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Abstract 

The characterization of shallow soil moisture spatial variability at the large scale is a crucial issue 

in many researches and fields of application ranging from agriculture, geology, civil and 

environmental engineering. In this framework, this work contributes to the research in the area of 

pavement engineering for preventing damages and planning effective management. High spatial 

variations of subsurface water content can lead to unexpected damages of the load-bearing layers; 

thus, both safety and operability of roads become lower, thereby affecting an increase of expected 

accidents. 

A pulse ground-penetrating radar (GPR) system with ground-coupled antennas, 600 MHz and 

1600 MHz center frequencies of investigation, was used to collect data in a 16m × 16m study site 

in the Po valley area, in northern Italy. Two GPR techniques were employed to non-destructively 

retrieve the subsurface moisture spatial profile. The first technique is based on the evaluation of 

the dielectric permittivity from the signal amplitudes attenuation. Therefore, dielectrics were 

converted into moisture values using soil-specific coefficients from Topp’s relationship. GPR-

derived values of soil moisture were then compared with measurements from eight capacitance 

probes. The second technique is based on the Rayleigh scattering of the signal from the Fresnel 

theory, wherein the shifts of the peaks of frequency spectra are assumed to be comprehensive 

indicators for characterizing the spatial variability of moisture. Both GPR methods have shown 

great promises for mapping the spatial variability of soil moisture at the large scale. 
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INTRODUCTION 

Subsurface spatial distribution of soil moisture is a primary factor in many researches and fields 

of application ranging from agriculture, geology, civil and environmental engineering (Giudici 

2004; Romano and Giudici 2007; Baroni et al. 2010). It is well known that small-scale variability 

in soil hydraulic properties at the centimeter scale affects the spatial variability of moisture 

content (Ritsema and Dekker 1998), and large-scale variability is of great concern at the kilometer 

scale (Jackson and Le Vine 1996). 

In that respect, different techniques for soil moisture sensing with different temporal and spatial 

scales capabilities are increasingly developing (Robinson et al. 2008a,b; Vereecken et al. 2008). 

In particular, moisture in soils is widely evaluated by using high-frequency electromagnetic (EM) 

techniques, due to the large influence brought by the permittivity of water on the relative dielectric 

permittivity of soils (Topp et al. 1980). Results and potentialities of remote sensing in large-scale 

areas (> 100 m2) investigations can be found in Wagner et al. (2007). Nevertheless, the huge 

footprint of such instruments is linked to a low resolution of radar sensors (~10 m) even for high-

resolution active radar sensors. Small measurement depths and the inability to detect moisture 

content in a densely vegetated environment are additional drawbacks to be taken into account for 

remote sensing (Ulaby et al. 1996). Conversely, point information can be obtained at much finer 

scales (area < 0.01 m2) using different techniques, such as time domain reflectometry (TDR) 

(Greco and Guida 2008), and capacitance probes (Giraldi and Iannelli 2009), or volumetric 

sampling. These methods enable to collect a large amount of data at a tiny temporal resolution in 

a fine-scale domain (from ~10-2 m to 10-1 m), but are time-consuming for an effective mapping 

of larger areas. In addition, such techniques are intrusive to the soil structure, frequently resulting 

in inaccurate volumetric water content measurements (Lunt et al. 2005).  

In line with this general framework, a need for soil water content measurement techniques 

providing numerous, time-efficient, and detailed values at the intermediate-scale domain (from 

~10-1 m to 1 m) is therefore observed. Over the last years ground-penetrating radar (GPR) has 

proven to be one of the most reliable geophysical inspection tools that can be employed in a wide 
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range of applications, such as mapping shallow subsurface soil properties. Basically, GPR allows 

to detect the main physical properties of subsurface through the transmission/reception of 

electromagnetic waves in a given frequency band (Daniels 2004; van der Kruk and Slob 2004). 

Recent GPR advances are thoroughly described by Slob et al. (2010). In soil sciences, GPR is 

used for estimating subsurface moisture content during irrigation and drainage cycles (Galagedara 

et al. 2005). Furthermore, it is employed in Earth sciences for monitoring soils, bedrock, 

groundwater, and ice (Le Gall et al. 2008; Evans 1966; Mele et al. 2012), and for natural hazards 

management and prevention purposes with the goal to ensure the geotechnical stability of 

important lifelines, such as road and rail infrastructures (Benedetto et al. 2011; Benedetto et al. 

2012a; Hugenschmidt 2000). 

In that respect, the main GPR-based applications in pavement engineering include the evaluation 

of layer thicknesses (Al-Qadi and Lahouar 2004), the detection of voids and cracks underneath 

pavements (Lau et al. 1992; Benedetto 2013), asphalt stripping monitoring (Scullion et al. 1994), 

the detection of reinforcing bars (Hugenschmidt and Loser 2008; Huston et al. 1999) and 

delamination of concrete (Dérobert et al. 2009; Kalogeropoulos et al. 2013), the location of 

utilities (Ayala-Cabrera et al. 2011), and bridges inspections (Benedetto et al. 2012b). It is also 

worth noting the great capability of such instrument to be used together with other non-destructive 

techniques, such as the light falling weight deflectometer (Benedetto et al. 2014), for collecting 

geometrical, physical, and mechanical properties of subsurface. Recent researches have been 

devoted toward the GPR-based evaluation of clay content in soils causing structural damages in 

pavements (Patriarca et al. 2013; Tosti and Benedetto 2012; Tosti et al. 2013), and new challenges 

are currently addressed on the possibility to infer the mechanical properties of load-bearing layers 

from their electrical characteristics (Benedetto and Tosti 2013a; , Tosti et al. 2014b). With regard 

to the monitoring of subsurface volumetric water content, research focused on the entire pavement 

structure (Al-Qadi et al. 2004) as well as on typical subgrade soils (Grote et al. 2003, Benedetto 

2010, Benedetto et al. 2013, Lambot et al. 2004a, Tosti 2013) have been developed. More in 

general, a comprehensive review of GPR applications for soil moisture sensing can be found in 
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Huisman et al. (2003). In this regard, many studies have been carried out using GPR ground-wave 

techniques (Benedetto and Pensa 2007; Grote 2003; Hubbard et al. 2003; Huisman et al. 2002). 

Steelman and Endres (2011) developed another theoretical method that deals with the use of 

volumetric dielectric mixing formulae by correlating the dielectric permittivity of each soil 

constituent to its volume fraction. Conversely, amongst the various petrophysical empirical 

relationships available, Topp et al. (1980) soil-specific correlations are the most commonly used 

for converting the values of complex permittivity of unsaturated soils into moisture. 

Over the last few years research in subsurface soil moisture content is increasingly being focused 

on the use of efficient and self-consistent techniques, capable to avoid or minimize the use of 

destructive core sampling, for calibration steps, thus optimizing the management of economic 

resources. In this regard, Benedetto (2010) used a Rayleigh scattering-based method for directly 

evaluating the volumetric water content in soils, without the need of a petrophysical relationship 

and calibration of the system. In addition, Lambot et al. (2004a) evaluated the dielectric properties 

of unsaturated soils under controlled moisture conditions by correlating the imaginary part of the 

dielectric permittivity to the frequency of the surveying electromagnetic waves. 

Concerning the development of more efficient GPR configurations for large-scale inspections, 

many efforts have been devoted to improve the potentialities of off-ground radar systems 

(Redman et al. 2002; Saarenketo and Scullion 2000, Tosti et al. 2014a). In that respect, high 

effective techniques based on inverse modeling of mono-static radar systems have been developed 

and are currently being improved (Lambot et al. 2004b; Lambot et al. 2006; Minet et al. 2011). 

 

METHODOLOGY AND OBJECTIVES 

The main goal of the present paper is to provide a contribution to the research for preventing 

structural damages caused by the interaction between subsurface moisture content and load-

bearing soils under the pavement structure, since the evaluation of the spatial distribution of soil 

moisture is a key issue in this research field. 
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In particular, the ability of GPR to evaluate the spatial variation of shallow soil moisture at the 

large scale has been analyzed. A pulse GPR system with ground-coupled antennas, 600 MHz and 

1600 MHz center frequencies of investigation, was used over a 16m × 16m study site to map the 

soil moisture with a relatively high spatial resolution. The reliability of GPR data was evaluated 

by two independent methods for the estimate of soil water content. First, soil moisture values 

were derived from the evaluation of the relative dielectric permittivity of soils assessed by the 

attenuation of signal amplitudes (Maser and Scullion 1990), as a result of reflections from the 

subsurface. The Topp petrophysical empirical relationship (Topp et al. 1980) was used for 

converting the dielectrics into moisture. Therefore, such moisture values were locally compared 

with the volumetric water contents from eight capacitance probes evenly placed over the entire 

surveyed area. From now on, this first approach will be referred to as the “reflectivity method”. 

The second method, which will be referred to as the “Rayleigh scattering method”, uses a 

Rayleigh scattering-based approach for obtaining the peaks of the frequency spectra from the 

signals collected in the time domain (Benedetto 2010), so that a proxy of the subsurface moisture 

spatial field can be generated. Finally, the two obtained maps were compared by normalizing the 

values assumed by the respective moisture indicators. 

 

THEORETICAL BACKGROUND 

The “reflectivity method” 

Relative dielectric permittivity evaluation by surface reflection method 

It is well known that the electromagnetic characteristics of materials affect the amplitude of the 

received GPR signals. In particular, the relative dielectric permittivity of soil is widely influenced 

by the amount of water in soil pore spaces, due to much lower values of the solid matrix 

permittivity compared to that of water. Then, the variations of signal amplitudes are very sensitive 

to moisture content, and the higher the differences between the values of dielectric permittivity 

of adjacent interfaces, the greater will be the reflected amplitudes. 



8 

 

According to the aforementioned principle, the relative dielectric permittivity of the unsaturated 

soil can be estimated by considering the maximum amplitude in absolute value of the first 

reflected signal from the ground surface, related to the maximum amplitude in absolute value of 

the first reflected signal from a copper sheet as follows: 
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where εr is the relative dielectric permittivity of the shallow soil laying above the reflecting 

surface, A0 [V] and A1 [V] are the amplitude values of reflections from, respectively, the soil 

surface and a perfect electric conductor (PEC) situated at the same distance as the soil. The main 

advantage of this approach is that it could be used for rapidly mapping shallow subsurface 

dielectrics performing measurements with a fixed, single-offset GPR configuration when shallow 

permittivity contrast interfaces are present. It is worth noting that the soil electric conductivity σ 

and magnetic permeability μ are neglected in equation (1). Permittivity estimation through this 

method is traditionally carried out using off-ground radar systems in far-field conditions, although 

some recent researches based on data collected from air-coupled radars have also dealt with the 

assessment of electromagnetic constitutive parameters in near-field conditions using data from 

ground-coupled radar systems (Mertens et al. 2014; Mourmeaux et al. 2014). Another widely used 

method for shallow soil permittivity estimation with ground-coupled radar systems is the direct 

ground wave method, wherein by measuring the direct ground wave travel time tgw [s] from the 

transmitter to the receiver, it is possible to calculate the ground wave velocity v [m/s] by L/tgw, 

where L [m] is the separation between the transmitting and receiving antenna. The relative 

dielectric permittivity of the soil εr can be then evaluated by the expression εr=(c/v)2, where c is 

the speed of light in vacuum. Notwithstanding the potential of the direct wave method, some 

drawbacks were identified by Huisman et al. (2003) including i) difficulties in separating the 

ground wave from refracted and reflected waves, ii) difficulties in determining the proper antenna 
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separation in field with varying soil water content, iii) high attenuation of the ground wave 

causing constraints in the maximum antenna separation. 

 

θ values from the site-specific Topp petrophysical relationship 

Once the relative dielectric permittivity εr is estimated using equation (1), the shallow volumetric 

water content θ [m3∙m-3] can be computed by inverting the following soil-specific Topp 

petrophysical relationship (Topp et al. 1980): 

32
3.5513534.074.1   

r
                (2) 

It is worth mentioning that according to Topp’s research, such expression is characterized by one 

of the lower errors of estimate among the various types of soil analyzed by the authors, being the 

error on the dielectric permittivity equal to 0.38, to which an error of 1.8 × 10-2 for the estimates 

of θ is associated. 

 

The “Rayleigh scattering method” 

This approach is focused on the Rayleigh scattering of the signal on the basis of the Fresnel theory 

(Benedetto 2010). It is well known that scattering is generated by singularities or non-

homogeneities (e.g., water droplets and soil particles) in electromagnetic impedance, and the 

process occurs when their dimensions are much smaller than the wavelength of the EM wave. 

From an analytical point of view, the ratio x = 2πr/λ defines the size of a scattering particle, where 

r is the radius of the particle, and λ is the wavelength of the signal. Rayleigh scattering occurs in 

the small size parameter regime x << 1. On the contrary, Mie (1908) theory deals with scattering 

from large spherical particles for an arbitrary size parameter x; in particular, for small values of x 

the Mie theory reduces to the Rayleigh approximation. 

By considering several assumptions on the three-phase porous medium properties, and 

simplifications of the physics, it is possible to define the following formulation (Benedetto 2010): 
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where I (ϕ, f) is the intensity of the EM wave scattered by a single small particle, R is the distance 

between the observer and the particle, θs is the angle of scattering, f is the frequency of the EM 

signal, c0 is the speed of light in vacuum, μr is the magnetic permeability, ε∞ is the dielectric 

constant of the full-polarized medium at an infinite frequency EM field, 
  static

 is the 

difference between the values of permittivity of a steady and an infinite frequency EM field, τ is 

the relaxation time, and d is the diameter of the particle. In this approach, the processing of the 

signal is carried out in the frequency domain. Outcomes from past researches developed on 

various types of unsaturated porous media, have shown that scattering produces a non-linear 

modulation of the electromagnetic signal, as a function of the moisture content (Benedetto and 

Tosti 2013b). According to equation (3), the various frequency components of the frequency 

spectra are differently scattered, depending on both soil texture and moisture content. Therefore, 

by comparing the frequency spectra of the signals collected under different moisture conditions, 

it is possible to retrieve information on the near-surface moisture content of each investigated 

soil. In particular, the peak of frequency was observed by Benedetto (2010) to be a comprehensive 

indicator, negatively related to moisture. In this regard it has to be noted that, since scattering is 

caused by water presence in the medium, more scattering events are expected in the form of 

frequency peak shifting, as the moisture content increases (Benedetto 2010). Several correlations 

were provided between the shift of the peak and moisture content for different types of soil under 

controlled laboratory conditions. The general expression for predicting volumetric moisture 

content θ [%] is defined as (Benedetto 2010): 

  BfA P                  (4) 

where A and B are regression parameters calibrated by experiments on different soil samples, and 

fP [Hz × 108] is the value of the peak of frequency. It is worth mentioning that, from a theoretical 
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point of view, being fP the value of frequency for which the value of I (ϕ, f) is maximum, it can 

be determined by letting to 0 the first derivative of equation (3), calculated as a function of f. 

In the present paper, the peaks of the frequency spectra obtained over the entire surveyed area 

have been mapped to generate a proxy of the near-surface moisture spatial field.  

 

EXPERIMENTAL FRAMEWORK 

Tools and equipment 

A GPR with two ground-coupled antennas, 600 MHz and 1600 MHz center frequencies of 

investigation (RIS 99-MF Multi Frequency Array Radar-System manufactured by IDS S.p.A., 

Italy) was used for the surveys (Figure 1a). Measurements were carried out using 4 channels, 2 

mono-static and 2 bi-static. Data were acquired in the time domain, in a 40 ns time window with 

a time step dt = 7.8125 × 10-2 ns. Horizontal sampling resolution amounted to 2.4 × 10-2 m. 

According to the main goal of this study, only the 600 MHz mono-static channel was processed. 

The 1600 MHz mono-static signal and the two bi-static ones were used for cross-checking. 

Capacitance probes WaterScout SM100 manufactured by Spectrum Technologies Inc. (Figure 

1b) were evenly placed over the entire surveyed area, collecting data at depths of 0.15 m and 0.45 

m below the ground surface to provide point information on subsurface moisture content. 

According to the depth domain of the shallow soil dielectric parameters assessed by equation (1), 

only the data related to 0.15 m deep were used for comparison. 

 

FIGURE 1 a) Ground-coupled antenna pulse radar system, 600 MHz and 1600 MHz center 

frequencies of investigation, manufactured by IDS S.p.A. b) Capacitance probe WaterScout 

SM100 manufactured by Spectrum Technologies Inc. 

 

Capacitance probes were calibrated by gathering undisturbed soil samples of the same volume of 

the support explored by the probe as close to the sampling points. The gravimetric water content 

w [g∙g-1] was measured in laboratory environment and transformed in volumetric water content θ, 
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so that the site-specific calibration curve was determined. A relatively good agreement was found 

between the direct (w) and indirect (θ) soil moisture measurements as the mean absolute relative 

error and the coefficient of determination were 13% and 0.89, respectively (Figure 2). A detailed 

description of moisture statistics on the entire survey campaign can be found in Ortuani et al. 

2013. 

 

FIGURE 2. Site-specific calibration curve for capacitance probes relating gravimetric (w) and 

volumetric water content (θ). 

 

Study site, weather conditions, and soil properties 

The test site is situated in the Po valley area, in northern Italy, near the town of Landriano (9° 16' 

12" E, 45° 19' 23" N), as shown in Figure 3.  

The average elevation is approximately 88 m a.s.l., with an almost flat ground along the entire 

surveyed field. The area is characterized by a semi-humid climate with mean annual precipitation 

and temperature of 880 mm and 12 °C, respectively. Soil type is a pretty uniform, bare, sandy 

loam characterized by a low surface roughness, with an average amplitude of 0.05 m, whose 

effects on the electromagnetic parameters herein analyzed have been verified to be negligible in 

near-field conditions [Mourmeaux et al. 2014]. Table 1 lists the grain size distribution of a 

representative soil sample collected within the test site area.  

 

TABLE 1. Grain size distribution of a soil sample collected within the test site area. 

 

According to the requirements for the applicability of the “Rayleigh scattering” method, by 

reasonably considering the water within the investigated three-phase porous medium as mostly 

fixed to grain particles by means of capillary action, it is possible to take into account the grain 

size of 0.075 × 10-3 m as a reference average dimension for the whole soil particles, on the basis 

of the highest percentage of material retained at sieve P0.075 (i.e., Table 1). Therefore, by using a 
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600 MHz center frequency of investigation and with regard to the quarter of wavelength criteria, 

it is possible to verify that Rayleigh scattering occurs in the small size parameter regime x << 1. 

Accordingly, the same reference particle size of 0.075 × 10-3 m has been considered as the value 

of d into equation (3). 

The GPR campaign took place at the beginning of autumn, on October 2nd, 2012, in moderately 

wet conditions. According to the nearest rain gauge station, low rainfall was recorded during the 

previous seven days (< 8 mm/day, on the average), with a medium level of evaporation due to the 

medium-high temperatures in that period (17 °C, on the average). 

A 16m × 16m field was mapped with the GPR, following a 17 × 17 lines square grid pattern with 

a spacing of 1 m between the acquisition tracks. The GPR was dragged with a driving speed of 

about 3 km/h (almost 1 m/s), for a total collection of 21300 measured points. 

Furthermore, eight capacitance probes were uniformly distributed over the surveyed area for 

collecting moisture at 0.15 m depth below the ground surface in order to compare the shallow soil 

moisture assessed through the “reflectivity method”. 

 

FIGURE 3. Study site for the GPR acquisition carried out over a 16-m × 16-m area, 1-m spacing 

between the tracks (17 × 17 lines square grid pattern). 

 

RESULTS AND DISCUSSION 

Punctual comparison of moisture data 

A comparison between the moisture data retrieved by GPR (θGPR) using the “reflectivity” method, 

and those collected by eight capacitance probes (θprobe) is shown in Figure 4. An overall good 

agreement can be observed between the GPR-derived and the probe-measured moisture, with the 

exception of stations 5 and 6, where the absolute residuals are equal to 0.048 m3∙m-3 and 0.067 

m3∙m-3, respectively. The average soil moisture from GPR at the eight probe stations amounts to 

0.309 m3∙m-3 with a standard deviation of 0.0105 m3∙m-3. The same statistics concerning soil 

moisture from capacitance probes are equal to 0.318 m3m-3 and 0.0292 m3m-3, respectively. 
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FIGURE 4. Bar graphs representing GPR-derived (θGPR) and probe-measured (θprobe) volumetric 

soil moisture contents at the eight probe sensing stations. 

 

In order to better analyze the reliability of GPR-derived soil moisture, the relative incidence of 

residuals [%], defined by the ratio between the relative value of the residual and the corresponding 

moisture value from capacitance probe, is taken into account. In that respect, residuals are 

considered as the differences between probe-measured and GPR-derived moisture data (Figure 

5). Overall, with the exception of the two aforementioned outliers, the variability of such 

incidences is observed within approximately the 8%. These mismatches can be reasonably due to 

the different support scale of the GPR-based technique, greater than the small-scale variability of 

soil moisture detected by capacitance probe. 

 

FIGURE 5. Incidence of moisture residuals at the eight probe sensing stations. 

 

Mapping of soil moisture spatial variability 

Mapping of the normalized shallow subsurface dielectric water content from the 

“reflectivity” method 

The field-average soil moisture inferred through the “reflectivity” method is equal to 0.351 m3∙m-

3, with a standard deviation of 0.030 m3∙m-3. Therefore, a slightly higher variability of near-surface 

moisture content on the large scale is observed. 

Concerning the spatial distribution of soil moisture, Figures 6a,b represent the interpolated 

normalized subsurface soil moisture θNORM from the GPR acquisition. The variogram model is 

linear, with slope of 1.513 × 10-4, anisotropy ratio and angle of 2 and 87.72°, respectively, lag 

distance equal to 7.5 m, and nugget 0.0062. The field-average normalized moisture is equal to 

0.762, with a standard deviation of 0.082. The coefficient of variation and the skewness measure 

0.1078 and 0.3377, respectively. The highest values of moisture content are encountered in two 
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places, about 7 m from the northern edge of the surveyed area: one spot is located at about 5.5 m 

from the western edge of the grid pattern, and the second one at the eastern edge. On the contrary, 

the driest areas can be observed in the middle of the western edge and close to the south-eastern 

corner of the area. It is worth noting that given the flat landscape, the topography is not considered 

in the soil pattern. 

 

FIGURE 6. a) Normalized shallow soil dielectric moisture (θNORM) map overlaid with iso-contour 

lines from the “reflectivity” method. b) Iso-contour lines of the normalized shallow soil dielectric 

moisture (θNORM) map from the “reflectivity” method. 

 

Mapping of the normalized frequency peaks from the “Rayleigh scattering” method 

Figures 7a,b show the map of the interpolated normalized frequency peaks fPNORM extracted from 

the frequency spectra of the received signals using the “Rayleigh scattering” method. The 

variogram model is linear, with slope of 2.92 × 10-8, anisotropy ratio and angle of 1000 and 134.8°, 

respectively, lag distance equal to 7.5 m, and nugget 0.0045. According to the correlations found 

by Benedetto (2010) between shifts of frequency peaks and subsurface moisture content variation, 

this map can be considered as a proxy of the near-surface moisture spatial field. The field-average 

normalized frequency peak is equal to 0.813, with a standard deviation of 0.068. Therefore, such 

method seems to account for a lower presence of wet spots over the entire area and a lower 

variability of moisture spatial distribution. The coefficient of variation and the skewness measure 

0.0839 and 1.2787, respectively. In line with the aforementioned field-average values of 

normalized moisture and frequency peaks, the iso-contour lines in Figures 6a,b and 7a,b have 

been set to 0.8.  

 

FIGURE 7. a) Normalized frequency peaks (fPNORM) map overlaid with iso-contour lines from the 

“Rayleigh scattering” method. b) Iso-contour lines of the normalized frequency peaks (fPNORM) 

from the “Rayleigh scattering” method. 
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Comparison between maps from the GPR-based methods 

Figure 8 shows the comparison between the iso-contour lines of subsurface moisture obtained 

using the “reflectivity” and the “Rayleigh scattering” methods overlaid on the normalized near-

surface soil moisture map. A good agreement with the theoretical expectations is demonstrated. 

In particular, a lowering of the peak of the frequency spectrum corresponds to an increase of 

dielectric permittivity, as the moisture content is expected to rise. On the contrary, from a decrease 

of the relative dielectric permittivity and an increase of the value of frequency peak, a lowering 

of moisture content is expected to be found. In this regard, a clear match can be found between 

the low normalized frequency peak values and the high normalized shallow subsurface dielectric 

moisture in the north-western part of the figure. Further matches can be observed in the middle 

of the western edge of the figure, as well as in the south-eastern corner. In such cases, high 

normalized frequency peak values indicate low normalized volumetric water content.  

From the analysis of the aforementioned characteristics of the two variograms, both linearly 

modeled, it is outlined a greater spatial continuity provided by data from the “reflectivity” method. 

In addition, from the analysis of the dataset behind the two displayed maps of volumetric water 

contents for quantitatively estimating the goodness-of-fit statistic of the two relevant variograms, 

statistics concerning the median absolute deviation of the cross-validation residuals for the 

“reflectivity” and the “Rayleigh scattering” methods are equal to 0.0453 and 0.0298, respectively. 

In line with this, the “Rayleigh scattering” method provides moisture values less affected by 

statistical dispersion, along with a greater robustness statistics, as the deviations of outliers from 

the mean are less relevant. Statistics on standard deviation of the cross-validation residuals are 

equal to 0.0664 for the “reflectivity” method, and 0.0459 for the “Rayleigh scattering” method, 

thus indicating a better fitting for data from the “Rayleigh scattering” method. 

 

FIGURE 8. - Normalized shallow soil dielectric moisture map overlaid with iso-contour lines 

from the “reflectivity” (solid black lines) and the “Rayleigh scattering” method (dashed red lines). 
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CONCLUSION 

The paper proposes the application of two GPR-based approaches for monitoring soil moisture 

spatial field in pavement engineering applications, to prevent structural damaging. A GPR survey, 

including 21300 records over a 16m × 16m field, was carried out. Local comparisons were 

developed between the GPR-derived and the probe-measured moisture contents. Moreover, 

subsurface maps of both normalized shallow subsurface dielectric moisture and normalized 

frequency spectra peaks were processed. 

Although some discrepancies were shown concerning local moisture comparisons, results 

demonstrated a greater effectiveness of the proposed GPR approaches for large-scale inspections, 

consistent with the dimension of the surveyed area. Overall, from the analysis of the best-fitting 

variograms characteristics for the dataset behind the moisture maps obtained from the 

“reflectivity” and the “Rayleigh scattering” methods, a greater spatial continuity provided by data 

from the “reflectivity” method has been outlined.  

It is also worth noting that the application of the “reflectivity” method to data collected by means 

of a ground-coupled radar system, along the lines of the "surface reflection method" for the 

estimation of permittivity values of the type of soil investigated has proved to be suited for this 

purpose and capable to provide reliable values of volumetric water content at finer scales of 

investigation. 

More insights about the reliability of results may be achieved by multiple repetitions of the GPR 

acquisitions which may be eased by the use of high-efficient GPR systems, such as off-ground 

radar systems. 
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List of captions 

 

FIGURE 1 a) Ground-coupled antenna pulse radar system, 600 MHz and 1600 MHz center 

frequencies of investigation, manufactured by IDS S.p.A. b) Capacitance probe WaterScout 

SM100 manufactured by Spectrum Technologies Inc. 

 

FIGURE 2. Site-specific calibration curve for capacitance probes relating gravimetric (w) and 

volumetric water content (θ). 

 

TABLE 1. Grain size distribution of a soil sample collected within the test site area. 

 

FIGURE 3. Study site for the GPR acquisition carried out over a 16-m × 16-m area, 1-m spacing 

between the tracks (17 × 17 lines square grid pattern). 

 

FIGURE 4. Bar graphs representing GPR-derived (θGPR) and probe-measured (θprobe) volumetric 

soil moisture contents at the eight probe sensing stations. 

 

FIGURE 5. Incidence of moisture residuals at the eight probe sensing stations. 

 

FIGURE 6. a) Normalized shallow soil dielectric moisture (θNORM) map overlaid with iso-contour 

lines from the “reflectivity” method. b) Iso-contour lines of the normalized shallow soil dielectric 

moisture (θNORM) map from the “reflectivity” method. 

 

FIGURE 7. a) Normalized frequency peaks (fPNORM) map overlaid with iso-contour lines from the 

“Rayleigh scattering” method. b) Iso-contour lines of the normalized frequency peaks (fPNORM) 

from the “Rayleigh scattering” method. 
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FIGURE 8. a) Normalized shallow soil dielectric moisture map overlaid with iso-contour lines 

from the “reflectivity” (solid black lines) and the “Rayleigh scattering” method (dashed red lines). 
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Figures 

 

FIGURE 1 a) Ground-coupled antenna pulse radar system, 600 MHz and 1600 MHz center 

frequencies of investigatio, manufactured by IDS S.p.A. 
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FIGURE 1 b) Capacitance probe WaterScout SM100 manufactured by Spectrum Technologies 

Inc. 
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FIGURE 2. Site-specific calibration curve for capacitance probes relating gravimetric (w) and 

volumetric water content (θ). 
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FIGURE 3. Study site for the GPR acquisition carried out over a 16m × 16m area, 1m spacing 

between the tracks (17 × 17 lines square grid pattern). 
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FIGURE 4. Bar graphs representing GPR-derived (θGPR) and probe-measured (θprobe) volumetric 

soil moisture contents at the eight probe sensing stations. 
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FIGURE 5. Incidence of moisture residuals at the eight probe sensing stations. 
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FIGURE 6. a) Normalized shallow soil dielectric moisture (θNORM) map overlaid with iso-contour 

lines from the “reflectivity” method. 
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FIGURE 6. b) Iso-contour lines of the normalized shallow soil dielectric moisture (θNORM) map 

from the “reflectivity” method. 
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FIGURE 7. a) Normalized frequency peaks (fPNORM) map overlaid with iso-contour lines from the 

“Rayleigh scattering” method. 
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FIGURE 7. b) Iso-contour lines of the normalized frequency peaks (fPNORM) from the “Rayleigh 

scattering” method. 
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FIGURE 8. a) Normalized shallow soil dielectric moisture (θNORM) map overlaid with iso-contour 

lines from the “reflectivity” (solid black lines) and the “Rayleigh scattering” method (dashed red 

lines). 
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Tables 

 

TABLE 1. Grain size distribution of a soil sample collected within the test site area. 

Grain size 

Sieve [mm] P4.75 P2 P0.425 P0.075 

Soil 

Fraction 

[%] 

99.03 98.51 91.66 53.23 

 

 


