the in the left side of the galvanic isolation,
whereas signal processing and communication tasks are assigned to the right side of the
galvanic isolation.

2.2.2 Device �rmware

The device �rmware of an industrial device is composed of hardware-dependent and
hardware-independent software components as illustrated in Figure 2.8. Hardware de-
pendent software is shown in the bottom part of Figure 2.8 and includes boot �rmware,
device drivers, communication protocol stacks and real-time operating systems. Hard-
ware independent software, or simply software as depicted in the top part of Figure 2.8,
includes middleware, adapters and subsystems for application software.
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Figure 2.7: Block diagram of an industrial temperature transmitter circuitry[43]
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Figure 2.8: Device �rmware of an industrial device

Software is the primary mean for implementing communication and computation
functionalities in industrial devices. Application software is encapsulated in subsys-
tems derived from component based approaches [100]. In component based approaches,
subsystems are de�ned as sets of related functions and data objects that are able to
communicate with each other through well-known interfaces. This is vital for maintain-
ing software architectures of industrials devices and for reusing software components
throughout di�erent product line.

2.3 Design approaches for industrial devices

Figure 2.9 illustrates the initial stages of the design of embedded systems for industrial
devices. It corresponds to the left side of the V-Model. A similar design �ow is followed in
most applications where embedded systems are used to interact with physical processes.
It starts with the de�nition of the system speci�cations and ends with the creation of
a hardware prototype and an experimental setup. Further steps in the design include
integration and testing phases, corresponding to the right side of the V-Model, and are
not shown in the �gure.
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Figure 2.9: Design �ow of embedded systems

System speci�cations are based on functional and non-functional requirements. Func-
tional requirements describe the particular measurement or control principles that
need to be implemented in an embedded system, as well as boundary conditions for
its operation. Non-functional requirements include things like operation temperature
range, safety considerations, robustness considerations, the desired power consumption,
footprint and cost, etc.

Algorithmic models are derived from functional system speci�cations. They are
behavioral models described using formalisms such as mathematical equations, lumped
models or transfer functions. Within the algorithmic modeling stage, measurement and
control algorithms, which will be later executed in an embedded system, are veri�ed and
validated together with plant models. Commercial modeling and simulation tools for
dynamic systems such as MATLAB /Simulink and LabVIEW are commonly used during
this stage. Further examples are multi-body system dynamics simulation tools such as
Modelica, ADAMS, RecurDyn or Simpack.

Once enough knowledge of a system’s behavior has been gathered during the algo-
rithm modeling phase, a complete paradigm shift occurs. This is depicted in Figure 2.9
as design partitioning. It refers to the partitioning of embedded system functionality
into hardware, software, analog and mixed-signal components. Afterwards, each of
them is independently designed using specialized tools and formalisms. These are, for
instance, software compilers and debuggers for the software design �ow, synthesis and
place-and-route tools for the hardware design �ow, and circuit schematics tools for the
analog design �ow.
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Hardware, software, analog and mixed-signal components of a system are brought
together in the integration phase for the construction of a �rst hardware prototype.
Experimental setups are also constructed in test laboratories equipped with appropriate
test equipment. For instance, a typical test setup for a �ow meter requires test labs
equipped with water tanks, pipes, heaters, pumps, etc. Within this stage, design iterations
on hardware prototypes must be performed to correct possible design errors. This results
in the creation of further versions of hardware prototypes and may involve performing
changes in experimental setups. Solving design problems in such late design stages
implies costly and time consuming redesign cycles that may take months to complete.
This can severely increase a project’s risk, delaying times-to-market and increasing the
overall cost of a project.

2.4 Identi�cation of requirements for this work

During the design of industrial devices, a considerable amount of time and e�ort is
invested in the integration phase. Within this phase, the identi�cation of design errors
typically means going back to previous design stages and, in some cases, performing
subsequent redesign of a hardware prototype. The reasons of such problems include:

• Inconsistencies in the speci�cations

• Misunderstanding of speci�cations by di�erent team members

• Lack of speci�cation follow-up throughout the design phase

• Unexpected interactions between internal components of embedded systems

• Unexpected interactions between components of embedded system and their
physical environment

Virtual prototypes make it possible to identify and correct the problems listed above
using overall system level simulations. Such problems might otherwise appear in later
design stages, where the cost of solving them increases. Overall system level simulation
refer to the combined simulation of hardware, software, analog and mixed-signal com-
ponents of embedded systems together with physical models of the plants or processes
they interact with. A methodology is required that can help guide the generation of
such virtual prototypes and their subsequent use for the resolution of possible design
problems.



2.4 Identi�cation of requirements for this work 23

Simulation techniques are extensively used during the design of industrial devices.
They are highly specialized, thereby used for the design of particular parts of a system,
which can be hardware, software, analog or mixed-signal components. Overall simula-
tions are possible by bringing together di�erent parts of a system and their respective
simulation engines. This is not a trivial task and requires a deep understanding of the
models of computation behind each simulation engine. Therefore, the following issues
have been identi�ed and will be addressed in this dissertation:

1. How to describe the structure and behavior of embedded systems (including
hardware, software, analog and mixed signal components) and the physical models
of their environment?

2. Which information is necessary for the creation of meaningful models of embedded
systems and their environment and at what point of the development process are
they available?

3. Which problems can be addressed by overall system level simulation of embedded
systems and physical models and at what stages of the development process can
they be used?

4. How can overall system level simulation approaches be integrated into existing
development processes of industrial devices?

Point 1 is addressed in Chapter 3 and Chapter 4 with appropriate models of computa-
tion for describing and simulating embedded system components and physical processes.
Point 2 is addressed in Chapter 5 with modeling guidelines that de�ne the amount of
detail permitted in a model and de�ne how simulation results must be accordingly inter-
preted. Point 3 is addressed in Chapter 6 with a problem-oriented design methodology
that correlates the type of models that must be used according to particular problems
that need to be solved during di�erent design stages. Point 4 is addressed in Chapter 7
with a generic co-simulation framework for coupling continuous-time and discrete-event
simulators. Such co-simulation framework is required by the previously mentioned
models and veri�cation methodology.





3
Model Based Design of Embedded
Systems

This chapter gives a background on model based design approaches for embedded
systems. The focus is on system level design methodologies for digital systems, analog
and mixed-signal systems and physical systems. These systems are initially separated
since they describe di�erent aspects of a design. In Chapter 4 they are brought together
for describing heterogeneous embedded systems.

3.1 System level design

The fundamental principles for modeling digital systems were described by Gajski [47]
with the diagram shown in Figure 3.1 called the Y-Chart. The axis of the Y-Chart
corresponds to three di�erent design concerns and their respective abstractions are
represented by four concentric circles. According to the Y-Chart, any embedded system,
no matter its complexity, can be described using three types of models. These are
behavioral models (also called functional models), structural models (also called net lists
or block diagrams) and physical models (also called layout or board design). In addition,
models can be described in four main abstractions, represented as concentric circles
around the axis origin. The names of the abstraction layers correspond to the type of
components generated on each level: transistors on the circuit level, �ip-�ops and logic

25
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Figure 3.1: Y-Chart [47]

gates on the logic level, ALUs (Arithmetic and Logic Unit) and hardware multipliers on
the processor level, and processors, memories and buses on the system level.

3.1.1 Overview

System level design approaches describe embedded systems with models corresponding
to the highest abstraction level depicted in the Y-Chart. The separation of design concerns,
represented by the three axis of the Y-Chart, makes it possible to independently describe
behavioral, structural and physical aspects of a design. The advantages of system level
design with respect to lower abstraction design levels such as RTL (Register Transfer
Level) are faster simulation speed and increased model reuse. The tradeo� is a lower
accuracy due to the high abstraction in which models are described.

System level design methodologies are intended to cope with the increasing complexity
of embedded systems and to enhance the productivity of their designers [80]. They
are model based design approaches used for the design, re�nement and veri�cation of
embedded systems. The goals of system level design methodologies can be summarized
as follows:

• Enable HW/SW co-design and design space exploration

• Provide e�ective means for design and reuse

• Facilitate the re�nement of models into implementation solutions such as software
binaries or RTL models
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3.1.2 Design methodologies

The basic components of a system level design methodology are presented in Figure
3.2. An essential part is the orthogonalization of design concerns, i.e., the separation
of various aspects of a design to allow more e�ective exploration of alternate solutions
[76]. The most common separations are done between functionality and architecture,
and between communication and computation. The di�erent levels of a system level
design methodology are described ahead.

Implementation level
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performance

Verify
refinements
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Figure 3.2: System level design methodology for embedded systems [80]

Functional level

The �rst form of orthogonalization of design concerns is the separation between function-
ality and architecture. Functionality is described via behavioral models whose execution
semantics are described by a particular Models of Computation (MoC). Common MoCs
used to describe functional models are Finite State Machine (FSM) or Synchronous Data
Flow (SDF) [81] models. They can also be described with imperative MoCs such as
sequential programing language like C/C++ .

Architectures are system level models of hardware components endowed with I/O
ports. Ports are interconnected via signals in order to form net lists. Architectural
models are intended to describe the operation of hardware implementation solutions
such as software programmable components (DSPs and microcontrollers), �xed hardware
components (buses, peripherals and other ASICs) and custom hardware components
(FPGAs).

The second form of orthogonalization of design concerns is the separation between
communication and computation. This is essential for the reuse of models and for their
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re�nement into lower abstraction models. This is possible by de�ning the communication
semantics between models independent to their performed computations. The separation
is done using common design patterns such as interfaces whose implementation is de�ned
by the communication channel they connect to [50]. Communication channel enable
the interoperability between models by using things such as adapters, protocols and
payloads that de�ne how information is shared.

Mapping level

The process of assigning a function to an architecture is called mapping. For example, a
signal processing algorithm corresponding to a functional model can be mapped as a
software component in a an architectural model of a microcontroller or it can be mapped
as a hardware accelerator in an architectural model of an FPGA.

HW/SW co-design is possible since SW models, corresponding to functional models,
and HW models, corresponding to architectural models, can be mapped and tested
together. HW/SW co-design can be used to explore the design space in order to optimize
a design according to particular metrics and constraints. Such constraints are esti-
mated values of performance and costs in terms of resource usage obtained by analytic,
simulation or hybrid based methods (refer to Section 3.1.4).

Implementation level

The re�nement of system level designs down to the processor level consists of a series of
intermediate levels. This process has been described by various authors [25, 34, 42] and
vary mainly in the terminology used. Figure 3.3 shows such process according to Cai and
Gajski [25]. A system level design starts with untimed functional and architectural models
mapped into a Speci�cation Model (SM). Following the separation of communication and
computation aspects, speci�cation models are re�ned into approximately-timed models,
corresponding to Transaction Level Models (TLM), and �nally into Cycle-Accurate
Models (CAM). The transformation of computation and communication models does
not necessarily need to be done at the same time, which gives rise to models B, D and E
from Figure 3.3.

System level design methodologies such as the one shown in Figure 3.2 de�ne how
speci�cation models must be described in order to be transformed into Transaction Level
Models (TLM) and Cycle-Accurate Models (CAM) models. Each of these models is useful
for di�erent design purposes: speci�cation models for conceptual design, TLM models
for embedded software programming and CAM models for hardware design. In the end,
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Figure 3.3: Re�nement of system level models [25]

regardless of the system level design methodology, the desired implementation result
are software binaries ready to be directly loaded into a target processor or synthesizable
RTL models for an FPGA target.

Further design methodologies

System level design methodologies had been restricted to the academic domain [10,
28, 36, 61] during the last ten years. Some of the most relevant are the the Metro II
framework [36] from Prof. Alberto L. Sangiovanni-Vicentelli and his team at Berkley
University and the ESE (Embedded Systems Environment) [28] framework from Prof.
Daniel D. Gajski and his team at the University of California Irvine. The Metro II
framework is an implementation of Platform Based Design [76] premises and focuses on
the automatic mapping of high level behavioral descriptions into architectural models.
The ESE framework focuses on the automatic re�nement of system level models into
RTL descriptions.

The EDA (Electronic Design Automation) market has started to adopted principles
from system level design. This has triggered the o�ering of commercial tools that focus
on particular aspects of system level design. Available commercial tools for system level
design focus primarily on modeling and simulation using virtual platforms.

3.1.3 System level design languages

Hardware designers for integrated circuits are familiar with models based on the RTL
level. The hardware description languages used are VHDL or Verilog. RTL abstractions
are adequate for describing hardware and their inherent timing and concurrency, but lack
expressiveness to describe embedded software. In contrast, embedded software designers
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are familiar with programming languages such as C/C++ and assembly languages. These
languages are ideal for describing sequential execution of instructions, but lack support
for describing timing and concurrency of hardware components.

Languages for system level design describe hardware and software components of
embedded system in a high abstraction. They rely on high level programing languages
that support modeling concepts from hardware description languages and embedded
software programing languages. They support key aspects for describing the behavior
and structure of hardware components, such as timing, hierarchy, synchronization and
concurrency. They also support embedded software descriptions, which are commonly
given as sequential code or using higher models of computation such as state machines
or static data �ow models.

Some example of system level design languages are SpecC [48], SystemC [55], and
SystemVerilog [119]. SpecC and SystemC are based on C and C++ respectively. These
are natural languages for describing software components, but not for hardware descrip-
tions. Hardware modeling capabilities are added using extensions (SpecC) or libraries
(SystemC). Further details on SystemC are given in Section 3.2. On the other hand,
SystemVerilog originates from the Verilog hardware modeling language. SystemVerilog
is an extension to Verilog that enables the description of software components.

3.1.4 Veri�cation and validation approaches

In the software engineering community, the terms veri�cation and validation are de�ned
according to the IEEE 1012-2004 standard as follows:

• Veri�cation: “The process of evaluating a system or component to determine
whether the products of a given development phase satisfy the conditions imposed
at the start of that phase.” [72]

• Validation: “The process of evaluating a system or component during or at the
end of the development process to determine whether it satis�es speci�ed require-
ments.” [72]

The de�nitions also apply to system level design with the di�erence that the end
products are models of HW/SW components. Veri�cation is used to check that models are
constructed according to their speci�cation (am I building the model right?). Validation
concentrates on the bigger picture, on whether the constructed model is suitable for
the intended application (am I building the right model?). Combined, veri�cation and
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validation provide a certain degree of con�dence that a system will behave as expected
once it is implemented in a real prototype.

System level design methodologies such as the one showed in Figure 3.2 specify a
series of veri�cation steps that may be done in each stage of the design. In each step, a
designer needs to make sure that models behave according to their speci�cations and that
they do so in an e�cient, safe and deterministic manner. Various veri�cation techniques
are available for such purpose and are classi�ed as analytic or dynamic techniques.
Analytic techniques rely on formal veri�cation methods and dynamic techniques rely
on simulation based methods. This dissertation focuses on simulation based methods
for veri�cation purposes. Formal veri�cation methods are not implemented in the work,
but they propose an interesting alternative and are thus described ahead.

Formal veri�cation methods

In formal veri�cation methods, the accordance of a model to its speci�cations is statically
checked using a series of mathematical formulations. Instead of requiring a designer to
manually check simulation traces for their compliance, formal veri�cation approaches
can be automated. They are able to determine all possible states of a model and check
for the compliance of speci�cations accordingly. Unlike simulation approaches, which
are limited to checking speci�cations using a de�ned set of stimulus, formal approaches
are able to check for scenarios which may not have been considered by a designer.

There are three main components to any formal veri�cation method: a modeling lan-
guage in which the system can be described, a speci�cation language for the formulation
of properties, and a deductive calculus or algorithm for the veri�cation process [33].
Formal methods rely on mathematical formulations to verify the correctness of a model
against formal speci�cations described in some logical language. They are also able to
verify the equivalence between models which have gone through a re�nement stage,
in which case speci�cations from an abstract model should be true for a re�ned model
as well. In either case, the process of veri�cation involves the application of the rules
of inference of the logic system [9] which provide an absolute answer to a veri�cation
problem.

The modeling language must provide a de�ned set of modeling formalisms, also known
as MoCs (Models of Computation). MoCs de�ne available constructs and rules that can be
used to describe a system. Typically these MoCs are �nite state machines or imperative
programing languages. Such rules make it possible to automatically translate models
into some sort of abstract mathematical representation which will be used together with
formal speci�cations as an input to the veri�cation process.
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Formal speci�cations use logical languages to describe system properties with precise
mathematical notations. Speci�cations are predicates, meaning that they are evaluated
as true or false by the veri�cation process. Temporal logic descriptions such as linear
temporal logic (LTL) and computation tree logic (CTL) are the most widely used type of
formal speci�cations. They enable to express properties such as the occurrence of an
event and its properties (event A must occur at least once or in�nitely many times), the
causal dependency between events (if event A occurs, event B must also occur) and the
ordering of events (after every occurrence of event A, event B must follow). They are
also able to express many safety and liveness properties of systems. Safety properties
are speci�cations in which “nothing bad happens” during execution. Similarly, liveness
properties specify that “something good will happen” during the execution. More details
on formal speci�cation languages can be found in [33].

The key di�erence between formal and dynamic veri�cation approaches is the absence
of test patterns. This is possible since the veri�cation process checks for the compliance
of speci�cations over all possible states of a model. The veri�cation process is done using
an automatic technique called model checking. Other techniques such as equivalence
checking and theorem proving are available and can be found in [49]. Model checking
[32] is an algorithmic method for determining whether a system satis�es a formal
speci�cation expressed as a temporal logic formula. All reachable states of a model are
represented as a Kripke structure, which itself should be a model of the speci�cation
formula in order to declare the correctness of a model. The main technical challenge in
model checking is the state space explosion problem, addressed by state space reduction
techniques. Further details on model checking are out of the scope of this work and can
be found in [31–33].

Formal veri�cation methods are adequate for design stages that require some level
of automation. This is the reason why they are widely implemented by hardware
synthesis back-end tools and by static code analyzers used for software development.
Despite their evident bene�ts, formal veri�cation methods for system level design are
not yet widely available in the EDA market, where simulation-based veri�cation is still
dominant. Further drawbacks of formal methods are that they limit the expressiveness
in which models can be described and, since engineers are not commonly familiar with
the mathematical background required to describe formal speci�cations, these methods
are still limited to a small group of design experts.

SPIN [65] and UPAAL [12] are well known model checkers used in both industry
and research communities. There are few applications of these in system level design
methodologies. Speci�cally, they are used for checking safety and liveness properties of
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SystemC models. In [131], SystemC models were automatically translated into PROMELA
language used by SPIN. In [12], SystemC models were automatically translated into timed
automata models used by UPAAL. In both cases, safety and liveness properties could
be veri�ed. However, the SystemC kernel had to be previously described in PROMELA
or timed automata formalisms before SystemC models could be veri�ed. A further
application is the Satya framework, which according to their authors [79] can be used
for detecting deadlocks, write-con�icts and safety property violation of SystemC models.

Dynamic veri�cation methods

In simulation-based approaches, speci�cations are checked by executing multiple simu-
lation runs. This process can be done manually or automated via scripts that de�ne test
benches and their expected behavior. Speci�cations are commonly given in terms of
behavioral properties that can be veri�ed dynamically during the execution of one or
multiple simulation runs. Structural properties do not necessarily need to be veri�ed via
simulation. However, since they are mapped together with behavioral speci�cations,
they can also be tested this way.

Simulation is the most widely used method to verify system level models. Models
not only describe HW/SW components from an embedded system, but also serve as
executable speci�cations. Their veri�cation is possible thanks to a simulator responsible
for the execution of such models and for providing tracing and debugging capabilities.

Simulation-based veri�cation methods vary signi�cantly from formal based methods.
Modeling activities in simulation-based approaches do not need to follow strict syntax
and semantic guidelines, although they must comply with the basic guidelines dictated
by the modeling language. This gives a designer enough liberty to model a system and
test it in a simulator in a very short time span. On the other hand, models used by formal
methods must follow a strict syntax and semantics in order to be translated into an
equivalent mathematical representation which is algorithmically analyzed rather than
executed by a simulator.

Simulation-based approaches require test-cases to check for the correctness of a model.
In principle, test-cases should have maximum simulation coverage in order to test all
possible states of a model. This is commonly done by automating multiple simulation
runs. Test-cases are developed using a white box approach, which requires enough
knowledge of the model to be tested in order to maximize its simulation coverage.
Creating suitable test-cases is a challenging task, even more when the model complexity
grows. In such case, it may not be feasible to have complete simulation coverage because
developing an ideal test case that can cover all corner-cases is not possible, or because
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the simulation space is too big. Model-checking techniques also have a similar problem
called state space explosion.

The veri�cation of a model and its test cases is done using a simulator that provides
mechanisms for tracing and debugging. This veri�cation technique is well known to
any hardware or software designer. The only di�erence is that HW and SW models
are veri�ed together. System level simulation provides a new dimension of testing and
veri�cation by providing visibility of HW and SW component models at any point of
time. This is very useful since HW and SW components work together in order to
provide a certain functionality. Debugging capabilities are used to pause or advance
simulation time at desired points of time in order to look into a model’s state to detect
possible bugs in HW or SW. Tracing capabilities are used to record states or values
derived from HW or SW components across time. Debugging is typically done manually
once a bug is detected and needs to be identi�ed. On the other hand, tracing analysis
can be automated up to a certain point using assertions de�ned in a formal language.

3.2 SystemC

SystemC is the most accepted system level modeling language for system on chip design
in the Electronic Design Automation (EDA) community. SystemC was introduced in 1999
by the Open SystemC Initiative (OSCI), which in 2011 merged with the Accellera Systems
Initiative [1]. SystemC is an ANSI standard C++ class library [68] that allows modeling
and dynamic veri�cation of system level designs in various modeling abstractions. This
includes classical RTL hardware modeling up to transaction level design.

SystemC, together with standard C++ software development tools, is used to create
system level behavioral and architectural models of embedded systems. They provide
hardware and software development teams a virtual platform for design, veri�cation
and test purposes without the need of hardware prototypes.

SystemC is both a system level design language and an even-driven simulation kernel.
Figure 3.4 shows the layers of the SystemC library. The base layer highlights the fact that
SystemC is built on top of C++ , which makes it compatible with standard compilers and
software development tools. The SystemC standard [68] de�nes the three middle blocks
from Figure 3.4. It de�nes the simulation kernel and the core language which together
provide the main mechanisms for HW/SW co-design. It also de�nes the data types and
elementary channels supporting libraries. The data type library is used for hardware
modeling and for certain kinds of software programming, such as bits and bit vector data
types for hardware and �xed-point data types for software implementations. Elementary
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Figure 3.4: SystemC language architecture [55]

channels include basic communication models widely applicable for hardware and
software modeling. Finally, the upper blocks are examples of MoCs and methodologies
supported by SystemC, but are not included as part of the standard. They provide
additional support for speci�c design methodologies and can be extended or form part of
other standards. A condensed summary of the main elements of the SystemC standard is
presented ahead. Further information regarding SystemC can be found in [55] and [17].

3.2.1 Structural modeling

The structural components de�ned by SystemC are modules, ports, interfaces and chan-
nels. Figure 3.5 shows an example of a generic SystemC design where such components
can be identi�ed. Modules and channels enable the separation between communication
and computation aspects of a design. Each of them can be then described in terms
of their behavior and architecture. Computation tasks are described inside processes
belonging to modules, while communication tasks are described inside channels. Ports
and interfaces are used for the interconnection of modules and channels. The following
section describes the role of modules and the principles behind their composition for
enabling structural hierarchy in a design. The communication aspects of a SystemC
design are then presented and classi�ed.
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Modules

Modules are the basic building blocks within SystemC used to partition a complex design
into smaller and more manageable pieces. A module contains a set of ports, processes and
internal data variables. Ports are used to communicate with other modules or channels.
Processes are used to describe the functionality and behavior of a module. Internal
data variables are used to store a module’s states and also for internal communication
between a module’s processes.

SystemC allows structural hierarchy through the composition of modules, but does
not allow behavioral hierarchy. Structural hierarchy means that a module can contain
any number of submodules and this embedding can go into any depth. This helps split
complex designs into a number of less complex ones in order to hide internal data
representation and processes from other modules. Behavioral hierarchy is not possible
in SystemC since all processes are treated at the same level, regardless of the hierarchy
of the module they pertain to.

Communication Model

Communication in hardware description languages like VHDL and Verilog is described
with hardware signals. In contrast, communication in system level designs is described
with function calls. These function calls are implemented by a series of ports, interfaces
and channels. Channels provide means of communication between modules and between
processes within a module. Channels are composed of read/write functions that describe
how communication is performed. These functions are accessed by ports using speci�c
interfaces and are explained ahead.

Interfaces are used to publish communication functions de�ned inside channels. They
are declared as abstract classes inherited by a channel that gives meaning to the functions

Module 1

process

Channel
read(...) {...}
write(...) {...}

read()
write()

Port
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write()

Interface Interface

Port

Module 2

process

Figure 3.5: Structure of a SystemC design
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declared by it. Thus, an interface may have di�erent implementations according to the
channel it is associated to. Ports correspond to interfaces, meaning that each port must
specify the interface it corresponds to. Consequently, ports have access to the functions
declared by their corresponding interfaces; such functions are de�ned and carried out
inside a channel. The basic principle for understanding the communication between
ports and channels is as follows: ports are bound to channels through interfaces.

The advance of using ports and interfaces to access a channel is that di�erent versions
of a channel can be plugged to the same interface/port combination. Thus, channels
can be exchanged or re�ned according to the stage of the design and modeling needs.
This is a common design pattern used in object-oriented designs proven to reduce
implementation dependencies: “program to an interface, not an implementation” [50].

The SystemC standard includes a series of communication libraries that de�ne basic
types of channels and the interfaces and ports to access them. They are called primitive
or elementary channels and provide basic means for implementing communication
between modules and between processes within a module. Designers are also free to
extend primitive channels or create new communication schemes, which is possible
thanks to hierarchical channels. More details on both types of channels are given ahead.

Primitive Channels

The most important aspect of primitive channels is that they enable delta-cycle commu-
nication delays between concurrent processes thanks to a request-update scheme. This
allows deterministic serialization of concurrent activities, e.g. simultaneous read and
write requests to a signal. Thus, any operation that may potentially change the state of
channels will not have e�ect until all currently active processes are �nished or come to a
synchronization point. Primitive channels ensure deterministic communication as long
as no implicit communication, such as shared variables, is used to communicate between
concurrent processes. Determinism is a desirable property in a design; it ensures that
regardless of the order in which concurrent operations occur, the result will always be
the same. This is vital for modeling hardware and its inherent concurrency.

Primitive channels provide the following communication mechanisms: hardware
signals, bu�ers, FIFOs, semaphores and mutual-exclusion locks. Hardware signals are
similar to VHDL signals, with the exception that SystemC signals support a wider range
of signal types. FIFO channels and mutual-exclusion locks rely on the same request-
update scheme used by signals and are able to block external calling processes. FIFO
channels block calling process on two cases: on write requests to a full FIFO and on read
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requests to an empty FIFO. Similarly, mutual-exclusion locks block processes waiting
for a mutex until it is unlocked and upon which processes are resumed.

Hierarchical Channels

Hierarchical channels di�er from primitive channels in the sense that they are able
to include other SystemC structures. A hierarchical channel is nothing more than a
hierarchical SystemC module implementing multiple internal processes and de�ning a
multiple number of interfaces. They encapsulate structural and communication protocols
and are suited for re�ning primitive channels or to de�ne complex communication
structures within a design, such as system-on-chip buses and networks-on-chip.

Hierarchical channels are vital for the interoperability of system level models and for
IP reuse. Standardized interfaces and communication schemes, such as the ones de�ned
by the TLM-2.0 communication standard, are implemented with hierarchical channels.
This is further described in Section 3.2.4.

Instantiation and Binding

SystemC shares the concept of elaboration with VHDL and Verilog, i.e. all module
instantiation and port binding must be completed during the elaboration phase. In terms
of object-oriented concepts, instantiation is related to the creation of objects and binding
is related to the assignment of function pointers. This applies also for hierarchical
modules and channels that may itself require to instantiate and bind structural elements
declared inside their constructor.

The execution of a SystemC application consists of an elaboration phase followed
by a simulation phase. In the elaboration phase, internal data structures within the
SystemC kernel are created. This is done on runtime, during the instantiation and
binding of structural components. In this process, each new instance and binding
relation is registered to the SystemC kernel. The evaluation phase results in the creation
of the module hierarchy.

3.2.2 Behavioral modeling

SystemC models are executed by its simulation kernel based on a discrete-event model of
computation (MoC). In a discrete-event MoC, simulation time advances in variable time
steps. Time steps are determined on run-time according to timed events stored inside an
event queue. The event queue contains a set of timed events that correspond to future
points in the simulation time. The event queue changes constantly during simulation



3.2 SystemC 39

since processes are allowed to add or remove events from it. From a behavioral point of
view, a SystemC model can be regarded as a network of conceptually concurrent processes
that communicate through channels and synchronize on events. In the following, the
main concepts behind processes, events and the discrete-event simulation kernel are
described.

Processes

Processes are the basic unit of functionality of modules and hierarchical channels. They
are used to describe computation or communication functionality in the form of sequen-
tial C++ instructions. The SystemC kernel is responsible for the execution of processes.
They are executed upon the simulation startup and throughout the simulation according
to events declared in their sensitivity list, similarly to HDL languages. SystemC provides
two kinds of processes: method processes and thread processes. They are declared using
the macros SC_METHOD and SC_THREAD respectively.

Whenever an method process is triggered, it executes until it �nishes. It can be invoked
any number of times and, most importantly, it cannot be suspended or resumed via
wait() function calls. Methods do not keep an internal execution state and cannot be
used to describe the passing of time.

In contrast, whenever a thread process is triggered, it executes until it �nishes or until it
yields to other processes via a wait() function call. Threads keep their internal execution
state and can be resumed at the point where they were suspended. The di�erence
between method and thread processes in SystemC is the following: a thread can only be
started once and suspended an arbitrary number of times, while a method can be started
any number of times, but cannot be suspended.

Events

An event is an object owned by a process or channel used to represent a condition that
may occur during the course of simulation and to control the triggering of processes
accordingly. These conditions are typically changes of state in a process or of a channel,
which cause an event noti�cation. Whenever an event is noti�ed, it triggers the execution
of all processes that are sensitive to the event. In addition, the event noti�cation also
speci�es when sensitive processes are to be executed: immediately, after a delta-delay or
after a de�ned time. An immediate noti�cation, invoked by e.notify(), causes sensitive
processes to be triggered instantly in the current delta cycle. A delta-delay noti�cation,
invoked by e.notify(SC_ZERO_TIME), causes sensitive processes to be triggered at the
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same time instant, but after updating primitive channels, i.e., in the next delta-cycle. Fi-
nally a non-zero noti�cation, invoked by e.notify(t) where t > 0, causes sensitive processes
to be triggered after a designated amount of time.

Processes may be sensitive to events either statically or dynamically. Static sensitivity
is allowed for method and thread processes, while dynamic sensitivity is only allowed
for thread processes. Static sensitivity is used to de�ne the events which a process is
sensitive to. It must be declared before the simulation begins and corresponds to the static
sensitivity list of processes. Dynamic sensitivity can only be declared by thread processes
and this is done during simulation. Dynamic sensitivity overrides the sensitivity list of
a thread. Threads use dynamic sensitivity as a mechanism to yield their execution to
other processes, thus suspending themselves, and to designate a speci�c event it wishes
to wait on, after which the thread resumes its execution. Dynamic sensitivity is invoked
via wait() function calls implemented in any of its variants.

3.2.3 Simulation semantics

The scheduler is the part of the SystemC kernel. It is responsible for timing and execu-
tion control of processes, even noti�cation handling and for updating communication
channels. The scheduler follows the elaboration phase, once all structural components
are instantiated, bounded and the structural hierarchy is complete. Like VHDL and
Verilog, the SystemC scheduler is based on a discrete-event MoC and on the notion of
delta-cycles.

In a discrete-event MoC, simulation time advances in variable steps according to
events stored in an event queue [138]. They correspond to SystemC sc_event objects,
owned by processes or channels and handled by the SystemC kernel. Events in the queue
are organized in a time-stamp order representing future points in time in which events
will be noti�ed in order to trigger sensitive processes. The event queue contains the
necessary information to determine how simulation time will advance in future points
of time. However, the event queue may continuously change due to executing processes
either adding more events to the queue, or rescheduling or canceling existing ones.

The notion of delta-cycles is used for the simulation of conceptually concurrent
processes, which must be treated as sequential processes running on a computer. Delta-
cycles do not increase simulation time, and an arbitrary �nite number of them may
be executed at any point in simulation time. They are used to implement delta-delay
noti�cations and to enable the request-update scheme of primitive channels.
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Figure 3.6: SystemC scheduler

The SystemC scheduler is non-preemptive. This means that when processes are exe-
cuted, they may not be interrupted by any other process until they �nish (SC_METHOD)
or they yield via a wait() function call (SC_THREAD). A designer must be aware of
SystemC’s non-preemptive scheduler in order to avoid simulation deadlocks. Thread
processes are particularly interesting in this case, since they yield control back to the
scheduler either by waiting for an event or by waiting for a given period of time to
elapse. Deadlocks happen when such process blocks the execution of other processes by
either not yielding or by waiting for an event that is never noti�ed. Further information
regarding deadlock identi�cation in SystemC models by formal means is available in
[63, 131].

The behavior of the SystemC scheduler is presented in Figure 3.6. Its simulation
semantics are described informally in its IEEE standard [68] and are summarized as
follows:

1. Initialization.- During the initialization phase, every process is executed once,
unless the contrary is speci�ed. The order in which processes are executed is
unspeci�ed, however deterministic in all simulation runs using the same simulator
version.

2. Evaluation. All runnable processes are executed in an arbitrary order. If there are
immediate noti�cations, the corresponding processes become part of the runnable
processes and are executed in the same delta-cycle.

3. Update. Primitive channels that requested an update in the evaluation phase are
updated.
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4. Delta-cycle. Notify all the delta-delay noti�cations generated during the evaluation
and update phase. This may result in a new set of runnable processes, in which
case steps 2 and 3 are repeated.

5. Timed events. Timed event noti�cations are considered when there are no more
runnable processes, no update requests and no delta-delay noti�cations. Simulation
time Tc is advanced to the time of the next event Tn, and all the time events due
to occur at that speci�c time are noti�ed. Steps 2 - 4 are repeated. Whenever time
is advanced, the scheduler also checks to see if the simulation time has reached
the optional stop time speci�ed as an argument to sc_start().

6. Simulation is �nished when there are no runnable processes, update requests,
delta or timed event noti�cations. Simulation is also aborted if sc_stop() is called,
or if a run-time error occurs.

3.2.4 TLM-2.0

The role of Transaction Level Models (TLM) in the re�nement of system level models
was introduced by Cai and Gajski [25]. The term TLM is used to describe system level
models annotated with estimated values of communication and communication times.
Computations are grouped in blocks of sequential instructions annotated with execution
times. Communication aspects in transaction level models are implemented via software
calls between processes and may include timing annotations. This in contrast to RTL
abstraction models, where communication is implemented with signals that require
multiple events at the level of individual bits and bytes. For example, a TLM model
would represent a read or write request to a bus as a single function call, while an RTL
model would require such request to be described on a pin- and cycle-accurate manner
using a series of signal assignments and signal read operation occurring on the wires
of a bus. Thus, the simulation performance of TLM modes is magnitudes of time faster
than RTL models.

Transaction level models have been used in various forms for many years [120]. The
language in which they are typically described is SystemC, which enables the creation of
virtual prototypes for use cases such as embedded software development, architectural
exploration and functional veri�cation. The reason why TLM models have been widely
described in SystemC is due to the emergence of the modeling standards TLM-2.0 (forms
part of the IEEE 1666 standard [70] since 2011) and IP-XACT [71] (describes an XML
scheme for TLM-2.0 models).
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The TLM-2.0 standard de�nes a set of classes layered on top of the SystemC class library
as shown in Figure 3.7. The TLM-1 set of classes are included to provide compatibility
with older models, but are completely separate and incompatible with newer classes
from the TLM-2.0 version. The TLM-1 standard de�nes a set of core interfaces for
transporting transactions by values or constant references, which are not suitable for
describing memory mapped buses. Instead, the interoperability layer from the TLM-2.0
standard provides a set of classes for modeling memory mapped buses and other on-chip
communication networks. It is composed of core interfaces, sockets, generic payload, and
base protocol meant to be used together in concert. The third set of classes are utilities,
provided for convenience and to help ensure a consistent coding style. The utilities do
not belong to the interoperability layer and are not a requirement for interoperability.

Coding Styles

TLM-2.0 de�nes two coding styles: loosely-timed and approximately-timed. Coding
styles are conventions used to describe temporal aspects of the communication in a
memory mapped bus.

The loosely-timed (LT) coding style makes use of the blocking transport interface. This
interface assigns two timing points to communication transactions, marking the start and
the end of a transaction. These two timing points may occur at the same simulation time,
in which case the transaction is untimed, or at di�erent times. The loosely-timed coding
style is appropriate for the use case of software development using a virtual platform
model. Virtual platforms may include instruction set simulators, timers, interrupts
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and peripheral models, and are capable of booting a complete operating system. The
loosely-timed coding style may implement temporal decoupling, which means that each
process keeps track of its local time and is allowed to run ahead the simulation time until
it reaches a synchronization point, also called global quantum. Temporal decoupling
permits a signi�cant simulation speed improvement by reducing the number of context
switches.

The approximately-timed (AT) coding style makes use of the non-blocking transport
interface and is appropriate for architectural exploration and performance analysis
use cases. In the approximately-timed coding style, transactions are assigned multiple
timing points apart from the start and end of the transaction. Processes need to run
in lock-steps with the SystemC simulation time, which decreases simulation speed in
relation to the LT coding style, but increases the amount of detail and timing accuracy
involved in a transaction. The approximate-timed coding style is suitable for describing
communication protocols that require multiple phases and timing points during the
lifetime of a transaction.

Connectivity

Figure 3.8 shows how the connectivity between initiators, interconnect and target
modules is implemented. Initiators are able to start a transaction, i.e. creating new
transaction objects and pass them on by calling a method of the transport interface
(blocking or non-blocking). A target is a module that acts as the �nal destination for a
transaction. An interconnect component is a module that forwards transactions from
initiators to targets.

Forward and backward paths are used to call methods of a transport interface in
both directions. They are implemented via initiator and target sockets which must be
bounded. An initiator socket provides a port and export for the forward and backward
paths respectively. Similarly, but only in the opposite direction, a target socket provides
a port and export for the backward and forward paths respectively.
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Core interfaces

The TLM-2.0 core interfaces de�ne standardized methods to pass information between
initiators and targets. They play a key role in module and IP-reuse, since modules sharing
the same type of core interfaces, regardless of the details of their implementation, should
be compatible and able to communicate with each other. The core interfaces consist of
the blocking and non-blocking transport interfaces, the direct memory interface (DMI)
and the debug transport interface.

The blocking transport interface is used to support the loosely-timed coding style. The
blocking transport interface is appropriate for an initiator that completes a transaction
with a target during the course of a single function call. The only timing points of
interest are those that mark the start and the end of the transaction.

The non-blocking transport interface is used to support the approximately timed coding
style. It is appropriate for modeling the detailed sequence of interactions between initiator
and target during the course of each transaction. Transaction are broken down into
multiple phases, each one associated with a timing point.

The Direct Memory Interface (DMI) and Debug transport interface are specialized
interfaces that provide direct access and debug access to an area of memory owned by a
target. DMI is intended to accelerate regular memory transactions in a loosely-timed
simulation, whereas the debug transport interface is for debug access free of the delays
or side-e�ects associated with regular transactions.

3.3 Virtual prototypes

Virtual prototypes are system level simulation models that emulate (mimic) the behavior
of hardware prototypes. A useful de�nition provided by Synopsys is the following:

“Virtual prototypes are fast, fully functional software models of systems
under development executing unmodi�ed production code and providing a
higher debugging/analysis e�ciency.” [124]

Virtual prototypes are composed of system level models of processing elements and
peripherals, such as memories, buses, interrupt controllers, etc. In particular, processing
elements are models of software programmable components, such as traditional micro-
controllers and DSPs, and hardware programmable components, such as customized
FPGA processing elements. The abstraction in which these models are described is
typically on the TLM level, where communication and computation components are
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already identi�ed and provide approximate-timing information (refer to Figure 3.3).
Altogether they enable the full simulation of a complete embedded system on a host
computer.

Virtual platforms can be used in most stages of a design. For instance, in early design
stages, virtual platforms are used as executable speci�cation models that capture HW
and SW requirements in a high abstraction. Due to their high abstraction, they can
be made available in very little time and can serve as golden reference models for
further development and re�nement stages. Virtual platforms can also be useful after
the deployment of a product. For instance, they may be used by a software designer to
verify software updates, in the form of �rmware or higher level functionalities, done
on multiple versions of deployed products which may not be physically available at the
moment of testing the update. They can also be provided to customers for e�ects of
training and technical support.

The main applications of virtual prototypes are during the development phase. They
are especially useful in the following cases: software-driven veri�cation and software
development. Software-driven veri�cation is equivalent to software-in-the-loop testing,
where production code can be veri�ed inside a virtual platform along with a simulated
environment. This facilitates the veri�cation process without the need of real hardware
prototypes and experimental setups. Virtual platforms are also very useful for software
development. Initial software applications and drivers can be developed and tested using
virtual platforms. This allows the identi�cation of software bugs and communication
bottlenecks, which might be too complicated to �nd in real prototypes. Aside from the
previously stated veri�cation bene�ts, virtual prototypes enable many other testing
capabilities such as SW performance optimization, SW centric power analysis and fault
injection.

3.3.1 Processor models

Processor models are system level descriptions of processing elements, such as DSPs and
microcontrollers, used in embedded systems. They are responsible for the simulation of
binary code compiled for particular processor architectures and for their communication
with other components inside a virtual platform.

As any other system level model, processor models are composed of structural and
behavioral descriptions. Structural descriptions contain architectural details of a proces-
sor such as functional units, pipelines, caches, registers, counters, I/Os, etc. Behavioral
descriptions correspond to a software application that is loaded into the system model.
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Timing information is afterwards obtained by the combined interaction of structural
and behavioral descriptions. The questions are: how are structural and behavioral
descriptions done and what type of timing information can they provide?

There are two main approaches to the previous questions: analytical and simulation
approaches. Analytical approaches obtain timing information of a processor model
by performing a formal analysis of pessimistic corner cases on the system level model
[116]. This analysis provides worst-case/best-case execution times (WCET/BCET) of
all functions in a software application. Such information is vital in systems with hard
real-time constraints, e.g. an ABS application in the automotive domain. An example
of a state-of-the-art commercial solution providing such type of analysis is aiT from
AbsInt [4]. The second approach to the timing estimation is via simulation. As men-
tioned earlier in Section 3.1.4, simulation cannot ensure the complete coverage of corner
cases, but it is adequate for verifying the functionality of a virtual prototype and for
obtaining approximate timing information from it, something which is not possible by
analytical approaches. Since the focus of this dissertation is on dynamic veri�cation,
only simulation based approaches are presented ahead.

The behavior and timing information of a processor model is dictated by an Instruction
Set Simulator (ISS). An ISS is used to perform binary translation of a software application
complied for a speci�c microprocessor or DSP instruction set and to execute it in a host
computer. Instruction set simulators are classi�ed into two main categories according
to how the binary translation process is done: interpreters and binary code translators,
also called the just-in-time (JIT) compilation [102].

Interpretive ISS

Interpretive ISS mimic the fetching, decoding and execution phases performed by pro-
cessors. The binary translation process consists of fetching, decoding and executing one
binary instruction at a time in a loop-wise fashion until all instructions are executed.
This process is done completely on run-time, similarly to how it is done in hardware.
This straightforward mapping of hardware behavior to a software simulator has a ma-
jor disadvantage: low simulation performance. In particular, the instruction decoding
is a time consuming process in a software simulation [111]. On the other hand, the
advantage of interpretative ISS is that they provide the highest degree of simulation
accuracy, i.e. cycle-accuracy. SimpleScalar [118] and ArchC [112] are two well-known
interpretive ISS in the academic domain. In the commercial domain, the ISS provided by
popular embedded software IDEs (e.g. IAR Embedded Workbench [67], Code Composer
Studio [126], µVision [8]) are typically interpretative since they provide very detailed
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information about the behavior of a processor with cycle-accuracy and do not require
high simulation e�ciency.

Binary code translators (emulators)

The second type of ISS relies on a binary code translation technique called just-in-time
(JIT) compilation. JIT compilers perform translation of target instructions into native
instructions on run-time, just before instructions are executed. Native instructions
correspond to instructions compatible with the host architecture, typically an x86 or x64
PC. Target instructions are grouped into basic blocks that, after being translated into
their native equivalent, are stored in a cache. This improves simulation performance,
making sure that translation does not occur for subsequent executions of the same
basic block [18]. ISS relying on JIT compliers are better known as emulators, since
the instruction set of a target architecture is emulated by the architecture of a host
machine. The bene�t of emulators is a very high simulation performance in relation to
interpretative ISS. However, the translation process does not take into consideration any
micro-architectural details regarding pipelines and caches, and thus cannot provide cycle-
accurate timing information. Instead, emulators are considered instruction-accurate
simulators since they are able to emulate the execution of target code on an instruction
basis. Timing information is obtained with the assumption that each instruction from the
target’s instruction set is executed in a �xed number of cycles, a factor called Instructions
Per-Cycle (IPC).

The most relevant open-source emulator is QEMU [13], which supports a wide range of
target architectures used by embedded systems. Another open-source example developed
by academia is SimSoc [62] from INRIA. Emulators are also the de-facto technology
for processor models in state-of-the-art virtual prototyping commercial solutions like
CoMET-METeor from Synopsys Virtual Prototyping [121], Simics from Wind River [45]
and OVP Processor Models from Imperas [73] (also used by Cadence Virtual System
Platforms [24]). A study regarding the available models and simulation performance
o�ered by some of these tools can be found in [88].

Integration into SystemC

Emulators result very attractive for SystemC based virtual prototypes due to their
high simulation performance. In order to form part of a virtual prototype, processor
models are wrapped inside SystemC modules provided with TLM-2.0 communication
interfaces. Wrappers make it possible for the SystemC scheduler to control the execution
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of an emulator and its communication with other components of the virtual prototype.
Further information on how SystemC wrappers are created for processor models and
their underlying ISS can be found in [14, 15, 110].

3.3.2 Open Virtual Platforms (OVP)

Open Virtual Platforms (OVP) [73] is a commercial emulation tool that provides compo-
nent libraries with a wide variety of executable models of processors and peripherals
used for constructing virtual prototypes. OVP solutions are useful for embedded software
development and software-in-the-loop tests of any type of embedded systems, especially
for SoC and MPSoC applications.

Models are executed by a proprietary simulator called OVPsim. OVPsim is a state-of-
the-art commercial simulator for virtual prototypes which o�ers various debugging and
analysis capabilities for veri�cation purposes. Some of these capabilities are: instruction
and task level debugging and pro�ling, memory footprint analysis and semi-hosting
of a target’s I/O functionalities in a host computer. OVPsim includes a simulator for
peripherals, accessible via an interface called Peripheral Modeling Interface (PPM), and
a simulator for processor models, accessible via an interface called Virtual Machine
Interface (VMI). The simulator used for processor models is based on the just-in-time
(JIT) compilation technique described in Section 3.3.1. Thus, all processor models from
OVP provide instruction-accurate timing information.

All executable models available by OVP are provided with code wrappers that make
them compatible with the SystemC and TLM-2.0 standards. In addition, OVPsim is
provided with APIs in order to be controlled by an external simulator for co-simulation
purposes, namely a SystemC kernel acting as simulation master. Therefore, OVP virtual
prototypes are completely interoperable in a SystemC simulation environment, such
as the application shown in Figure 3.9. The application shows two OVP models: an
ARM Cortex-M3 processor model and a UART peripheral model. These models are
wrapped in SystemC and communication via TLM-2.0 interfaces with native SystemC
peripheral models such as a memory mapped bus, memories, ADC, interrupt controller
and a GPIO used for activating an LED. The execution of the virtual prototype is carried
out by the SystemC kernel, which is responsible for the co-simulation with OVPSim.
This co-simulation scheme is seamlessly integrated into SystemC and adds a very small
simulation overhead.
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Figure 3.9: Integration of OVP in a SystemC virtual prototype [113]

3.4 Analog and Mixed-Signal (AMS) modeling

Section 3.1 through Section 3.3 presented methodologies, veri�cation approaches and
languages for the design of digital components of embedded systems. Up to this point,
embedded systems have been considered as digital systems, made up of digital HW
components and SW applications. Such assumption is intentionally done in order for
system level models to be compatible with discrete-event simulators such a SystemC.
Such systems are commonly used to perform computation-intensive tasks that transform
digital information by means of complex digital signal processing techniques, e.g. data
compression, signal coding and video image detection. However, embedded systems are
also reactive systems used to interact with their environment via sensors and actuators.
This is illustrated in Figure 3.10. They require more than just digital models in order
to be described. This has given rise to multi-domain modeling approaches that include
physical and analog mixed-signal (AMS) models.

3.4.1 Physical domain modeling

Physical systems are described based on a continuous time (CT) model of computation.
Such descriptions are done using mathematical models composed of sets of simultaneous
equations with boundary values and initial conditions. In particular, these mathematical
models are di�erential and algebraic equations (DAE). DAE descriptions must abide to
the physics of the system that is being described, such as Kirchho� laws for current
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Figure 3.10: Structure of an embedded system [125]

and voltage in electric circuits or dynamic equilibrium laws in mechanical and thermo-
dynamic systems. Therefore, the CT model of computation is adequate for describing
systems from multiple physical domains such as electrical, electromagnetic, mechanical,
optical, thermal, etc.

The behavior of a system of DAE equations is obtained when solved by either analytical
or numerical techniques. Analytical techniques are suitable for solving systems of
equations by hand, but may not be feasible for complex systems of equations. Instead,
numerical techniques are commonly used since they can be implemented by a computer
algorithm called numerical solver or numerical simulator. A numerical simulator is able
to solve a set of DAE equations at each point of simulation time in order to obtain its
behavior. Numerical solvers are an essential part of any CT simulator. They can be
classi�ed according to the type of equations they are able to solve: implicit di�erential-
algebraic equations (DAE) or explicit ordinary di�erential equations (ODE).

Noncausal models

DAE are by essence written in an implicit form, meaning that both unknown and known
variables can appear on both sides of the equation. The standard form of a DAE is as
follows:

f(
~dx

dt
, ~x, ~y, t) = 0 (3.1)

where ~x is a vector of di�erential variables (the derivatives with respect to time appear
in the equation, also referred to as state variables), ~y is a vector of algebraic variables
and t is an independent scalar variable.
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Physical models described via DAE equations in implicit form are noncausal models.
A typical characteristic of noncausal models is that their behavior is not described in
terms of input/output. Prominent examples of noncausal modeling and simulation tools
are: Modelica [97], VHDL-AMS [69], the Simscape [128] extension from Simulink and
MapleSim [86].

The advantages of noncausal modeling according to [52] can be summarized as:

• Noncausal modeling is the most natural form to describe physical systems of
equations

• Noncausal models are more declarative for describing systems on a high abstrac-
tion, focusing on what to model rather than how to model

• Noncausal models are more reusable than causal models

Causal models

The description of physical models commonly starts with noncausal models. However,
the use of state-of-the-art modeling and simulation frameworks for noncausal models is
still limited to a small group of academia and industry experts. In practice, noncausal
models (Figure 3.11a) are manually translated into causal models (Figure 3.11b) using
symbolic manipulation.

Causal models are described with Ordinary Di�erential Equations (ODE). An ODE is
a relation that contains functions of only one independent variable, and one or more of
their derivatives with respect to that variable. They are written in explicit form such that
unknown variables appear on the left hand side of the equation and known variables on
the right hand side of the equation. The standard form of an ODE is as follows:

~dx

dt
= f(~x, t) (3.2)

where ~x is a vector of di�erential variables and t is an independent scalar variable.
Causal modeling remains the most commonly used paradigm since multiple numerical

integration methods are available for solving ODE equations, as well as commercial
tools that can implement them. Causal models are described in terms of inputs/outputs
and thus can be implemented by actor-oriented simulation frameworks that support a
continuous-time model of computation. Prominent examples of causal modeling and
simulation tools are: the MATLAB ODE Suite [117] used by Simulink and LabVIEW. In
addition, these tools are de-facto in the industrial automation domain.
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Figure 3.11: Equivalent noncausal and causal representations of an RCL circuit [52]
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3.4.2 Analog and mixed-signal modeling languages

Languages like VHDL-AMS and SystemC-AMS provide an improved simulation e�ciency
with respect to SPICE based simulations as shown in Figure 3.12. This is due to the
abstraction in which physical systems are described, typically as ODE equations, which
is su�cient for performing veri�cation in a virtual prototype environment. Models
described in such languages are executed by coupled digital and analog simulators. A
description of both languages is presented ahead.

VHDL-AMS

The VHDL-AMS modeling language is de�ned by the IEEE 1076.1 [69] standard as an
extension of the VHDL language standard IEEE 1076-2002. It provides modeling and
simulation capabilities for causal and noncausal analog and mixed-signal (AMS) systems.
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VHDL-AMS models are compatible with standard VHDL digital models. The coupling
between digital and AMS models is implemented by a VHDL-AMS simulation engine.

The VHDL-AMS language supports many abstraction levels in electrical and non-
electrical energy domains. It supports three types of dynamic veri�cation techniques:
transient analysis, frequency domain small-signal analysis and noise simulation analysis.
Further details on VHDL-AMS modeling guidelines and veri�cation capabilities can be
found in [9].

VHDL-AMS is considered a multi-domain language since it is able to describe the
behavior of physical energy domains such as electrical, magnetic, translational, rotational,
�uidic, thermal and radiant. The key concept behind this is the identi�cation of physical
e�ort and �ow variables necessary for describing behavior in each domain. E�ort and
�ow concepts are called across and through quantities respectively. Some examples of
across and through quantities are: voltage and current in the electrical domain, velocity
and force in the mechanical translation domain, angular velocity and torque in the
mechanical rotational domain, pressure and volumetric �ow rate in the �uidic domain,
among others. Quantities together with the physical laws for each domain are used for
describing sets of DAE equations in VHDL-AMS.

The VHDL-AMS standard de�nes how analog solvers for systems of DAE equa-
tions, namely numerical simulators, should interact with a discrete-event simulator for
VHDL digital designs. The numerical and discrete-event simulators are coupled using
a co-simulation scheme. This co-simulation scheme forms part of the simulation cycle
described in the VHDL-AMS standard. Further details on this respect can be found in
[30, 69].

Available commercial simulators for VHDL-AMS language are SMASH [40] from Dol-
phin Integration, SystemVision [93] from Mentor Graphics, Saber [123] from Synopsys
and Simplorer [7] from ANSYS.

SystemC-AMS

The SystemC-AMS language is an extension to the SystemC language. It enables analog
and mixed-signal modeling and simulation capabilities. SystemC-AMS is not yet de�ned
by an international standard, although a detailed documentation [106] and its respective
proof-of-concept simulator [46] are available.

SystemC-AMS extensions are fully compatible with the SystemC language standard
as shown in Figure 3.13. The architecture of the SystemC-AMS language follows a
layered approach built on top of the SystemC kernel. The user level layer corresponds
to the two top levels of Figure 3.13 and supports the following MoCs: Electrical Linear
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Networks (ELN), Linear Signal Flow (LSF) and Timed Data Flow (TDF). The solver layer
provides a linear DAE solver for ELN and LSF models and a scheduler for TDF models.
The synchronization layer is responsible for embedding MoC descriptions and their
solvers/schedulers into data �ow cluster processes [132] able to co-simulate together
with SystemC’s discrete-event simulator.

The ELN MoC supports the modeling of noncausal continuous-time models described
as electrical networks. Electrical network are built by the instantiation and interconnec-
tion of basic passive components derived from available macromodels, such as resistors,
capacitors and inductors, as well as sources and monitors. ELN does not support the use
of non-linear elements (e.g. transistors and diodes), although there are some workarounds
[5, 26]. A further limitation relies on the available linear DAE solver provided in the
recent SystemC-AMS proof-of-concept simulator. The solver implements simple �xed-
step numerical integration methods (a combination of backward Euler and trapezoid
methods [59]) which may lead to numerical instabilities.

The LSF MoC supports modeling of continuous-time systems described in a causal
form using the following basic blocks: additions, multiplications, integration and delay.
The connection of such blocks is used to de�ne systems of equations, similarly to
MATLAB /Simulink, which can be solved by the available linear DAE solver. The same
limitations with respect to the linear DAE solver apply as before.

The TDF MoC is an implementation of the Synchronous Data Flow (SDF) [81] principle,
where processes are statically scheduled according to production and consumption rates.
The advantage of TDF is the possibility to describe applications using a MoC similar to
SDF. This is very useful for modeling digital signal processing algorithms. A further
bene�t is high simulation e�ciency, since the TDF static scheduler reduces the dynamic
overhead imposed by the discrete-event kernel of SystemC.

SystemC-AMS is not yet a fully capable multi-domain simulator. It provides basic
modeling capabilities for AMS systems in the electrical domain, but it lacks the modeling
support for describing other type of physical energy domains. In addition, the available
linear DAE solver in proof-of-concept simulator [46] is not robust enough, although
improvements on this sense have been investigated [59].

3.4.3 Veri�cation and validation approaches

The de�nition of the terms veri�cation and validation in the context of physical modeling
di�ers from those used in the software engineering community (refer to the de�nitions
given in Section 3.1.4). A useful de�nition done by American Institute of Aeronautics
and Astronautics is as follows:
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Figure 3.13: Architecture of the SystemC-AMS language [105]

• Veri�cation: “The process of determining that a model implementation accurately
represents the developer’s conceptual description of the model and the solution to
the model.” [6]

• Validation: “The process of determining the degree to which a model is an accurate
representation of the real world from the perspective of the intended uses of the
model.” [6]

The veri�cation and validation of physical models relies on numerical simulation and
statistical analysis techniques. The process of veri�cation and validation is crucial for
qualifying and building credibility on the correctness and accuracy of models for speci�c
scenarios. A high level view on veri�cation and validation processes for physical models
is presented in Figure 3.14. The diagram, referred to as the Sargent Circle [115], presents
the role of modeling and simulation (black solid lines) and assessment activities (red
dashed lines) in the veri�cation and validation process.

In Figure 3.14, the reality of interest represents the physical system whose behavior
needs to be obtained. A mathematical model based on physical laws is created for
describing the behavior of the physical system. The mathematical model is a set of
algebraic and di�erential equations with boundary values and initial conditions. A
computer model is then created based on causal and noncausal forms of the mathematical
model. The computer code must be veri�ed against the mathematical model in order to
check that it is correctly implemented and that the solver provides the desired results. A
computer model is then validated against the reality of interest in order to quantify the
accuracy and correctness of a model.
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Figure 3.14: Veri�cation and validation of physical models [115]

Veri�cation process

As stated above, veri�cation is the process of checking the correctness of a computer
model with respect to a mathematical model. According to [127], the veri�cation process
can be divided into a series of steps called: code veri�cation, calculation veri�cation
and uncertainty quanti�cation. Code veri�cation checks for possible errors that may
result during the translation of mathematical models into forms compatible by a nu-
merical simulator. Calculation veri�cation checks for numerical errors introduced by
the numerical simulation. It involves adapting parameters of the solver such as the
simulation time step and error convergence tolerances. Uncertainty quanti�cation uses
model predictions based on probabilistic analysis. Model predictions are used to perform
sensitivity analysis tests and to quantify the e�ects of random and systematic errors.

A considerable amount of time must be spent in analyzing the impact of uncertainties.
The reason for this is that model predictions, which are based on probabilistic analysis,
may generate enormous amounts of information when simulated. Probabilistic analysis
remains the most widely used and accepted uncertainty analysis method. Alternate
methods for uncertainty quanti�cation are available such as symbolic-simulation. Further
details regarding uncertainty analysis and the comparison between available methods
can be found in [54, 64].

Validation process

Veri�cation deals with the mathematics associated with the model, whereas validation
deals with the physics associated with the model. A common statement used for the
validation of physical models is as follows: get the physics right!. In other words, if the
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physics used to describe a model are correct, then so must be the model that describes it.
In order to check this premise, the validation process must quantify the accuracy of a
model with respect to experimental data and determine its con�dence interval.

A key principle in the validation process is delimiting the amount of metrics before
starting the validation process. A validation metric is the basis for comparing features
from experiential data with model predictions [127]. These model predictions are avail-
able from the veri�cation phase. Experimental setups must be adapted for obtaining
speci�c validation metrics, which in�uence the way in which they are constructed. In
any case, if the validation process does not comply with the requirements, a model and
its experimental setup must be revised.



4
Heterogeneous Embedded
Systems

Industrial devices are considered throughout this dissertation as heterogeneous em-
bedded systems. The term heterogeneous results from a system level perspective and
it refers to the combination of digital systems, analog and mixed-signal systems and
multi-domain physical systems. This implies the use and coupling of di�erent models of
computation that can describe the di�erent continuous and discrete dynamics of such
systems.

This chapter describes available models of computation for describing behavioral
aspects of heterogeneous embedded systems. It presents state-of-the-art work that have
overcome the challenge of coupling models of computation for performing veri�cation
and validation of heterogeneous embedded systems. Finally, the state-of-the-art is
evaluated regarding requirement for the design of industrial devices in order to de�ne
the scope of this dissertation.

4.1 Models of computation

According to [138], a model is de�ned as an abstract representation of a system, entity,
phenomenon or process. In order for models to be interpreted by everyone without
ambiguity, they are described using physical, mathematical or logical representations
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with clearly de�ned syntax and semantics. Such representations are known as modeling
formalism or Models of Computation (MoC) [83]. The purpose of a model of computation
is to support the speci�cation of a system’s descriptions and to facilitate its veri�cation.
From a designer’s point of view, MoCs are the means a designer has to his disposal for
describing and verifying a system.

A model of computation refers to a language or class of languages with a common
syntax and semantics. MoCs are equivalent to modeling paradigms, each being more
or less suited for describing di�erent parts of a system. According to [83], a MoC
determines three sets of rules for a model: (1) what constitutes a model, (2) its concurrency
mechanisms, and (3) its communication mechanisms.

4.2 Combining models of computation

Various MoCs are typically required to describe di�erent parts of an embedded system
and its environment. They are heterogeneous systems since the composition of multiple
MoCs determine the behavior of a system. Some examples of commonly used MoCs
are: Synchronous Data Flow (SDF) [81] for digital signal processing algorithms, Finite
State Machines (FSM) and sequential programing languages for software components,
Discrete-Event (DE) for digital hardware components and Continuous-Time (CT) for
physical systems.

The combination of Discrete-Event (DE) and Continuous-Time (CT) models of com-
putation are called hybrid system[23]. Hybrid systems are used to describe reactive
systems [57] made up of digital models with discrete dynamics and plant models with
continuous dynamics.

Cyber-Physical Systems (CPS) are also hybrid systems. According to [75, 82], in CPS
systems the computations and communication tasks carried out by a digital system are
in�uenced by the behavior of the physical processes they interact with and vice-versa.
The overall behavior of a CPS system does not only depend on a digital system being
able to perform a certain task, but on the conjoined interaction between digital and
physical systems. From a model-based perspective, CPS systems can be described as
hybrid systems, therefore they are equivalent. The only di�erence is that the term CPS
has been popularized during the last years.

Models that follow a particular MoC can be executed together by a simulator that
understands the syntax and semantics of the MoC. In this context, a model can be seen
as a set of rules, equations, or constraints for generating I/O behavior [138]. Thus,
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a simulator is an agent capable of obeying the instructions in a model, as well as its
concurrency and communication mechanisms, in order to obtain its behavior.

Simulating the behavior of hybrid systems requires continuous-time (CT) simulators
for their continuous dynamics and discrete-event (DE) simulators for their discrete
dynamics. The simulators involved must be coupled to obtain the composite behavior of
a hybrid system. This presents an additional challenge since the MoCs behind CT and
DE simulators are very di�erent from each other. Two main approaches are identi�ed for
coupling DE and CT models of computation: formal based approaches and co-simulation
based approaches.

4.2.1 Formal-based approaches

Formal approaches to heterogeneity de�ne the semantics for the interoperation between
heterogeneous MoCs according to a set of formalized descriptions. Formal approaches to
heterogeneity require a holistic simulation framework that understands the details of the
MoCs being coupled and that can implement the interoperation semantics accordingly.

In these types of approaches, the coupling semantics as well as the MoCs involved
must have a formal mathematical representation. MoCs are formalized according to
three orthogonal aspects: how they implement sequential behavior, the available com-
munication mechanism and the available concurrency mechanisms. The formalized
interoperation semantics describe the control and communication aspects required
for the interoperation of heterogeneous MoC. Creating such formalized descriptions
requires considerable e�ort and full access to the simulation kernels involved. Their
advantage is that their implementation can be automated, thereby leaving no room for
misinterpretations.

Ptolemy II

Ptolemy II [44] from the University of California Berkeley is an actor-oriented simulation
framework used to study the complexity derived from the heterogeneous combinations
of MoCs. Ptolemy II has implementations of many models of computation including
Synchronous Data Flow, Kahn Process Networks, Discrete Event, Continuous Time,
Synchronous/Reactive and Modal Models.

The Ptolemy II project started in 1996 and has been in active development ever since.
A key aspect of Ptolemy II is that each MoC and its interoperation semantics have a
formal mathematical background. The interoperation semantics are initially abstract
and are de�ned according to the MoCs being coupled. Their implementation is done
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Figure 4.1: Ptolemy II: Model of a fuel tank using modal models [38]

in a Java-based framework that includes a graphical front-end for building models
using drag-and-drop component libraries and a simulator as back-end. Due to its ample
modeling and simulation capabilities, Ptolemy II is being used as basis for the commercial
simulators MLDesigner [96] and VisualSim [94].

Ptolemy II supports the coupling of DE/CT MoCs in hybrid systems with modal models.
Modal models [84] are hierarchical FSM descriptions that encapsulate the behavior of
other MoCs. The transition between FSM states are controlled by a DE director and
each state of the FSM is controlled by a CT director. CT directors rely on ODE solvers
(�xed- and variable-step solvers) for simulating the behavior of physical systems. Figure
4.1 shows an example of modal models in Ptolemy II for modeling the behavior of a
fuel tank and its controller. In this example, one modal model describes three di�erent
operation modes (labeled as full, normal, empty) of a fuel tank based on their internal
state, each of them is respectively controlled by a CT director.
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DEV&DESS

DEV&DESS is a modeling formalism developed by Prof. Bernard P. Zeigler, a pioneer in
modern modeling and simulation theory. DEV&DESS [138] stands for Discrete Event
and Di�erential Equation System Speci�cation. It is an extension of the DEVS formalism
from the same author that enables DE and CT modeling and simulation. It includes both
DEVS (Discrete Event System Speci�cation) and DESS (Di�erential Equation System
Speci�cation) formalisms; each of them is respectively equivalent to DE and CT MoCs.

DEV&DESS provides a mathematical background that describes the composition
semantics of DEVS and DESS modeling formalism. However, there are currently no
simulation framework that implement the DEV&DESS formalism. Instead, its DEVS
counterpart has attracted more interest in industry and academia, and for which various
simulation frameworks are available, such as CD++ [135] and DEVS/HLA [85].

Further references

According to [87], heterogeneous system level design is a relatively new area of research.
Its goal is to provide support for the design of complex digital systems such as SoCs
and MPSoCs. Some of the best-known frameworks in this area are: ForSyDe [114],
SystemC-H [108], Metro II [36] and SML-Sys [87]. All of these frameworks provide
support for the modeling and composition of heterogeneous MoCs. However, none of
these provide modeling formalisms for describing physical systems.

4.2.2 Co-simulation based approaches

Co-simulation is a common approach for addressing the integration of di�erent MoCs
and their simulators. It is based on the coupling between simulation engines, each of
them focusing on a speci�c part of a model, in order to obtain the behavior of a full
system. Co-simulation is a useful approach for the dynamic veri�cation of systems
whose behavior cannot be otherwise obtained by a single simulation engine.

The simulation of hybrid systems requires two types of simulation engines: discrete-
event (DE) simulators for discrete dynamics and continuous-time (CT) simulators for
continuous dynamics. The �rst one enables the veri�cation of HW/SW descriptions;
the later allows the veri�cation of physical systems described via sets of di�erential
and algebraic equations. An entity, which might be one of the simulation engines or an
external computer program, must implement a clearly de�ned co-simulation algorithm.
The co-simulation algorithm de�nes the interoperation semantics for the control and
communication between simulation engines.
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Figure 4.2: CODIS tool �ow [21]

SystemC is used throughout this dissertation as the main discrete-event modeling and
simulation framework. Therefore, related work on co-simulation approaches for coupling
SystemC with continuous-time simulation tools are initially presented. Afterwards,
further approaches using tools other than SystemC are presented.

SystemC and Simulink

The CODIS (Continuous/Discrete Simulation) [21] framework is an academic co-
simulation tool for coupling continuous and discrete simulation models from Simulink
and SystemC. It describes a tool �ow for generating control and communication inter-
faces for Simulink and SystemC models and a co-simulation algorithm for coupling their
execution. An overview of this tool �ow is illustrated in Figure 4.2. In this approach,
SystemC digital signals and Simulink analog signals must connect to input/output inter-
faces in order to share information. These interfaces communicate to a co-simulation
bus responsible for transferring data between models running on di�erent simulators.
The co-simulation bus is also responsible for transferring control commands emitted
by SystemC, which acts as simulation master, and Simulink, acting as simulation slave.
Most importantly, the co-simulation algorithm is e�cient since the simulation time
is decoupled, i.e. simulators do not need to run in �xed simulation steps as done in
[20, 60]. Thus, the major contribution of CODIS is the implementation of an e�cient
co-simulation algorithm between SystemC and Simulink.

Synopsis Platform Architect [122] is a virtual prototyping tool for SystemC models. It
o�ers a co-simulation interface for SystemC and Simulink models. The co-simulation
algorithm performs synchronization on �xed steps. Therefore, an adequate synchro-
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nization step size must be manually chosen to meet the simulation speed and accuracy
requirements.

SystemC and electric circuit simulators

The work by Kirchener et. al. [77, 78] describes the co-simulation of SystemC and
the electric circuit simulators SwitcherCad and Saber. The co-simulation algorithm is
similar to the one used by CODIS and is embedded into a SystemC module, which makes
SystemC the simulation master. In order to ease usability, the interconnection of signals
is done via a signal pool where all sinks and sources coming from SystemC digital signals
and SwitcherCad/Saber analog signals are connected to.

Ptolemy II and continuous-time simulators

Ptolemy II already provides DE/CT modeling and simulation capabilities. In addition,
Ptolemy’s CT directors have already enough capabilities to solve complex physical
models thanks to a set of available ODE solvers (�xed- and variable-step). However,
there are applications in which external CT simulators may be preferred for a number
of reasons. This is the case for Building Controls Virtual Test Bed (BCVTB) [136], a
software environment based on Ptolemy II and its co-simulation with the CT simulators:
Energy-Plus, Simulink, Dymola (Modelica). In BCVTB, Ptolemy II acts as simulation
master which all other CT simulators connect to thanks to dedicated communication
and control interfaces.

BCVTB is used to model building heat transfer, HVAC (heating, ventilation, and air
conditioning) system dynamics and control algorithms. Although the application �eld
does not directly apply to the design of embedded systems, from a research perspective,
it is interesting to see the extent to which co-simulation can be applied. From a technical
point of view, the implemented co-simulation algorithms are simple since they perform
synchronization on �xed simulation steps. According to its author, more e�cient algo-
rithms relying on adaptive synchronization time steps are not implemented in BCVTB
due to technical limitations from the CT simulators.

Functional Mock-up Interface

The Functional Mock-up Interface (FMI) [98] was initially developed by Daimler AG
with the goal to improve the exchange of simulation models between suppliers and
OEMs as illustrated in Figure 4.3. The latest version of the FMI (ver. 2.0) was published
in 2012 as a result of the European project MODELISAR.
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functional mockup interface for model exchange and tool coupling

Figure 4.3: Applications of the Functional Mock-up Interface (FMI) [98]

The FMI standard de�nes guidelines for (1) the exchange of dynamic models between
tools, and (2) for the coupling of simulation tools in a co-simulation environment. In
the �rst case, FMI for model exchange is intended for tools that can generate C-code
from dynamic system models made of di�erential, algebraic and discrete-time equations,
and for tools that can import and evaluate them. In other words, the FMI exchange
interface standard de�nes as common wrapper for dynamic system models originating
from di�erent modeling environments and described in C-code. These models and their
wrappers can be transferred to any other simulation environment and evaluated using a
single simulation engine.

In the second case, the FMI for co-simulation is intended to provide a common in-
terface standard for coupling two or more simulation engines. The synchronization
between simulation engines are restricted to discrete communication points based on
�xed or variable time-steps. The interfaces provide standard C-based functions for
sharing information between one simulator acting as co-simulation master and one or
more simulators acting as co-simulation slaves. However, the FMI for co-simulation
interface does not specify the semantics for sharing information between master and
slave simulators. This is also known as the co-simulation algorithm and used to control
and synchronize the �ow of information between di�erent simulators. On the other
hand, the advantage of the FMI co-simulation interface is that it provides enough means
for implementing simple or complex co-simulation algorithms.

Further references

The dissertation from Marcel Verhoef [134] emphasizes the importance of multi-domain
models for the early veri�cation of embedded control systems. He de�nes embedded
control systems as computing systems that are intimately coupled to the environment
which they monitor and control. This de�nition is equivalent to Lee’s [82] de�nition of
cyber-physical systems.
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Verhoef provides a pragmatic solution for multi-domain modeling and simulation
intended for two di�erent types of engineers: control engineers and software engineers.
His solution is based on the co-simulation of DE and CT system level descriptions. The
simulators used for this purpose were VDM++ for DE and 20-SIM for CT. VDM++ is
a general purpose model oriented formal speci�cation language that enables round-
trip engineering with UML. VDM++ also provides a simulation engine based on a DE
MoC which makes it possible to verify software architecture speci�cations on early
design stages. On the other hand, 20-SIM is a commercial CT modeling and simulation
tool for dynamic systems. 20-SIM relies on a graphical framework for building models
using Bond graphs, state space descriptions, block diagrams and equations. It provides
enough expressiveness for describing most type of physical energy domains, similarly
to VHDL-AMS and Modelica. Verhoef de�nes communication and control interfaces for
transferring information and commands between both simulators. The implementation
of the co-simulation algorithm is carried out in VDM++ which is used as the simulation
master.

4.3 Scope and de�nition of this work

The scope of this dissertation is on model based design approaches of embedded systems
for industrial devices. The design challenges encountered during their design and the
open issues that will be accordingly addressed in this dissertation were presented in
Section 2.4. The most relevant issues include �nding appropriate model-based approaches
for describing structural and behavioral aspects of embedded systems and approaches for
verifying such descriptions together with physical models of plants and environments.
Further issues include supporting di�erent stages of the development life-cycle, i.e. from
the point a measurement or control principle is identi�ed up to its implementation in a
prototype and experimental setup. In between these stages, appropriate model-based
design approaches must be found for helping embedded software developers, hardware
developers and physicists to communicate and test design speci�cations in a better way.

Chapter 3 described the state-of-the-art on model-based design approaches for embed-
ded systems. The distinction was initially done between approaches for modeling digital
systems and approaches for modeling analog and mixed-signal systems. In the �rst case,
the SystemC framework and virtual prototyping technologies were introduced. In the
second case, analog and mixed-signal frameworks such SystemC-AMS and VHDL-AMS
were presented.
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Chapter 4 showed that embedded systems for industrial devices do not exclusively
fall in one of these two categories. Instead, they are a combination of both, where the
behavior of digital hardware and software components are intertwined with the behavior
of analog and mixed signal components and physical processes. Hybrid systems provide
an adequate model-based approach for describing such systems. They are the result of
combining modeling approaches for digital and physical domains. The state-of-the-art
on model-based design approaches for hybrid systems was described in the previous
section. These originate from a purely academic background, such as Ptolemy II and the
DEVS&DESS formalism, and from industry-orient applications, such as the FMI interface
and diverse co-simulation approaches using tools like SystemC, Simulink, and analog
circuit simulators.

The focus of Ptolemy II [44] framework is on creating a strong mathematical back-
ground for the composition of di�erent models of computation. The available modeling
formalisms and their high level of abstraction make Ptolemy II a valuable tool in early
design stage. However, Ptolemy II cannot be used in a system level design methodol-
ogy since it does not contemplate the re�nement of communication and computation
aspects of actors (actors in this sense are de�ned as software components that execute
concurrently and communicate through messages sent via interconnected ports). Formal
based modeling approaches such as the DEV&DESS [138] formalism su�er from similar
limitations. Their strict modeling guidelines render the re�nement of models a very
challenging task.

Commercial actor-oriented frameworks such as MATLAB /Simulink and LabVIEW also
do not consider the re�nement of communication and computation aspects of actors.
Instead, these tools focus on the design and veri�cation of behavioral models in early
design stages. Moreover, these tools are capable of automatically converting models
into hardware or software descriptions. During this conversion process, there are no
intermediate steps for performing architectural exploration of a design or for adding
architectural details regarding computation or communication aspects of a design. Such
capabilities are only considered by system level design methodologies via a series of
subsequent re�nement steps.

Re�nement is an intrinsic part of system level languages like SystemC [68]. Its
transaction level modeling (TLM) standard supports this and provides interfaces for
communication models described in di�erent abstractions. SystemC is the most ade-
quate language for system level design of digital hardware and software components of
embedded systems. Moreover, it is widely supported by di�erent tool manufactures and
IP vendors.
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The analog and mixed-signal modeling limitations of SystemC are addressed by an
AMS extension. However, SystemC-AMS [106] has still many limitations with respect to
its modeling capabilities of physical systems and with respect to the solvers it supports
for their evaluation. In comparison, VHDL-AMS [69] has improved modeling capabilities
for physical systems and supports the use of more e�cient solvers. However, digital
modeling capabilities of VHDL-AMS are intended for RTL abstractions, which is not
adequate for system level design methodologies.

The FMI [98] for co-simulation interface is intended to provide common interfaces
for coupling two or more simulation engines. It de�nes APIs that tool vendors must
implement in order to couple their simulators in a co-simulation environment. However,
the FMI interface does not de�ne the implementation of co-simulation algorithms, also
called master algorithms. Co-simulation algorithms are necessary to control the data
exchange between subsystems and the synchronization of simulation engines.
Bouchhima et. al. [21] , Kirchener et. al. [78] and Verhoef [134] describe the im-

plementation of discrete-event/continuous-time (DE/CT) co-simulation algorithms for
the following simulation engines: SystemC & Simulink, SystemC & Saber, and 20-SIM
& VDM++. Further examples of the implementation of simpler DE/CT co-simulation
algorithms are presented in the work of Wetter [136] and Borland et. al. [20] for the
simulators: Ptolemy II & Energy-Plus/Simulink/Dymola and SystemC & Simulink.

The authors mentioned above implement DE/CT co-simulation for the design and
veri�cation of di�erent applications of hybrid systems, e.g. industrial systems, automo-
tive systems and HVAC systems. However, none of these authors consider the use of
co-simulation during multiple stages of the development life-cycle of embedded systems.
In all these cases, co-simulation is used to verify models in a common abstraction. The
re�nement of such models and the new dimension of veri�cation capabilities that they
enable have not been investigated. Moreover, none of the above-mentioned approaches
considers the use of advanced virtualization tools together with DE/CT co-simulation
for the creation of multi-domain virtual prototypes.

The focus of this dissertation is on the creation of a problem-oriented veri�cation strat-
egy for heterogeneous embedded systems based on system level design methodologies.
It is applicable throughout initial design stages and up to the implementation of a system
in hardware prototypes and experimental setups. The type of heterogeneous systems
considered are hybrid systems described with continuous and discrete dynamics.

This goal of the problem-oriented veri�cation methodology proposed in this work
is to provide multidisciplinary team members enhanced veri�cation capabilities to
identify and solve design problems during early development stages. This is possible by
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coupling the execution of di�erent simulators, each one responsible for obtaining the
behavior of part of a system. The combined execution of simulators can help increase
the understanding of interdependencies between di�erent system components. This
eventually helps increase the con�dence in the correctness of a design, thereby reducing
risks in a project and leading to hardware prototypes and experimental setups that are
built right the �rst time.



5
Guidelines for the Construction of
Virtual Prototypes

This chapter describes initial considerations from the industrial automation domain with
respect to the creation of virtual prototypes of industrial devices. It also describes an
integrated design �ow for heterogeneous embedded systems that supports the use of
virtual prototypes. Finally, a set of guidelines are given for the construction of consistent
and meaningful virtual prototypes. These guidelines are intended to ease the creation of
virtual prototypes and to increases the reusability of designs.

5.1 Initial considerations

5.1.1 Modeling requirements

The acceptance of any new design methodology in an organization is determined by its
compatibility and support for ongoing best-practices. Non-technical aspects should also
be considered, such as the level of acceptance among design experts and the overhead
that this might bring.

A series of interviews with design experts in the industrial automation domain permit-
ted to gather initial requirements regarding the types of models needed for the creation
of virtual prototypes of industrial devices. At the moment of the interviews, none of
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the consulted design experts had previous experience with related virtual prototyping
approaches. The design experts consulted where mainly embedded software engineers,
hardware designers with expertise in digital and analog design, and physicists with
experience on complex measurement principles. The following requirements where
extracted from such interviews:

• Hardware models. Industrial devices typically rely on o�-the-shelf hardware com-
ponents such as peripherals, microcontrollers and DSPs to implement functionality.
Only in particular cases, FPGA implementations with commercial and proprietary
IP-cores are required. Therefore, the hardware models as well as the description
language used must be adequate for both types of applications. In addition, the
hardware models used must be equivalent in terms of computation and communi-
cation capabilities as those used in ongoing or previous projects.

• Software models. Embedded software contains a vast know-how of a company’s
software engineering practices. This know-how must be captured by a software
model instead of developing new models that can mimic it. Therefore, avail-
able legacy code, real-time operating systems and proprietary component-based
software frameworks must be imported by software models in order to be reused.

• Physical models. Physicists and control engineers tend to describe physical pro-
cesses using domain-speci�c modeling and simulation tools. In order to reuse
available physical models, the domain-speci�c tools in which they are developed
must be made compatible with the aforementioned hardware and software models.

• Tooling: New tool must be compatible with existing tool �ows. Tooling acceptance
not only relies on technical compatibility issues, but also on their adherence to
current practices. Therefore, new tools must also provide certain level of familiarity
and acceptance with embedded system designers.

5.1.2 Modeling domains

According to [138], a model is de�ned as a physical, mathematical, or logical representa-
tion of a system, entity, phenomenon or process. The representation of a model is done
via a set of modeling formalisms, that have a mathematical foundation, support formal
or semi-formal reasoning and have a de�nite semantics. From an engineer’s point of
view, formalisms are the means at his disposal in order to describe a system.

Industrial devices are classi�ed as hybrid systems [23] since their behavior is described
by continuous and discrete dynamics. In the �rst case, continuous dynamics are used
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to describe models from the physical domain. In the latter case, discrete dynamics are
used to describe models form the digital domain. Therefore formalism for physical and
digital domains must be considered for the creation of virtual prototypes.

Physical domain models

Continuous dynamics are inherent to physical systems whose behavior is naturally
described by continuous time-dependent functions. Continuous dynamics are used to
describe the behavior of physical systems from di�erent domains, e.g. electrical, me-
chanical, optical, thermal, etc. The process variables are continuous such as temperature,
pressure and �ow in the case of process automation systems, or voltage and current in
the case of power automation systems.

Models of the physical domain are described using sets of simultaneous di�erential
and algebraic equations that are piecewise continuous functions of time. They are a
natural system speci�cation formalism used in domains such as electrical, mechanical,
optical, thermal, etc. Their simulators are classi�ed according to the modeling form
they support: causal or non-causal. Causal models are formulated in terms of explicit
equations, for example, ordinary di�erential equations (ODE). Examples of simulators
for causal models are Simulink and LabVIEW. Non-causal models are formulated in terms
of implicit equations, for example, di�erential algebraic equations (DAE). Examples of
simulators for non-causal models are Modelica and VHDL-AMS.

Digital domain models

Discrete dynamics are used to describe the behavior of hardware and software component
of embedded systems. For instance, they can be used to describe the behavior of hardware
blocks such adders and multipliers in di�erent abstractions. They can also be used to
describe the behavior of software component using sequential programming languages
or other higher-order models such as statecharts and �nite state machines.

Models of the digital domain operate on a discrete time basis with outputs that are
piecewise constant function of time. Untimed MoC such as synchronous reactive modes
and data �ow models use simulators where models are evaluated on �xed intervals. Early
versions of Ptolemy II and Matlab State�ow are examples of simulators for digital untimed
models. Timed MoC such as timed data �ow models, discrete event system speci�cations
(DEVS), Register Transfer Level (RTL) models and Transaction Level Models (TLM)
use event based discrete simulators where time advances in variable periods called
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events. Simulators for digital timed models are commonly used for hardware description
languages such as VHDL and SystemC.

5.2 Role of virtual prototypes in the design �ow

Figure 5.1 shows an extension to the traditional design �ow of embedded systems de-
scribed in Section 2.3. The extension is marked in gray and corresponds to a system level
modeling stage. The proposed design �ow is called Integrated Design Flow since it en-
ables an integrated design and veri�cation of system level models of hardware, software,
mixed-signal and analog components. This is possible thanks to the addition of system
level modeling stage after the algorithmic modeling stage. During the system modeling
stage virtual prototypes are constructed in various granularities for exploring the design
space and for performing HW/SW co-design once a system has been partitioned.

This integrated design �ow takes into consideration current practices in the design of
embedded systems for industrial devices. As a result, tradition design approaches are
not a�ected by the proposed design �ow. Instead, they are extended with further design
and veri�cation capabilities. Each design stage from Figure 5.1 is described ahead.

System 
Specifications 

Algorithmic 
Modeling 

Software  
Design Flow 

Analog and 
Mixed-Signal 
Design Flow 

Hardware 
Design Flow 

Hardware Prototype & Experimental Setup 

System Level 
Modeling 

Figure 5.1: Integrated design �ow for embedded systems
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5.2.1 System speci�cations

System speci�cations are based on functional and non-functional requirements. Func-
tional requirements describe the particular measurement or control principles that
need to be implemented in an embedded system, as well as boundary conditions for
its operation. Non-functional requirements include things like operation temperature
range, safety considerations, robustness considerations, the desired power consumption,
footprint and cost, etc. Speci�cations are commonly given in textual form and as mathe-
matical equations. Other approaches include using UML-diagrams, but this is almost
exclusively done for software descriptions.

5.2.2 Algorithmic modeling

Behavioral descriptions of an embedded system and its environment are modeled in this
stage according to the system’s speci�cations. Descriptions rely on high-level modeling
paradigms such as data �ow models and statecharts. Commonly used software tools
in this stage are the actor-oriented frameworks MATLAB /Simulink and LabVIEW. Both
tools provide enough modeling capabilities for describing the behavior of embedded
systems using discrete-time models and physical systems using continuous-time models.

Digital models are composed of discrete-time actors such as statecharts and discrete
signal �ow blocks. These models are used to describe the behavior of an embedded
system. At this point, the distinction between HW and SW has not yet been done, which
provides enough modeling expressiveness. This decision is done in the system level
design stage, where adequate means for describing HW and SW implementations are
available.

Physical models are composed of continuous-time actors such as continuous data
�ow blocks, transfer functions and state space representations. These models are used
to describe physical systems and are useful to simulate environments that are equivalent
in terms of their behavior to experimental setups. Simulink and LabVIEW provide an
adequate modeling and simulation framework for such purpose. In addition, both tools
support model-in-the-loop testing, where discrete-time and continuous-time models are
able to interact with each other as shown in the example of Figure 5.2. Other domain-
speci�c tools may be used at this stage. Such tools provide further specialized means for
describing physical systems, e.g. Bond Graphs, Modelica, AMS models.

The veri�cation process of a digital model may be done using rapid prototypes or via
model-in-the-loop testing. Rapid prototypes are capable of executing behavioral models
in real-time and are able to interact with real experiential setups. Rapid prototypes may
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Figure 5.2: Example of an algorithmic model of a close-loop control application

be dedicated pieces of hardware or standard PCs communicating via a set of specialized
interfaces. The second and most common type of veri�cation is via simulation means,
which may be simpler than using rapid prototypes and experimental setups. This type
of veri�cation is called model-in-the-loop testing and requires physical models that can
reproduce the behavior of a well-known physical system.

Example

The example shown in Figure 5.2 shows a typical application for algorithmic modeling
using Simulink. Discrete-time models are marked in blue and continuous-time models
in yellow. This example shows a very basic feedback control application where a PID
algorithm, which will be later on implemented in an embedded system, is tested together
with environment models. The behavior of the PID algorithm is implemented using an
available PID block from Simulink’s discrete time toolbox, while the environment is
modeled using standard transfer functions and signal �ow blocks. This type of testing
is called model-in-the-loop testing and is a common practice in the industry. In this
particular case, model-in-the-loop testing will help obtain adequate proportional, integral
and derivative constants for a PID controller. Its main advantage is a very low modeling
e�ort, which makes it possible to test multiple controller and plant models in a very
short time span.

5.2.3 System level modeling

The transition from algorithmic modeling to system level modeling requires further
considerations. It assumes that the algorithmic modeling stage provides two types of
models: physical models that describe the behavior of an environment and digital models
that describe the behavior of an embedded system. These models will be further used as
follows:
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• Physical models are provided with special I/O interfaces to communicate with
digital models. Apart from that, they are not modi�ed and will be further utilized
in the system level design stage together with their native simulator.

• Digital models must be translated into sequential C/C++ code. The translation can
be done manually or using available code generation tools (e.g Simulink Coder
[130]). The obtained code must be purely functional and hardware independent.
Special I/O interfaces are provided later on for the communication with physical
models.

C/C++ code descriptions are purely behavioral and implementation-agnostic, i.e. they
do not contain any detail in terms of how they implement their behavior. A design
decision must be made in order to assign a behavioral model to an architectural model.
In system level design, this decision is called mapping (refer to Figure 3.2) and results in
a design’s HW/SW partitioning. A behavioral model may be mapped to a SW implemen-
tation if the architectural model corresponds to a software programmable processing
element, e.g. a microcontroller or DSP. The second possibility is to map a behavioral
model to a HW implementation if the architectural model corresponds to a hardware
element, e.g. o�-the-shelf components such peripherals, memories, buses or hardware
accelerators in FPGAs. Further details with regards to system level design and mapping
activities were mentioned in Section 3.1.1.

The introduction of system level modeling in a design �ow enables two useful de-
sign and veri�cation mechanisms: HW/SW co-design and software-in-the-loop testing.
HW/SW co-design is intended to aid embedded software engineers and is possible thanks
to the adoption of SystemC as modeling language and simulation kernel. A methodology
for the design and veri�cation of such SystemC models will be described in Section 6.
Software-in-the-loop testing is intended to aid control engineers and is possible thanks to
specialized interfaces and a generic co-simulation algorithm between SystemC and virtu-
ally any domain-speci�c continuous-time simulator for AMS (analog and mixed-signal)
models. The mechanism used to co-simulate SystemC models with continuous-time
simulators are described in Chapter 7.

The result of combining system level models of HW/SW and AMS components are
virtual prototypes with multi-domain simulation capabilities. The advantage of a multi-
domain system level simulation framework becomes clear when one recalls that em-
bedded systems are used to interface with their physical environment [43]. Often, they
are coupled and cannot be tested in separation. Having a framework where physical
and digital domains can interact in a correct and reproducible manner opens up new
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design and veri�cation capabilities for embedded system designers. Further details on
this co-simulation framework are described in Chapter 7.

Virtual prototypes are extremely useful for software engineers since they can be used
to verify embedded software without the need of a development board or hardware
prototype. Virtual prototypes can speed up the software development process since
embedded software can be developed and tested before any hardware implementation
is available. Even hardware-dependent software [41] development such as �rmware,
device drivers and RTOS related tasks is possible thanks to available peripheral and
processor models. Moreover, the use of virtual platforms has been gaining acceptance in
the industry. Further information on this topic can be found in [113], where a detailed
evaluation on the use of virtual prototypes in the design of embedded systems for
industrial devices was presented.

Virtual prototypes can also be used by control engineers for software-in-the-loop
testing in a multi-domain system level simulation framework. Such type of testing not
only enables the veri�cation of software, but also the veri�cation of complete embedded
systems made of application software, hardware dependent software and hardware
models.

Example

Figure 5.3 shows an example of the close-loop control application presented earlier in
Section 5.2.2. Since the application was originally developed inside a Simulink framework,
Simulink will be further utilized for this example, although any other continuous-time
simulation tool can be used for this purpose. Physical system models were not modi�ed,
whereas the embedded system model, corresponding to a PID block from Simulink’s
discrete time toolbox, was transformed into C-code. The resulting C-code, which is
simply an imperative representation of a PID algorithm, was imported into a SystemC
model and made available to Simulink as a user-de�ned block (labeled asDigital Controller
in Figure 5.3).

The block labeled as Digital Controller is a virtual platform of an embedded system.
It contains system level models of processing elements, buses, peripherals and analog
front end models. Digital I/Os and analog interfaces form the virtual platform are able
to communicate with Simulink signals.

The embedded system model from Figure 5.3 is a virtual prototype that provides
valuable behavioral and performance information about a real embedded system. Its
co-simulation together with a physical system is not only useful to verify the behavior
of the PID software application, but also to verify hardware dependent software and
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Figure 5.3: Example of a system level model of a close-loop control application

hardware models from the virtual prototype. Therefore, design faults can be identi�ed
and corrected in a very short time span, before going further into detailed design stages.
This eventually helps increase the con�dence of a design, avoiding redesign stages in
the implementation phase.

5.2.4 Specialized design �ows

The expected outcome of a system level design �ow is a clearly de�ned partition of HW,
SW and AMS component models. Components available as o�-the-shelf components do
not require further development. Those which require further development are handed
over to specialized design �ows.

Hardware models requiring implementation in an FPGA must be translated into HDL
descriptions. The translation of SystemC models to HDL descriptions can be automated
with high-level-synthesis tools [35] which are starting to become available to the common
public in the EDA market (e.g. the Vivado Design Suite [137]). SystemC models can
also be translated manually into HDL descriptions which requires a considerable design
e�ort. HDL descriptions are then handed over to specialized hardware design �ows.
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IDEs for hardware design are provided by major FPGA vendors, e.g. Xilinx, Altera, Actel,
Lattice Semiconductor and Atmel. The expected outcome is a bit �le for a speci�c FPGA
target.

Analog and mixed-signal models must be manually translated into schematics and
further developed using specialized AMS design �ows. In case detailed transient simula-
tions are required, available AMS models must be replaced by equivalent transistor-level
models that can be veri�ed by circuit simulators such as PSPICE. The expected outcome
of this phase is a circuit layout for a printed circuit board.

Embedded software may be already adequate for its implementation in a microcon-
troller or DSP. However, it may also be the case that it requires further development, in
which case it is handed over to specialized design �ow tools that provide further design
capabilities. Typical IDEs used for this purpose are IAR Embedded Workbench [67],
Code Composer Studio [126] and µVision [8]. The expected outcome is an executable
binary �le compiled for a speci�c instruction set architecture.

5.2.5 Implementation

Hardware, software, analog and mixed-signal components of an embedded system
are brought together in the integration phase for the construction of a �rst hardware
prototype. Experimental setups are also constructed in test laboratories equipped with
appropriate test equipment. Within this stage, design iterations on hardware prototypes
must be performed to correct possible design errors.

The structure of a hardware prototype in terms of HW/SW and AMS components at
this point is very similar to the one used in a �nal product. Further tests which are not
shown in Figure 5.1 are performed afterward for certi�cation purposes. More details
regarding the type of certi�cation tests required for industrial instruments can be found
in [113].

5.3 Structure of a virtual prototype

The integrated design �ow described above suggests the use of system level modeling
for enhancing available design veri�cation capabilities. It provides embedded system
designers with an e�cient modeling and simulation infrastructure to identify and solve
design �aws earlier in a design stage, allowing further decisions to be tested as many
times as required. Such tests can be performed in a very short time span and can
help verify a design without the need of hardware prototypes and experimental setups.
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Figure 5.4: Meta-structure of a virtual prototype

Eventually, the end goal of the proposed system modeling stage is to help improve
the con�dence in a design, avoiding costly and time consuming redesign cycles in the
implementation phase.

A system level design methodology must indicate how the design goals described
above can be achieved in an e�cient manner. Such a methodology must initially specify
how models are constructed and afterward tested according to a series of veri�cation
goals. This section describes the guidelines for the creation of system level models.
Chapter 6 describes a problem-oriented veri�cation strategy for system level models.

The meta-structure of a virtual prototype is shown in Figure 5.4. A virtual prototype
is created as an instance of such meta-structure. The term meta-structure was adopted
from the de�nition of meta-models [103], which refers to them as models of the structure
of models. The meta-structure describes the allowed components and interconnections
in a virtual prototype. Each block represents a component from either the physical
or digital domain (hardware and software). The allowed components are: Processing
Elements (PE), Peripherals (PER), system-on-chip (SoC) buses, Analog and Mixed-Signal
(AMS) channels and Analog Front Ends (AFE).

All components listed above are modeled as SystemC module classes and are able to
communicate with each other via ports and TLM-2.0 interfaces. Their behavior may be
described natively using SystemC processes or via external simulators. Two types of
external simulators are allowed: instruction set simulators or emulators for Processor
Models (PM) and continuous-time simulators (CT-Sim) for AMS models.

The SystemC backplane from Figure 5.4 corresponds to a SystemC top module from
which all other components are instantiated. The SystemC backplane is able to control
the simulation of the complete platform, making it the simulation master, or may yield
control to other simulators, making it a simulation slave. Further implementation details
on this topic are presented in Chapter 7.
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Components from the meta-structure can be instantiated as many times as required
with the exception of the AMS Channel which can only be instantiated once. These
instances are used to construct a virtual prototype. Thus, a virtual prototype is consistent
as long as it follows the interconnection scheme de�ned by the meta-structure.

An example of a virtual prototype instance is shown in Figure 5.5. The virtual prototype
is a system level model of an heterogeneous system with two Processing Elements (a
microcontroller and a DSP), one SoC bus, four Peripherals (HMI, memory, DAC and ADC)
and two Analog Front Ends (used to connect ADC and DAC peripherals to sensing and
actuating elements, respectively). The behavior of the sensing and actuating elements is
described by some continuous-time simulator.

5.3.1 Processing elements

Three types of processing elements are de�ned and can be instantiated as many times as
required in a virtual prototype. They are hardware models of software programmable
components (DSP and microcontroller architectures) and hardware programmable com-
ponents (custom FPGA architectures). Their behavior is described by C/C++ based
embedded software in the form of a tasks and Interrupt Service Routine functions.

Figure 5.6 shows the structure of the three available processing elements PEx. The
basic elements of functionality are tasks Tx and interrupt service routines ISRx. The
basic communication elements between tasks and interrupt service routines are channels
cx.

PE1 and PE2 processing elements

The structure of PE1 and PE2 elements is shown in Figures 5.6a and 5.6b respectively.
They are declared as native SystemC modules. PE1 and PE2 elements are equivalent in
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terms of their processing capabilities. Tasks are declared as SystemC processes. Interrupt
service routines are declared as SystemC methods sensitive to events on interrupt ports
PIntExt_x. Channels are declared as shared variables or as semaphores from SystemC
primitive channel mechanisms.
PE1 and PE2 elements are approximately-timed models with no micro-architectural

descriptions. Time annotation is done manually via SystemC wait() function calls inside
tasks and interrupt service routines. More advanced time annotation techniques such as
automated source-level code annotation [116] are not currently supported, but could be
implemented.

The di�erence between PE1 and PE2 elements are their external communication
interfaces. PE1 elements use traditional SystemC ports to communicate with external
primitive channels. PE2 elements can also use traditional SystemC ports, but they can
additionally use TLM interfaces for communicating with TLM compatible hierarchical
channels.

PE3 processing elements

The structure of a PE3 element is shown in Figure 5.6c. A PE3 element is declared
as native SystemC modules, but its functionality is declared outside SystemC. This is
possible since PE3 elements act as wrappers for encapsulating the functionality of pro-
cessor models PMx executing on external simulators. The shaded block in Figure 5.6c
represents a cross-complied embedded software application. Therefore, functionality
is described using embedded software which is cross-compiled for a particular micro-
controller architecture. The functional elements and internal communication elements
available depend on the mechanisms supported by the selected RTOS.

The processor models from PE3 elements use emulation technologies to execute binary
source code for speci�c microprocessor or DSP instruction sets. They may be instruction-
or cycle-accurate, depending on their underlying technology. Their simulators have high
performance (tens or hundreds of MIPS) in comparison to interpreted instruction set
simulators and are available in the commercial and academic domains. Time advances in
�xed steps of time called quantum. The amount of assembly instructions a simulator can
execute per quantum depends on the type of simulator (instruction- or cycle-accurate)
and on the processor speed, which is typically a constant parameter throughout a
simulation.
PE3 elements are allowed to communicate using SystemC ports and TLM interfaces.

The access to these ports and interfaces is done via callback functions declared inside
the PE3 SystemC module. These callback functions route incoming and outgoing
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communication requests from an external processor model to their respective SystemC
port or TLM interface.

5.3.2 SoC buses

The communication between digital components is handled via a system-on-chip (SoC)
bus. Whenever a processor requires performing read/write operations on registers
belonging to peripherals or save/load information to external memories, it does so by
accessing their associated address in the memory map. Such requests are handled by
a bus model and are assigned payloads which include some of the attributes found in
typical memory-mapped bus protocols (command, address, data, byte enables, single
word transfers, burst transfers, streaming, and response status [70]).

Bus models are provided with multiple TLM-2.0 target and initiator socket interfaces
used to route read/write communication requests. They are shown in Figure 5.6 as the
components labeled TLM BUS.

The communicant functionality of SoC buses are de�ned inside SystemC hierarchical
channels. Their complexity may vary from simple loosely-timed bus models that imple-
ment the default payload from the TLM standard [70] and up to cycle-accurate models
such as the AMBA bus model [27].

5.3.3 Peripherals

Peripheral models are system level models containing structural and behavioral descrip-
tions of embedded system components such as memories, digital and analog I/O modules,
serial interfaces, external timers, interrupt controllers, etc. In terms of their structure,
they are modeled as SystemC modules with TLM-2.0 interfaces for memory-mapped
communication and simple output ports for interrupt triggering capabilities. Peripheral
models are provided with a TLM-2.0 target socket interface used to respond to read-
/write communication requests. The way in which processors, buses and peripherals
interconnect via TLM-2.0 interfaces in a virtual prototype can be inferred from Figure
3.8, where processor models act as initiators, buses as interconnects and peripherals as
targets.

All TLM-2.0 based communication in a virtual prototype is done via a memory-
mapped bus model that mimic the way in which communication is performed in real
embedded systems. They are accessed via memory-mapped registers, as in real embedded
systems, thus available software drivers can be reused by the processing elements
that communicate with them. In memory-mapped communication, register addresses



86 5 Guidelines for the Construction of Virtual Prototypes

Interrupt 
Signal

PER Module

PIntTrig

Memory Map

TLM
Data

Figure 5.7: Peripheral model

belonging to peripherals and addresses belonging to external memories are associated to
a processor’s memory map. A memory map contains the range of addresses accessible
to a processor, such as addresses for the processor’s internal memory space and control
registers, as well as addresses mapped to peripherals’ registers and external memories.

Their functionality of peripheral models is modeled based on technical speci�cations
available from IC providers or as custom components describing hardware accelerators
in FPGA implementations. Behavioral models describe the functionality of peripherals
whenever read or write requests are performed on address spaces owed by them. In
addition, behavioral descriptions are allowed to include timing information regarding
the communication and execution of behavioral descriptions. For instance, an external
memory model may indicate the amount of time a processor must wait after requesting
a load or store operation on it. Such timing information can be added via SystemC wait()
function calls.

5.3.4 AMS channel

An AMS Channel acts as a coordinator between SystemC and external continuous-time
simulators (CT-Sim) for AMS models. It contains a set of coordination laws, namely
co-simulation schemes that specify how external simulators are initialized, parametrized,
controlled and terminated, and how data and time are synchronized. Any number of CT
simulators can be connected to an AMS Channel, as shown in Figure 5.4, as long as they
provide suitable API function for control and data synchronization. Most commercial
CT simulators provide such API functions, e.g. SMASH from Dolpin Integration, Saber
from Synopsis, MATLAB /Simulink from Mathworks, Allegro from Cadence, LTspice from
Linear Technologies.

Channels are developed as SystemC wrappers where co-simulation schemes are
implemented. Deriving such schemes requires an expert knowledge of the underlying
models of computation and their simulator engines. Further implementation details on
this topic are presented in Chapter 7.
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5.3.5 Analog Front Ends

Peripherals that require communication with an external continuous-time simulator
must be connected to an AFE for enabling data compatibility. They are I/O peripherals
such as ADC, DAC, GPIO and interrupt controllers, which in the real world are in contact
with physical processes.

AFE models are developed as SystemC interfaces that connect to AMS Channels as
shown in Figure 5.8. The behavior of an AFE model is described by the AMS Channel it is
attached to. Such behavior de�nes simple data conversion activities such as quantization
and encapsulating of data into compatible data types. Moreover, AFE models of ADC and
DAC peripherals can be linked to AMS channels that de�ne additional data conversion
parameters such as conversion gain, single-ended or di�erential I/O, digital format,
among others. Further data conversion parameters can be added based on technical
data-sheets of I/O peripherals.





6
Design Methodology and
Problem-Oriented Veri�cation

This chapter describes a system level design methodology and a problem-oriented
veri�cation approach based on virtual prototyping. It is applicable throughout initial
design stages and up to the implementation of a system in hardware prototypes and
experimental setups. It also allows for top-down or bottom-up veri�cation approaches in
order to target speci�c veri�cation goals. The methodology suggests a series modeling
and simulation activities that can be performed at di�erent design stages and their
expected outcome. It enables the veri�cation a design in various stages to evaluate
the impact that di�erent design decisions may have on it. Most importantly, it enables
e�cient means to detect and solve problems that may occur during di�erent states of
the design of embedded systems.

6.1 Design and veri�cation methodology

This section proposes a problem-oriented design and veri�cation approach based on the
creation of simulation models for identifying and solving design problems during the
development process of embedded systems. The abstraction levels in which models are
described are de�ned according to a set of veri�cation goals related to speci�c design
problems.

89
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6.1.1 Modeling abstractions

The key aspect of any model-based design approach is �nding the right modeling
language and abstraction in order to solve particular design challenges. Figure 6.1 shows
the main abstraction layers for constructing virtual prototypes. The digital domain
contains models of embedded system components such as microcontrollers, buses,
memories, AD and DA converters, interrupt controllers and other common peripherals.
They are constructed using SystemC and OVP models. The physical domain contains
models of analog front-ends (AFE) from embedded systems, such as passive and active
electronic components, and physical plant models coming from di�erent domains. They
are constructed using MATLAB Simulink and VHDL-AMS models. All these models
and their native simulators can be seamlessly coupled by the co-simulation framework
described in Chapter 7 in order to obtain the behavior of full systems.

Layers A, B and C from Figure 6.1 correspond to incremental re�nements on the struc-
ture and behavior of a virtual prototype. The veri�cation goals for each layer are di�erent
and depend on the development stage. Design activities start with a high abstraction in
order to obtain outputs that can be veri�ed according to speci�cations in a very short
time span. Further steps require the addition of more details into designs related to their
implementation; each step also providing outputs for veri�cation purposes.

The design must not necessary follow a top-down approach. It can also follow a
bottom-up approach to target speci�c veri�cation goals. Each layer can be implemented
independently and scaled according to the veri�cation goals explained in the following
sections. Any abstraction in between the three main de�ned abstractions is valid as
long as it follows the modeling guidelines described in Section 5.3. Therefore, embedded
system developers are also free to implement any of these layers independently and
scale them according to particular design challenges or veri�cation goals.

6.1.2 Concept-Oriented virtual prototype

A SW Stack is de�ned as a hardware independent implementation developed in
C/C++ that describes the functionality of an application that will later on be executed in
an embedded system. It typically describes signal processing and control algorithms
implemented manually or generated automatically from higher-level modes of state
charts and data �ow models.

The SW Stack is mapped to a PE1 element. In order for it to interact with the
physical domain and vice versa, read/write functions from an AMS Channel serving
as I/O interface are available. Data going in and out the physical domain must pass
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Figure 6.1: Virtual prototype abstraction layers: (A) Concept-Oriented, (B) Architecture-
Oriented, (C) Implementation-Oriented

through DAC and ADC Analog Front Ends (AFE) respectively. The model complexity of
the physical domain can be as complex as required, e.g. a plant described as a transfer
function with noise disturbances and an AFE as a Sigma-Delta converter.

Veri�cation goals

The veri�cation goal on this level is the correct SW stack application functionality.
Common problems that can be identi�ed are the incorrect implementation of control or
signal processing algorithms and deadlocks. Initial studies on the in�uence of noise and
distortions from the physical process on the SW stack can be carried out. Since the SW
Stack can also include estimates of timing behavior, its in�uence on the physical process
can be observed. The advantage of this level of modeling abstraction is high simulation
speed, thus a wide range of scenarios can be easily simulated.
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Design activities Test activities

• Partition between digital and
AMS systems

• Separation of activities into tasks
and de�ne means for
communicating between them
(semaphores, mutex, FIFOs, shared
variables)

• Determine number of analog and
digital I/O ports needed for a PE

• Determine number of interrupts
needed and create respective ISR
functions

• Test �xed-point or �oating point
implementation of algorithms

• Determine e�ects of quantization

• Test in�uence of noise sources
on signal processing algorithms

• Determine e�ects of sampling
rate

• Perform scripted Monte Carlo
style analysis

Timing and task scheduling Veri�cation goals

• Specify time passing according
to cyclic tasks. No performance
information can be obtained, all are
estimates.

• Non-preemptive scheduling of
tasks done by SystemC scheduler

• Verify functionality of signal
processing algorithms

• Verify the robustness of
algorithms in noisy and fault prone
scenarios

Table 6.1: Concept-Oriented virtual prototype

Table 6.1 provides a summary of the design, test and veri�cation activities supported
by Concept-Oriented virtual prototypes.

6.1.3 Architecture-Oriented virtual prototype

An architecture-oriented virtual prototype has a clear separation between communi-
cation and computation components. In this case, a SW stack is mapped to a PE2

element. Computation is done by the SW stack, and communication to peripherals
is done via device drivers that access memory mapped I/O addresses. Peripherals are
allowed to request polling from the SW stack via interrupt driven I/Os that trigger ISR
calls in the SW Stack. Communication details are completely hidden to the SW Stack
and are handled by a SoC Bus model. An architecture-oriented virtual prototype closely
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resembles HW and SW components of a real embedded system. Therefore, embedded
software and drivers can be created or reused from available legacy code.

I/O peripherals such as a VIC (Vector Interrupt Controller: the term is taken from
ARM architectural descriptions), GPIO, UART, ADC and DAC are added along with a
SoC bus model, as shown in Figure 6.1. Functionality of peripherals is modeled based
on technical speci�cation available from IC providers. Typically, an engineer does not
need to model the complete functionality of a peripheral, thus the modeling e�ort is low.
Additionally, SW drivers for each peripheral must be created to simplify the development
of embedded software in the SW Stack.

Function calls to the co-simulation API are removed from the SW Stack and are placed
in ADC and DAC peripherals. A SW Stack will now have access to I/O data from the
physical domain via SW drivers that access ADC and DAC components. Additionally,
due to the use of SystemC and TLM 2.0 standards, timing behavior estimates of the SW
Stack, bus transfers and I/O peripherals can be included in the models.

Veri�cation goals

The veri�cation goal on this level is the functionality of the communication layer. It
provides visibility on the bus and the transactions between the SW stack and peripherals.
Typical problems that can be identi�ed are communication bottlenecks caused by a high
number of calls to certain peripherals. SW drivers can be developed and tested at this
point. Since the digital model also contains estimates for processing and communica-
tion times, their in�uence on the physical process and vice versa can be observed on
simulation traces.

Table 6.2 provides a summary of the design, test and veri�cation activities supported
by Architecture-Oriented virtual prototypes.

6.1.4 Implementation-Oriented virtual prototype

In an implementation-oriented virtual prototype, the SW Stack is assigned to a PE3

element. The SW Stack contains application and hardware dependent software compiled
for a speci�c instruction set architecture. A processor emulator is able to e�ciently
execute the binary code in an instruction-accurate manner. The same code can be later
on executed by a real processor.

The reason for constructing such complex embedded system models is because they
are able to execute unmodi�ed production level code compiled for a speci�c instruction
set architecture. This makes it possible to simulate compiled code which provides
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Design activities Test activities

• HW/SW partitioning

• Model peripheral models and
develop their corresponding
drivers

• De�ne how digital
communication is done (payload)

• De�ne peripheral memory map

• De�ne peripheral pooling
mechanisms

• Determine required
communication throughput

• Test complex communication
buses

• Monitor bus activity and �nd
bottlenecks

Timing and task scheduling Veri�cation goals

• Specify time passing according
to cyclic tasks. No performance
information can be obtained, all are
estimates.

• Non-preemptive scheduling of
tasks done by SystemC scheduler

• Verify functionality of device
drivers

• Verify functionality of hardware
dependent communication stacks

Table 6.2: Architecture-Oriented virtual prototype

approximate-timing information regarding the performance of a real embedded system.
In addition, the simulation performance of such virtual prototype is orders of magnitude
higher than cycle-accurate ISS and VHDL models.

An implementation-oriented virtual prototype provides the necessary HW infrastruc-
ture to natively support the execution of an RTOS inside the microcontroller module.
However, it is often the case that the memory mapped address space of the HW infras-
tructure does not match exactly that of an available RTOS, in which case porting e�ort is
required. SystemC constructs that were used in the SW Stack of an architecture-oriented
virtual prototype, such as semaphores, queues, and timed delays, are typically supported
by any RTOS. Therefore, the advantage of using an RTOS is a straightforward translation
of the SW Stack to a speci�c RTOS implementation. SystemC is no longer used for
scheduling and execution of the embedded software. Instead, an RTOS speci�c scheduler
is used to natively execute computations.
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Design activities Test activities

• Execute native binary code

• Develop hardware dependent
software functions

• Port available hardware
dependent legacy code

• Debug native instructions of an
instruction set

• Determine the e�ects of
interrupt priorities and interrupt
nesting

• Determine the e�ects of task
priorities (priority inversion)

• Memory footprint analysis
(stack, heap)

Timing and task scheduling Veri�cation goals

• Passing of time according to
assembly instructions being
executed. Provides
instruction-accurate timing
information for pro�ling.

• Preemptive scheduling of tasks

• Verify hardware dependent
software

• Verify RTOS implementation

Table 6.3: Implementation-Oriented virtual prototype

Veri�cation goals

The veri�cation goals on this level are the RTOS integration and the full system func-
tionality. It is particularly useful to understand the complex interaction between the
physical domain and an RTOS. Common problems that can be identi�ed are stack over-
�ows and priority inversion problems. Since the embedded software is already complied
for a speci�c microcontroller architecture, metrics for a HW implementation such as
memory footprint of an RTOS and its embedded software are easily obtained. Estimate
performance metrics can also be obtained, however they must be interpreted with care
since various factors can lead to high inaccuracies. Such considerations are: (1) dynamic
e�ects of pipeline and cache are not considered by a processor emulator and (2) timing
for peripherals and bus delays depend on the correctness of the estimates given by an
engineer.

Table 6.3 provides a summary of the design, test and veri�cation activities supported
by Implementation-Oriented virtual prototypes.



96 6 Design Methodology and Problem-Oriented Veri�cation

System 
Design 

Product 
Deployment 

System 
Integration 

HW/SW 
Integration 

HW/SW 
Implementation 

HW/SW 
Requirements 

Analysis 

Preliminary 
HW/SW 
 Design 

Detailed  
HW/SW 
 Design 

System 
Requirements 

Analysis 

(A) Concept-Oriented VP 

(B) Architecture-Oriented VP 

(C) Implementation-Oriented VP 

Product Test 

Integration Test 

Unit Test 

System Test 

Figure 6.2: Virtual prototypes in the V-Model

6.2 Support for the development life-cycle

The advantage of the problem-oriented design methodology described above relies in
the fact that it can be implemented at any point of an embedded system development
cycle; speci�cally where design problems need to be identi�ed and solved. The method-
ology suggests the use of additional modeling and simulation tools which have a low
implementation e�ort. Designers may opt to use them according to design problems
and their veri�cation goals.

Figure 6.2 shows the main abstraction layers for constructing multi-domain virtual
prototypes and the design stages, according to the V-Model, in which they can be
used. Multi-domain virtual prototypes provide valuable support for testing activities
throughout a the development life-cycle as shown in the V-Model. The advantages of
adopting virtual prototypes in a development process are:

1. Support the current design stage by providing multi-domain system level simu-
lation models with tracing, debugging and pro�ling capabilities

2. Test normal operation and fault condition scenarios in a simulation environment
without the need of hardware prototypes and experimental setups

3. Support integration and test activities according to the V-model by providing
reference models for unit, integration and system tests
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6.2.1 System tests

A concept-oriented virtual prototype can be used as a reference for system tests. System
tests are intended to verify the full behavior of a system. They require testing normal
and fault condition scenarios which would be otherwise impossible with real hardware
prototypes and experimental setups. These scenarios can be reproduced in simulations
and e�ciently tested together with a concept-oriented virtual prototype.

The high abstraction in which concept-oriented virtual prototypes are developed
make it possible to test in a very short time scenarios which might not be feasible in real
life. Most of these scenarios deal with the uncertainties that physical models introduce
in embedded systems.

6.2.2 Integration tests

An architecture-oriented virtual prototype de�nes the structure of HW/SW and AMS
components of a system. It provides an e�cient way to specify and test communication
requirements between components. For example, it provides means for specifying the
payload used for a digital communication protocol, the polling rate for a peripheral, the
sequence required for a device driver to read data from a peripheral, the behavior of an
Interrupt Service Routine, etc. The advantage of having such virtual prototype is that it
can be used as reference for integration tests.

A way to perform integration tests is to reuse test scenarios that were used to test an
architecture-oriented virtual platform. Therefore, the integration test goal is to verify
that results obtained from a hardware prototype and experimental setup comply with
those speci�ed by the architecture-oriented virtual prototype.

6.2.3 Unit tests

During unit tests, individual software applications are tested with respect to their inter-
face de�nition using module test functions. The goal is to verify their correct internal
object handling and behavior. An implementation-oriented virtual prototype can be
used for performing unit-tests when a hardware implementation is not available. Such
virtual prototypes are able to execute native binary code in an instruction-accurate
manner, which is enough for unit-testing purposes. Thus, unit tests executed in an
implementation-oriented virtual prototype will behave the same way as it would do in a
hardware implementation.
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Software applications that make use of hardware-dependent software (see Figure 2.8)
can also be subject for unit testing in an implementation-oriented virtual prototype. This
is possible since virtual prototypes contain functional models of hardware. These models
are typically peripheral models that respond to requests generated by software appli-
cations. It must be taken into consideration that such hardware models are commonly
simpli�ed models providing basic functionalities. Therefore, testing hardware-dependent
software that requires complex interactions with hardware components might not always
be possible.

The bene�t of performing unit-testing in an implementation-oriented virtual prototype
is that testing can be performed before a hardware prototype is available. However, unit
testing can only be as reliable as the models that compose the virtual prototype. This
means that all models used must have been validated together with their real counterparts.
Processor models available from EDA commercial suppliers are validated and reliable
models. This is not the case for peripheral models, which must be manually modeled
and validated. The implementation e�ort is initially high, but as more components are
added to a library and reused in other projects, the e�ort decreases.



7
Co-Simulation Framework

This chapter describes the co-simulation framework used by the virtual prototypes
and veri�cation methodology described in this work. The co-simulation algorithm
developed for this purpose is described and its implementation for coupling the following
simulation engines: SystemC/Simulink and SystemC/SMASH. In both cases, the modeling
and simulation capabilities inherent to each tool were not a�ected. A con�guration
management software is also described, which eases the e�ort of interconnecting models
pertaining to di�erent simulators and helps con�gure available debugging, tracing and
pro�ling mechanisms.

7.1 Overview

The co-simulation framework described in this chapter is shown in Figure 7.1. It is
the result of coupling specialized simulation tools for HW/SW co-design of embedded
systems and simulation tools for multi-domain physical systems. Its simulation engine
relies of Discrete-Event (DE) simulators for embedded systems models and Continuous-
Time (CT) simulators for multi-physical domain models. The coupling is done with a
DE/CT co-simulation algorithm that de�nes the necessary control and communication
semantics.

99
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Figure 7.1: Co-simulation framework for virtual prototypes

7.1.1 Supported modeling and simulation tools

The modeling and simulation tools used in this work were selected according to best-
practices in the industrial automation domain. MATLAB /Simulink and the SMASH [40]
simulator for VHDL-AMS were selected as CT simulators. Both simulators provide
e�ective means for describing physical systems. In addition, these simulators already
form part of current design practices in the industrial automation domain. This is
especially true in case of Simulink, which has been for many years a de-facto tool for
algorithmic modeling and simulation.

SystemC was selected as DE simulator since it provides useful means for describing
hardware and software components of embedded systems. SystemC suggests a promising
implementation future in the industrial automation domain. According to current
research publications, SystemC is already used for embedded system design in R&D
activities in companies such as ABB [101], Siemens [53] and Bosch [66, 77, 78].

The commercial emulation tool Open Virtual Platforms (OVP) [73] from Imperas was
selected as de-facto emulator for processor models of embedded systems. This implied no
additional adaption e�ort to the co-simulation algorithms described in this chapter since
all OVP models are provided with SystemC wrappers. This means that the execution of
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Figure 7.2: Tool �ow used for construction, debugging and co-simulation of virtual proto-
types

OVP processor models is encapsulated by wrappers, which are subsequently controlled
by the SystemC scheduler. Therefore, the execution of OVP processor models can be
directly controlled through the SystemC scheduler.

7.1.2 Tool �ow description

Figure 7.2 describes the tool �ow used for the construction, debugging and co-simulation
of virtual prototypes. A virtual prototype is constructed using libraries and DLLs
from SystemC and OVP processor emulation tool. The Microsoft Visual Studio
C++ development environment is used for creating and debugging hardware aspects
of a virtual prototype. Embedded software code is developed in an Eclipse IDE and
complied/linked with a GCC cross-compilation tool chain. GDB is used for debugging
software applications loaded into a virtual prototype. This is possible thanks to a built-in
GDB server in the OVP processor emulation tool. Finally, the co-simulation between
digital components of embedded systems and multi-domain physical models is done
between SystemC and the continuous-time simulators MATLAB /Simulink and SMASH.
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7.2 Modeling formalisms and their simulators

DE and CT simulators have been long studied in modeling and simulation theory [138].
A review of their underlying models of computation is presented ahead. This information
will be afterward used to infer their co-simulation semantics.

7.2.1 Discrete-Event (DE) simulation

Models of the digital domain operate on a discrete time basis with outputs that are
piecewise constant function of time as illustrated in Figure 7.3. In DE simulators, time
advances according to scheduled events stored inside the simulator’s event queue. Each
event is assigned to a time-stamp that de�nes the future point in simulation time in
which it will be executed. Each time an event is executed, all processes sensitive to the
event are executed. This may lead to changes in the event queue, i.e. new events can be
noti�ed and existing ones can be rescheduled or canceled.

The hardware simulators VHDL, Verilog and SystemC are examples of DE simulators.
Hardware simulators use additionally the notion of delta-cycles to simulate conceptually
concurrent processes. A �nite number of delta-cycles is allowed to execute in the current
time step tc without increasing simulation time. A delta-cycle is allowed to �nish after
all events scheduled for the current time step tc have been executed, i.e. there are no
events marked with tc inside the event queue. Afterwards, simulation time is allowed to
advance to the next scheduled event tn, equivalent to the �rst event in the event queue.
This is followed by the execution of the event inside a new delta-cycle. The following
conclusion is obtained:

De�nition 7.1. In a DE simulation, the next time step tn is obtained by examining the
simulator’s event queue after the last delta of a current time step tc has been executed.
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7.2.2 Continuous-Time (CT) simulation

Models of the physical domain are described using sets of simultaneous di�erential and
algebraic equations that are piecewise continuous functions of time as illustrated in
Figure 7.4. CT simulators are used to obtain the behavior of continuous dynamic systems
expressed in terms of di�erential and algebraic equations. The heart of any CT simulator
is a numerical integration method that discretizes di�erential equations and transform
them into di�erence equations that can be solved by a computer.

A variety of numerical integrations are available and classi�ed as �xed-step or variable-
step solvers. Fixed-step simulators perform numerical integration on �xed integration
steps which must be carefully selected according to the application. A too big integration
step might lead to inaccuracies or even unstable behavior, while a too small integration
step will lead to very long computation times. Most importantly, �xed-step solvers are
not able to accurately detect zero-crossings required for DE/CT co-simulation. Therefore,
�xed-step solvers are not adequate for DE/CT co-simulation and are not considered in
this work.

On the other hand, variable-step solvers automatically adapt the integration time
step according to the behavior of a system. Figure 7.5a shows how a variable step
solver decreases the simulation step size hn to increase accuracy when continuous states
change rapidly. The solver increases the step size up to hmax when continuous states
change slowly in order to save simulation time. Variable step solvers are chosen for
DE/CT co-simulation since they are e�cient, provide accurate results and can locate
zero-crossing in an accurate manner. Most commercial CT simulators implement variable
step solvers, e.g. PSPICE electric circuit simulators, Simulink and SMASH.

Discontinuities in dynamic systems are speci�ed using conditions such as thresholds.
When these conditions are ful�lled, they change the dynamic behavior of the system.
Zero-crossing detection mechanisms are a way to specify and detect such conditions.
A zero-crossing detector determines the exact simulation time a continuous variable
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Figure 7.5: Capabilities of CT simulators

crosses the vertical axis (the o�set of the vertical axis can be adapted for specifying
a threshold). A zero-crossing detector relies on a bisection algorithm that adapts the
integration step until the crossing is detected with a de�ned accuracy. For example, in
Figure 7.5b, a discontinuity is speci�ed whenever f1(t) crosses a de�ned threshold value.
Once this happens, a zero-crossing detector will �nd the time of the crossing, which
afterward trigger a state event. A state event speci�es a new dynamic behavior of the
system, in this case, as a new set of equations which must now be solved to obtain the
behavior f2(t). Therefore, a state event is de�ned as:

De�nition 7.2. In CT simulation, a state event produces a discontinuity in the dynamic
behavior of a system. It is triggered when a condition on a continuous variable, e.g. a
threshold, becomes true.

7.3 DE/CT co-simulation

A generic DE/CT co-simulation scheme is presented ahead. It is generic since it is based
on the operation principles of DE and CT simulators, regardless of their implementation
by a speci�c simulator. Further in this chapter, its implementation is described for
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coupling the DE simulator SystemC with the CT simulators Simulink and Smash. In
both cases, the generic DE/CT co-simulation scheme presented ahead was followed.

The proposed approach is intended to couple a DE simulator to multiple CT sim-
ulators in a one-to-many approach as shown in Figure 7.6. It relies on a simulation
coordinator responsible for executing the control and communication semantics of the
co-simulation scheme. The location of the coordinator in�uences the implementation
of the co-simulation scheme, but it does not alter the semantics of the co-simulation.
The co-simulation scheme shares the same operation principles as the simulation cycles
of DEV&DESS [138] and VHDL-AMS [30]. However, the proposed approach is not in-
tended to execute inside a single framework. Instead, the proposed DE/CT co-simulation
approach is designed to coordinate the simulation of multiple models interconnected
between each other and distributed among multiple simulation frameworks. A further
advantage is that the debugging and visualization capabilities of the simulation frame-
works being coupled are not a�ected. This is intended to increase the acceptance of
co-simulation among embedded system developers by providing extensions to com-
monly used simulation frameworks rather than providing a complete new set of tools.
The �exibility provided by this approach is essential when multiple domain-speci�c
languages are used for the design of embedded systems.

7.3.1 Principles of simulation coupling

Co-simulation is a common approach for addressing the heterogeneity of models whose
behavior can otherwise not be obtained by a single simulation engine. This is the case
for applications such as embedded control systems and cyber-physical or hybrid systems
where the digital and physical domains are tightly coupled and cannot be tested in
separation.

A co-simulation scheme de�nes the interoperation semantics for control and com-
munication required for coupling two or more simulation engines. The execution of
a co-simulation scheme is assigned to an entity called coordinator . A coordinator can
be a software application running as an independent process (Figure 7.6c) or it can be
embedded into one of the simulation engines (Figures 7.6a and 7.6b). A coordinator
is responsible for executing the control and communication semantics de�ned by the
co-simulation scheme.

The control semantics de�ne how simulators are executed and how their simulation
time is allowed to advance. The execution of multiple simulators may be done through
their alternate or parallel execution. Most importantly, the control semantics specify
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Figure 7.6: Examples of coordinators for a DE/CT co-simulation

how time advances in each simulator, that is, how and up to which point each simulator
is allowed to execute or interrupt its own execution.

On the other hand, the communication semantics specify how and when information
must be shared between simulation engines. Communication is done through application
programming interfaces (APIs) connected via 1 such as shared memory or TCP/IP. Most
importantly, the communication semantics de�ne when and what type of information
must be transferred between simulators in order for them to interoperate in an e�cient
and coherent manner.

The e�ort involved in creating and implementing a co-simulation scheme is consider-
able. Such e�ort can be reduced if a generic co-simulation scheme is initially devised
based on the operation principles of the simulators involved. These principles are also
called models of computation. Such scheme can be implemented afterward for all simula-
tors that follow the same models of computation. The work of Zeigler [138] and Lee[83]
demonstrates that only a handful of models of computation are in fact needed to describe
almost any simulation engine. Therefore, when elaborating new co-simulation schemes,
it is convenient to focus on the underlying models of computation of the simulation
engines involved, rather than on the speci�c details of each simulator.
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7.3.2 Implementation requirements

The implementation of the DE/CT co-simulation scheme described in Section 7.3 is
done inside a program entity called coordinator. A coordinator (refer to Figure 7.6)
is a set of functions embedded into one of the involved simulators or an independent
application running as an external process. The location of the coordinator does not
a�ect the principles of the co-simulation. Instead, it de�nes the technical details of
the implementation, e.g. the APIs and middleware used to communicate and control
simulators.

The requirements for selecting appropriate DE and CT simulators for DE/CT co-
simulation are:

1. All DE and CT simulators selected must be either �exible enough to support the
embedding of a coordinator or provide appropriate APIs to control them by an
external coordinator.

2. The requirements for a DE simulator are:

2.1. Provide event introspection capabilities. This means that the event queue of
the simulator can be consulted at any point of the simulation.

2.2. Provide means to detect the last delta-cycle of a current time step.

2.3. Be able to execute up to desired points in simulation time and resume execu-
tion afterwards.

3. The requirements for a CT simulator are:

3.1. Its simulation engine must rely on any type of variable-step numerical inte-
gration methods.

3.2. Provide zero-crossing mechanisms to detect with precision discontinuities
in models.

3.3. Be able to execute up to desired points in simulation time and resume execu-
tion afterward.

7.3.3 Simulation cycle

The semantics of the DE/CT co-simulation scheme are informally described in order to
be understood by most readers, i.e. engineers and physicists familiar with simulation
frameworks for digital and physical systems. Figure 7.7 is used to describe the DE/CT
co-simulation cycle:
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Figure 7.7: DE/CT co-simulation cycle

1. The coordinator indicates the DE-Sim to initialize which will trigger the execution
of its internal processes until they yield. The event queue is now populated with
time events.

2. The coordinator looks into the DE-Sim event queue and determines the next
synchronization point tn (refer to De�nition 7.1). It determines tn after �ltering the
DE-Sim event queue in order to �nd scheduled events that require synchronization
with CT simulators. Since all events are endowed with the name of their owner
process, the coordinator uses this information to identify them. This requires
registering the name of such processes to the coordinator before simulation starts.
Not doing so would imply forcing unneeded synchronization points which would
considerably decrease simulation performance.

3. The coordinator is responsible for triggering the execution of CT-Sim1 and CT-
Sim2. This happens in an alternate manner, using time advance requests that
trigger the execution of each CT simulator up to the next point in simulation time
tn. Each CT simulator returns an acknowledge message containing one of the
following responses:
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3.1. The completion of the execution up to time tn.

3.2. The occurrence of a state event (refer to De�nition 7.2) at a time tse < tn. In
which case the CT simulator pauses its execution at tse.

4. If a state event was detected, the coordinator must replace the next simulation
time with the time of the state event tn = tse. The coordinator registers the new
synchronization step to DE-Sim as a new timed event and adapts the simulation
time of the CT simulators as follows:

4.1. If CT-Sim1 was responsible for the state event, the execution of CT-Sim2 will
be instructed to execute up to the new tn value.

4.2. If CT-Sim2 was responsible for the state event, CT-Sim1 must backtrack to
the new tn. Backtracking involves bringing the state of a simulator to a
previous point in time. However, if the simulation engine of CT-Sim1 does
not support backtracking, then CT-Sim2 should not be allowed to trigger
state events. Similar considerations must be taken if further CT simulators
with state event detection capabilities are used.

5. Once all CT simulators have reached tn, DE-Sim is allowed to advance up to tn,
thus catching up in time with the rest of the simulators. Any number of delta-cycles
may be executed by DE-Sim in which data synchronization with CT simulators
is allowed. The simulation cycle returns to STEP #2. and is repeated until the
simulation end has been reached or when the DE-Sim event queue becomes empty.

The transition diagram of Figure 7.8 shows the way in which simulators advance in
a coupled DE/CT simulation. Speci�cally, it shows how the alternate execution of a
DE simulator (DE-Sim) and two CT simulators (CT-Sim1 and CT-Sim2) can be coupled
for enabling DE/CT co-simulation. The same principles apply for any number of CT
simulators coupled to a DE simulator. The time points (t0, tn1, tn2, tn3, ...) represent
synchronization points that all simulators must reach in order to share information.
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Figure 7.8: Transition diagram of DE/CT simulators

7.3.4 State event detection

State events are a useful mechanism to specify and detect discontinuities in AMS models.
A common application is for modeling interrupt signals in AMS models which in�uence
the execution of digital models. These interrupts are triggered whenever a continuous
variable crosses a de�ned threshold. The time of the crossing must be �rst precisely
detected and afterward added to the even queue of a DE-Sim in order to be processed at
the exact simulation time in which it happened.

The e�ects of state events on the co-simulation cycle must be well understood in
order to bene�t from their advantages. This was already described in STEP #4. of the
co-simulation cycle and will be further clari�ed with an example. Figure 7.9 is an excerpt
from the transition diagram of Figure 7.8. For sake of simplicity, one DE-Sim and one
CT-Sim are shown. In this example, the transition of a DE/CT co-simulation is as follows:

• Interval [t0, tn1] with no state events:

- 1© DE-Sim initializes all its internal processes, afterward tn1 is selected.
CT-Sim is given input data DDE and requested to run up to tn1.

- 2© CT-Sim simulates up to tn1 without any state event happening.

- 3© CT-Sim acknowledges the time advance and gives DE-Sim input data
DCT .

- 4© DE-Sim changes its current time to tn1 and executes the respective delta-
cycles.
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• Interval [tn1, tn2] with state events:

- 5© DE-Sim has �nished executing all delta-cycles for tn1 and tn2 is selected.
CT-Sim is given input data DDE and requested to run up to tn2.

- 6© A state event at time tse < tn2 is detected by CT-Sim and stops at tse.

- 7© CT-Sim returns tse and gives DE-Sim input data DCT .

- 8© DE-Sim changes its current time to tse and executes the respective delta-
cycles.

• Interval [tse, tn2] with no state events:

- 9© DE-Sim has �nished executing all delta-cycles for tse and a new tn2 is
selected. CT-Sim is given input data DDE and requested to run up to tn2.

- 10©, 11©, 12© are equivalent to steps 2©, 3©, 4©.
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Figure 7.9: Exemplary transition diagram showing a state event detection

7.4 SystemC backplane

The open-source nature of the SystemC discrete-event (DE) simulator engine makes
it a good candidate for DE/CT co-simulation. In this dissertation, SystemC is used as
backplane for coupling DE and CT simulators as illustrated in Figure 7.10. Its simu-
lation kernel is �exible enough to support the embedding of a coordinator inside an
SC_MODULE and it is also �exible enough to be controlled by an external coordinator
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Figure 7.10: SystemC backplane

using available function calls. Therefore, this section presents a non-intrusive extension
to the SystemC simulator that provides the required event introspection capabilities.
This section also describes how the rest of the requirements for DE/CT co-simulation
can be satis�ed using available capabilities from the SystemC simulator. This knowledge
will be later used in section Sections 7.5 and 7.6 for the co-simulation of SystemC with
the CT simulators Simulink and Smash.

7.4.1 Event queue introspection

Event introspection capabilities are not supported by the latest SystemC version (v2.3.0).
All data structures of a simulation are managed by the SystemC kernel simulation context
class (sc_simcontext). The simulation context class is responsible for the execution
of the simulation and contains references to all data structures, including event queues,
used for this purpose. However, the access to this class is limited to kernel-level classes.

In order to enable event queue introspection capabilities, access to the simulation
context from an external class is needed. This is achieved with a simple addition to the
kernel, namely registering a friend class to the simulation context in order to look
into its data structures. This addition is non-intrusive since the friend class is exclusively
used to peek into the events queues of the simulation context without modifying them.

The sensitivity of a SystemC process is the set of events that can potentially cause the
process to be resumed or triggered. Whenever an event is noti�ed by its owner process,
the event object itself is responsible for keeping a list of processes that are sensitive to it.
Thus, when noti�ed, the event object will inform the scheduler of which processes to
trigger. Figure 7.11 shows how an event object interacts with its owner and the target
processes it triggers. In the �gure, it is also allowed for an owner and target process to
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Figure 7.11: Event noti�cation and process triggering

Event queue Description
m_methods_static Events noti�ed after the SC_METHOD macro with

the operator «
m_methods_dynamic Events noti�ed inside method processes with the

function call next_trigger
m_threads_static Events noti�ed after the SC_THREAD macro with

the operator «
m_threads_dynamic Events noti�ed inside thread processes with the func-

tion call wait

Table 7.1: Types of event queues in SystemC

be the same. This is the case for time event noti�cations such as wait(t), where the
process yields until time t has elapsed.

Event objects that have been noti�ed are classi�ed and stored in the simulation context
class into one of the four event queues shown in Table 7.1. Two of them are used for
events noti�ed from method processes (SC_METHOD) and two for events noti�ed from
thread processes (SC_THREAD). Each of these is used to store noti�ed events for static
or dynamic sensitivity. The di�erence between them is that static sensitivity is �xed
during elaboration, while dynamic sensitivity may vary under the control of a process.

The modeling guidelines presented in Section 5.3 suggested the use of transaction level
modeling abstraction for developing SystemC models. The reason behind this is that
such models can be e�ciently used for DE/CT co-simulation. Transaction level models
are approximately-timed models where time annotations are done using wait function
calls. Since wait calls are only allowed for thread processes [70], it can be inferred that
the event queue that stores such timed events is m_threads_dynamic. Therefore, a
DE/CT co-simulation coordinator must have access to m_threads_dynamic. Doing
so enables the required event queue introspection for DE/CT co-simulation.
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Obtaining detailed information of SystemC’s event queues is not straightforward,
even with full access to simulation context data structures. Montón’s dissertation [99]
provides useful insights on this topic. In his work, checkpointing capabilities for SystemC
were investigated and for which the m_methods_static queue was required. Based
on his work, Algorithm 1 was designed to access the m_threads_dynamic event
queue and to obtain detailed information of the events inside it. The implementation
of this algorithm must be compiled together with a SystemC model. Since it is only a
method declared inside a C++ class, it can be called from a coordinator embedded in a
SystemC module (Figure 7.6a) or external to SystemC (Figures 7.6b and 7.6c). It may also
be called at any point of time during a simulation in order to obtain the event queue at
that instant.

The event queue introspection algorithm works as follows. It initially obtains a list
of all scheduled events (Line #2) where dynamically scheduled events (Line #4) are
extracted from. The output is a vector called EventQueueV ec (Line #7) that contains
the time of each event and the name of the SC_THREAD sensitive to it. The event queue
vector can be afterward used by a DE/CT co-simulation coordinator, which can sort and
�lter it as required. The location of the coordinator (refer to Figure 7.6) does not a�ect
the implementation of the event queue introspection algorithm since it only requires a
pointer to the current simulation context.

Algorithm 1: Event queue introspection
Input: Pointer to the current simulation context SimContext
Output: Vector containing the event queue EventQueueV ec

1 TimeEventsList← GetTimedEvents(SimContext) ;
// The list contains references to all dynamically and

statically scheduled events
2 forall the TimeEvent ∈ TimeEventList do
3 time← GetTime(TimeEvent);

// Find only dynamically scheduled events
4 SCthreadList← GetDynThreads(TimeEvent);

// Multiple SC_THREADs may be sensitive to an event
5 forall the SCthread ∈ SCthreadList do
6 target← GetThreadName(SCthread);
7 EventQueueV ec← (time, target) ;
8 end
9 end
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7.4.2 Time advance detection

According to Section 7.3.2, the second requirement (-2.2.-) for a DE simulator to be
used for DE/CT co-simulation is to provide means for detecting the last delta/cycle of a
current time step. This is needed only when the coordinator is embedded into a SystemC
module (Figure 7.6a). In this case, simulation starts with an sc_start call with no
time arguments and runs until there is no more activity. Simulation time advances
are automatically controlled by the SystemC scheduler, but they need to be somehow
detected and controlled in order to synchronize data with CT simulators. In reference
to Figure 7.7, this is needed at the end of STEP #5. of a DE/CT co-simulation, to detect
when a DT simulator has �nished executing all processes scheduled at time tn. Detecting
the last delta-cycle is important because it determines the point in simulation after which
the SystemC scheduler advances simulation to the next scheduled time.

Time advance detection is possible in SystemC using available function calls in clever
forms. There are two ways to do this. The �rst and simplest one is to use the publicly
available SystemC function call sc_pending_activity_at_current_time(),
which returns true if there are processes ready to run in the current time step. In order
to use it for time advance detection, it must be declared inside an SC_THREAD which
waits until there are no more processes pending, equivalent to the last delta-cycle of the
current time step.

A second and more elegant way to detect time advances in SystemC is possible using
SystemC’s native trace mechanism. This technique relies on using a child class derived
from SystemC trace class. Only one of the inherited methods is used, which will trigger a
static callback function whenever the last delta-cycle of each time step has been reached.
The callback function can be declared anywhere in a SystemC model, with the advantage
that it does not have to be managed by the SystemC kernel as a thread. This approach
was used by the time advance technique explained above. In this case, delta-cycles are
automatically monitored using a native trace mechanism which has less overhead than
using an SC_THREAD. Therefore, this approach is recommended for implementing time
advance detection in SystemC.

7.4.3 Simulation control

The third and last requirement (-2.3.-) for a DE simulator to be used for DE/CT co-
simulation is that it must be able to execute up to desired points in simulation time and
resume execution afterward. This is only needed when an external coordinator is used
to control the execution of SystemC (Figures 7.6b and 7.6c).
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The typical way of executing a SystemC simulation is by calling the function
sc_start inside the SystemC main function sc_main. When sc_start is called
for the �rst time, the SystemC kernel performs an elaboration phase followed by a
simulation phase. If an argument was passed to it, the scheduler will execute up to and
including the latest delta-cycle of the end time. If no argument was passed, the scheduler
will execute until there is no remaining activity. In addition, the SystemC standard [70]
also allows sc_start calls with time arguments to be called multiple times. When this
happens, the scheduler resumes from the time it had reached at the end of the previous
call to sc_start and executes up to the current time plus the given time argument.
Thus, the SystemC scheduler has the innate capability to be executed up to desired
points in time and to resume its execution afterward. Moreover, calls to sc_start
must not necessarily be done inside sc_main. In fact, sc_start can be called from
any function compiled together with a SystemC model, even when such function is not
registered with the SystemC kernel.

Therefore, an external coordinator is able to control the execution of a SystemC
simulation by calling sc_start (with time arguments) as many times as required
and from any function which is compiled together with a SystemC model. In addition,
when using an external coordinator, the time advance detection capabilities described in
Section 7.4.2 are not needed. Whenever an sc_start with a time argument is called,
the SystemC scheduler will execute up to and including the last delta-cycle of the end
time. In reference to Figure 7.7, this assures that the simulator is in STEP #2. of a DE/CT
co-simulation and is ready to provide information about its event queue.

7.5 SystemC/Simulink co-simulation

This section presents the implementation of the DE/CT co-simulation scheme described
in Section 7.3 for the coupling of the DE simulator SystemC and the CT simulator
Simulink. In this particular implementation, the coordinator is embedded into Simulink
(Figure 7.6b), which consequently makes Simulink the simulation master. The way in
which SystemC and Simulink models are put together is by encapsulating a SystemC
model, regardless of its complexity, as a Simulink actor. From a user point of view,
a SystemC model is displayed in Simulink as a standard block with input and output
ports. This actor is compatible with available Simulink models and libraries as long as a
variable-step solver is used. The use of variable step solvers is actually very common.
In fact, the ode45 variable step solver is Simulink’s default choice. The bene�ts of such
co-simulation implementation is that users that are familiar with Simulink can seamlessly
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test SystemC models together with available models and libraries, while bene�ting from
the full simulation control and debugging capabilities o�ered by Simulink’s intuitive
and user friendly framework.

Related work on this topic [20, 21, 60, 104] uses SystemC as simulation master, which
considerably decreases the acceptance of such approaches among Simulink users. The
work presented in this section is derived from the author’s publications [90, 91] and
is the only work available at the moment that proposes using Simulink as simulation
master for co-simulation with SystemC. Compared to the previous approaches, this
approach increases simulation e�ciency by providing improved ways for performing
synchronization and increases its usability and acceptance among Simulink users. The
integration of SystemC into Simulink is done in such a way that a user does not require
any knowledge of the underlying SystemC model executing during the co-simulation.

7.5.1 Overview

Figure 7.12 shows the simulators and input �les used for the implementation of System-
C/Simulink co-simulation. Simulators for processor models, also known as instruction
set simulators or processor emulators, can also be coupled to a virtual prototype (refer
to Figure 5.4). In this case, the processor emulator tool OVP from Imperas was selected
due to its compatibility with SystemC and its high simulation performance. Since the
execution of processor model simulator is controlled solely by the SystemC scheduler,
the DE/CT co-simulation scheme is not a�ected by it.

The virtual prototype shown in the middle of Figure 7.12 corresponds to a SystemC
model of an embedded system. It is compiled as an executable or as a library and contains
interfaces for communicating with the simulators around it. Once a virtual prototype
is compiled, it does not necessarily mean that its structure is �xed. As with any other
SystemC model, its structure is allowed to be modi�ed as long as this is done before
SystemC’s elaboration phase is executed, after which the structure is completely de�ned
and ready for simulation. More details on this topic can be found in the author’s paper
[90].

The con�guration �le shown in Figure 7.12 provides information for the parame-
terization of SystemC models and their interconnection with Simulink signals. It is
imported and parsed on run-time, during the initialization phase of a SystemC model.
A con�guration �le is divided in three sections: (1) parameters for the initialization
of SystemC modules, (2) references for the interconnection of SystemC and Simulink
signals and (3) verbose, logging, pro�ling and debugging options. The bene�t of using
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Figure 7.12: Tooling integration for SystemC/Simulink

a con�guration �le is that a SystemC model does not need to be recompiled each time
parameters in a model are changed.

7.5.2 Implementation

Figure 7.13 shows the communication infrastructure that provides bidirectional data
transfer capabilities between SystemC and Simulink. It is used for the initialization,
parameterization and control of SystemC models from Simulink and for data synchro-
nization during a co-simulation. The components of the communication infrastructure
are explained ahead, starting from the bottom with the AMS channel.

AMS channel

An AMS channel is a C++ class that acts as a signal pool for storing references to SystemC
and Simulink signals. Thus, all signals from SystemC and Simulink that need to commu-
nicate between each other must be connected to the AMS channel. The AMS channel
is responsible for binding such signals and for performing subsequent data conversion
that enables their compatibility. The data conversion involves the use of analog front
end functions (refer to the AFE elements in Figure 5.4) which describe the quantization
and de-quantization functions required for communicating digital signals from SystemC
to conceptually analog signals from Simulink.
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Middleware

A middleware de�nes the communication medium between an AMS channel from a
SystemC model and an S-Function from Simulink. Only in the case where an AMS
channel and an S-Function are compiled together, no external middleware is required. In
such case, the communication is done by sharing pointers to a common memory space.
However, when a AMS channel and an S-Function are executing in separate processes,
inter-process communication (IPC) middleware such as TCP/IP or shared memory is
required. The use of IPC middleware adds overhead to the communication, although it
does not alter the co-simulation scheme. For sake of simplicity, this work assumes that
the communication between an AMS channel and an S-Function is done in the same
memory space and without the overhead of a middleware. Further details pertaining the
evaluation of IPC middleware for the implementation of SystemC/Simulink co-simulation
can be consulted in the author’s paper [90].

S-Function

An S-function (system-function) is a computer language description of a Simulink block
written in MATLAB , C, C++, or Fortran [129]. This work uses S-Functions developed in
C++ for performing co-simulation with SystemC. Further details on the implementation
of S-Functions for DE/CT co-simulation are presented in the following section.

Since an S-Function is developed in C++ , it can be compiled together with a SystemC
model, including its AMS-Channel. This explains why, in this case, the communica-
tion between them is done by passing references to addresses on the same memory
space. Similarly, when using external middleware, the references being passed are either
addresses to shared memory space [2] or CORBA-style function calls [37]. Therefore,
the way in which communication is implemented between an S-Function and an AMS
channel is independent of their functionality. A middleware is solely responsible for the
communication.

7.5.3 Simulation con�guration

According to Section 7.3.2, the �rst requirement (-1.-) for DE/CT co-simulation is that the
simulators selected must be �exible enough to support the embedding of a coordinator
or provide appropriate APIs to control them by an external coordinator. SystemC
ful�lls both conditions, although using SystemC as coordinator as shown in Figure 7.6a
implies giving it simulation control instead of using Simulink’s graphical interface for
it. This reduces Simulink’s usability, which consequently reduces the acceptance of
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the co-simulation among Simulink users. The second and most suitable option is to
give Simulink simulation control. This is possible using S-Functions, which provide a
powerful mechanism for extending the capabilities of Simulink. Thus, a coordinator can
be embedded into an S-Function similarly to Figure 7.6b.

An S-Function consists of a series of interface methods that have access to Simulink’s
simulation engine data structures. S-Functions are used to describe the behavior of a
user de�ned Simulink blocks. Its methods are compiled together as a dynamic library
which is called by Simulink whenever its respective block is parameterized or executed
during the course of a simulation. The scheduling of an S-Function during a simulation
is responsibility of Simulink and is determined according to the type of sampling de�ned
by the S-Function itself.

One S-Function is required for embedding the coordinator of a SystemC/Simulink
co-simulation. The coordinator is responsible for carrying out the co-simulation scheme
described in Section 7.3. Further capabilities are programed into the same S-Function
which automates the following tasks: parameterization of SystemC models, binding of
SystemC and Simulink signals, con�guration of verbose, logging, pro�ling and debugging
options.

The way in which all this functionality is �tted into an S-Function is described ahead.
This will be done in reference to Figure 7.14, which shows the interface method calls
used for this purpose. The Simulink simulation engine is responsible for the execution of
such functions in the sequence de�ned in the �gure. In order to describe them, they are
initially classi�ed into functions used for initialization and functions used for simulation.
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Figure 7.14: Structure of the S-Function co-simulation coordinator

Con�guration manager

Functions mdlInitializeSizes and mdlCheckParameters from Figure 7.14
are used to gather con�guration parameters for a virtual prototype and to create a
con�guration �le accordingly. The con�guration �le contains the following information:
(1) parameters for the initialization of SystemC modules inside a virtual prototype, (2)
verbose, logging, pro�ling and debugging options and (3) references to Simulink signals
that will be bound to SystemC signals. The created con�guration �le will be later on
loaded and parsed by a SystemC virtual prototype in run-time as shown in Figure 7.12.

Data capture is done using an S-Function mask front-end. Figures 7.15a and 7.16 show
examples of the con�guration manager front-end. The di�erent tabs in these examples
correspond to parameterization and debugging information for di�erent modules present
in a SystemC model. This data is used to create the con�guration �le which is update
whenever parameters change.

The I/O tab of the con�guration manager makes it possible to re�ect the I/O structure
of a SystemC model into a Simulink block as shown in Figure 7.15. Thus, the number and
type of I/O ports from a SystemC model are the same to those in its equivalent Simulink
block. This one-to-one relation is done by binding the signals connected to each port of
a Simulink block to their equivalent SystemC signal. Signal binding is responsibility of
the AMS-Channel, which basically assigns pointers to Simulink signals to their SystemC
signal counterparts.
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Figure 7.16: Con�guration manager for ADC and CPU models

Sampling type settings

Function mdlInitizlizeSampleTimes from Figure 7.14 is used to de�ne the sam-
pling type of an S-Function. The sampling type chosen is crucial for a correct and
e�cient co-simulation with SystemC, since it determines when Simulink and SystemC
are allowed to synchronize. There are three possibilities to do this, i.e. using discrete,
variable or continuous sampling. A discrete sampled S-Function is called in �xed simu-
lation steps and is an ine�cient way to transfer data with SystemC’s discrete event
simulation kernel. A variable sampled S-Function is more e�cient since its parameter
“next-time-to-trigger” can be programed according to SystemC’s event queue, avoiding
unnecessary synchronization steps. However, a variable sampled S-Function is not
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adequate for co-simulation with SystemC since new synchronization points caused by
the occurrence of state events (refer to De�nition 7.2) cannot be reprogramed. The third
possibility is to use continuous sampling, which is commonly used for physical models,
but can be adapted for the co-simulation with SystemC as will be further explained. In
continuous sampling, time advances in a series of major and minor time steps determined
by an ODE solver according to a model’s continuous states (Figure 7.5a) and/or according
to the occurrence of state events (Figure 7.5b). The solver determines the times of the
minor steps and uses the results at the minor time steps to improve the accuracy of the
results at the major time steps.

According to Section 7.3.2, requirements -3.1.- and -3.2.- specify that the selected
CT simulator must rely on a variable-step numerical integration solver and that it
must provide zero-crossing detection mechanisms. Both conditions are ful�lled by a
Simulink S-Function if and only if it is con�gured with continuous sampling. Since
the S-Function does not have continuous states, it only needs to be updated in major
time steps programed according to SystemC’s event queue. This increases simulation
performance since the S-Function does not need to be executed in minor time steps.
State event detection is also possible using the S-Function’s zero crossing detection
mechanisms. Therefore, function mdlInitizlizeSampleTimes is con�gured as
follows:

static void mdlInitializeSampleTimes(SimStruct *S){

ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);

ssSetOffsetTime(S, 0, FIXED_IN_MINOR_STEP_OFFSET);

}

7.5.4 Simulation execution

Initialization

The initialization of a SystemC virtual prototype is done inside function mdlStart.
Algorithm 2 shows how this process is done and results in the �rst synchronization
point for the co-simulation. This procedure corresponds to STEP #1. and STEP #2. of
the DE/CT co-simulation cycle. Their implementation is described ahead.

After the instantiation of a virtual prototype, it is instructed to initialize by calling
the function sc_start(SC_ZERO_TIME), which triggers SystemC’s elaboration and
initialization phases. The parameterization of a virtual prototype is performed automat-
ically during SystemC’s initialization phase, where the constructor of each SystemC
module takes any parameter it requires from an available con�guration �le.
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The event queue introspection mechanism described in Section 7.4.1 is executed
afterward. It returns an event queue vector with two �elds (time, target), equivalent to
the scheduled time of each event and the name of the target process it triggers. The vector
is �ltered according to the names of the SystemC processes that require synchronization
with Simulink. The names of such processes are known beforehand, since they are
speci�ed in the con�guration �le. The earliest time from such list is assigned as the �rst
point tn1 for performing synchronization.

Algorithm 2: S-Function mdlStart method

1 Instantiation of a SystemC virtual protype;
2 sc_start(SC_ZERO_TIME);
3 EventQueueV ec←GetEventQueue(SimContext);
// Filter the event queue vector

4 forall the Event ∈ EventQueueV ec do
5 if Event[target] ∈ targetList then
6 tnList← Event[time];
7 end
8 end
// Obtain the time of the first scheduled event

9 tn ←min(tnList);

The reason for performing �ltering on SystemC’s event queue is because not all timed
events in it require data synchronization with Simulink. This increases simulation per-
formance by reducing the amount of unnecessary synchronization points. For instance,
the SystemC modules ADC, DAC, GPIO and Interrupt Controller may contain processes
that require synchronization with Simulink since they perform I/O functionality. The
name of such processes as well as any other processes that requires I/O functionality
must be added to the event �lter list.

Time advance control

In a continuous sampled S-Function, time advances are determined by an ODE solver
according to the rate of change of the continuous states of a model and/or according
to nonsampled zero crossings. In this case, since the S-Function does not contain
any continuous states, it implies that time advances can only be done according to
nonsampled zero crossings. This means there is no �xed or variable sampling times. The
question is then, how to indicate to the Simulink engine that the S-Function must be
sampled at times equal to SystemC’s next time event tn?

The �rst insights to this question are given by TrueTime [29], a Simulink library
for networked embedded control systems developed at Lund University. In TrueTime,
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a kernel similar to an RTOS is used to schedule tasks designed to control Simulink
models. The sampling type chosen for TrueTime is also continuous, even though its
kernel has no continuous states. A similar question as stated above arises when trying
to schedule tasks from the TrueTime kernel based on Simulink’s simulation engine time.
The solution used by TrueTime is based on an S-Function’s zero crossing mechanism,
which is programed to automatically trigger a noti�cation each time the Simulink’s time
reaches the time schedule for a TrueTime kernel task.

Similarly to TrueTime, an S-Functions’s zero crossing mechanisms are harnessed for
the co-simulation between Simulink and SystemC. A zero crossing function is used to
detect when Simulink’s engine time has reached SystemC’s next time event (tSimulink =

tn). A noti�cation is triggered afterward which is used to perform synchronization
between Simulink and SystemC.

Algorithm 3 shows the implementation of the zero crossing function using the S-
Function method mdlZeroCrossings. The algorithm is used to lock Simulink’s
engine time tSimulink to SystemC’s next time event tn. Whenever tSimulink goes over tn,
a zero crossing is forced by changing the sign of a threshold signal. Simulink simulation
engine is responsible for �nding the exact time of the crossing using a bisection algorithm.
Once a zero crossing has been triggered, Simulink engine calls Algorithm 3 until the zero
crossing is detected with a speci�ed accuracy or the maximum number of zero crossing
iterations is reached. Both accuracy and the number of iterations are parameters of any
Simulink variable step solver and can be adapted if necessary.

Algorithm 3: S-Function mdlZeroCrossings method

1 if tSimulink < tn then
2 ZCThreshold← −1;
3 end
4 else if tSimulink > tn then
5 ZCThreshold← +1;
6 end
7 else
8 ZCThreshold← 0;
9 end

State event detection

The most obvious application of state event detection in model-based design of embedded
systems is for modeling the behavior of interrupt detection mechanisms. In the case
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of Simulink/SystemC co-simulation, interrupt signals are generated in Simulink while
their Interrupt Service Routines are declared inside a SystemC model. This requires
for Simulink to notify SystemC of the exact time of the occurrence of an event on an
interrupt signal.

As described in the previous section, state event detection is an innate capability of
a continuous sampled S-Function. Before the start of a simulation, the con�guration
manager automatically registers all input ports of type bool with zero crossing capabil-
ities. Events on these ports are monitored by the Simulink engine during simulation.
Whenever an event occurs, the simulation engine detects the time of the occurrence and
executes the S-Function method mdlOutputs. This is done automatically by Simulink,
without specifying any additional zero crossing functions. This corresponds to STEP #3.
of the DE/CT co-simulation cycle.

Simulation cycle

The S-Function method mdlOutputs is used to implement STEP #4., STEP #5. and the
loop back to STEP #2. of the DE/CT co-simulation cycle (refer to Figure 7.7). Algorithm
4 shows how this is implemented.

Since the S-Function has no continuous states, the method mdlOutputs is executed
only when nonsampled zero crossings are detected. There are two possible sources for
this: �rst, when Simulink time has reached a programed SystemC next time event and
second, due to the occurrence of a state event on an interrupt port. These two situations
will be explained ahead.

The �rst case corresponds to STEP #5. of the DE/CT co-simulation cycle. It happens
when the condition tn ≤ tSimulink is met (Line #1), meaning that Simulink has reached
SystemC’s next time event. SystemC is lagging in time, so it must be executed up to
tn to catch up with Simulink (Line #3). During its execution, SystemC is allowed to
perform I/O operation on any Simulink signal connected to it, which is coherent since
both simulators share the same time. STEP #2. of the DE/CT co-simulation cycle follows
since a new tn must be obtained from SystemC’s even queue. SystemC event queue is
obtained using the introspection mechanism described in Section 7.4.1. The event queue
vector is then �ltered according to the names of the SystemC processes that require
synchronization with Simulink and the earliest time from the resulting list is selected
as tn (Line #10). This new tn value is used by Algorithm 3 for triggering a new zero
crossing.

The second case corresponds to STEP #4. of the DE/CT co-simulation cycle. It is the
result of the occurrence of a state event on an interrupt port (Line #12). All interrupt
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ports must be scanned to �nd out the port where the state event happened. This is
done by comparing the current state of each port with stored values corresponding to
their previous state. Once the interrupt port responsible for the state event is detected,
SystemC time must catch up with the time of the state event (Line #15). During its
execution, SystemC will trigger the execution of the corresponding Interrupt Service
Routine at the exact simulation time in which it happened. The execution might have
a�ected SystemC’s event queue, thus a new tn must be obtained using the same procedure
as before, i.e. looking into the event queue, �ltering it and obtaining the earliest time
from it. This new tn value is used by Algorithm 3 for triggering a new zero crossing.

Simulation termination

Simulation termination is implemented in the S-Function method mdlTerminate. It
is called when the speci�ed simulation time has elapsed or when SystemC event queue
has no time events in its event queue. The termination method destroys the instance to
the SystemC virtual prototype and frees all data structures used for such purpose. This
makes it possible to rerun a co-simulation as many times as required.
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Algorithm 4: S-Function mdlOutputs method

// Check if Simulink time has reached tn
1 if tn ≤ tSimulink then
2 tdiff ← (tn − tSystemC)

// Catch up SystemC with Simulink time
3 sc_start(tdiff);
4 EventQueueV ec←GetEventQueue(SimContext);

// Filter the event queue vector
5 forall the Event ∈ EventQueueV ec do
6 if Event[target] ∈ targetList then
7 tnList← Event[time];
8 end
9 end

// Obtain the time of the next scheduled event
10 tn ←min(tnList);
11 end
// Check for the occurrence of state events

12 forall the Ports ∈ InterruptPorts do
// Locate the interrupt port where the state event

happened
13 if Port[PrevState] 6= Port[CurrState] then
14 tdiff ← (tSimulink − tSystemC)

// Catch up SystemC to the time of the state event
15 sc_start(tdiff);
16 EventQueueV ec←GetEventQueue(SimContext);

// Filter the event queue vector
17 forall the Event ∈ EventQueueV ec do
18 if Event[target] ∈ targetList then
19 tnList← Event[time];
20 end
21 end

// Obtain the time of the first scheduled event
22 tn ←min(tnList);
23 end
24 end
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7.6 SystemC/VHDL-AMS co-simulation

This section presents the implementation of the DE/CT co-simulation scheme described
in Section 7.3 for the coupling of the DE simulator SystemC and the CT simulator Smash
for VHDL-AMS models. In this particular implementation, the coordinator is embedded
into SystemC (Figure 7.6a), which consequently makes SystemC the simulation master.
From a user point of view, this means that the co-simulation starts by executing a
SystemC virtual prototype.

In comparison to the SystemC/Simulink approach described above, the DE/CT co-
simulation principles are the same, but their implementation varies considerably. The
reason is the location of the coordinator, which in this case is embedded into SystemC.

7.6.1 Overview

Figure 7.17 shows the simulators and input �les used for the implementation of System-
C/VHDL-AMS co-simulation. It is also possible to couple a processor model simulator
used for the execution of PE3 models (refer to Figure 5.4). The SystemC virtual prototype
in the middle of the �gure is compiled as an executable application responsible for
initializing and controlling the simulators around it.

A con�guration �le, loaded on run-time in the initialization phase, contains the
necessary information for the virtual platform to locate the paths to the VHDL-AMS
project and the binary application code for the processor model. Additionally, the
con�guration �le contains all the necessary initialization and debugging parameters to
con�gure each component of the virtual platform. The extension of the con�guration �le
depends on the complexity of the model. It enables full testing and debugging �exibility
without the need to recompile or create new versions of the virtual platform. Further
details on this topic are presented in Section 7.6.3.

7.6.2 Implementation

Figure 7.18 shows the communication infrastructure used to provide bidirectional data
transfer capabilities between SystemC and Smash. The components of the commu-
nication infrastructure are explained ahead, starting from the bottom with the AMS
channel.
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Figure 7.17: Tooling integration for SystemC/VHDL-AMS

AMS channel

An AMS channel is a C++ class that acts as a signal pool for storing references to SystemC
and VHDL-AMS signals. Thus, all signals from SystemC and VHDL-AMS that need to
communicate between each other must be connected to the AMS channel. The AMS
channel is responsible for binding such signals and for performing subsequent data
conversion that enables their compatibility. The data conversion involves the use of
analog front end functions (refer to the AFE elements in Figure 5.4) which describe the
quantization and de-quantization functions required for communicating digital signals
from SystemC to conceptually analog signals from VHDL-AMS.

APIs

Smash provides multiple API functions in the form of dynamic link libraries (DLL). They
are intended to extend the functionalities of Smash by providing specialized functions
for controlling and tweaking various aspects of a simulation. These APIs can also be
used to control Smash from an external application, namely from the AMS channel of a
SystemC model.

According to Section 7.3.2, the �rst requirement (-1.-) for DE/CT co-simulation is
that the simulators selected must be �exible enough to support the embedding of a
coordinator or provide appropriate APIs to control them by an external coordinator.
Smash ful�lls the second condition since it provides multiple APIs for its control from
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Figure 7.18: Communication infrastructure between SystemC and Smash

an external coordinator, namely SystemC. This is done by compiling references to such
APIs together with the AMS channel of a Simulink model. Therefore, it is possible from
a SystemC model to load any VHDL-AMS model into Smash and control every detail of
its execution in Smash.

7.6.3 Simulation con�guration

A con�guration �le such as the one shown in Figure 7.19 is used to con�gure the
SystemC/VHDL-AMS co-simulation. This �le is equivalent to the one created with the
help of an S-Function mask in the SystemC/Simulink implementation. However, since
neither SystemC nor Smash provide a suitable graphical interface for specifying such
options, they must be manually con�gured inside a �le.

The con�guration �le contains the following information : (1) parameters for the
initialization of SystemC modules inside a the virtual prototype, (2) verbose, logging,
pro�ling and debugging options and (3) references to VHDL-AMS signals that will be
bound to SystemC signals. The con�guration �le will be later on loaded and parsed by a
SystemC virtual prototype in run-time as shown in Figure 7.17.

7.6.4 Simulation execution

The di�erence between the SystemC/VHDL-AMS co-simulation implementation and its
SystemC/Simulink counterpart from the previous section relies on the location of the
coordinator. In this case, the coordinator executes inside the AMS-Channel of a SystemC
model.
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Figure 7.19: Example of a con�guration �le for SystemC/VHDL-AMS co-simulation

A key factor for any co-simulation where SystemC acts as simulation master is the
detection of SystemC time advances. In contrast, when SystemC acts as simulation
slave, there is no need to identify time advances since they are already implied by the
sc_start function calls triggered by an external simulator. In this case, the function
sc_start is called once and runs until the completion of the simulation. A solution for
the automatic detection of SystemC time advances was described in Section 7.4.2. This
mechanism automatically triggers a callback function called TimeAdvance after the
end of each delta cycle, just before the SystemC kernel advances time (refer to De�nition
7.2). The function TimeAdvance is implemented as a method belonging to the AMS
channel.

Initialization

No special initialization sequence is required since the call to sc_start automati-
cally elaborates the SystemC model and initializes all processes in it. The �rst call to
TimeAdvance is automatically triggered after SystemC’s initialization phase. This
corresponds to STEP #1. of the DE/CT co-simulation cycle.
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State event detection

The most obvious application of state event detection in model-based design of embedded
systems is for modeling the behavior of interrupt detection mechanisms. In the case of
SystemC/VHDL-AMS co-simulation, interrupt signals are generated using VHDL-AMS
quantity signals while their Interrupt Service Routines are declared inside a SystemC
model. This requires for Smash to notify SystemC of the exact time of the occurrence of
an event on an interrupt signal.

This is done by assigning break statements to VHDL-AMS quantity signals that trigger
interrupt ports in a SystemC model. Such break statements are executed whenever a
given threshold is crossed. The exact time in which a break statement is executed is
automatically detected by the Smash simulation engine using a backtrack mechanism
that locks to the time of the occurrence. The way in which such state event times are
used for the co-simulation with SystemC is described ahead.

Simulation cycle

The simulation cycle is executed inside the function TimeAdvance, which acts as
coordinator for the co-simulation. The procedure followed by the simulation cycle
is described in Algorithm 5 and corresponds to the following steps of the DE/CT co-
simulation cycle:

DE/CT co-simulation stage from Figure 7.7 Relation to Algorithm 5
STEP #2. Line #1 to 7
STEP #3. Line #8 to 28
STEP #4. Line #17 to 24

Time advances during the simulation cycle are determined according to SystemC
timed events. The time of these events determine how simulation time is advanced.
They are obtained by looking into SystemC’s event queue with the event introspection
mechanism described in Section 7.4.1. The event queue is afterwards �ltered according
to timed event that require synchronization with VHDL-AMS. This is possible since the
name of all SystemC processes which require I/O functionality with VHDL-AMS are
listed in the con�guration �le. Thus, only timed events targeting processes listed in the
con�guration �le are �ltered. The earliest time from the resulting list is selected as tn
(Line #7). This tn value is used to advance the simulation of the VHDL-AMS simulator.

The simulation of a VHDL-AMS model requires an analog simulator for the AMS
part of the model and a logical simulator for the digital part of the model [69]. Smash
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Algorithm 5: SystemC/VHDL-AMS simulation control

1 EventQueueV ec←GetEventQueue(SimContext);
// Filter the event queue vector

2 forall the Event ∈ EventQueueV ec do
3 if Event[target] ∈ targetList then
4 tnList← Event[time];
5 end
6 end
// Obtain the time of next scheduled event

7 tn ← min(tnList);
// Execute transient sequence of VHDL-AMS simulator

8 timeStep← initial time step size;
9 while timeStep ≤ tn do

10 repeat
11 SolveAnalog(timeStep);
12 if !AnalgoConvergence then
13 timeStep← adjust timeStep;
14 end
15 until AnalogConvergence;
16 SolveLogic (timeStep);
17 if stateEvent then

// Backtrack VHDL-AMS simulator
18 timeStep← tse;
19 tn ← tse;
20 forall the Ports ∈ InterruptPorts do

// Locate the interrupt port where the state
event happened and trigger an event on it

21 if Port[PrevState] 6= Port[CurrState] then
22 Port← NotifySystemCEvent(tse);
23 end
24 end
25 else
26 timeStep← calculate next timeStep;
27 end
28 end
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VHDL-AMS simulator provides APIs for controlling both analog and logical simulators.
Thus, it is possible from SystemC to control every detail for the simulation of VHDL-AMS
models. This capability is exploited for the detection of state events and their noti�cation
to SystemC. Whenever a state event is detected during the simulation of a VHDL-AMS
model, the time of the state event and the port in which it happened are noti�ed to
SystemC using a timed event noti�cation (Line #22). This triggers an Interrupt Service
Routine on the port and time speci�ed next time SystemC is executed.

After the execution of Algorithm 5, the method TimeAdvance �nishes and yields
control back to the SystemC scheduler. The SystemC scheduler advances the sate of the
simulation to the next timed event tn. This corresponds to STEP #5. of the DE/CT co-
simulation cycle. Only when a state event was detected during the execution of a VHDL-
AMS model, the next time in the event queue corresponds to time tse. TimeAdvance
will be automatically triggered when all delta cycles for the new time step have �nished,
thus repeating the simulation cycle.

Simulation termination

Simulation termination is determined by the SystemC scheduler. This happens when
the speci�ed simulation time has elapsed or when the event queue has no more timed
events in it. All references to Smash VHDL-AMS simulator are afterwards destroyed.
This makes it possible to rerun a co-simulation as many times as required.





8
Evaluation

This chapter presents an evaluation of the multi-domain virtual prototyping design and
veri�cation methodology described in the previous chapters. Two recent implementation
examples are considered: an academic case study that was published in [91] and an
industrial case study that was published in [92]. The �rst describes the design and
veri�cation of a PID close-loop control system. The second describes the veri�cation of
a novel Rogowski Current Coil Transducer (RCCT) electronic front end architecture and
its online auto-calibration software algorithm.

8.1 PID close-loop control system

The proposed methods and tools described in this dissertation where applied for the
design and veri�cation of a digital PID controller for a temperature-control system
described in [109]. Three SystemC based digital controllers were created following the
abstraction layers presented in Section 6.1. They were made available as components
of a Simulink library and used in the test setup from Figure 8.1 to verify the behavior
of their PID algorithm implementations for controlling the temperature of a physical
model described in Simulink.

137
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Figure 8.1: Implementation-oriented virtual prototype for a temperature-control system

8.1.1 Simulation models

The design and veri�cation procedure of a digital PID controller algorithm using available
concept-oriented, architecture-oriented and implementation-oriented virtual prototypes
will be further explained. The PID algorithm was manually coded C-based implementa-
tion.

In the concept-oriented virtual prototype from Figure 8.2a, the PID algorithm is
inserted in the SW Stack as a task with direct access to I/O ports for data transfer
with Simulink. Additionally, the SW Stack includes one ISR sensitive to an external
interrupt that toggles the activation of the PID task. Time advances in the model via a
wait(100,SC_MS) statement in the PID task.

In the architecture-oriented virtual prototype from Figure 8.2b, the PID algorithm is
inserted in the SW Stack as a task with access to peripheral SW drivers. The ADC is
con�gured to sample input data from Simulink on a 100msec rate with 16-bit resolution.
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Figure 8.2: Subsequent re�nements of a virtual prototype

ISRs for the ADC and one external interrupt are added. The PID task activation is
controlled by a semaphore trigged by the ADC ISR, at which point the computations
from the PID algorithm are executed and data is sent to Simulink via DAC SW drivers.

The implementation-oriented virtual prototype from Figure 8.2c contains an ARM
Cortex-M3 processor emulator (OVP processor model from Imperas [73]). The SW Stack
contains a ported distribution of FreeRTOS. The PID algorithm, ADC con�guration
and ISRs for ADC and external interrupts are included to the SW Stack in a similar
procedure to the architecture-oriented virtual prototype. The main di�erence is that
SystemC speci�c constructs are replaced by FreeRTOS constructs. The complete SW
Stack is cross-complied and loaded to a memory peripheral, where it is fetched by the
ARM Cortex-M3 model on run-time.
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8.1.2 Simulation results

Figure 8.3 shows the simulation results for each of the three SystemC based virtual
prototypes controlling the temperature of the Simulink physical plant models from
Figure 8.1. For comparison purposes, the simulation results from a reference model
developed in Simulink with a PID block from the discrete time toolbox are also shown.
All simulations were done using a standard desktop PC. Table 8.1 shows the simulation
times for each model.

Figure 8.4 presents the relative temperature di�erences of the physical plant models
controlled by the SystemC based virtual prototypes. The results are presented with re-
spect to a Simulink reference model. The manually coded PID algorithm implementation
is di�erent to the one used by Simulink’s PID block. This becomes evident when the PID
models initialize (100-125% peeks between 1-1.1sec that are not shown in the graph) and
when they are reseted. An anti-windup PID algorithm implementation could be used to
solve this issue. It is also interesting to see that relative di�erences are bigger for the
implementation-oriented virtual prototype, which computes the same PID algorithm
implementation, however complied with another compiler for a di�erent processor
architecture.

8.1.3 Evaluation

This simple application demonstrates the feasibility of coupling di�erent domain spe-
ci�c models and their simulators for the creation of virtual prototypes. These virtual
prototypes provide debugging and tracing capabilities that can help improve the under-
standing of the composite behavior of a system during di�erent stage of the design. The
obtained simulation performance is acceptable and slow-downs are mainly caused by
the increase of granularity in models.

This example demonstrates that once the required models to build a virtual platform
are available, their implementation in the design and veri�cation of heterogeneous
embedded systems for domain-speci�c applications is viable. As with any new model-

Model name Simulation time
Simulink reference model 0.65 sec
Concept-oriented VP 0.89 sec
Architecture-oriented VP 2.37 sec
Implementation-oriented VP 11.82 sec

Table 8.1: Execution times for di�erent simulation models
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based design approach, its implementation e�ort is initially high, but as more components
are added to a library and reused in other projects, the e�ort will evidently decrease.

8.2 Rogowski Coil Current Transducer

Rogowski Coil Current Transducers (RCCT) are used in medium voltage industrial
and power distribution systems for current measurement applications. In [107], a new
electronic front end architecture for a RCCT was presented that enables online self-
calibration. It is a novel design that allows higher accuracy than conventional solutions
and at a lower cost.

8.2.1 Operation principle

A short explanation of the new RCCT read out electronics architecture and its online
calibration functionality are given ahead, for more details refer to [107]. Figure 8.5
shows a simpli�ed schematic of the RCCT and its electronic front end. The distinctive
characteristic of this architecture is the use of a modulation circuit inserted between
nodes P and S. It uses a square signal carrier of known amplitude Vref and controllable
frequency to modulate the input voltage VS . The modulated signals are then fed to
the summing points S of the ampli�er and to an ADC. Throughout this process, the
resulting signal will inevitably su�er unwanted drifts due to aging and temperature
e�ects on the ampli�er high impedance resistors R1,3 and on the ADC conversion gain,
a�ecting the overall accuracy of the current measurement. A digital system (not shown
in the �gure) is responsible for demodulating the ADC readings, in which process it
detects unwanted drifts introduced by the electronic front end. Samples are corrected on
run-time without interrupting the measurement by removing the previously calculated
drift. This procedure results in highly accurate current measurement results.

8.2.2 Simulation models

The reason for performing simulations of the RCCT, its analog front end architecture
and its embedded controller software algorithm was to verify its overall functionality
and to perform a feasibility study of possible digital and AMS hardware implementation
solutions. The �rst is possible because all models can be simulated and are able to interact
with each other in a correct and predictable way. The latter is also possible because a
processor model is used that emulates the instruction set of an available microcontroller.
In addition, AMS models are constructed based on physical models of real hardware
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portional to the derivate of the current and must be integrated. The integration is done
digitally in a later stage.

implementations. The validity of the results is therefore based on the correctness of our
models, so a considerable amount of e�ort was invested in verifying each component.
The advantage is that such components can be later on reused and re�ned in other
projects with a considerably lower modeling and veri�cation e�ort.

The overall system was modeled by di�erent project team-members, each one special-
izing in a particular aspect of the design and using di�erent domain speci�c languages
and tools. VHDL-AMS was used for modeling the RCCT and the electronic front end.
The VHDL-AMS simulator chosen was SMASH from Dolphin Integration. SystemC was
used for modeling a virtual platform using, among other digital components, an ARM
Cortex-M3 processor model from Imperas OVP tools. Embedded software was developed
in an Eclipse IDE framework using a GCC based ARM EABI cross-compiler and linker.

The resulting virtual platform contains the following components (refer to the meta-
structure from Figure 5.4): one PE3 element (controls OVP API functions), one 32-bit
SoC memory mapped bus, several peripherals and their AFE counterparts and one AMS
Channel (controls SMASH API functions). A con�guration �le, loaded on run-time in an
initialization phase, contains the necessary information for the virtual platform to locate
the paths to the VHDL-AMS project and the binary application code for the processor
model. Additionally, the con�guration �le contains all the necessary initialization
and debugging parameters to con�gure each component of the virtual platform. The
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extension of the con�guration �le depends on the complexity of the model. It enables full
testing and debugging �exibility without the need to recompile or create new versions
of the virtual platform.

Figure 8.6 shows a system level view of the virtual platform, the models involved
and how they are related with each other. VHDL-AMS signals of type electrical must
be converted to their digital equivalent before being handled by a digital model. This
is done by a simpli�ed 16-bit ADC model with a 4kHz output rate. VHDL-AMS digital
signals of type STD_LOGIC and STD_LOGIC_VECTOR are allowed to connect to the
AMS Channel where signals from SystemC AFE models are also connected. The binding
between them is speci�ed inside the con�guration �le in a text-based format as follows:

AMS_CH.ADC_CH0 = SMASH.DIGITAL_OUTPUT

AMS_CH.GPIO_0 = SMASH.ADC_ENABLE

AMS_CH.GPIO_1 = SMASH.HIGH_CLOCK

AMS_CH.GPIO_2 = SMASH.LOW_CLOCK

8.2.3 Simulation results

A data logger module, shown in Figure 8.6, was added to the virtual platform to store
32-bit length packages generated by the processor. Since it is connected to the SoC bus,
it can be accessed by the embedded software via SW drivers as any other peripheral. Its
advantage is that it requires a considerably lower processor load than a serial interface
communication.

The overall functionality of the system was veri�ed manually based on signal traces
stored by the logger module. The simulation performance is equivalent to real-time,
thus test runs can be rapidly carried out. VHDL-AMS models and the embedded code
can be rapidly modi�ed and tested together with the rest of the virtual platform.

Figure 8.7 shows the measurement data received by the processor. It corresponds to the
electronic front end ADC output. We clearly see that the measured signal contains two
kinds of information: the RCCT rated sinusoidal signal at 50Hz and the square modulated
reference signal at 2.5Hz. These two signals have been superimposed by the electronic
front end. The embedded software algorithm inside the processor synchronously demod-
ulates the ADC output data, detects the drift and corrects it on run-time. The corrected
signal is displayed in the lower graph of Figure 8.7.

The corrected signal presents transient errors caused by the ±Vref transition of the
2.5Hz modulated reference. The reason behind them will be further explained. In each
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Figure 8.6: System level model of the virtual platform. The RCCT electronic front end
and its embedded controller are shown.

±Vref transition point, the ADC receives a step function input whose response needs
a certain time, also called group delay, to propagate through a series of digital �lters.
During such time intervals, the correction algorithm receives unsettled input samples
from the ADC which cannot be compensated by the correction algorithm, thus creating
erroneous results seen as spikes in the output signal. Even though the step response of
the ADC is deterministic and its e�ects could be compensated in software, its response
in combination with an ampli�er and anti-aliasing �lter is not fully deterministic. The
step response of the ADC will slightly vary in each hardware implementation due
to tolerances, ageing and temperature dependencies of analog components from the
electronic front end. From our simulation models, we were able to determine that
remaining spikes in the corrected signal will not interfere the measurement results if
their frequency components do not superimpose the rated RCCT 50Hz signal. This must
be taken into consideration for the selection of an appropriate modulation frequency.



146 8 Evaluation

The upper graph of Figure 8.8 shows the spectrum of the corrected signal. The rated
RCCT 50Hz signal spectrum is evident while the rest of the frequency components
correspond to the spikes in the time domain. The spikes have a fundamental frequency
of 2.5Hz, equivalent to the modulation frequency, and frequency components on each
odd multiple of it. This modulation frequency was speci�cally selected in order for its
harmonics not to interfere with the 50Hz rated signal spectrum.

8.2.4 Evaluation

An FPGA based platform was developed in parallel to the work presented here. Both
platforms, virtual and real, used the same embedded software, with the exception of some
hardware-dependent drivers. Figure 8.8 shows the comparison between the corrected
signals spectra of the simulation and the implementation results. The main di�erence
between them lies on the noise sources. In the virtual platform, no white noise sources
were introduced in the AMS model, which explains the de�ned spectrum shapes in
comparison to the implementation results. The results were encouraging since both
platforms were functionally equivalent, which validates the correctness of our simulation
models and the importance of performing multi-domain simulations for veri�cation
purposes.

The results form this case study show that the dynamic veri�cation of embedded
systems in the industrial automation domain can be complemented by the use of multi-
domain virtual platforms. While this is still a current research topic and the integration
of virtual platforms in development processes is still experimental in the industrial au-
tomation domain, �rst results indicate that this approach can improve the way engineers
develop and verify systems using multi-domain simulation models.
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Figure 8.7: Simulation data for measured and corrected signals
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Figure 8.8: Simulation and experimental data for the corrected signal spectrum





9
Conclusions and Outlook

9.1 Conclusions

This dissertation described a virtual prototyping methodology for the design and ver-
i�cation of heterogeneous embedded systems. Its goal is to provide multidisciplinary
team members enhanced veri�cation capabilities to identify and solve design problems
during early development stages. This is possible by coupling the execution of di�erent
simulators, each one responsible for obtaining the behavior of part of a system. The com-
bined execution of simulators can help increase the understanding of interdependencies
between di�erent system components. This eventually helps increase the con�dence in
the correctness of a design, thereby reducing risks in a project and leading to hardware
prototypes and experimental setups that are built right the �rst time.

The contribution to the state-of-the-art is a design and veri�cation methodology
that combines digital systems, analog and mixed-signal systems and multi-domain
physical systems for the creation of virtual prototypes that are able to emulate (mimic)
the behavior of real hardware prototypes and experimental setups. Related work on
this topic had not fully addressed issues such as: (1) the use of virtual prototypes for
supporting various stages of the development life-cycle of heterogeneous embedded
systems, (2) tooling integration for model exchange and (3) the reuse of available device
�rmware (embedded software code).

149
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The milestones achieved in this dissertation together with their respective publications
are summarized as follows:

• A problem-oriented veri�cation methodology [91].- it proposes a set of abstraction
layers for the construction of virtual prototypes. The most adequate abstraction
can be selected according to the development stage and to particular veri�cation
goals, allowing for top-down or bottom-up veri�cation approaches. This enables
the veri�cation of a design in various stages to evaluate the impact that di�erent
design decisions may have on it. Most importantly, it enables to detect and solve
design problems before they propagate into further development stages.

• A set of modeling guidelines [89, 92].- intended to decrease the implementation
e�ort of the proposed design methodology. The guidelines provide a set of rules
for the construction of consistent and meaningful virtual prototypes. They are
intended to ease the creation of virtual prototypes and to increases the reusability
of designs.

• A multi-domain simulation framework [90, 92].- it is the result of coupling special-
ized simulation tools for HW/SW co-design of embedded systems and simulation
tools for multi-domain physical systems. The coupling is done with a co-simulation
scheme that de�nes the control and communication semantics for the coupled exe-
cution of discrete-event and continuous-time simulators. The framework currently
implements the co-simulation between SystemC/Simulink and SystemC/VHDL-
AMS for the creation of virtual prototypes. It does not a�ect the usability of the
models involved (no special changes needed) and does not interfere with their
inherent models of computation (discrete-event or continuous-time).

The modeling languages and simulation tools used in this work are in accordance to
best-practices in the industrial automation. In the case of physical domain modeling,
MATLAB /Simulink is already a widely accepted and used tool among control engineers
and physicists, whereas VHDL-AMS is slowly becoming accepted by a specialized group
of users. In the case of digital domain modeling, SystemC is gaining acceptance in this
�eld, especially among software engineers. This claim is supported by the industrial case
study presented in this work and by related work in the industrial automation domain
[101, 113, 133].

This dissertation is intended to serve as starting platform for further research on the
use of virtual prototypes in the development �ow of industrial devices. While this is
still a current research topic and the integration of virtual prototypes in development
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processes is still experimental in the industrial automation domain, �rst results indicate
that this approach can improve the way engineers design and verify heterogeneous
embedded systems.

9.2 Outlook

The topics presented ahead have been identi�ed as further research areas which can
bene�t from the results obtained in this dissertation:

1. Robustness testing.- Assess the reliability of embedded systems by automated fault
injection testing in a virtual prototype. Quantize the in�uence of tolerances in
mechanical, pneumatic, electric and electronic components in a design.

2. Real-time interfacing capabilities.- Provide real-time interfacing capabilities to
virtual prototypes for controlling a real environment and for communicating with
real industrial networks.

3. Timing and power annotation.- Annotation of timing and power �gures from a
real platform into a virtual prototype. This can help estimate with a considerable
accuracy the power consumption of devices.

4. Industrial automation networks .- Simulation of industrial automation networks
relying on di�erent physical mediums (wired and non-wired) for the veri�cation
of novel distributed control applications.

5. Factory acceptance tests .- Simulation of industrial devices and industrial networks
in a large scale (thousands of interconnected devices). Perform factory acceptance
tests of devices and their industrial processes in a virtual environment. This can
save time and resources during the commissioning phase of industrial devices.





Acronyms

ADC Analog to Digital Converter

AFE Analog Front-End

AMS Analog and Mixed-Signal

API Application Programming Interface

CPS Cyber-Physical System

CT Continuous Time

DAC Digital to Analog Converter

DAE Di�erentia Algebraic Equation

DCS Distributed Control Systems

DE Discrete Event

EDA Electronic Design Automation

ELN Electrical Linear Networks

ERP Enterprise Resource Planning

FMI Functional Mock-up Interface

FSM Finite State Machine

HART Highway Addressable Remote Transducer

HDL Hardware Description Language

HdS Hardware Dependent Software
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HMI Human Machine Interface

HVAC Heating, Ventilation and Air Conditioning

HW Hardware

HW/SW Hardware/Software

I/O Input/Output

IC Integrated Circuit

IDE Integrated Development Environment

IED Intelligent Electronic Device

IPC Instructions Per Cycle

ISR Interrupt Service Routine

ISS Instruction Set Simulator

LSF Linear Signal Flow

MES Manufacturing Execution Systems

MoC Model of Computation

MPSoC Multi-processor System on Chip

ODE Ordinary Di�erential Equation

OVP Open Virtual Platforms

PE Processing Element

PER Peripheral

PID Proportional Integral Derivative

PLC Programmable Logic Controller

RTL Register Transfer Level

RTOS Real-Time Operating System

SCADA Supervisory Control and Data Acquisition
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SDF Synchronous Data Flow

SNR Signal-to-Noise Ratio

SoC System on Chip

SW Software

TDF Timed Data Flow

TLM Transaction Level Modeling

VIC Vector Interrupt Controller

VP Virtual Prototype
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