10,992 research outputs found

    Near-Surface Interface Detection for Coal Mining Applications Using Bispectral Features and GPR

    Get PDF
    The use of ground penetrating radar (GPR) for detecting the presence of near-surface interfaces is a scenario of special interest to the underground coal mining industry. The problem is difficult to solve in practice because the radar echo from the near-surface interface is often dominated by unwanted components such as antenna crosstalk and ringing, ground-bounce effects, clutter, and severe attenuation. These nuisance components are also highly sensitive to subtle variations in ground conditions, rendering the application of standard signal pre-processing techniques such as background subtraction largely ineffective in the unsupervised case. As a solution to this detection problem, we develop a novel pattern recognition-based algorithm which utilizes a neural network to classify features derived from the bispectrum of 1D early time radar data. The binary classifier is used to decide between two key cases, namely whether an interface is within, for example, 5 cm of the surface or not. This go/no-go detection capability is highly valuable for underground coal mining operations, such as longwall mining, where the need to leave a remnant coal section is essential for geological stability. The classifier was trained and tested using real GPR data with ground truth measurements. The real data was acquired from a testbed with coal-clay, coal-shale and shale-clay interfaces, which represents a test mine site. We show that, unlike traditional second order correlation based methods such as matched filtering which can fail even in known conditions, the new method reliably allows the detection of interfaces using GPR to be applied in the near-surface region. In this work, we are not addressing the problem of depth estimation, rather confining ourselves to detecting an interface within a particular depth range

    Mapping the spatial variation of soil moisture at the large scale using GPR for pavement applications

    Get PDF
    The characterization of shallow soil moisture spatial variability at the large scale is a crucial issue in many research studies and fields of application ranging from agriculture and geology to civil and environmental engineering. In this framework, this work contributes to the research in the area of pavement engineering for preventing damages and planning effective management. High spatial variations of subsurface water content can lead to unexpected damage of the load-bearing layers; accordingly, both safety and operability of roads become lower, thereby affecting an increase in expected accidents. A pulsed ground-penetrating radar system with ground-coupled antennas, i.e., 600-MHz and 1600-MHz center frequencies of investigation, was used to collect data in a 16 m × 16 m study site in the Po Valley area in northern Italy. Two ground-penetrating radar techniques were employed to non-destructively retrieve the subsurface moisture spatial profile. The first technique is based on the evalu¬ation of the dielectric permittivity from the attenuation of signal amplitudes. Therefore, dielectrics were converted into moisture values using soil-specific coefficients from Topp’s relationship. Ground-penetrating-radar-derived values of soil moisture were then compared with measurements from eight capacitance probes. The second technique is based on the Rayleigh scattering of the signal from the Fresnel theory, wherein the shifts of the peaks of frequency spectra are assumed comprehensive indi¬cators for characterizing the spatial variability of moisture. Both ground-penetrating radar methods have shown great promise for mapping the spatial variability of soil moisture at the large scale

    A practical guide on using SPOT-GPR, a freeware tool implementing a SAP-DoA technique

    Get PDF
    This is a software paper, which main objective is to provide practical information on how to use SPOT-GPR release 1.0, a MATLAB¼-based software for the analysis of ground penetrating radar (GPR) profiles. The software allows detecting targets and estimating their position in a two-dimensional scenario, it has a graphical user interface and implements an innovative sub-array processing method. SPOT-GPR was developed in the framework of the COST Action TU1208 “Civil Engineering Applications of Ground Penetrating Radar” and is available for free download on the website of the Action (www.GPRadar.eu)

    Saturated hydraulic conductivity determined by on ground mono-offset Ground-Penetrating Radar inside a single ring infiltrometer

    Full text link
    In this study we show how to use GPR data acquired along the infiltration of water inside a single ring infiltrometer to inverse the saturated hydraulic conductivity. We used Hydrus-1D to simulate the water infiltration. We generated water content profiles at each time step of infiltration, based on a particular value of the saturated hydraulic conductivity, knowing the other van Genuchten parameters. Water content profiles were converted to dielectric permittivity profiles using the Complex Refractive Index Method relation. We then used the GprMax suite of programs to generate radargrams and to follow the wetting front using arrival time of electromagnetic waves recorded by a Ground-Penetrating Radar (GPR). Theoretically, the 1D time convolution between reflectivity and GPR signal at any infiltration time step is related to the peak of the reflected amplitude recorded in the corresponding trace in the radargram. We used this relation ship to invert the saturated hydraulic conductivity for constant and falling head infiltrations. We present our method on synthetic examples and on two experiments carried out on sand soil. We further discuss on the uncertainties on the retrieved saturated hydraulic conductivity computed by our algorithm from the van Genuchten parameters

    Age estimates of isochronous reflection horizons by combining ice core, survey, and synthetic radar data.

    Get PDF
    Ice core records and ice-penetrating radar data contain complementary information on glacial subsurface structure and composition, providing various opportunities for interpreting past and present environmental conditions. To exploit the full range of possible applications, accurate dating of internal radar reflection horizons and knowledge about their constituting features is required. On the basis of three ice core records from Dronning Maud Land, Antarctica, and surface-based radar profiles connecting the drilling locations, we investigate the accuracies involved in transferring age-depth relationships obtained from the ice cores to continuous radar reflections. Two methods are used to date five internal reflection horizons: (1) conventional dating is carried out by converting the travel time of the tracked reflection to a single depth, which is then associated with an age at each core location, and (2) forward modeling of electromagnetic wave propagation is based on dielectric profiling of ice cores and performed to identify the depth ranges from which tracked reflections originate, yielding an age range at each drill site. Statistical analysis of all age estimates results in age uncertainties of 5 10 years for conventional dating and an error range of 1 16 years for forward modeling. For our radar operations at 200 and 250 MHz in the upper 100 m of the ice sheet, comprising some 1000 1500 years of deposition history, final age uncertainties are 8 years in favorable cases and 21 years at the limit of feasibility. About one third of the uncertainty is associated with the initial ice core dating; the remaining part is associated with radar data quality and analysis

    A simple and cost-effective method for cable root detection and extension measurement in estuary wetland forests

    Get PDF
    This work presents the development of a low-cost method to measure the length cable roots of black mangrove (Avicennia germinans) trees to define the boundaries of central part of the anchoring root system (CPRS) without the need to fully expose root systems. The method was tested to locate and measure the length shallow woody root systems. An ultrasonic Doppler fetal monitor (UD) and a stock of steel rods (SR) were used to probe root locations without removing sediments from the surface, measure their length and estimate root-soil plate dimensions. The method was validated by comparing measurements with root lengths taken through direct measurement of excavated cable roots and from root-soil plate radii (exposed root-soil material when a tree tips over) of five up-rooted trees with stem diameters (D130) ranging between 10 and 50 cm. The mean CPRS radius estimated with the use of the Doppler was directly correlated with tree stem diameter and was not significantly different from the root-soil plate mean radius measured from up-rooted trees or from CPRS approximated by digging trenches. Our method proved to be effective and reliable in following cable roots for large amounts of trees of both black and white mangrove trees. In a period of 40 days of work, three people were capable of measuring 648 roots belonging to 81 trees, out of which 37% were found grafted to other tree roots. This simple method can be helpful in following shallow root systems with minimal impact and help map root connection networks of grafted trees

    Form and function in hillslope hydrology : in situ imaging and characterization of flow-relevant structures

    Get PDF
    Thanks to Elly Karle and the Engler-BunteInstitute, KIT, for the IC measurements of bromide. We are grateful to Selina Baldauf, Marcel Delock, Razije Fiden, Barbara Herbstritt, Lisei Köhn, Jonas Lanz, Francois Nyobeu, Marvin Reich and Begona Lorente Sistiaga for their support in the lab and during fieldwork, as well as Markus Morgner and Jean Francois Iffly for technical support and Britta Kattenstroth for hydrometeorological data acquisition. Laurent Pfister and Jean-Francois Iffly from the Luxembourg Institute of Science and Technology (LIST) are acknowledged for organizing the permissions for the experiments. Moreover, we thank Markus Weiler (University of Freiburg) for his strong support during the planning of the hillslope experiment and the preparation of the manuscript. This study is part of the DFG-funded CAOS project “From Catchments as Organised Systems to Models based on Dynamic Functional Units” (FOR 1598). The manuscript was substantially improved based on the critical and constructive comments of the anonymous reviewers, Christian Stamm and Alexander Zimmermann, and the editor Ross Woods during the open review process, which is highly appreciated.Peer reviewedPublisher PD

    Measurements of the Suitability of Large Rock Salt Formations for Radio Detection of High Energy Neutrinos

    Get PDF
    We have investigated the possibility that large rock salt formations might be suitable as target masses for detection of neutrinos of energies about 10 PeV and above. In neutrino interactions at these energies, the secondary electromagnetic cascade produces a coherent radio pulse well above ambient thermal noise via the Askaryan effect. We describe measurements of radio-frequency attenuation lengths and ambient thermal noise in two salt formations. Measurements in the Waste Isolation Pilot Plant (WIPP), located in an evaporite salt bed in Carlsbad, NM yielded short attenuation lengths, 3-7 m over 150-300 MHz. However, measurements at United Salt's Hockley mine, located in a salt dome near Houston, Texas yielded attenuation lengths in excess of 250 m at similar frequencies. We have also analyzed early ground-penetrating radar data at Hockley mine and have found additional evidence for attenuation lengths in excess of several hundred meters at 440 MHz. We conclude that salt domes, which may individually contain several hundred cubic kilometer water-equivalent mass, provide attractive sites for next-generation high-energy neutrino detectors.Comment: 21 pages, 8 figures, to be submitted to Nuclear Instruments and Method
    • 

    corecore