3,353 research outputs found

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 128, May 1974

    Get PDF
    This special bibliography lists 282 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1974

    Monitoring cell infiltration into the myocardial infarction site using micrometer-sized iron oxide particles-enhanced magnetic resonance imaging

    Get PDF
    The cell infiltration into the myocardial infarction (MI) site was studied using magnetic resonance imaging (MRI) with micrometer-sized iron oxide particles (MPIO) as cell labeling probes. MI is a leading cause of global death and disability. However, the roles of inflammatory cells and stem cells during the post-MI remodeling and repair processes are yet to be discovered. This study was to develop noninvasive MRI techniques to monitor and quantify the cellular infiltration into the MI site. MPIO can produce pronounced signal attenuation at regions of interest in MRI. Therefore, cells labeled with these particles can be detected after they are activated and home to the MI site. In the first project, MPIO of various doses were injected into the mouse blood stream 7 days before the MI surgery. Serial MRI was performed at various time points post-MI to monitor the inflammatory cell infiltration into the MI site. Significant signal attenuation caused by labeled cells, in particular macrophages, was observed at the MI site. The study suggests an optimal imaging window should be from 7 to 14 days post-MI, during which the MR signal was inversely proportional to the MPIO dose. The study also suggests an optimal MPIO dose should be between 9.1 and 14.5 µg Fe/g body weight. In the second project, mesenchymal stem cells labeled with MPIO were transplanted into the mouse bone marrow 14 days before the MI surgery. Serial MRI was performed at various time points post-MI to monitor the labeled cells, which mobilized from the bone marrow and homed to the MI site. All the MRI findings were further confirmed by histology. In addition to revealing the characteristics of cell infiltration during MI, this study also provides noninvasive MRI techniques to monitor and potentially quantify labeled cells at the pathological site. The technique can also be used to investigate the function of cells engaged in MI and to test the effect on cell infiltration caused by any treatment strategies.Ph.D.Committee Chair: Sang Hyun Cho; Committee Co-Chair: Tom C.-C. Hu; Committee Member: Autumn Schumacher; Committee Member: Chris C.-K. Wang; Committee Member: John N. Oshinski; Committee Member: Nathan E. Yanasa

    Aerospace Medicine and Biology: A continuing bibliography, supplement 216

    Get PDF
    One hundred twenty reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1981 are listed. Topics include: sanitary problems; pharmacology; toxicology; safety and survival; life support systems; exobiology; and personnel factors

    Techniques and software tool for 3D multimodality medical image segmentation

    Get PDF
    The era of noninvasive diagnostic radiology and image-guided radiotherapy has witnessed burgeoning interest in applying different imaging modalities to stage and localize complex diseases such as atherosclerosis or cancer. It has been observed that using complementary information from multimodality images often significantly improves the robustness and accuracy of target volume definitions in radiotherapy treatment of cancer. In this work, we present techniques and an interactive software tool to support this new framework for 3D multimodality medical image segmentation. To demonstrate this methodology, we have designed and developed a dedicated open source software tool for multimodality image analysis MIASYS. The software tool aims to provide a needed solution for 3D image segmentation by integrating automatic algorithms, manual contouring methods, image preprocessing filters, post-processing procedures, user interactive features and evaluation metrics. The presented methods and the accompanying software tool have been successfully evaluated for different radiation therapy and diagnostic radiology applications

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 156)

    Get PDF
    This bibliography lists 170 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1976

    Composite transcriptome assembly of RNA-seq data in a sheep model for delayed bone healing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The sheep is an important model organism for many types of medically relevant research, but molecular genetic experiments in the sheep have been limited by the lack of knowledge about ovine gene sequences.</p> <p>Results</p> <p>Prior to our study, mRNA sequences for only 1,556 partial or complete ovine genes were publicly available. Therefore, we developed a composite <it>de novo </it>transcriptome assembly method for next-generation sequence data to combine known ovine mRNA and EST sequences, mRNA sequences from mouse and cow, and sequences assembled <it>de novo </it>from short read RNA-Seq data into a composite reference transcriptome, and identified transcripts from over 12 thousand previously undescribed ovine genes. Gene expression analysis based on these data revealed substantially different expression profiles in standard versus delayed bone healing in an ovine tibial osteotomy model. Hundreds of transcripts were differentially expressed between standard and delayed healing and between the time points of the standard and delayed healing groups. We used the sheep sequences to design quantitative RT-PCR assays with which we validated the differential expression of 26 genes that had been identified by RNA-seq analysis. A number of clusters of characteristic expression profiles could be identified, some of which showed striking differences between the standard and delayed healing groups. Gene Ontology (GO) analysis showed that the differentially expressed genes were enriched in terms including <it>extracellular matrix</it>, <it>cartilage development</it>, <it>contractile fiber</it>, and <it>chemokine activity</it>.</p> <p>Conclusions</p> <p>Our results provide a first atlas of gene expression profiles and differentially expressed genes in standard and delayed bone healing in a large-animal model and provide a number of clues as to the shifts in gene expression that underlie delayed bone healing. In the course of our study, we identified transcripts of 13,987 ovine genes, including 12,431 genes for which no sequence information was previously available. This information will provide a basis for future molecular research involving the sheep as a model organism.</p

    Advanced Visualization and Intuitive User Interface Systems for Biomedical Applications

    Get PDF
    Modern scientific research produces data at rates that far outpace our ability to comprehend and analyze it. Such sources include medical imaging data and computer simulations, where technological advancements and spatiotemporal resolution generate increasing amounts of data from each scan or simulation. A bottleneck has developed whereby medical professionals and researchers are unable to fully use the advanced information available to them. By integrating computer science, computer graphics, artistic ability and medical expertise, scientific visualization of medical data has become a new field of study. The objective of this thesis is to develop two visualization systems that use advanced visualization, natural user interface technologies and the large amount of biomedical data available to produce results that are of clinical utility and overcome the data bottleneck that has developed. Computational Fluid Dynamics (CFD) is a tool used to study the quantities associated with the movement of blood by computer simulation. We developed methods of processing spatiotemporal CFD data and displaying it in stereoscopic 3D with the ability to spatially navigate through the data. We used this method with two sets of display hardware: a full-scale visualization environment and a small-scale desktop system. The advanced display and data navigation abilities provide the user with the means to better understand the relationship between the vessel\u27s form and function. Low-cost 3D, depth-sensing cameras capture and process user body motion to recognize motions and gestures. Such devices allow users to use hand motions as an intuitive interface to computer applications. We developed algorithms to process and prepare the biomedical and scientific data for use with a custom control application. The application interprets user gestures as commands to a visualization tool and allows the user to control the visualization of multi-dimensional data. The intuitive interface allows the user to control the visualization of data without manual contact with an interaction device. In developing these methods and software tools we have leveraged recent trends in advanced visualization and intuitive interfaces in order to efficiently visualize biomedical data in such a way that provides meaningful information that can be used to further appreciate it

    Intravascular Ultrasound

    Get PDF
    Intravascular ultrasound (IVUS) is a cardiovascular imaging technology using a specially designed catheter with a miniaturized ultrasound probe for the assessment of vascular anatomy with detailed visualization of arterial layers. Over the past two decades, this technology has developed into an indispensable tool for research and clinical practice in cardiovascular medicine, offering the opportunity to gather diagnostic information about the process of atherosclerosis in vivo, and to directly observe the effects of various interventions on the plaque and arterial wall. This book aims to give a comprehensive overview of this rapidly evolving technique from basic principles and instrumentation to research and clinical applications with future perspectives

    Multi-detector row computed tomography angiography of peripheral arterial disease

    Get PDF
    With the introduction of multi-detector row computed tomography (MDCT), scan speed and image quality has improved considerably. Since the longitudinal coverage is no longer a limitation, multi-detector row computed tomography angiography (MDCTA) is increasingly used to depict the peripheral arterial runoff. Hence, it is important to know the advantages and limitations of this new non-invasive alternative for the reference test, digital subtraction angiography. Optimization of the acquisition parameters and the contrast delivery is important to achieve a reliable enhancement of the entire arterial runoff in patients with peripheral arterial disease (PAD) using fast CT scanners. The purpose of this review is to discuss the different scanning and injection protocols using 4-, 16-, and 64-detector row CT scanners, to propose effective methods to evaluate and to present large data sets, to discuss its clinical value and major limitations, and to review the literature on the validity, reliability, and cost-effectiveness of multi-detector row CT in the evaluation of PAD
    corecore