
Marquette University
e-Publications@Marquette

Master's Theses (2009 -) Dissertations, Theses, and Professional Projects

Advanced Visualization and Intuitive User Interface
Systems for Biomedical Applications
David Quam
Marquette University, david.quam@marquette.edu

Recommended Citation
Quam, David, "Advanced Visualization and Intuitive User Interface Systems for Biomedical Applications" (2012). Master's Theses
(2009 -). Paper 136.
http://epublications.marquette.edu/theses_open/136

http://epublications.marquette.edu
http://epublications.marquette.edu/theses_open
http://epublications.marquette.edu/diss_theses

ADVANCED VISUALIZATION AND INTUITIVE USER INTERFACE SYSTEMS

FOR BIOMEDICAL APPLICATIONS

by

David J. Quam

A Thesis submitted to the Faculty of the Graduate School,

Marquette University,

in Partial Fulfillment of the Requirements for

the Degree of Master of Science

Milwaukee, Wisconsin

May 2012

ABSTRACT

ADVANCED VISUALIZATION AND INTUITIVE USER INTERFACE SYSTEMS

FOR BIOMEDICAL APPLICATIONS

David J. Quam

Marquette University, 2012

Modern scientific research produces data at rates that far outpace our ability to

comprehend and analyze it. Such sources include medical imaging data and computer

simulations, where technological advancements and spatiotemporal resolution generate

increasing amounts of data from each scan or simulation. A bottleneck has developed

whereby medical professionals and researchers are unable to fully use the advanced

information available to them. By integrating computer science, computer graphics,

artistic ability and medical expertise, scientific visualization of medical data has become

a new field of study. The objective of this thesis is to develop two visualization systems

that use advanced visualization, natural user interface technologies and the large amount

of biomedical data available to produce results that are of clinical utility and overcome

the data bottleneck that has developed.

Computational Fluid Dynamics (CFD) is a tool used to study the quantities

associated with the movement of blood by computer simulation. We developed methods

of processing spatiotemporal CFD data and displaying it in stereoscopic 3D with the

ability to spatially navigate through the data. We used this method with two sets of

display hardware: a full-scale visualization environment and a small-scale desktop

system. The advanced display and data navigation abilities provide the user with the

means to better understand the relationship between the vessel’s form and function.

Low-cost 3D, depth-sensing cameras capture and process user body motion to

recognize motions and gestures. Such devices allow users to use hand motions as an

intuitive interface to computer applications. We developed algorithms to process and

prepare the biomedical and scientific data for use with a custom control application. The

application interprets user gestures as commands to a visualization tool and allows the

user to control the visualization of multi-dimensional data. The intuitive interface allows

the user to control the visualization of data without manual contact with an interaction

device. In developing these methods and software tools we have leveraged recent trends

in advanced visualization and intuitive interfaces in order to efficiently visualize

biomedical data in such a way that provides meaningful information that can be used to

further appreciate it.

i

ACKNOWLEDGEMENTS

David J. Quam

I wish to express gratitude to my principle advisor, John LaDisa, for his

innovative perspective on the utility of immersive visualization in biomedical

applications and his ability to link my skill set with this project. It is this forward-focused

vision that provided the inspiration for this thesis. Further, I gratefully acknowledge his

fervent support of my project through securing unique collaboration and funding

opportunities. On a personal note, I wish to thank him for serving as an excellent role

model in how to professionally conduct academic research in a way that fosters an

entrepreneurial spirit. This project would not have been possible without the vision of Dr.

Ronald Woods, Associate Professor of Surgery at the Children’s Hospital of Wisconsin. I

wish to take this opportunity to sincerely thank him for the support he provided by

spearheading this project and providing a vision to which I could apply my creative and

engineering skills.

I would be remised to not thank the Marquette University Department of

Biomedical Engineering, especially Dr. Kristina Ropella, for providing the financial

support that made my graduate studies feasible through teaching assistantships and travel

awards. I also express gratitude to my Thesis Committee, consisting of Drs. John LaDisa,

Ronald Woods, Laura Ellwein and Lars Olson. I appreciate the time, energy and expertise

they have given this project and am humbled by their generosity. I am pleased to

acknowledge the generous commitment of time, energy and resources afforded me by the

staff at the Discovery World Museum at Pier Wisconsin. I especially wish to thank Paul

Hayden for providing excellent support while developing the content for the HIVE. I owe

Timothy Gundert a debt of gratitude for establishing the framework for immersive

visualization further developed in this thesis. I also wish to thank Dr. Laura Ellwein for

developing the method to calculate the orientation of OCT images using the theory of

minimum bending energy. I feel the inclusion of her method in this project has

strengthened it a great deal.

Finally, I wish to acknowledge the unyielding support of my friends and family,

without whom this thesis would not be possible. Most notably I wish to thank my parents

David and Kathleen for providing moral support when most needed.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... i

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

GLOSSARY OF TERMS .. ix

CHAPTER 1 : INTRODUCTION .. 1

1.1 Specific Aims .. 1

1.2 The Data Deluge ... 2

1.3 Visualization as a Solution.. 3

1.4 Challenges in Visualization .. 7

1.5 Current Visualization Methods ... 8

1.5.1 Display Technologies .. 8

1.5.2 Computer Graphics and Human Depth Perception 9

1.5.3 Color Multiplexing for Stereoscopy .. 13

1.5.4 Polarization Multiplexing for Stereoscopy 15

1.5.5 Time Multiplexing for Stereoscopy .. 15

1.5.6 Computer Science and Visualization Software Libraries 16

1.5.7 Human-Computer Interaction ... 19

CHAPTER 2 : A METHOD TO PROCESS AND DISPLAY CFD SIMULATION

DATA IN AN IMMERSIVE VR ENVIRONMENT ... 20

2.1 Computational Fluid Dynamics .. 20

2.1.1 CFD with Immersive VR .. 21

2.1.2 Objective ... 22

2.2 Currently Available Software Tools ... 22

2.2.1 EON Studio Visualization Software ... 23

iii

2.2.2 COVISE – Collaborative Visualization Environment 23

2.3 Data Acquisition Methodology ... 25

2.4 Post Processing Methods .. 28

2.4.1 Resample 3D Model and Hemodynamic Results 28

2.4.2 Transform Data to Meet VR Environment Scale 32

2.4.3 Generate Custom 3D Content ... 33

2.4.4 Prepare Data for VR Environment .. 35

2.4.5 Medical Image Registration with 3D Simulation Results 35

2.4.6 Presentation of Results .. 37

2.4.7 Simplified Methods for Expedited Results 38

2.5 Results ... 39

2.5.1 Transformation and Registration Process 39

2.5.2 Visualization Results ... 42

2.5.3 Human Interactive Virtual Environment (HIVE) 48

2.5.4 Mini-CAVE Hardware Prototype ... 49

2.6 Discussion ... 51

2.6.1 Immersive Visualization for Patient-Specific CFD Data 51

2.6.2 Extension to Other Imaging Modalities .. 52

2.6.3 Case Study 1: Carotid Artery .. 53

2.6.4 Case Study 2: LCX Coronary Artery .. 54

2.6.5 Limitations .. 55

2.7 Conclusions ... 56

CHAPTER 3 : STEREOSCOPIC VISUALIZATION SYSTEM WITH INTUITIVE

GESTURE-BASED CONTROL FOR BIOMEDICAL AND SCIENTIFIC DATASETS

 58

3.1 Introduction and Motivations .. 58

iv

3.1.1 Pre-Surgical Planning Tools ... 59

3.1.2 Microsoft Kinect Camera .. 59

3.1.3 Objective ... 62

3.2 Methods... 62

3.3 Interaction Data ... 64

3.3.1 Gesture Libraries and User Interfaces ... 64

3.3.2 Processing of Kinect Data ... 65

3.4 Software Solution.. 66

3.4.1 Software Solution: Real-Time GUI .. 67

3.4.2 Software Solution: State Machine ... 69

3.4.3 Software Solution: Configuration Dialog 72

3.5 Visualization Content.. 76

3.5.1 Data Selection ... 76

3.5.2 Image Processing Methods ... 77

3.5.3 Visual Content Generation .. 79

3.6 Hardware Solution .. 81

3.6.1 Commercial Stereoscopic Solutions ... 82

3.6.2 Display Devices .. 83

3.7 Results ... 84

3.7.1 Hardware and Software Performance ... 84

3.7.2 Volumetric Medical Data Processing Results 85

3.8 Discussion ... 88

3.8.1 System Performance .. 88

3.8.2 Display Techniques and Hardware Considerations 89

3.8.3 Gesture-Based Controls .. 90

v

3.8.4 General Applicability .. 92

3.8.5 Limitations .. 92

3.9 Conclusion .. 93

CHAPTER 4 : CONCLUSIONS AND FUTURE DIRECTIONS 94

4.1 Future Directions .. 94

4.1.1 Application Development ... 94

4.1.2 Display Technology .. 101

4.1.3 Applications in Medical Education ... 102

4.2 Conclusions ... 103

BIBLIOGRAPHY ... 106

COMPUTER SOURCE CODE .. 114

APPENDIX A: AIM 1 IMPLEMENTATION DETAILS .. 115

A.1 Use of Individual Scripts for Application of Post-Processing Methods . 115

A.2 Use of MATLAB GUI for Post-Processing Methods 119

APPENDIX B: AIM 2 IMPLEMENTATION DETAILS .. 123

B.1 Technical Details of Real-Time GUI .. 123

B.1.1 Class Structure .. 124

B.1.2 Multi-Threaded Architecture .. 125

B.1.3 Loop Operation ... 126

B.2 User/Camera Orientation and Gesture Recognition Algorithms 132

B.3 User Scenarios and Suggested Settings of Configuration Dialog 135

APPENDIX C: USER GUIDE ... 137

C.1 Instructions for Use: Real-Time GUI ... 137

vi

LIST OF TABLES

Table 2.1 – Comparison between EON and COVISE .. 25

Table 2.2- Summary of transformation parameters .. 40

Table 3.1 - Gestures .. 69

Table 3.2 - User-defined parameters ... 75

Table 3.3 - Summary of datasets processed .. 77

Table 3.4 - Bill of Materials .. 83

Table A.1 – Input/Output information for individual post-processing steps 116

Table A.2 – User information for MATLAB GUI .. 121

Table B.1 – Class and Inheritance listing ... 124

Table B.2 - Distribution of computing tasks across multiple threads 125

Table B.3 State Machine connections control flow of Interaction Data 130

vii

LIST OF FIGURES

Figure 1.1 - Visualization process and methods ... 5

Figure 1.2 – Typical raster display configuration ... 9

Figure 1.3 – Typical pictorial depth cues.. 10

Figure 1.4 - Stereopsis / binocular parallax .. 11

Figure 1.5 - Stereo viewing devices .. 12

Figure 1.6 – Stereo eyewear and multiplexing techniques ... 14

Figure 1.7 - Illustration of software hierarchy used in visualization 18

Figure 2.1 – Method for rapidly visualizing CFD results ... 26

Figure 2.2 - MATLAB User Interface .. 30

Figure 2.3 - Surface element extraction .. 32

Figure 2.4 - Image Registration Transformations ... 36

Figure 2.5 - Typical screen topology of IVE .. 37

Figure 2.6 - MR image registration on 3D solid model of carotid artery 43

Figure 2.7 – OCT image registration on 3D model of LCX coronary artery 44

Figure 2.8 – WSS as Visualized with the IVEs .. 45

Figure 2.9 – Temporal progression of velocity at predetermined spatial locations 46

Figure 2.10 – Renderings of LCX coronary artery with quantitative results.................... 47

Figure 2.11 - Scale of the IVE .. 49

Figure 2.12 – MiniCAVE display topologies ... 50

Figure 3.1 - Kinect Camera components .. 60

Figure 3.2 – Video, skeleton and depth images from Kinect camera 61

Figure 3.3 – Solution components .. 63

viii

Figure 3.4 – Detailed view of system components ... 64

Figure 3.5 - OpenNI extensible interface .. 66

Figure 3.6 – Software Solution: Real-Time GUI .. 69

Figure 3.7 – State Machine ... 72

Figure 3.8 - Customization dialog .. 74

Figure 3.9 - Visualization Framework .. 76

Figure 3.10 – Image processing steps ... 78

Figure 3.11 – Approximation of LOS vector .. 79

Figure 3.12 – Approximation of interventricular septal (IVS) vector 79

Figure 3.13 – Flow charts describing ParaView Macros .. 81

Figure 3.14 - Hardware Topology .. 82

Figure 3.15 - Image processing results .. 87

Figure 4.1 - Data pathway between the Kinect and ParaView ... 95

Figure 4.2 - Elevation, Azimuth and Roll camera operations... 97

Figure 4.3 - Potential plugin configuration ... 100

Figure 4.4 – Virtual environments used for educational purposes 103

Figure A.1 – Required steps in using the MATLAB GUI. ... 119

Figure B.1 - Class diagram ofprimary classes of Real-Time GUI 126

Figure B.2 – Schematic of Loop Structure ... 128

Figure B.3- Alternative representation of State Machine ... 130

Figure B.4 - Figure illustrating the flow of data between the classes. 132

Figure B.5 – User/camera orientation schematic .. 134

ix

GLOSSARY OF TERMS

2D – two dimensional

3D – three dimensional

API – application programming interface

AR – augmented reality

CAVE – Audio-Visual Experience Automatic Virtual Environment

CFD – computational fluid dynamics

CFF – critical flicker frequency

CMOS – complementary metal oxide semiconductor

COM – component object model

COVISE – Collaborative Visualization Environment

CRT – cathode ray tube

DICOM – digital imaging and communications in medicine (medical image storage

standard)

FOV – field of view

GPU – graphics processing unit

GUI – graphical user interface

HCI – human-computer interaction

HIVE – Human Interactive Virtual Environment

HMD – head-mounted display

HVS – human visual system

IDE – integrated development environment

IVE – immersive visualization environment

IVS – interventricular septum

LCD – liquid crystal display

LCX – left circumflex coronary artery

LED – light emitting diode

LOS – line of sight

LUT – look-up table

OCT – optical coherence tomography

OSI – oscillatory shear index

PCA – principal component analysis (also called singular value decomposition)

RGB – red green blue (color system)

SDK – software development kit

TAWSS – time-averaged wall shear stress

VB – Visual Basic (computer programming language)

VE – virtual environment

VR – virtual reality

VTK – visualization toolkit

WSS – wall shear stress (interpreted as instantaneous)

1

Chapter 1: Introduction

1.1 Specific Aims

This thesis aims to describe the utility in using and developing systems for

advanced visualization as applied to biomedical research. We demonstrate this through

two distinct projects to provide additional benefits in the areas of academic research and

medicine.

Aim 1: Develop a Method to Process and Display CFD Simulation Results in an

Immersive Visualization Environment

This aim employs visualization in the field of vascular biomechanics research to

enhance spatiotemporal understanding of multi-dimensional data sets, such as those

commonly generated by computational fluid dynamics (CFD) simulations. These

simulations produce large amounts of data that must be compressed or manipulated to be

visualized. To reduce the amount of compression or manipulation, we developed a

method of rapidly visualizing CFD results in an immersive visualization environment

(IVE). The method also establishes a means with which to resolve the data bottleneck

that has been developing over the past decade. The applicability of the method is

demonstrated with two display topologies displaying CFD results from the carotid and

left-circumflex (LCX) coronary arteries.

2

Aim 2: Flexible Stereoscopic Visualization System for Biomedical and Scientific

Datasets with Intuitive Gesture-Based Control Tool

This aim describes a novel visualization system that delivers a hardware and

software solution to view medical imaging data with 3D stereoscopic images. We

demonstrate results of custom control software that uses gestures recorded by a Microsoft

Kinect Camera and processed with open-source algorithms. We also develop an

algorithmic framework to create high quality, useful visualizations with open-source

visualization software packages. We ultimately assemble a system that integrates the

control software and stereoscopic displays configured to perform optimally for use as a

pre-surgical planning tool.

1.2 The Data Deluge

Modern biomedical and scientific data is produced in quantities that push the

limits of traditional methods of storing, viewing and comprehending it fully [1–4]. The

sources of the majority of these data are increasingly monolithic high dimensional

datasets, higher resolution images, more sophisticated computer simulations and many

other information from computational sources [5,6]. The size of these data is expected to

increase commensurately with the increases in computational capacity predicated by

Moore’s Law [7] thus posing a serious challenge to the way data is handled today [8].

This law roughly predicts a doubling of computational capacity every 18 months by

increasing the number of semiconductor transistors on an integrated circuit (IC) chip [9].

In 2011, 1.8 trillion gigabytes of data were created [6]. This surpasses our ability

to store such quantities of data [5], let alone completely comprehend it. A typical

computer simulation of blood traveling through the human aorta can be comprised of

3

several gigabytes of data, which must be registered to spatial locations along the vessel to

be fully appreciated. As an example, consider the hole in ozone. Despite the 1985 British

discovery of the hole in the Earth’s ozone layer, the data describing the phenomena had

been stored in the digital archives of the United States for nearly 10 years, but had not yet

been analyzed due to the large amount of data in the processing queue [10]. Collectively,

these examples suggest that an alternative to the traditional means of data analysis must

be identified if the deluge of scientific data is to be resolved. Scientific visualization may

serve this need by providing new ways of displaying large amounts of data at a single

point in time.

1.3 Visualization as a Solution

To process, comprehend and make advancements using these massive amounts of

data we must develop a means of holistically analyzing data that economizes the time,

effort and resources required to process it. Visualization developed as an outgrowth of

computer science, and as this thesis contends, suits the needs of the scientific community

by allowing researchers to relieve the data analysis bottleneck that has developed in

recent years. The term visualization has been adopted by many fields of study since its

inception, where subtle differences in meaning have developed specific to each. This

thesis points to the original definition of visualization set forth by DeFanti et al. in 1987

[11]:

4

“Visualization is a method of computing. It transforms the symbolic into the

geometric, enabling researchers to observe their simulations and computations.

Visualization is a tool for […] generating images from complex multi-

dimensional data sets.”

In this report the authors describe a method used to achieve results in the form of images.

By this definition, visualization becomes limited to software and computing hardware

associated with creating the images of data.

In 2006, Schroeder et al. published an amended definition of visualization

broadening the previous meaning to describe a general process rather than a specific

method to produce visualizations:

“Visualization is the process of exploring, transforming, and viewing data as

images (or other sensory forms) to gain understanding and insight into the data,

[…] it is naturally interactive, including the human directly in the process of

creating, transforming, and viewing data” [12].

Figure 1.1 illustrates how the process of visualization described by Schroeder is closely

linked with visualization methods put forth by DeFanti whereby in the process of

conducting visualization, specific methods are called to produce the visual results. In

Schroeder’s definition, the data used in visualization can originate from almost any

source, including computational methods such as finite-element modeling or CFD, or

measured data from sources like CT or MR scanners. Assuming the rest of the

visualization process is equipped to handle the data, the process is not concerned with the

source.

5

Computational

Methods:

-Finite element

-CFD

Measured Data:

-CT and MR scanners

Data

Transform Map/Render Display

Visualization Methods (DeFanti)

V
is

u
a
li

za
ti

o
n

 P
ro

ce
ss

 (
S

ch
ro

ed
er

)

Figure 1.1 - Visualization process and methods

The process of visualizing data is an iterative process whereby data from either

computations or measurements are fed to the system and continuously

transformed and rendered until the desired features are extracted. Visualization

methods provide the tools with which the data is transformed and rendered. This

image adapted from [12].

The broadened definition by Schroeder highlights an important consideration in

visualization: that it is most useful as a means to gain new insights, rather than a mere

post-processing method. This perspective is shared by Fox et al. [8], where the authors

discuss the need for researchers to be able to discover relationships between and within

their data.

In using visualization to achieve this, we rely upon the human visual system

(HVS) to perceive the images and relay them to our brain for processing. Nearly one half

of the brain’s neuronal connections are associated with the HVS [11,13,14]. With such a

large share of our intellectual capacity linked to vision, it seems logical to apply this

6

advantage to better understand the results of scientific inquiry. The HVS is well equipped

to recognize patterns and detect deviations from expectations to speed up the process of

analyzing data. Further, by application of specific visualization methods we can combine

sets of seemingly disparate data of high dimensionality and subsequently recognize

trends and relationships that might otherwise go unappreciated.

Users are able to more efficiently parse their data by visualizing more than two

dimensions at a given point in time. More importantly, however, visualizing multiple

dimensions (≥3) simultaneously allows spatiotemporal trends to become visible to the

user. Rendering a depth and time dimension, for example, makes possible the

appreciation of spatiotemporal varying quantities such as shear stress imparted on the

wall of a blood vessel by moving blood throughout the cardiac cycle. Methods for

rendering the depth dimension are an area of active research, but we will only discuss the

basic concepts. Rendering of the depth dimension can be done via true stereopsis
1
 or with

depth cues.

The data deluge will continue to grow in the future as the cost of producing data is

falling at a rapid pace [4,6,8] in concert with the continued increases in computing power.

For this reason, visualization is well poised to serve as a relief to the data analysis

bottleneck that will continue to grow. The process of visualizing data leverages the high

capacity of HVS to reconcile patterns and trends in seemingly disparate data of high

dimensionality.

1
 Stereopsis (also known as binocular parallax) is the result of the horizontal displacement of the

eyes. In ultimately manifests as each eye seeing a different image, which is then integrated by the HVS as

the depth dimension.

7

1.4 Challenges in Visualization

The process of visualization is iterative, as illustrated in Figure 1.1 and often

requires continuous refinement of display parameters such as color mapping, opacity

mapping or adjusting the size of the field of view. When truly exploring data, a priori

knowledge of the best parameters is often not known. For this reason, the time

expenditure in visualizing data can detract users from using a visualization process to its

fullest potential. High performance software packages with large libraries of

preconfigured settings can ameliorate this shortcoming; however, the costs of acquiring

and maintaining these packages can be prohibitive. It is estimated that 70% of the 1.8

trillion gigabytes produced in 2011 were produced by individuals—not corporations or

large organizations [6]. This figure speaks to the fact that the very producers of this large

amount of data may not have the resources necessary to use these visualization packages.

Lower-cost alternatives are therefore needed to increase access to visualization.

The adoption of the visualization process has been slow due to a variety of

factors:

 Costs associated with the procurement of software and hardware/display

technologies

 Lack of expertise in the interdisciplinary field of visualization—which

involves computer science, computer graphics, display technologies, human-

computer interaction and the field of research producing the data of interest

 The relegation of visualization to an “afterthought” status whereby

visualization is not practiced until the data has already been produced, rather

than in the process of creating the data

8

Thus, the grand challenge of today’s visualization scientists is to address these smaller

challenges and find ways of reducing the costs of access, providing resources to

overcome the associated knowledge gap and advocating the use of visualization in the

data creation process rather than as a post-processing step after the data has been created.

1.5 Current Visualization Methods

1.5.1 Display Technologies

Most displays, whether cathode ray tube (CRT), liquid crystal display (LCD) or

projector, are raster devices whereby an image is displayed as a 2D array of picture

elements (“pixels”) [12] much like the discrete image seen in Figure 1.2. This can result

in a loss of data fidelity and resolution [15] if the resolution of the data exceeds that of

the display. Much of the scientific data produced today is inherently multi-dimensional

and therefore feature selection (also called data abstraction) must be applied to reduce the

data to a manageable number of dimensions. Several mathematical and graphical

methods have been developed to accomplish this; some are listed below.

 Linear projections via Principle Component Analysis (PCA), also known as

Singular Value Decomposition [16] may take the form of projecting the multi-

dimensional data onto a 2D plane much like how traditional photography

projects the 3D world onto a 2D sensor chip [17], or by resampling the data

along a plane to create 2D slices through the data in any orientation.

 Rendering time-varying data as a series of moving images (this may actually

provide a secondary advantage in that the HVS is most sensitive to changes in

the field of view, rather than static images [18,19]).

9

 Other methods use depth cues known to produce the visual effect of depth

using 2D rendering techniques (see Section 1.5.2).

Figure 1.2 – Typical raster display

configuration

A raster display is an array of pixels that can

images as combinations of pixels. Raster

displays can take the form of televisions,

computer monitors and projectors.

1.5.2 Computer Graphics and Human Depth Perception

Computers generate images from graphics primitives such as points, lines and

polygons [12]. Realistic, and therefore complex, 3D objects are composed of many

millions of graphics primitives. At a fundamental level, computers are only capable of

rendering combinations of discrete graphics primitives. Software libraries are therefore

used to calculate the combinations of millions of graphics primitives that, when

aggregated, describe the realistic 3D object.

Humans perceive depth by integrating differing sources called depth cues,

whereby we interpret features of an image to communicate information about the relative

position of objects in the depth dimension [15,17–19]. As discussed in [15,17] these cues

usually have a cumulative effect whereby the greater number of cues visible increases the

strength of the perception of depth. In specific combinations, however, depth cues can

detract from the perception of depth [17]. These cues can be rendered in a raster display

10

because they can be faithfully recreated in the 2D pixel array. Some examples of depth

cues include:

 Occlusion (also called interposition) [17]

 Relative Size

 Relative Brightness

These cues are illustrated in Figure 1.3. There are others; however, the mechanisms by

which they communicate depth become quite complex and are beyond the scope of this

thesis. In general, the diagrams seen in Figure 1.3 communicate some small feature of the

two objects’ relative location, such that the viewer is able to draw conclusions on spatial

position. Computer-generated images that judiciously combine these and other depth cues

create a greater sense of realism than those that do not use depth cues [17,18].

Figure 1.3 – Typical pictorial depth cues

Depth information can be communicated with pictorial depth cues. These cues are

interpreted by the human visual system as the depth dimension. This image adapted from

[15].

The level of realism that can be achieved by application of depth cues is limited.

To properly visualize the depth dimension one must consider the phenomenon of human

binocular parallax. The physical location of the human eyes on the head creates an

approximate 60 mm horizontal displacement between the images captured by each eye

[17,20]. As a result, the HVS produces slightly different images in each eye. This is

11

illustrated in Figure 1.4 in which the same object is viewed from two slightly different

positions corresponding to the left and right eyes. This image shows that the left eye

captures additional information on the left side of the object, and complementary results

are obtained from the right eye. A series of neural integrations is performed by the HVS

to register each image and interpret the non-overlapping image data as depth information

[17].

Figure 1.4 - Stereopsis / binocular parallax

The left image is able to observe features on the left side of the mug because of its

horizontal displacement relative to the right eye. The right eye is able to observe

additional features of the cup not visible to the left. The HVS uses the region of the two

images that do not overlap to establish the depth information necessary for depth

perception.

Stereoscopic displays—regardless of their mechanism of operation—aim to

recreate this binocular parallax to induce perception of the depth dimension by the HVS.

The first device to recreate this effect was the stereoscope produced by Charles

Wheatstone in 1838 [21,22]. The stereoscopes seen in Figure 1.5 create this effect by

presenting a pair of images distinctly to each eye, where the eye’s field of view (FOV) is

completely encompassed by the respective image. In Figure 1.5A a mirror combines two

distinct images and reflects them into the eyes of the observer. In Figure 1.5B a disc

contains stereo image pairs on opposite diameters. As the disc is placed into position in

12

the viewer the image pairs are seen separately by each eye and depth is communicated to

the user. Finally, Figure 1.5C shows a modern head –mounted display (HMD) that uses

small LCD displays for each eye to create the stereopsis effect for a single user. As

computer and display technologies have advanced, modern systems that display images

with the stereopsis effect do so by means of one of several multiplexing techniques.

Figure 1.5 - Stereo viewing devices

(A) Original stereoscope device developed by Charles Wheatstone
2
. (B)

Fisher-Price View-Master device. (C) Modern Head-Mounted Display (HMD)

being worn by a surgeon
3
. All three devices operate by presenting

horizontally-offset images to each eye to create the stereopsis effect.

Image multiplexing allows a single raster display to communicate images for both

eyes. A multitude of technologies have been designed to accomplish this, each with its

2
 From [22]

3
 Reprinted, with permission: Urey et al., “State of the Art in Stereoscopic and Autostereoscopic

Displays,” Proceedings of the IEEE, vol. 99, no. 4, pp. 540-555, Apr. 2011.

13

own advantages and disadvantages. Each technology also presents some means of

presenting two images either simultaneously or in rapid temporal succession such that the

HVS interprets them as a single image. Each method includes some means by which each

eye is presented only with the image that recreates its perspective on a real world scene.

A brief overview of these technologies follows; however, many technical details have

been omitted in the consideration of the scope of this thesis.

1.5.3 Color Multiplexing for Stereoscopy

Color Multiplexing Techniques combine the color spectra of the left and right

images to create a single image. The two sub-images can then be separated based on their

color content [17,23]. These types of images are known as anaglyphs. The combined

color content can be seen along the sacrum in Figure 1.6B. This technology has existed

since the 1850s [23,24] but has seen resurgence in recent years with more sophisticated

algorithms for color combination emerging [25]. Special filtering glasses are worn to

resolve the left and right images. It is convention for left images to be encoded with a red

color and right images with a cyan color; which is reflected in the colors of the lenses

seen in Figure 1.6A. This technique has the advantage that it can be realized with

standard video displays and low-cost eyewear, keeping adoption costs low. Native

resolution of the display is also maintained. However, due to the color multiplexing, an

inherent loss of color information in each image is to be expected; reds and blues are not

visible because they have been filtered out of the image [need to verify/confirm this]. The

advanced techniques described in [25] attempt to counter this, but some cross-talk

between images remains.

14

Figure 1.6 – Stereo eyewear and multiplexing techniques

The anaglyphic multiplexing technique (A, B) uses color to

simultaneously rendering images for the left and right eyes; the

accompanying glasses are color-polarized to separate the two

images. Similar techniques are used for polarization multiplexing

techniques (C, D) where alternating pixel rows are polarized

mutually perpendicular and separated by stereo eyewear. In (E,

F) time multiplexing techniques flash alternating left and right

images that are selectively occluded with the accompanying

eyewear.

15

1.5.4 Polarization Multiplexing for Stereoscopy

Polarization Multiplexing Techniques selectively polarize the light emitted from

the display and are able to resolve two separate images creating the stereopsis effect.

Alternating horizontal lines (pixel rows) in the display are assigned to each eye. A

polarizing filter is applied to each row whereby even rows are polarized in a direction

orthogonal to odd rows [26]. These filters can be either linear or circular, where linear

opposing linear filters orient sequential rows perpendicular to the next. Circular

polarizing filters alternate between clockwise and counter-clockwise orientations. In

practice it is more common to polarize with circular filters as the fidelity of depth

perception is less affected by the user’s head motion [23,26]. The resulting image

displayed on the screen will appear striated in the horizontal direction as seen in Figure

1.6D. Images are resolved by glasses whose lenses are polarized to match the polarization

of the light emitted from the display as seen in Figure 1.6C. Because the glasses are

simple polarizing lenses, the technique has become known as “passive stereo.” For each

frame shown on the display, 50% of the pixels are dedicated to displaying the left image,

while 50% are dedicated to the right. Thus, there is a 50% reduction in horizontal display

resolution expected with this stereo technique. Color fidelity and image brightness are

maintained, as compared to color and time multiplexing techniques. The glasses are

inexpensive, which counters the comparatively higher cost of the displays as compared to

those required for color-multiplexing techniques.

1.5.5 Time Multiplexing for Stereoscopy

Time Multiplexing Techniques rely on the fact that the HVS is insensitive to

image flickers above a critical flicker frequency (CFF) [27]. This frequency depends on

16

many factors including: image size, brightness, frequency of flicker [28] and properties of

the retina [29]. The HVS is not able to perceive the transition between images presented

above the CFF. Flickering images presented to the HVS at rates exceeding 60 Hz are

generally perceived as continuous [27]. Images displaying the left and right eye vantage

points are alternated in rapid succession, though only a single image is displayed at a

given moment in time. Battery operated shutter glasses (Figure 1.6E) worn by the user

allow one eye (whose vantage point is on display) an unobstructed view, while occluding

the other. This state is alternated in synchrony with the displayed images. When viewed

with the naked eye, the left and right images will appear to be combined creating a ghost

image (see Figure 1.6F); when viewed with the shutter glasses only a stereoscopic 3D

image will appear. Active stereo technology has been used extensively in virtual

environments due to its relative technological simplicity and its ability to maintain full

resolution of displayed content [30,31]. However, because the technology effectively

occludes one eye (left eye closed 50% of the time, and vice versa), brightness is

noticeably diminished in the stereoscopic images. Newer active stereo systems have

attempted to combat this problem by decreasing the percent of the time each eye is

occluded [32].

1.5.6 Computer Science and Visualization Software Libraries

Much computer software aimed to make visualization feasible has been developed

since 1987. The graphics primitives that computers are capable of rendering must be

programmed individually with explicit point-by-point definitions [12]. It is unreasonable

to expect non computer scientists to program graphics data on such a level. To resolve

this, software tools commonly called middleware have been developed. Middleware

17

bridges the gap between low-level graphics interfaces (colloquially referred to as

Application Programming Interfaces, or APIs) that require point-by-point programming

by automatically generating the point-by-point data from high-level information provided

by the user. These middleware contain functions that translate data commonly visualized,

such as CFD results, into the graphics primitives that can be understood and displayed by

APIs. Some of the most common graphics APIs are OpenGL, Open Scene Graph and

Microsoft DirectX. Ultimately, the graphics API translates the graphics primitives into

commands that can be understood and implemented by computer graphics cards and

computer displays. One of the most common graphics middleware tools is known as the

Visualization Toolkit (“VTK”, KitWare Inc., Clifton Park, NY). VTK is well suited for

visualizing scientific data. Figure 1.7 shows the hierarchy of visualization tools beginning

with the data to visualize visualization software tools, middleware and APIs. Some of the

visualization processing takes places in hardware, which are shown by the shaded parts of

the pyramid.

18

Figure 1.7 - Illustration of software hierarchy used in visualization

The creator of visualization sequences provides data to a visualization software tool,

which then transforms the data by means of middleware. The data is then converted to

graphics primitives and provided to the computer graphics card and the display.

Software housed in specialized hardware has been shaded gray.

Despite VTK’s utility in creating efficient graphics, it still may not be feasible to

use discrete VTK functions to visualize the data of interest. One of its practical

limitations is that VTK still requires users to explicitly define objects to be rendered,

although not to the same level of detail required by graphics APIs. To provide another

layer of abstraction between the user’s scientific data and the graphics APIs, there are

many software tools available to import the user’s data and transform it into commands

used by VTK. These tools are distinct software packages from the “middleware”

described above. These software tools are commonly used by scientists and researchers

who value an efficient tool to visualize data over a tool such as VTK, which offers

greater control, but requires more time and expertise to operate. These software packages

19

can cost upwards of $20,000 to purchase, excluding annual maintenance costs and

hardware costs [33]. As mentioned in Section 1.4, costs are a barrier to entry.

1.5.7 Human-Computer Interaction

As stated in its definition [12], the process of visualization entails interacting with

the data in order to quickly arrive at new insights and a better understanding of trends and

relationships within it. Many methods of interacting with data through visualization have

been developed in the past decade. Some of these methods are quite basic—involving a

computer mouse and keyboard—while others are more sophisticated and require infrared

cameras and joint markers. A second, more mature system is the Ascension Flock of

Birds (FOB) tracking system. The FOB tracks user movement by sensing the disruption

to magnetic fields caused by motion of magnetic markers worn by the user. The location

of the sensors can be used by software to control the visualization. The system works

well but can be difficult to interface with software and is expensive when compared to

other smaller systems, such as the Microsoft Kinect [34]. The Microsoft Kinect sensor is

an emerging device well-suited for Human-Computer Interaction (HCI) applications and

will be discussed in further detail in Section 3.1.2.

Other HCI research has been conducted investigating the use of haptic feedback

whereby physical sensations are relayed to the user through physical contact with a

device. This allows the user’s sense of touch to be another dimension in which interaction

with the data is possible. These devices require contact with a device and therefore limit

mobility and range of motion. HCI devices like the Microsoft Kinect require no physical

contact with the user and do not limit his range of motion.

20

Chapter 2: A Method to Process and Display CFD

Simulation Data in an Immersive VR Environment

2.1 Computational Fluid Dynamics

CFD is a tool that can be used to study hemodynamic indices (those associated with

the movement of blood) using computer-based vascular representations. This process

generally involves creating a vascular model, discretizing the model into a mesh

containing millions of elements, specifying rheological properties such as density and

viscosity, prescribing the hemodynamic state at the entrance and exit of vessels (known

as boundary conditions) and solving applicable governing equations with a powerful

computer. Subsequent results such as wall shear stress (WSS; the frictional force

experienced by a vessel tangentially due to flowing blood) and strain have been linked to

the onset and progression of cardiovascular disease and can therefore be used to augment

information obtained in a clinical setting [35–38]. CFD produces time-varying data for

the model’s millions of elements during an entire cardiac cycle, but the traditional way of

viewing this data involves reducing multi-dimensional indices exerted on the walls of an

artery to two-dimensions at a single time point and in a predetermined spatial

configuration (see Section 1.4). In so doing, relationships between vessel features such as

geometry, hemodynamic indices and atherosclerotic plaque morphology can be masked

or not fully analyzed by medical professionals.

21

2.1.1 CFD with Immersive VR

Immersive visualization and virtual reality (VR) with stereoscopic rendering

capabilities can mitigate some of these traditional limitations and are routinely used for

other disciplines within academic and industry settings, including medical and surgical

education [39–42] The emergence and adoption of these technologies in the consumer

electronics and entertainment industries points to a progression that may soon extend

further into biomedical applications. These advancements facilitate simultaneous viewing

of multiple modalities that is particularly exciting for improved disease characterization

and longitudinal study when used with CFD. VR was first used with CFD a decade ago to

explore datasets at a single time during the cardiac cycle and using idealized

representations of grafted carotid arteries [43]. Marked advances in high performance

computing, computer graphics and patient-specific CFD modeling have occurred during

this time that allow us to study more complex models. For example, a recent investigation

demonstrated that the entire patient-specific CFD modeling process including model

construction, simulation and quantification of hemodynamics in the carotid arteries is

feasible within 49 hours, most of which were dedicated simulation and quantification

[44]. With this timeline, it is conceivable for CFD to be used within a clinical setting to

augment plaque morphology and flow information obtained from routine imaging

modalities. This relatively time-efficient generation of simulation results, if coupled with

a means of immersively visualizing indices of interest, could provide more meaningful

information to medical professionals monitoring cardiovascular disease progression in at-

risk patients.

22

2.1.2 Objective

The objective of Specific Aim 1 was to develop a method that integrates patient-

specific CFD capabilities within an IVE system capable of stereoscopic 3D rendering.

Moreover, we sought to simultaneously view spatiotemporal simulation quantities such

as WSS, oscillatory shear index (OSI) and velocity along with their relationship to vessel

pathologies immersively. To demonstrate how integrating advanced visualization

enhances understanding, the investigation begins with a brief review of current patient-

specific simulation capabilities followed by presentation of differences in the post-

processing operations applied to prepare CFD results for viewing in an immersive

environment, as compared to conventional approaches. This process is illustrated with

two case studies using patient-specific CFD models generated from the carotid and

coronary arteries. Importantly, each example discusses current clinical sequelae and

potential sources of long-term morbidity thought to be influenced by adverse

hemodynamic alterations, and attempts to highlight additional benefits afforded by

immersive 3-D visualization for this purpose.

2.2 Currently Available Software Tools

The practical limitations of visualization middleware (as described in Section

1.5.6 and Figure 1.7) make the case for a higher level software package to make data

visualization a realistic possibility. In consideration of the high costs discussed in Section

1.4, these software packages should be relatively low cost. There are commercial and

open-source software packages that provide software methods and functions to produce

visualizations in a time-efficient manner with higher level software tools. By leveraging

such tools it becomes practical to apply these visualization methods to CFD simulation

23

data. Open-source packages have the advantage of low cost and high degree of custom

features; however the technical support for these packages is limited and there is usually

no guarantee that software development will keep pace with hardware capabilities.

Alternatively, commercial packages must provide support for the latest hardware

technology in order to be competitive in the market. Two such packages were used

during the course of the research and are discussed here.

2.2.1 EON Studio Visualization Software

EON Studio is a commercially available software package that facilitates the

creation of 3D virtual environments and data visualizations [45]. The software

architecture of EON Studio employs task-specific modules. When specific combinations

of these modules are applied to input data, the desired output can be obtained and

rendered. The EON package also has a software layer to allow source code to be supplied

to automate the assembly and programming of these modules. Finally, the EON product

includes a module to support multi-wall immersive rendering (discussed in further detail

in Section 2.5.3). EON graphics are generated through the Microsoft DirectX graphics

library and can be rendered on a variety of display formats including desktop monitors,

Audio-Visual Experience Automatic Virtual Environment (CAVEs) and tiled wall

displays. EON can be extended beyond its minimum functionality using company-

provided add-on modules for an additional cost. These costs can be high, further

illustrating the need for open-source solutions for advanced visualization.

2.2.2 COVISE – Collaborative Visualization Environment

COVISE is a set of three foundational software tools designed to make

collaborative visualization across large distances possible [46]. COVISE is available

24

commercially to corporate entities or as an open-source package to academic and other

non-profit institutions. COVISE consists of a visual programming interface in which the

user selects data and the desired transformations (e.g. scaling, isoplanes, volume

rendering, slices or PCA) similar to the modules described in EON. It is through this

interface that the data is manipulated throughout the course of the visualization. The

second component is a display interface that allows for stereoscopic rendering with the

Open Scene Graph graphics library.

The display interface is flexible and supports many rendering options such as

CAVEs, tiled wall displays, single-desktop monitors and projector-based displays.

Multiple formats of stereoscopic rendering including anaglyphic and active stereo are

supported. The final component is a master/slave server framework that allows a plurality

of computers to be arbitrarily networked to create a rendering cluster to distribute the

load of rendering high resolution data sets quickly. Integrated into all the above elements

is support for sending and receiving relevant visualization data with another location

running COVISE to which vantage points, areas of interest, and audio can be

synchronized among multiple parties to provide the same experience.

Collaborative immersive environments have been shown to augment traditional

learning by students [47,48]. By sharing the experience the collaborative features of

COVISE become apparent. Table 2.1 outlines the major features of each of these two

packages.

25

Table 2.1 – Comparison between EON and COVISE

These software packages further abstract the process of visualization from the use of

graphics middleware packages.

 COVISE EON

Primary User Interface Module-based UI with visual

programming

Module-based UI with visual

programming

Graphics Middleware Open Scene Graph Microsoft DirectX

Open Source Yes No

Rendering Formats Desktop, CAVE, Tiled Wall Desktop, CAVE, Tiled Wall

Stereoscopic Rendering Anaglyphic, Active Active

Extensibility User created CPP modules Proprietary modules

2.3 Data Acquisition Methodology

The methods developed to complete this specific aim are divided into four stages

as illustrated in Figure 2.1. In general, the data for this aim were obtained through the

acquisition of medical imaging data, preparing and conducting CFD simulations and

applying a series of post-processing steps to quickly produce a scientific data

visualization. Particular emphasis is placed upon the post-processing steps, and as such,

will be treated in greater detail in Section 2.4.

26

CFD Simulation

Finite-Element Model

Creation

Assign Boundary

Conditions

Create 3D model

Implant virtual stent (if

applicable)

(A)

(C) (D)

(B)

(E)

(G) (H)

Obtain Vessel

Morphology &

Model Creation

(F)Applying Boundary

Conditions & Simulation

Post Processing

Presentation
Present Results in Immersive 3D Environment

(J)

Obtain and segment

imaging data

Resample 3D model and

hemodynamic results

Transform to meet VR

environment scale

Generate custom 3D

content

Medical image registration with

3D model

(K)

(L)

Prepare VR environment

(M)

Figure 2.1 – Method for rapidly visualizing CFD results

In (A-D) medical imaging data is obtained, a 3D model created, a virtual stent implanted

and the entire mesh discretized prior to simulation. Next, boundary conditions are

applied to the discretized model (E) and the CFD simulation conducted (F). Post

processing steps are applied to resample the 3D model and hemodynamic data (G) and

geometrically transformed for the VR environment (H). Custom 3D content is derived

from the hemodynamic and geometric data (J) and sent to the VR environment (K). The

final step is to co-register the medical imaging data with the model (L) prior to

presentation (M).

27

The construction of the patient-specific CFD models begins with the acquisition

of 3D medical imaging data (Figure 2.1A). The imaging data is then segmented by

clinicians to identify the important vessel landmarks including the lumen and wall. We

create the patient-specific 3D models of carotid and coronary vasculature (Figure 2.1B)

using previously published methods [49–51]. In some models an intravascular stent is

virtually implanted (Figure 2.1C) to better emulate patient-specific flow conditions using

methods previously described [52]. A meshing algorithm is applied to the 3D model to

discretize the volume to a finite-element mesh (Figure 2.1D) as described in [52].

Boundary conditions are applied to the model prior to CFD simulation (Figure

2.1E). Inflow boundary conditions of the vessel can be determined following their direct

measurement, or the application of several assumptions from applicable literature. For the

examples shown here, inlet boundary conditions were imposed using either normalized

waveforms that have been scaled to the patient's body surface area [44,53], or a canine

flow waveform that uses values for Reynolds and Womersley numbers that are reflective

of human flow [49,54]. Outlet flow boundary conditions are prescribed using a three-

element Windkessel model based on the blood pressure measured from the patient. The

Windkessel model serves as a surrogate for the downstream impedance to blood flow and

total arterial capacitance [55]. CFD simulations are performed using an in-house

stabilized finite element solver with a commercial linear solver component LESLIB

(Altair Engineering, Troy, MI) to solve the time-dependent Navier-Stokes equations

(Figure 2.1F).

28

2.4 Post Processing Methods

Once CFD simulation data is obtained the data is further processed using a series

of steps designed to prepare the data for use in an IVE. We use MATLAB (The

MathWorks, Natick, MA) scripts in a majority of our post-processing methods. This

software solution was selected for three primary reasons. First, the Marquette University

College of Engineering maintains an active license for MATLAB software, and it

therefore represents a tool that is likely to be available to future users of these methods.

Further, familiarity with the MATLAB language is wide, and allows for the scripts to be

understood by many users. The second reason MATLAB was used is due to the fact that

our research group has a large repository of existing post-processing methods written in

MATLAB for conducting separate CFD post-processing. Using MATLAB for the post-

processing methods described here extends these methods without introducing a new

programming language and allows some of the current methods to build from existing

ones. The third and final reason for using MATLAB was that it allows easy construction

of GUIs using a built-in tool called GUIDE.

In order to import our CFD data directly into the software that runs the IVE

(called EON) we use Visual Basic Scripts (*.VB or *.VBS). This choice was dictated by

the architecture of the EON software. The software allows scripts to be written in either

JavaScript (JScript) or Visual Basic. Visual Basic was selected because it is well

documented, runs quickly, and presented a lower learning curve to the developers.

2.4.1 Resample 3D Model and Hemodynamic Results

Post processing of 3D model data is conducted with custom software scripts. All

post processing steps involving the use of MATLAB have been combined into a single

29

executable file with the graphical user interface (GUI) seen in Figure 2.2. The GUI

clearly specifies the files necessary to carry out the post-processing steps. It also provides

an easy to use interface through which the user can locate files that may be in various

locations. The GUI also enforces the types of files input to the algorithms. For

simulations that conform to the expected use case, pressing the “Generate Files” button

will correctly apply each of the post-processing steps described in this section. .

Individual steps can be isolated from the rest of the process and executed separately by

pressing the “Custom Generator” button at the GUI’s bottom right panel. The order in

which these events are applied is important, and the order used by the “Generate Files”

button should be observed when applying steps individually. A detailed description of the

GUI’s operation can be found in Appendix A on page 119.

30

Figure 2.2 - MATLAB User Interface

A MATLAB graphical user interface was developed with the GUIDE toolbox. All required input files are identified with a red box

that turns white when a suitable file has been selected. The entire post processing step can be run with a single click “Generate

Files” button, or individual steps can be run selectively by pressing the “Custom Generator” button at the bottom right.

31

The finite element mesh developed in Figure 2.1D is resampled to remove those

points not on the surface of the vessel by comparing their locations to a connectivity

matrix supplied by the meshing software (see Figure 2.1G). Duplicate points are removed

and the data is resampled and stored in an unstructured grid format in three dimensions as

seen in Figure 2.3. VTK functions are used to calculate the unit normal vector for each

element of the finite-element mesh. The normal vectors are used to interpolate a smooth

vessel surface that improves the viewing experience. The Cartesian coordinates, normal

vector and neighbors of each node of the mesh are then stored as a connectivity matrix.

This matrix is used to interpolate the data onto a uniform rectilinear grid where the

spacing between each node is uniform in all directions. The rectilinear grid is required by

the visualization software to reduce memory requirements for displaying the data. A

virtual intravascular stent is part of some CFD models. In these cases, the stent model is

processed using the same steps described above but as a separate object from the vessel

model. The two models are combined in the VR software to allow the visualization

properties of each to be controlled independently. The last step is to apply the same

resampling procedures to the hemodynamic data obtained from simulation to ensure that

each point of data directly maps to only one point on the vessel mesh.

32

Figure 2.3 - Surface element extraction

A small ROI from a typical aortic model is shown in 3D (A). When cut through the

segment’s central axis, the volumetric elements are visible (B). Only those elements on

the surface of the vessel remain after the surface extraction routine (C).

2.4.2 Transform Data to Meet VR Environment Scale

The geometries of the stent and vessel are rotated such that the direction of blood

flow is parallel to the plane of the floor in the VR environment. This is accomplished

with a MATLAB program that calculates a standard rotation matrix, Equation [1], about

the Y and Z axes where α is the angle of rotation in degrees, and applies it to each node in

the mesh. When the rotation operation is complete, the vessel is oriented such that the

user’s line of sight is along the vessel’s central axis in the direction of blood flow. The

value of α is not fixed and is unique for each dataset.

[1]
cos sin

sin cos
R

33

The vessel is scaled by a constant factor to maximize the field of view (FOV)

when rendered in the IVE. The factor varies based on the original size and orientation of

the vessel in space. Vessels of a shorter length will undergo greater scaling than longer

vessels. In addition to scaling, the vessel is translated to fix its geometric center at the

origin of 3D space. A general correction factor, Equation [3], is calculated for each point

in Cartesian space and applied as seen below. max and min represent the spatial

boundaries of the dataset, and are used to calculate the translation in Equation [2]. By

fixing the point midway between them to the origin, the entire vessel is centered at the

desired location.

[2]
max min

2

[3] minshift

Manual orientation or location adjustment of the vessel is sometimes required for

optimal results; this is easily accomplished with EON’s user interface. EON rotations are

described in terms of roll (counter-clockwise about the x-axis), pitch (y-axis) and yaw (z-

axis). By applying these three transformations to the vessel geometry we ensure that each

experience in the VR environment is controlled and represents the data in a consistent

manner.

2.4.3 Generate Custom 3D Content

Some visualization content in the IVE is rendered directly from the CFD

simulation data, while other content is derived from simulation data (Figure 2.1J). For

example, blood velocity is visualized with time-varying vectors (arrows) indicating the

direction of blood flow at each point in the cardiac cycle. These arrows are distributed

34

through the vessel’s flow domain by a MATLAB script that accepts user input to

determine the density of the arrows and their proximity to each other and the vessel

lumen. In additional to the direction of blood flow being indicated by the angle of a

particular vector’s arrow, which is calculated for each frame, an arrow’s length and color

denote the magnitude of the blood flow velocity. The color is determined through a

lookup table whereby the scalar value of the velocity magnitude is linked to a

Red/Green/Blue (RGB) color code.

An indication of the temporal position normalized to the cardiac cycle provides a

fourth dimension to data analysis in the VR environment. Blood pressure data is extracted

from CFD simulation results and assembled in MATLAB to produce a plot of pressure

versus time. Most content displayed in the IVE is allowed to move in space as the user

navigates about the data; in most cases this is desirable. However, to communicate

temporal data, a window with fixed spatial location and scale is needed to properly

convey the point in time corresponding to the data being displayed. Therefore, a fixed

viewing window is established in the IVE so that as the viewing angle of the data is

changed, the pressure plot remains stationary and easy to read. The VR software

maintains an internal chronometer that synchronizes events in time. A dot indicator is

moved incrementally along the pressure plot at each time point in the cardiac cycle. This

movement communicates the passage of time and relates the instantaneous hemodynamic

indices (such as WSS) with other values like pressure and blood flow velocity that are

displayed simultaneously.

35

2.4.4 Prepare Data for VR Environment

The VR software (EON Reality: Irvine, CA) manages all data with a hierarchical,

modular structure as described in Section 2.2.1. Once the data has been prepared with the

methods described above, it is imported to EON using custom Visual Basic (VB) scripts

that control where and how the data is stored within the hierarchy (Figure 2.1K). The

hierarchy decreases rendering time and allows for a greater level of control in specifying

what combinations of VR elements are realized. The file system employed by EON

aggregates the necessary data for the simulation into a single resource file, making

storage and transport of the VR content simple since only two files must be managed by

the user.

The vessel geometry data file is read by a VB script and converted to a 3D

structure representing the vessel lumen. Similarly, if present, the stent geometry file is

converted to a solid structure and combined with the vessel model. Time-varying

hemodynamic data are treated as separate files for each point in time when imported to

the IVE. The data contained in each file is then read, processed and rendered for each

frame of the simulation. This process renders each file in rapid succession to produce the

effect of moving objects in the VR environment.

2.4.5 Medical Image Registration with 3D Simulation Results

Image registration is the final step in the post-processing stage (Figure 2.1L). A

separate 3D plane is created in virtual space for each medical image that will be

registered with the 3D vessel model. These planes are added at a predetermined interval

and do not necessarily represent the proper full size of the corresponding medical images.

The planes are transformed using an algorithm specialized for the type of vessel being

36

modeled and the imaging modality used to create a particular CFD model. The algorithm

first translates each plane to the origin of 3D space and applies rotations specified by the

imaging modality (see Figure 2.4). These rotations can be unique for each, or the same

orientation can be applied to all the image data. The final step is to translate the planes

back to their original location on the model, where it will have the proper orientation as

seen in Figure 2.4. The resulting planes intersect the vessel model at locations and

orientations that accurately reflect the relative positions of the anatomy and images at the

time they were acquired. Each medical image is then applied to the plane in a way that

maintains its aspect ratio. The data is then ready for rendering in 3D within an IVE.

Figure 2.4 - Image Registration Transformations

The image registration process begins with planes that are

placed in 3D space at predetermined intervals, than translated to

the origin and rotated to match the orientation of the images as

they are acquired in the body. The process is complete after the

planes are translated back to their location along the vessel.

A detailed description of the MATLAB scripts used in these post-processing

methods is found in Appendix A.

37

2.4.6 Presentation of Results

The Human Interactive Virtual Education (HIVE) environment, located at the

Discovery World Museum (Milwaukee, WI), is an advanced visualization center

equipped with 4 Christie Digital Mirage S+2K HD projectors capable of stereoscopic

projection, 4 HP xw9400 workstations (2.8 GHz dual core processors, 3.5 GB RAM),

CrystalEyes 3 active shutter 3D glasses and InterSense IS-900 Head Tracking equipment.

The HIVE is designed in the style of the CAVE in which the user is surrounded by

content on several screens. The HIVE system employs four large screens (front, left,

right, and floor). The hardware layout used at the HIVE is approximated in Figure 2.5.

Figure 2.5 - Typical screen topology of IVE

Typical IVEs are rear-projected systems. The block dots in the

image represent high-resolution projectors. Each screen is

typically 10’ on each side.

 The VR simulations and analyses are displayed in 3D with active stereoscopy

(Figure 2.1M). One frame of 3D simulation content is created from two projections of a

single 3D object using unique points for the left and right eyes. The EON visualization

38

file must be configured for projection in the IVE by programming the size and relative

location of the screens in the HIVE. EON software manages the synchronization of the

active shutter glasses and the alternating frames for the left and right eyes.

2.4.7 Simplified Methods for Expedited Results

In some cases, a less sophisticated method of viewing results in stereoscopy is an

acceptable alternative to the more advanced methods described in Section 2.4. In these

cases, COVISE software can be used in place of EON. When the user wishes to examine

a single hemodynamic index—such as WSS or OSI—with less emphasis on data

exploration, COVISE is a logical means of conducting visualization. COVISE offers

similar results in less time, where the tradeoff is a lack in the ability to explore data

immersively and that COVISE does not offer the same ability to view medical imaging

data co-located with the CFD results. If the user is willing to forego these features,

COVISE may be an acceptable solution.

Once the data has been read by COVISE, a representation of scalar value (such as

TAWSS, OSI, or pressure) can be rendered onto the surface of the vessel. As compared

to the process required for EON to render CFD results, the only required post-processing

step is the resampling and surface extraction step described in Section 2.4.2; the other

steps are not necessary. By eliminating these steps the time required to process the data is

reduced. As described in Section 2.2.2, COVISE is capable of stereoscopic rendering in a

variety of display formats, including desktop monitors, CAVE environments and tiled

wall displays. For this aim, COVISE rendering software was used to drive a tiled-wall

display with commodity monitors and PCs to create a rendering cluster capable of

39

displaying CFD simulation results in stereoscopic 3D. These methods have been

previously described in [56].

2.5 Results

The method developed and described above that integrates patient-specific CFD

capabilities with an immersive visualization system capable of 3D stereoscopic rendering

has been applied to two regions of the vasculature to highlight its flexibility in

application. The carotid and left-circumflex (LCX) coronary arteries were modeled,

simulated and rendered in an IVE.

2.5.1 Transformation and Registration Process

In preparing the vessel geometries for use in the IVE (Figure 2.1H) we rotate

them such that the principal axis of the vessel is parallel to the floor of the IVE. This

ensures that the initial viewing angle in the VR environment has a sufficiently wide FOV

to observe all parts of the vessel. The carotid artery is rotated 235° about its Z axis,

whereas the coronary artery is rotated 190° to achieve the same result. Both arteries are

rotated -90° about the Y axis. This difference originates from the original orientation of

the finite-element models, which are based on the orientations of the vessel within the

patient’s anatomy. We scale the coronary vessel model by a factor of 2.853 in all three

directions, whereas the scale of the carotid model remains at 1. These results are

summarized in Table 2.2 (below).

40

Table 2.2- Summary of transformation parameters

The parameters used during application of the visualization methods described here are

specific to the region of the vasculature to which they are applied.

Transformation Carotid Study LCX Study

Z Rotation (degrees) 235 190

Y Rotation (degrees) -90 -90

Scale (unitless) 1.0 2.853

Velocity Vector Spacing

Constants: intra-vector/wall

distance

1.5/0.5 3.0/1.0

The magnitude of the velocity vectors vary in magnitude relative to the maximum

velocity in the cardiac cycle. The user is able to visualize the speed and direction of the

blood at each point of the cardiac cycle using these vectors. However, they must be

spaced throughout the volume of the vessel in such a way that their value is not lost due

to too many vectors being present. A function was written to place seed points for these

vectors at parameterized intervals throughout the lumen. The LCX coronary artery is a

long, slender vessel with an average diameter of 2.85 mm [57] whereas the average

diameter of the distal common carotid artery ranges from 7.8 to 8.8 mm for women and

men respectively [58]. The carotid case spaces vectors with an intra-vector distance of

1.5 mm, and the minimum distance between a vector and the wall is 0.5 mm. Placing the

vectors near the wall allows us to illustrate the no-slip conditions at the wall and also

makes possible the visualization of areas of flow reversal because we are able to see the

direction of the velocity arrows reverse, indicating retrograde flow. An intra-vector

spacing constant of 3.0 and minimum wall constant of 1.0 were used in the coronary case.

These settings decrease the density of the vectors in the vessel, but also decrease the

computational expense associated with rendering a large number of elements.

41

Figure 2.6 demonstrates the image registration techniques developed and applied

to carotid artery imaged with Magnetic Resonance (MR) imaging and the LCX coronary

artery as obtained with Optical Coherence Tomography (OCT) imaging (Figure 2.7). MR

images are acquired in the anatomical transverse plane, such that they are aligned

orthogonal to the vessel’s central axis. For this reason, registration of MR images only

requires the images to be spaced evenly to correspond to the MR slice thickness (2 mm).

In contrast, OCT imaging does not necessarily produce images orthogonal to the vessel’s

central axis, as is the case in MR. We calculate the most probable path taken by the

imaging wire [49] and use it to calculate the rotations necessary to duplicate the image

orientations as they were obtained in vivo. Equations [4] and [5] describe the angles

calculated at the lower left corner ordered pair (,)x y of each image coordinate in the

virtual space, where z is the depth dimension.

[4] arctan
x

z

[5]

arctan
sin cos

y

x z

Equations [6] and [7] show the rotation matrices used to first rotate the image plane about

the Y axis then the X axis. The combination produces the final orientations seen in Figure

2.7.

[6]

cos 0 sin

0 1 0

sin 0 cos

yR

[7]

1 0 0

 0 cos sin

0 sin cos

xR

42

2.5.2 Visualization Results

Figure 2.6 and Figure 2.7 were generated using the visualization method

described here. These images highlight the differences in image acquisition discussed in

Section 2.4.5. Figure 2.6 shows the axial MR images with regular, 2 mm spacing that

requires little processing effort to register them with the 3D vascular model. The OCT

images demonstrate a less regular orientation than MR images due to the more

sophisticated acquisition and registration methods (see Figure 2.7). The MR images have

been processed to show plaque components and general morphology. TAWSS for the

carotid and coronary arteries has been co-registered with imaging data in Figure 2.8.

Velocity information from the vessel is seen in Figure 2.9, where images obtained

from three points in the cardiac cycle have been presented. Notice that the longest,

darkest color vectors are observed immediately before peak systole. Velocity magnitude

decreases as the cycle progresses. Notice also the near-wall velocities are markedly less

than the velocities near the vessel center. OSI and TAWSS have also been rendered using

the same method in Figure 2.9D and E. Figure 2.7 shows the LCX solid model with

select OCT images displayed. These are the OCT images used in the construction of the

CFD model. The orientation of the images reflects that of the imaging wire during the

endoscopic study. The OCT images do not contain the same information on plaque

morphology as in MR, but do provide high axial resolution data of the vessel lumen.

Figure 2.7L shows a region in which a thrombus has formed as well as the turquoise

tracing of the recently deployed stent.

43

Figure 2.6 - MR image registration on 3D solid model of carotid artery

Slices A-E have been segmented to differentiate the plaque morphology according to the

legend at the bottom left. In each slice the inner-most layer, the lumen, is used to create

the vessel wall. The MR acquisition sequence collects transverse plane images which are

thus in the plane of the vessel.

44

Figure 2.7 – OCT image registration on 3D model of LCX coronary artery

OCT images are acquired orthogonal to the plane of the imaging wire as it is retracted

through the vessel; this produces images that are not necessarily orthogonal to the

vessel’s central axis. This can be especially appreciated in slices E and F. The

thrombus seen in slice F is well resolved with OCT’s high axial resolution. The outline

of the stent is also well resolved as seen in the turquoise traces.

45

Figure 2.8 – WSS as Visualized with the IVEs

The IVE is capable of rendering many hemodynamic indices. Shown here is TAWSS co-

located with the medical imaging data. At left the user can appreciate the co-location of

the region of low TAWSS with increased wall thickness. At right, OCT images elucidate

the relationship between stent location and regions of altered TAWSS.

46

Figure 2.9 – Temporal progression of velocity at predetermined spatial locations

A, B and C show the velocity vectors at specific temporal locations as indicated with the

pressure waveforms. The velocity is communicated by the vector magnitude and color;

after reaching maximum velocity immediately prior to peak systole, the velocity

decreases with time. (At top right) The inset shows a region of flow reversal which is

consistent with the high values of OSI seen in the bottom left panel of the figure.

47

Figure 2.10 – Renderings of LCX coronary artery with quantitative results

These images show the CFD data at two time points- immediately following the stent

implantation and at a 6-month follow-up appointment. OCT was used to acquire the

slices seen at the right. The transverse lines in each model correspond to the OCT slices.

We can anecdotally correlate the region of thrombus with high TAWSS seen in slice B

with a region of relatively diminished TAWSS at the follow-up time point.

48

2.5.3 Human Interactive Virtual Environment (HIVE)

The results of applying this method to the carotid and LCX coronary arteries were

realized in the HIVE at the Discovery World Museum. The immersive environment

provides large-scale images that approach 10’ in each dimension with a resolution of

2000x2000 pixels. Figure 2.11 shows a male of average height standing next to the

projected wall of the HIVE. The user is also wearing the CrystalEyes glasses that

facilitate active stereoscopic 3D content. The results generated by application of the

method provide sufficiently high resolution data to provide a compelling experience. The

velocity vectors described in Section 2.4.3 are seen pointing into the plane of the screen,

indicating that blood is flowing in this direction. The fixed-location window used to

indicate temporal location within the cardiac cycle is also seen in the upper left corner of

the screen.

When displaying CFD data, the HIVE shows the flow of blood parallel to the

floor, thus maximizing the user’s FOV. Navigation within the IVE is carried out using a

series of predetermined vantage points. The vantage points describe the viewer’s

position, orientation and FOV relative to the vessel in the immersive space. When the

user selects a new vantage point using the computer terminal the visualization software

interpolates a smooth transition to the new vantage point following a spline path. This

increases user comfort while visualizing data in the IVE by reducing unnatural

movements in space.

49

Figure 2.11 - Scale of the IVE

Seen in the figure is an average height male against the 10x10’ square, back-

projected screen. The ghosting effect inherent to active stereoscopic rendering

can be observed along the right edges of the velocity vector arrows.

2.5.4 Mini-CAVE Hardware Prototype

Figure 2.12 shows the multiple configurations achieved with a set of four NEC

MultiSync LCD 1880SX monitors arranged in a tiled-wall display. Panels A-C of Figure

2.12 demonstrate TAWSS on the LCX coronary artery, while Panel D shows TAWSS

mapped to the surface of the carotid artery. The computer monitors used in Figure 2.12

are commercially available displays and can be procured at a modest cost. Because they

are not specifically designed for rendering stereoscopic 3D images, stereo format is

limited to anaglyphic stereo. Panel D shows a miniaturized CAVE topology that mimics

that full-scale version seen in Figure 2.11. Similar immersive effects can be realized

50

using this technique. The added benefit of using this software and hardware combination

is that the expedited methods discussed in Section 2.4.7 can be applied. These results

have been previously reported in [56].

Figure 2.12 – MiniCAVE display topologies

Panel A is a 2x2 monitor tiled-wall display optimized for viewing models that have a low

height to width ratio. Panel B exhibits a desktop-size CAVE simulator in which the walls

and floor render images to create the immersive environment. Panel C shows TAWSS

mapped with a non-standard color map along the LCX coronary artery. The 1x4 topology

seen in C is well suited for vessel with a high height to width ratio. D shows TAWSS of

the carotid artery mapped in a 1x4 tiled display with the long axis of the monitors

emphasized.

51

2.6 Discussion

The objective of this aim is to develop a method to rapidly visualize patient-

specific CFD simulation results for an IVE. The steps defined here describe a modest

amount of post-processing conducted after the execution of the CFD simulations. In

many cases, these steps have been shown to take less than 60 minutes, with much of that

time dedicated to computation and not direct user interaction. Previous work done to

integrate CFD with immersive visualization has used idealized vascular representations,

rather than the patient-specific models shown here [2,43]. Whereas the work conducted in

[43] emphasizes developments made in data interaction and user interfaces, our method

attempts to highlight the utility of using IVEs to gain to scientific insights and less on the

data interaction. We do so by simultaneously viewing spatiotemporal data and discussing

clinical sequelae that can be appreciated with the current method.

2.6.1 Immersive Visualization for Patient-Specific CFD Data

The renderings seen in Figure 2.6, Figure 2.7, Figure 2.9 and Figure 2.11 show

results rendered in the HIVE. The environment allows the user to be fully surrounded by

the data, such that he observes the physiologic processes on a scale not possible with a

standard desktop monitor. As described in [2], standard 2D and 3D desktop monitors are

capable of rendering scenes as though observed through a window. IVEs allow users the

ability to actively learn—viewing objects from within, looking underneath and handling

objects in the virtual environment. It has been shown that when viewed from multiple

angles and orientations, individuals better understand and retain spatial information and

understand complex phenomena [59,60]. Previous use of IVEs for CFD results have

focused on the interaction, and less on the meaning of the data. Our work builds upon this

52

and uses current hardware capabilities to bring the focus of IVE use onto the data and

how to gain new insights into biomedical research.

In addition to the large-scale images expected in an immersive environment,

stereoscopic rendering adds an additional level of realism and information not possible

with standard displays. As discussed in Section 1.5.1, any 2D display must apply some

kind of feature extraction (such as PCA or simply sampling a 2D slice) to display multi-

dimensional data on a raster display. In so doing, varying amounts of data are either

eliminated or aggregated before being displayed in a decreased number of dimensions.

These limitations are mitigated by the multiple screens of an immersive environment.

Even if a fully immersive environment is not available, modern computer monitors are

capable of rendering stereoscopic images, serving as an acceptable surrogate to the full

immersive experience offered by true IVEs. Using a 3D computer monitor would limit

the out-of-plane visualization possible with an immersive system, but the 3D shapes and

details of the vessel and hemodynamic indices would be maintained.

2.6.2 Extension to Other Imaging Modalities

The increased prevalence of clinical imaging for noninvasive diagnostics has led

to a great diversity in the modalities available clinically. We have used two modalities in

the present study, MR and OCT, but contend that the method is extensible to other

imaging modalities. A valuable feature of the results presented here is the differentiation

of plaque morphology in the Carotid artery. Multiple MR imaging sequences (T1, T2,

TOF and proton density weighted) were acquired and analyzed in order to acquire these

results [44]. Recent advancements in dual energy CT (DECT) now offer similar tissue

differentiation capabilities as multi-sequence MR [61]. Results have been presented

53

demonstrating successful plaque-component differentiation using DECT scanners [62].

DECT may offer increased spatial resolution over MR images, although CT does

introduce the use of ionizing radiation. Despite these concerns, this progression indicates

that CT images could be adapted for use with this and maintain the ability to relate plaque

structure with variations in hemodynamic quantities.

2.6.3 Case Study 1: Carotid Artery

In the first case study we present results obtained from a carotid artery

investigation. In Figure 2.6 the reader is directed to observe the increased vessel wall

thickness (where thickness is assumed to be the difference between the wall and lumen)

visible in slices C and D along the external carotid artery, compared to the thickness in A.

When viewed in an IVE, the wall thickness can be seen relative to the vessel length and

diameter. This information can help the user build a 3D mental image of the carotid

vasculature as it exists within the body. Such knowledge may be useful in clinical

settings when planning procedures or analyzing results of medical imaging protocols.

The inset of the top right image illustrates how the visualization system displays a

region of flow reversal, which is to be expected when one considers the high values of

OSI seen at the same vessel location. OSI is an index of directional changes in WSS,

where low OSI indicates the WSS is oriented predominantly in the direction of blood

flow, while a value of 0.5 is indicative of bidirectional WSS with a time-average value of

zero throughout the cardiac cycle [63]. The regions of high TAWSS near the flow divider

of the bifurcation are consistent with previous studies [64,65]. The velocity vectors make

it possible to correlate regions of low or no flow with the vessel’s structural features. As

54

an example, the reader is directed to the top right panel of Figure 2.9 where the inset

image clearly shows flow reversal with the backwards pointing velocity vector.

No single radiological viewing plane is currently capable of producing images in

an IVE such as those seen in Figure 2.6; our method provides it. The IVE renders this

composite image and allows the user to appreciate the direct spatial relationship between

the flow domain (indicated with the wireframe 3D model), the medical imaging data and

the vessel and plaque morphologies. These features relate the structure of the carotid

artery, but we can also integrate vessel function by rendering WSS and OSI on the vessel

surface and comparing these values to the structural information obtained previously.

When examined in the context of vessel geometry and the cardiac cycle the user can

begin to establish the spatiotemporal link between the three features. Figure 2.6 illustrates

that regions of low TAWSS have been shown to be preferential locations for the

development of atherosclerotic regions as seen by the co-location of the fibrous

cap/necrotic core with the low TAWSS at slice C. The user can appreciate this by

mapping the instantaneous or time-averaged WSS values to the vessel surface and

rendering the segmented image slices as seen in the bottom right. By developing this new

method of visualizing the CFD and imaging data simultaneously we have established a

new way to use and understand the data not previously done.

2.6.4 Case Study 2: LCX Coronary Artery

The second case study highlights results from the LCX coronary artery.

Rendering the OCT slices in an IVE allows spatial appreciation for the tortuous path

through which the endoscopic imaging wire traveled during the OCT procedure. This is a

surrogate for understanding the spatial dimensions and directions of the actual LCX

55

coronary artery. By examining the model with the OCT slices shown, users can learn

about the coronary circulation. Figure 2.7 shows the high axial resolution for which OCT

has established a standing in clinical practice as a viable alternative to intravascular

ultrasound (IVUS) [66].

It has been shown that low WSS creates an environment favorable to the

development of atherosclerosis, and that these areas of low WSS can be characterized in

vivo using the same techniques described here [67]. We can apply this method to in vivo

patient data from at least two points in time to establish points of comparison needed to

track disease progression. Figure 2.10 shows the same region of the vasculature with data

captured at the time of stent placement and at a 6-month follow-up appointment.

Representing data in this fashion allows conclusions to be drawn about parameters that

change as a function of time. We have shown two temporal locations, but this practice

could be extended to include many points representing snapshots of vascular performance

throughout the course of a longitudinal clinical study or to track disease progression.

With such data available it would be possible to visualize changes in hemodynamic

quantities in both time and space.

2.6.5 Limitations

The current method is robust and flexible in its application when applied in the

scope of specific considerations. The method is designed to accept CFD simulation

results produced by the software used in our research group. The MATLAB functions

written to process these results expects a specific format in order to perform as expected.

This format generally conforms to the standardized VTK file format, which is a well-

documented standard. Many other types of files can easily be converted to VTK format

56

with open source software tools. As such, simulation results not originally in the accepted

format can likely be converted by using one of several software tools commonly

available.

The data interaction ascribed to visualization by [12] calls for natural

manipulation of data by users. The current method indeed allows users to interact with

data, but in a prescribed fashion using the predetermined vantage points described in

Section 2.5.2. The current method could be enhanced by integrating the head-tracking

hardware into the visualization code, allowing the user to re-orient the data using his

head’s position in space.

The type of clinically relevant information depends on the imaging modality used to

acquire the anatomical data. MR imaging can provide specific information on plaque

morphology and its spatial relationships with vessel structure. Alternatively, OCT

provides high axial resolution of a vessel’s lumen and does not pose MR compatibility

concerns immediately following stent deployment. OCT does not currently provide the

same degree of plaque differentiation abilities offered by MR, but does offer a

demonstrated ability to differentiate layers of the vessel wall (e.g. internal and external

elastic lamina) [68]. This method does not amplify the information captured by the

selected imaging, but instead allows users to see the present information in more useful

and compelling ways.

2.7 Conclusions

The use of an IVE presents many opportunities for enhanced learning through

direct interaction with data and allows for a greater level of spatiotemporal knowledge of

simulation results. The method described in this section has been developed for use with

57

cardiovascular CFD results and a full-scale IVE. However, we have also shown

flexibility in implementing these methods wherein a variety of small-scale displays can

be used to realize these results with varying degrees of immersion. We have described the

utility in applying this method to two specific regions of the vasculature, the carotid and

LCX coronary arteries, with either MR or OCT imaging data. IVEs provide users with

tangible data that can be explored in both time and space, thus providing enhanced

learning and familiarization with the data of interest. This method may have clinical

applications to those fields of practice that rely on knowledge of multi-dimensional data.

58

Chapter 3: Stereoscopic Visualization System with

Intuitive Gesture-Based Control for Biomedical and

Scientific Datasets

3.1 Introduction and Motivations

The ability to interact with data in any visualization setting is important for

gaining the most information and insight from the data [2,11,69]. For this reason,

extensive work has been conducted to advance the field of human-computer interaction

(HCI). The goal of HCI is to create interface devices, methods and algorithms for

allowing natural, intuitive interaction between humans and computers. This field

naturally extends to visualization as computers are the engines that render and process the

data used in visualization. 2D input/control devices such as keyboards and mice offer a

familiar HCI, and have good spatiotemporal resolution overall. These same devices,

however, can become an ergonomic obstacle requiring the user to step out of an IVE to

interact with data. One possible solution is to use 3D input devices such as motion-

tracking cameras that track color markers placed on the body, or instrumented gloves that

transform body movements to commands. These devices suffer from high noise

interference and often operate at a less desirable spatiotemporal resolution than their 2D

alternatives [2]. These shortcomings allude to a need for a more robust and simple

solution for data interaction that does not require body markers and extra equipment worn

by the user.

59

3.1.1 Pre-Surgical Planning Tools

The inter-individual heterogeneity of human anatomy requires cardiovascular

surgeons to use diagnostic imaging to familiarize themselves with the specific conditions

present in patients prior to surgery [70]. General knowledge of cardiac anatomy may be

insufficient because many patients present with cardiovascular architecture that has been

distorted by disease. This is compounded by the fact that the myocardium is strikingly

anisotropic and complex compared to other parts of the body where the anatomy is more

homogeneous. Providing these clinicians with a means to manipulate the patient-specific

imaging data allows them to gain a stronger spatial knowledge and greater confidence

when performing the procedure.

3.1.2 Microsoft Kinect Camera

The Microsoft Kinect camera is a commercial product originally developed for

the Xbox computer entertainment system. It was released to the public in late 2010 and

was well received by the scientific and consumer entertainment communities [71]. The

Kinect device is a small, 3D, depth sensing camera with a small array of microphones

capable of active noise cancellation [72]. Figure 3.1 shows the camera with major

features indicated.

60

Figure 3.1 - Kinect Camera components

The Kinect camera system contains a standard web-cam type RGB camera. It

captures depth information in the scene by emitting infrared light from an aperture,

and detecting the returned infrared light through a second aperture. An array of

microphones is positioned along the base to capture direction-sensitive audio

information.

The Kinect camera is equipped with an RGB camera to capture video at frame

rates of approximately 30 frames per second (Figure 3.2A). To capture depth

information, the camera software continuously tracks the distance between the camera

plane and objects within the FOV. The camera emits a beam of near-infrared light

through the left depth sensing aperture (see Figure 3.1) which is then reflected off objects

in the FOV and received by the other depth sensor [73,74]. Algorithms built into the

device convert the signal intensity data into distance in units of millimeters by comparing

the incoming data to a control image. The distance between the camera and the nearest

object at the particular (,)x y coordinate of the FOV is the depth information returned to

the computer [75]. This strategy of collecting depth information makes the camera

vulnerable to occlusion errors whereby objects are lost in the depth dimension if they are

behind an object nearer the camera. The depth data is a scalar map that contains no actual

video or picture information about the captured scene. Many Kinect applications apply a

look-up table (LUT) to the depth data to visualize the scalar data as an image. The Kinect

61

performs image segmentation on the depth data to differentiate users from the

background. The Kinect camera employs firmware to perform frame-by-frame skeletal

joint tracking in real time. 20 skeletal joints (e.g. knees, hips, elbows, wrists) are tracked

in the (,)x y plane and depth direction of each frame. These algorithms provide a single

spatial position for each joint (i.e. the front and back sides of the hand are

indistinguishable to the camera). Figure 3.2B shows upper skeletal joints mapped atop a

standard video stream image. Figure 3.2C shows depth data that has been segmented to

isolate the user. The background of Figure 3.2C shows pixels of varying grayscale values

whose intensity is determined by the distance of the object represented by the pixel.

Figure 3.2 – Video, skeleton and depth images from Kinect camera

A standard RGB camera captures video (A). Algorithms track 20 skeletal joints and

update the spatial locations of each with every frame (B). The Kinect camera calculates

distance from the sensor in units of millimeters for each pixel in the FOV (C). An array

of microphones captures noise-cancelled audio (D).

62

3.1.3 Objective

Considering the need for enhancing a user’s ability to interact with data in a

manner that is not intrusive on range of motion or cost, the Microsoft Kinect camera is

well positioned to meet the demand for a low-cost, contact-free data visualization

interaction device. The non-contact feature is especially attractive for use in a sterile

environment in which cardiovascular surgeons frequently work. This aim will produce a

control application that uses hand gestures recorded by the Microsoft Kinect camera and

processed by open-source recognition algorithms. The application will control

visualization content produced by a custom algorithmic framework designed to produce

meaningful visualizations of medical imaging data tailored for use as a pre-surgical

planning tool. The entire system shall be used with a stereoscopic display that allows

users to gain the benefits afforded by stereoscopic rendering.

3.2 Methods

We have created a series of 4 methods to meet the objectives outlined in Section

3.1.3. The relationship between these methods is illustrated in Figure 3.3, and further

detail is shown in Figure 3.4. The series begins with Interaction Data, where the

Microsoft Kinect data is sent to open-source drivers (OpenNI Environment and NITE

Algorithms) and processed to recognize gestures in the user’s motions. Computer events

are sent to the Software Solution, which is composed of three primary pieces: the Real-

Time GUI, State Machine and a Configuration Dialog. These three pieces work in

concert to receive the Interaction Data and translate it into commands for the

Stereoscopic Player, which plays customized Stereoscopic Video content. The

Stereoscopic Player displays 3D, stereoscopic video output at high resolution via the

63

Hardware Solution, consisting of specialized video cards, an NVIDIA 3D Driver system

and a specialized computer monitor. A User Guide on using the visualization system is

provided in Appendix C on page 137.

Interaction

Data

Software

Solution

Visualization

Content

Hardware
Solution

Figure 3.3 – Solution components

We have created a series of 4 methods to meet the stated objectives. The Interaction Data

is supplied by the Kinect camera and sent to the Software Solution. Visualization Content

created specifically for this aim is created and replayed with the Software Solution. The

Hardware Solution is used to render the Visualization Content in stereoscopic 3D.

64

Figure 3.4 – Detailed view of system components

The stereoscopic control application expects three inputs to instantiate the OpenNI and

NITE drivers and algorithms. The software creates a COM server object with the

Stereoscopic Player application to establish two-way communication. When gesture-

driven commands begin playback, the Stereoscopic Player outputs an HD video signal

and synchronization signal in conjunction with the NVIDIA 3D Vision drivers.

3.3 Interaction Data

3.3.1 Gesture Libraries and User Interfaces

The 3D tracking of skeletal joints provides the Interaction Data to operate

algorithms that detect gestures and postures performed by the user. It is possible to link

preconfigured software events to these gestures and postures if the application supports

an event handing paradigm. The software community has produced a small number of

65

libraries that contain the necessary tools to detect gestures and postures directly from

Kinect camera data. This eliminates the need for application developers to write gesture

and posture recognition algorithms from scratch. The OpenNI software standard [76]

establishes an extensible interface that integrates Kinect camera data with task-specific

middleware. Kinect camera middleware is distinct from the graphics middleware

discussed in Section 1.5.6. The OpenNI standard dictates how recognition middleware is

written to be universally useful (Figure 3.5). The OpenNI library is a set of functions and

drivers that allow computers to run recognition middleware that uses Kinect data. NITE

Algorithms are an example of OpenNI middleware written in accordance with the

OpenNI standard and designed to recognize hand gesture. The general term for a gesture-

based control system is natural user interface, or NUI. Much like a GUI where the user

interacts with graphics, NUIs allow users to interact with computers in a way that is

natural. NUIs are not limited to gesture-based control; voice recognition is another

common form of NUIs supported by the Kinect camera system.

3.3.2 Processing of Kinect Data

Interaction Data originates at the Kinect camera, which is then processed in the

OpenNI environment. The OpenNI environment contains a set of drivers that process the

Kinect data and broadcasts it to the NITE Algorithms, as seen in Figure 3.5. The NITE

Algorithms calculate the position of the user’s hands and evaluate the displacement,

velocity and relative position. When the displacement and velocity data meet the criteria

established by the User-Defined Parameters dialog (Figure 3.4), a computer event is sent

to the Software Solution which handles the event.

66

Figure 3.5 - OpenNI extensible interface

The OpenNI interface provides the drivers necessary to use the Kinect camera and

makes the Interaction Data available to the NITE Algorithms.

3.4 Software Solution

It is common for software developers to reuse small executable files in order to

save time and effort in the development process. These executable files provide access to

many low-level functions within the operating system and larger applications. Consider a

custom application used in the course of academic research that includes a function to

send information to a desktop printer. The developer may choose to write a large

subroutine to temporarily store, convert and transmit the data to the printer, or he may

instead access an existing executable file designed to handle all the requisite steps. These

small executable files are collectively known as component object model (COM) objects.

COM objects contain a collection of computer functions and the necessary resource files

such as print preview function and the data needed to carry out the function. Software

67

developers regularly extend the functionality of their applications using COM objects

from other applications [77].

COM objects must first be created by software developers in order for other

developers to use them. A COM object that delivers executable methods to other

applications is called a COM server. COM servers can be created using any computer

language, but the details are beyond the scope of this thesis. COM servers are accessed

with an IDE by reading the specially compiled library files that are provided with the

server. These libraries provide information about the expected inputs, outputs and syntax

of the server functions.

A stereoscopic video player [78] with an exposed COM server is used to playback

stereoscopic video files. The major features of the player can be controlled with the COM

interface and Software Solution (see Figure 3.3). The Software Solution is written in

Visual C# with Microsoft Visual Studio because it supports strongly typed functions

associated with the stereoscopic player COM server. The Software Solution integrates the

Interaction Data from the Kinect camera and the Stereoscopic Video Player in order to

control its functionality through gestures detected by the NITE Algorithms. The system

accepts input in the form of stereoscopic video files, User-Defined Parameters for the

NITE Algorithms and Interaction Data. The system outputs a high-definition 3D

stereoscopic video signal and a synchronization signal required for active shutter glasses.

A detailed description of the software’s architecture is provided in Appendix B.

3.4.1 Software Solution: Real-Time GUI

The user interface seen in Figure 3.6 was designed as a multi-threaded Windows

Forms application. Once the Kinect camera is connected the Interaction Data is available

68

and a second thread is created to run the gesture control algorithms with minimal impact

on the performance of the rest of the application. When these algorithms detect a gesture,

an event is sent to the primary thread, which contains event handling subroutines. These

subroutines call the low-level functions that ultimately carry out the desired command on

the Stereoscopic Video Player. Several GUI functions were written to allow the user to

open files in a variety of 3D formats using the menu at the top of Figure 3.6. These

functions provide the necessary stereoscopic video input required by Figure 3.4. The

NITE Algorithms can be tuned to improve performance and accuracy in difficult

environments using a GUI seen in Figure 3.8. This feature is discussed further in Section

3.4.3. The implementation details for the Real-Time GUI and the Software Solution are

discussed in detail in Appendix B.

69

Figure 3.6 – Software Solution: Real-Time GUI

The Real-Time GUI is created as a Windows Forms Application with a viewing panel

and toolbars. The depth image and textual feedback regions can be selectively hidden

or shown depending on the level of information required by the user. Status icons in the

window footer indicate the session state, frames per second and recently recognized

gestures. This information aids in the training and familiarization process of using the

software.

Table 3.1 – Gestures and associated commands
Flow Mode Gesture Command User-defined parameters

Hand Swipe Right Play/pause Velocity, duration, steady duration

Hand Swipe Left Full screen toggle Velocity, duration, steady duration

Hand Swipe Up Zoom in / decrease FOV Velocity, duration, steady duration

Hand Swipe Down Zoom out / increase FOV Velocity, duration, steady duration

Hand Push Enter slider mode None

Slider Circle Quit Radius, sensitivity

Slider Push Enter selection None

Slider Slider Bar Select playback position

in normalized time

Bar height, width

3.4.2 Software Solution: State Machine

The swipe gestures used in a majority of the playback controls require the user to

extend his hand beyond the normal bounds of the trunk. The natural follow-up movement

after completing a swipe gesture will be to retract the hand back to its resting position.

70

Without correction, the NITE Algorithms will interpret this follow-up movement as a

second swipe in the opposite direction. The Real-Time GUI employs a state machine to

prevent this. The state machine is designed to internally redirect the flow of camera data

to specific algorithms (Figure 3.7F). When the NITE Algorithms receive camera data

they process it and trigger control events; when no data is received the algorithms enter

an idle state and wait for the next packet of data to arrive. Figure 3.7 illustrates the state

machine in which the Flow Router (Figure 3.7B) acts as the switch, directing the

Interaction Data to the proper broadcaster (Figure 3.7C and D) depending on the current

state.

The system operates in one of three states: Hand, Slider or Steady Mode. When in

Hand Mode, Interaction Data is directed to the Primary Broadcaster (Figure 3.7C) by the

Flow Router and on to the gesture recognition algorithms connected to it. If the system is

in Slider Mode, all Interaction Data is sent to the Auxiliary Broadcaster (Figure 3.7D)

and none to the Primary Broadcaster. After a gesture is recognized the system is put into

Steady Mode. When in Steady Mode all Interaction Data is sent to the Steady Detector

gesture recognition algorithm. The Steady Detector is a type of gesture recognition

algorithm that identifies when the hand is maintaining a relatively stationary position.

The degree to which the hand must be held steady can be adjusted. When the hand is

determined to have been steady for the specified period of time (see Table 3.2) the data

flow is returned to the Flow Router and the nodes are again able to detect gestures.

The Auxiliary Broadcaster (Figure 3.7D) was implemented to allow the same

gesture to have many different commands depending on the state of the system. When in

Slider Mode, the Slider gesture recognition algorithm calculates the horizontal position of

71

the hand as a normalized distance from the origin. The normalized distance is then used

to advance to the specified position in the video sequence. For example, if the user selects

0.75 using his hand and performs the push gesture, the Real-Time GUI will send a

command to the stereoscopic player which begins playback at the time point 75% of the

total time. The user can enter or leave Slider Mode with the Push gesture. When the

system is in Hand Mode, the standard gestures listed in Table 3.1 are detected and the

associated commands are sent to the Real-Time GUI.

72

Interaction

Data

Auxiliary

Broadcaster

Primary

Broadcaster

A
B

C

D

Swipe

Push

Push

Slider

Circle

F

F

F

F

F

Steady

Detector

Flow Router

ESteady Mode

Slider Mode

S
et F

lo
w

 R
o

u
ter to

 S
tea

d
y

 D
etecto

r

Hand Mode

Figure 3.7 – State Machine

Hand position data arrives in each frame of Kinect camera data. When the system is in

Hand mode, the position data is sent to the Primary Broadcaster (C), which then sends

the unchanged data to the push and swipe detectors (E). When a gesture is detected in

either of nodes, all data is rerouted to the Steady Detector (B), which keeps all data from

the other detectors until the hand has been steady for the specified period of time. The

user can alternate between Hand and Slider modes with the push gesture (F, G).

3.4.3 Software Solution: Configuration Dialog

The ability to tune the gesture recognition algorithms was added to maximize the

number of environments in which the system is effective. The algorithms used to detect

the gestures listed in Table 3.1 depend on the ability to detect motion of the hand. Due to

the effect of camera/hand distance, hand movement near the camera will appear to create

a larger displacement than the same motion at the far end of the camera’s FOV.

73

Considering that the effective range for the depth-sensing camera is 3.5 meters

[75] this effect may become quite pronounced at far distances. By tuning the parameters

of the algorithms the user can correct for this to allow more natural gestures to be used no

matter the environment. Swipe velocity and duration are the two parameters most likely

to be adjusted, as they are involved in correcting for the problem described previously.

These parameters are described in greater detail in Table 3.2. Users may also adjust the

sensitivity of the steady detector to best match their work habits. Suggested values for

tuning the detection parameters can be found in Appendix B on page 135.

74

Figure 3.8 - Customization dialog

The NITE Algorithms allow the user to customize the detection parameters for a

specific application. The Real-Time GUI exposes these parameters to the user and

offers a mechanism by which they can be reconfigured at run-time.

75

Table 3.2 - User-defined parameters

The table enumerates the various categories of user-defined parameters, their description

and their range of recommended values. These parameters can be used to adjust the

performance of the NITE Algorithms. Unless specified, the application will use the

default value.

 Parameter Description [units] Default

Value

Min

Value

Max

Value

Steady

Detector

Steady Duration Minimum period of time the

hand must be relatively

stationary before the session

manager to set back to the flow

router. [ms]

1000 200 10000

Standard Deviation The standard deviation of hand

movements that is considered

to be steady. Increasing this

number makes the system less

sensitive to unintentional hand

movements. [m/s]

1 0.1 6.0

Swipe

Detector

Minimum Velocity The swipe velocity below

which the NITE Algorithms

will not throw gesture event.

[m/s]

0.2 0.1 1000

Swipe Duration The minimum temporal

duration of hand movement to

trigger swipe event. [ms]

500 350 1000

Max Angular Deviation

(X, Y)

Maximum deviation 45, 45 0 90

Use Steady Detector Boolean variable that turns the

swipe detector’s internal steady

detector on or off. If on, the

swipe detector steady duration

is added to that of the entire

system. [bool]

True False True

Circle

Detector

Min Radius Radius of smallest diameter

circle detected by NITE

Algorithms in display’s

coordinate system. [mm]

80 40 1200

Sensitivity Maximum allowed deviations

from perfect circular path of the

hand. [count]

2 1 5

Value

Selector

Width The sliding value selector’s

width measured in units of the

display’s coordinate system.

[mm]

200 0 Screen

width

Height The sliding value selector’s

height measured in units of the

display’s coordinate system.

[mm]

100 0 Screen

height

76

3.5 Visualization Content

A method was developed to produce meaningful visualizations tailored for use by

a cardiothoracic surgeon using open-source visualization tools. This framework is

outlined in Figure 3.9. These algorithms automate most of the intermediate steps required

to produce valuable visualization content. Minimal user interaction is required to run

these algorithms. They are written as Python scripts to control ParaView [79], an open-

source parallel visualization tool. The algorithms can be applied in any order so that a

final visualization meets the needs of the user fully. Once rendered with a combination of

these algorithms, the visualization content can be manipulated using the stereoscopic

control application. It is not feasible to control all features of ParaView with hand

gestures; for this reason, we sample the data to establish pre-recorded vantage points that

are of the highest clinical value. These pre-recorded vantage points were selected in

consultation with an expert in the field.

OsiriX

Crop Data to ROI

VolView

Mark Landmark

Points

VolView

Save Data as

Volume

ParaView

Apply Visualization

Algorithms

Figure 3.9 - Visualization Framework

The framework allows users to create meaningful visualization content using open-source

software tools.

3.5.1 Data Selection

The goal of producing visualization content that is tailored for use in

cardiovascular surgery informs the selection of datasets to test our methods. Eight

datasets have been selected to represent a wide cross section of possible pathologies

commonly encountered by the surgeon, which are summarized in Table 3.3.

77

Table 3.3 - Summary of datasets processed
Name Modality No. Images Voxel Size [mm] Description

AGECANONIX CT 355 0.47 x 0.47 x 0.50 16 slice cardiac and coronary

study

ARTIFIX CT 64 0.39 x 0.39 x 2.5 Cardiac study of patient with a

dilated aorta

CETAUTAMATIX MR 88 0.93 x 0.93 x 1.40 Normal cardiac MRI/MRA

study

FEROVIX CT 53 0.43 x 0.43 x 0.5 Cardiac study of patient with

pulmonary stent

FIVIX PET/CT 513 0.35 x 0.40 x 0.40 64 slice CT angiogram with

PET study

MAGIX CT 76 0.40 x 0.40 x 2.0 64 slice CT angiogram

RATIB CT 264 0.43 x 0.43 x 0.50 Normal

TOUTATIX CT 309 0.33 x 0.33 x 0.50 CT cardiac scan of patient with

main coronary branch

emanating from pulmonary

artery

3.5.2 Image Processing Methods

Each dataset must first be cropped to the region of interest, illustrated in Figure

3.10. DICOM files are loaded into OsiriX, open-source DICOM software package [80],

and cropped using a 3D sculpting tool. In typical cardiac images, this involves manually

removing the pulmonary vasculature, ribs and excess tissue information superior and

inferior to the myocardium. However, not all structures will be visible with all modalities.

For example, bone is often not visible with MR images. The system should be set to

parallel projection to avoid perspective errors. The complexity and time required for

completion of this step is directly proportional to the tortuosity and complexity of the

anatomy. The edited DICOM files are exported as a new set of discrete DICOM slices,

retaining the original metadata. The cropped slices are then aggregated and converted to a

volumetric dataset using the open-source application VolView [81]. The volumetric data

is saved in .vti file format, a uniform, rectilinear grid format that allows other software

packages to process the data more efficiently.

78

Figure 3.10 – Image processing steps

Panel A shows a standard thoracic CT image. B is the volume rendering of A with

thresholding applied. C shows the volumetric data as cropping is being applied. The

green outline shows how the user is able to selectively remove portions of the data using

a standard computer mouse. The algorithms automatically apply the cropping data to all

relevant slices resulting in D.

It is necessary to mark landmark points on the images in order to establish the

viewpoints vectors in the 3D volumes after the images have been processed. This is

accomplished with VolView, where points are marked on a 2D image, and the software

determines depth location based on slice number. Two specific procedures for

establishing 3D content are demonstrated. The first procedure establishes a vector along

the line-of-sight (LOS) of the surgeon as if he were standing on the patient’s right side.

The LOS vector enters the myocardium on the anterolateral side of the right atrium and

exits on the lateral wall of the left ventricle as seen in Figure 3.11. Resampling the

viewpoint vector along this vector allows the surgeon to preview the heart’s anatomy

79

prior to a procedure. The second procedure orients the DICOM images along two vectors.

The first runs through the interventricular septum to the center of the heart; the second

bisects the atria through the interatrial septum (see Figure 3.12).

Figure 3.11 – Approximation of LOS

vector

The white LOS vector extends from the

anterolateral wall of the Right Atrium

through the heart to the lateral wall of the

left ventricle.

Figure 3.12 – Approximation of

interventricular septal (IVS) vector

The two white vectors bisect the septa of

the heart beginning at the apex, into the

center and through the base of the heart.

3.5.3 Visual Content Generation

Renderings are created after the data has been cropped and the landmark points

recorded at a resolution not less than 1920x1280 pixels. An algorithm was written to

process the landmark points and calculate the length, direction and orientation of the

vectors defined previously (see Figure 3.13). This data is used as input to the ParaView

Slice filter that is used to resample the DICOM images. The slice filter locates a 2D

sampling of the 3D data at a specific location and orientation. A grayscale color map was

designed to view major structures within the heart while maintaining transparency. Since

80

ParaView renders the slices and the volumetric data in the same space it is important to

maintain the ability to see through the volume to the slices. This transparency is seen in

Figure 3.11 and Figure 3.12 where the white vector is visible. An opacity map developed

for this application emphasizes the densest material and makes less dense material

transparent or translucent.

Once the slices have been calculated and rendered in ParaView, visualizations are

created with additional algorithms. Any combination of rotations, movements and

transformations are possible, but results are optimized for use as a pre-surgical planning

tool. These involve a minimal amount of rotation to allow the user to maintain spatial

orientation relative to the heart. To provide detailed anatomic detail, the active slice is

slowly translated along the vectors seen in Figure 3.11 and Figure 3.12. Several macro

functions were written to automate the process of creating the visualization sequences.

These functions were designed to be applied to an existing ParaView dataset; this allows

maximum flexibility in how the visualizations are created with minimal alterations to the

macro functions. By applying varying combinations of these macro functions, the user is

able to create a visualization that is tailored to his specific need. Two stereoscopic files

are produced. These files are input to the Stereoscopic Video Player described in Figure

3.4.

81

Calculate

segment data

DICOM

VTI Data

Fiducial

Points

Render

Calculate

camera positions

Render

segments,

volumes

Store in

separate file

Slice Macro

Capture current

view settings

Render and save

Left eye file

Enable

stereoscopic

rendering

Calculate

keyframes for

rotation

Prepare for

moving active

slice

Animation Macro

Render and save

Right eye file

Figure 3.13 – Flow charts describing ParaView Macros

The slice macro (left) prepares and renders a DICOM slice using two sets of data. The

Animation Macro (right) first captures the current view settings allowing it to be applied to

any existing ParaView rendering. Two stereoscopic (left and right eye) files are produced by

this macro.

3.6 Hardware Solution

To deliver the system that integrates these software tools with a stereoscopic

display device we use commercially available products. A specialized GPU is used to

achieve time multiplexing compatible with a commercially available stereoscopic

hardware package distributed by the NVIDIA Corporation. Figure 3.14 illustrates the

primary connections between the various pieces of hardware used in the project.

82

Figure 3.14 - Hardware Topology

The hardware used in this system involves assorted pieces of commercially available

products. The stereoscopic effect is achieved by the NVIDIA graphics card, IR emitter

and glasses maintaining a synchronized shutter to the high performance display. The

stereoscopic control application integrates data from the Kinect camera to produce

commands that control the video player.

3.6.1 Commercial Stereoscopic Solutions

We have elected to use a turn-key solution for creating time-multiplexed (active)

stereo images to keep the costs manageable. The NVIDIA Corporation distributes a

hardware/software product including graphics drivers and 3D shutter glasses (see) to

allow users to quickly create stereoscopic renderings. Active shutter glasses and an

infrared emitter maintain synchrony with the quad-buffered display (driven by a high-end

graphics card, see Table 3.4). Because the images must be alternated at a rate of 120Hz it

is not practical to render each video frame immediately prior to display; rather, the

system maintains a separate memory buffer in which the next frame is rendered while the

previous frame is being displayed.

83

Table 3.4 - Bill of Materials

The NVIDIA system requires the display device to be certified for performance

and reliability. A small number of commercially available televisions, computer monitors

and LCD projectors have been certified for use with the NVIDIA 3D Vision system. The

monitor and projector listed in Table 3.4 are certified by NVIDIA to function according

to expectations.

3.6.2 Display Devices

Our visualization system can be realized with one of several display devices. The

NVIDIA stereoscopic system can be used with any approved display device, and the

stereoscopic control application is display independent. We present results using the

Planar SA2311W monitor, which has a large screen size, high contrast ratio, low ghosting

(between time sequential frames) and high brightness.

For larger displays a projector is a viable alternative to a desktop monitor.

Projectors offer larger display areas than a single monitor and the screen can be retracted

or otherwise hidden when not in use; this is an advantage over the fixed-size of desktop

monitors and televisions in which the display’s required storage space is constant. Time-

multiplexed stereoscopic techniques are less sensitive to viewing angle than polarization

multiplexing techniques [26]. Because of this, time-multiplexed stereoscopic images can

be viewed from extreme viewing angles with limited effect on the perceived image

[23,26].

Description Quantity Est. Cost

Planar SA2311W 3D Vision Monitor 1 $300

BenQ MS612ST Stereoscopic Projector 1 $499

Da-Lite 57.75”x77” Rear-projection holoscreen 1 $2,905

NVIDIA GeForce GT430 graphics card 1 $67.00

NVIDIA 3DVision2 system 1 $150.00

Microsoft XBOX Kinect Camera 1 $150.00

84

3.7 Results

3.7.1 Hardware and Software Performance

The stereoscopic control application performed as expected. The Real-Time GUI

(Figure 3.6) can be opened as a standalone executable file on any computer with the

applicable camera and video drivers installed. Once the Real-Tim GUI loads

successfully, the user opens files of interest with second easy to use GUI. The files can be

located locally or on a remote computer. Opening remote files may increase latency and

generally decrease performance. The gesture detection criteria for the NITE Algorithms

can be adjusted at runtime as the User-Defined Parameters from Figure 3.4 to maximize

performance under a variety of environmental conditions and user preferences. Figure

3.8 shows the dialog box used to adjust the User-Defined Parameters. When adequately

adjusted for the current environment, the software successfully detects gestures and

correctly executes the associated player command within a short period of time. Latency

between gesture recognition and command execution is small and estimated to be less

than 500 ms under normal conditions.

Inaccurate gesture detection can occur if the User-Defined Parameters are not

well suited for the environment. Appendix B lists suggested settings for the User-Defined

Parameters for two common user environments and provides a brief discussion on how to

intuitively adjust them to best suit other environments. The NITE Algorithms interpret

hand motion most accurately when the user ensures the angle created between his and the

camera’s lines of sight is less than 35º. When this threshold is exceeded detection errors

can occur. Appendix B contains a detailed discussion on the impact of orientation on

NITE Algorithm performance.

85

The 3D stereoscopic effect is available when the player is used in Full Screen

mode. This is the result of the stereoscopic player being a child process of the

stereoscopic control application. This is because the computer’s operating system treats

the player differently when it is seen as a child of a parent process. Once in full screen

mode, the player is able to adjust the parallax, vertical and horizontal offsets of the 3D

content in order to maximize the benefits afforded by advanced visualization. The active

shutter glasses must be used within 15 feet of the emitter, and with a direct line of sight,

to achieve the 3D effect. The glasses must maintain a line of sight with the emitter since

it operates on the IR wavelength. Satisfactory stereoscopic depth perception was achieved

within the range of ±60° of the screen’s perpendicular axis. This provides 120° across

which the 3D effect is both perceptible and effective in conveying depth. Beyond this

range, visual disparities caused by scene geometry render the depth information

unreliable [17].

3.7.2 Volumetric Medical Data Processing Results

The visualization methods described in Sections 3.5.2 and 3.5.3 were successfully

applied to all data described in Table 3.3. The image processing and annotation results

can be seen in Figure 3.15. These algorithms produced visual content commensurate with

the acquisition resolution; those datasets acquired at higher spatial resolutions produced

results of a higher fidelity compared to those acquired at lower resolutions. Higher

resolution is desirable as it affords greater detailed to be realized in the final visualization

sequences, thus providing more information to the user. The anatomic variability seen in

Figure 3.15 supports our claim that the framework is flexible and can be applied to data

of heterogeneous origins.

86

Rendering of the Visualization Content was conducted on an HP Tower computer

with an Intel Core2 Duo 3.17 GHz Processor, 4GB DDR3 RAM equipped with 32-Bit

Windows 7 SP1. An NVIDIA GeForce 430 1 GB GPU was added to the PCI-e slot for

additional rendering capabilities. The most complex visualization sequence derived from

the Agecanonix dataset required approximately 1:41 to render 500 frames for both Left

and Right eye stereo images for a total of 1,000 images in 101 minutes, or about 10

frames per second. The simplest sequence applied to the Agecanonix dataset required 3

minutes to render the same number of frames.

87

Figure 3.15 - Image processing results

The result of cropping, converting to volumetric data and annotating each dataset is shown above. Some datasets exhibit higher

spatial resolution, namely the FIVIX and TOUTATIX sets, as compared to others. These high resolution volumes produce higher

quality visualization results because more detailed data can be displayed to the user. The top row shows surface morphology of the

myocardium. The second row demonstrates the interventricular and interatrial septal vectors. The third row shows the surgical LOS

vector.

88

3.8 Discussion

The objective of the current work was to develop a visualization system that

provides a method for viewing stereoscopic medical imaging data with a gesture-based

control system. A further goal of the work was to develop an algorithmic framework to

create high quality, useful visualizations with open-source visualization software

packages. The application of advanced visualization techniques to medical imaging data

is not itself unique; however, when coupled with a gesture-based system for controlling

the visualization we extend the current techniques for reviewing medical imaging data.

To date, we have used high-end, commercial display hardware to stereoscopically render

high-resolution medical imaging data that is viewing angle independent to improve upon

previous techniques. We have developed custom software that integrates data from a 3D,

depth-sensing camera with open-source gesture recognition algorithms to control a

sequence of visualizations using hand gestures. Finally, we have written a series of

algorithms to produce high-quality visualizations from a multiple imaging modalities

designed to produce content tailored for use a pre-surgical planning tool by a

cardiothoracic surgeon.

3.8.1 System Performance

The stereoscopic control application performed within the defined parameters.

The application is easy to use, as it is based on the Windows Forms Application template.

Using this template provides the necessary graphics and interface elements to make the

control application appear like many other commercial applications written for the

Microsoft Windows operating system. The user interface is natural, and follows the

conventions used by most other applications. This provides a familiarity to the user so

89

that the time required to become familiar with the software is minimal. The elements of

the user interface are named logically to facilitate ease of navigation for novice users.

The software loads quickly because it is contained in a small amount of code and

leverages shared libraries on the computer, reducing the amount of code that must be

compiled with the stereoscopic control application.

The software link between the stereoscopic player, stereoscopic control

application and the gesture recognition algorithms performs at a level that does not

impede normal use. The latency between gesture detection and command execution is

small and therefore does not pose a performance concern. Running the application on a

multi-threaded computer is recommended to allow the various pieces of the software to

execute on separate computational threads. Ideally, the gesture recognition algorithms are

processed on a separate thread from the rest of the application.

3.8.2 Display Techniques and Hardware Considerations

The application of stereoscopic rendering to biomedical data has been previously

reported [82]. Such systems use older, CRT monitor and polarizing filter technologies to

display results and require the user to wear depolarizing glasses. Our system uses a time-

multiplexing technique to achieve the stereoscopic effect, which is not affected by

viewing angle. Polarization-multiplexing techniques are sensitive to the user’s viewing

angle relative to the screen, and off-axis viewing can completely obscure the 3D effect by

introducing ghosting effects [26]. The wide viewing angle of our system (~120°)

provides sufficient flexibility in viewing position relative to the screen, allowing multiple

users to view the display simultaneously and observe the stereoscopic images with equal

depth effects.

90

Our system employs a commercial, high resolution computer monitor which

offers greater resolution than the CRT monitor described previously [82]. Because the

stereo data is presented as time-multiplexed information (not row-interlaced as used by

polarization multiplexing techniques), the left and right eyes each receive images at the

monitor’s full resolution. With the increased display resolution we are better able to

display the detailed anatomic and functional data that is produced by modern medical

imaging equipment. The high contrast ratio of the Planar monitor (1000:1) [83] used in

the current system offers good differentiation for details in image data. The refresh rate of

the monitor (120 Hz) is sufficient to avoid flicker effects and the brightness is not greatly

diminished. Related to the refresh rate of the monitor is the perceived flicker of the stereo

images through the active shutter glasses. The NVIDIA active shutter glasses provided

good stereo performance with a minimal amount of perceived flicker. The flicker that

was perceived was likely due to the interference from the overhead fluorescent lights and

the other active computer monitors. The amount of perceived flicker decreased when all

other light sources (including windows, overhead lamps and other computers) were

eliminated.

3.8.3 Gesture-Based Controls

To extend the current techniques for integrating stereoscopic visualization of

medical imaging data we have developed software to allow a user’s hand motions to

control the visualization content. Previous systems have used head tracking as a means of

providing interactivity with the data [82], but out system allows the user to have a greater

level of control. To the best of our knowledge, no other system uses a 3D, depth-sensing

camera to accomplish this. Gesture recognition is a technology that is gaining momentum

91

in the mainstream technology industries, including television and computerized

entertainment markets [84,85]. Using a gesture recognition device eliminates the need for

more costly equipment because gesture can be recognized with as little as one image

capture device. A typical Kinect camera is available from an online retailer for $134 [86]

compared to a basic VICON-brand motion capture system, which captures body motion

using the same technology as the Kinect and starts at over $10,000 [87].

Controlling a computer system with gestures also eliminates the need for physical

contact with an interface device. This feature is especially attractive for medical

applications in which a sterile field may need to be maintained. A surgeon who wishes to

review the medical imaging data—with or without the stereoscopic display—may have to

touch controls wrapped in a shroud to maintain sterility. With gesture based controls, the

surgeon simply makes hand gestures in view of the camera in order to control the medical

image display. This better maintains the sterile field, while also eliminating the need for

disposable covers for the manual controls.

Gestures can be described mathematically as the trajectory of a point in space; the

recognition algorithms employed in this system can be trained to recognize custom

gestures by performing the custom gesture in view of the camera. This affords great

flexibility to the users of this system, who can map customized gestures to specific

features of the stereoscopic player to expand its gesture-based functionality. Using

custom gestures in addition to or instead of the standard gestures recognized by the

algorithms provides a more intuitive user experience. These gestures can be used in place

of or in addition to traditional user interface devices such as a mouse and keyboard.

92

3.8.4 General Applicability

Previous work done to combine medical science with advanced visualization has

often focused on the design of a system to accomplish a specific task—such as training

and education [42,88], virtual procedures [89,90] and even autopsy [91]. Our system is

designed to be flexible in application to make it useful to as large a part of medical and

scientific communities as possible. The graphics hardware is capable of displaying almost

any form of medical or scientific data—such as CT, MR, OCT and simulation datasets

from sources such as CFD. The visualization results produced by the open-source

algorithms in Section 3.5 are intended to be one of many types of data that can be

visualized with the display and control hardware. Because the foundational format of the

data visualized in this system in based on the VTK file format standard, the list of

possible data compatible with the current system is extensive.

3.8.5 Limitations

The application relies upon many of the video and display drivers common to the

Microsoft Windows operating system. For this reason, the application will only function

on Microsoft Windows. The software must be compiled on the host computer in order to

locate and link to the shared libraries required for operation. Using the Microsoft Visual

Studio IDE automates this process and greatly reduces the amount of time required to

locate the required libraries and compile the application.

The current embodiment of this visualization system requires the user to wear

active shutter 3D glasses. The glasses require electricity and must be charged with a USB

power cord. When not performing the shutter action, the glasses typically diminish the

brightness of the images observed through them, making it impractical to wear them

93

unless viewing 3D visualizations. This challenge could be overcome with the use of

autostereoscopic displays that do not require the user wear any glasses. Such displays will

be discussed in further detail in Section 4.1.2.

The use of gestures affords many advantages over traditional user interface

devices. However, further development of the detection algorithms may be needed before

gesture-based controls can be used for safety-critical applications. The accuracy of the

gesture detection algorithms is sufficient for the applications described here, but

additional fidelity in detection is required before such hardware/software systems could

be safely used for applications directly impacting a patient’s health and safety, such as

robotic surgery.

3.9 Conclusion

The objectives of this aim were to produce a control application that uses hand

gestures recorded by the Microsoft Kinect camera and processed by open-source

recognition algorithms. We have delivered an application that recognizes hand gestures

and uses them to control the 3D stereoscopic visualization content. This content was

produced with a custom algorithmic framework designed to produce meaningful

visualizations of medical imaging data tailored for use as a pre-surgical planning tool.

The system is completed with a specialized display that allows users to gain the benefits

afforded by stereoscopic rendering. These accomplishments meet the stated objectives,

and deliver a system that is well-suited for use by a cardiovascular surgeon.

94

Chapter 4: Conclusions and Future Directions

4.1 Future Directions

The practice of integrating advanced visualization technologies with gesture

recognition and 3D depth-sensing cameras has a bright future. This thesis describes the

first steps in realizing such future possibilities. Future developments will likely focus on

extending the functionality of gesture-based controls and their ability to directly

manipulate medical and scientific data. New display technologies suggest that the use of

specialized eyewear may soon be obsoleted in favor of new stereoscopic techniques that

do not require glasses. New areas of applications for these technologies will also be

discussed.

4.1.1 Application Development

The current system relies on pre-configured visualization sequences to deliver the

data. Future versions of this system might employ the use of a Virtual Reality Peripheral

Network (VRPN) in which joint position data from the Kinect camera is delivered to the

visualization software (such as ParaView) through a network connection [92]. Using such

a system would allow data to be manipulated in real-time. A software solution designed

to manipulate data in real-time requires two components. First, it must provide the means

to rotate and scale the object of interest within the field of view. In ParaView this is

achieved by changing the position and focal point of the camera. Second, the software

must allow the user to apply transformation filters to reveal new and interesting features

95

of the data. Such filters provide the means to transform the data and gain new insights

which is an important part of the visualization process.

The ParaView client can be used to visualize data with an easy to use GUI. The

capabilities of ParaView’s visualization features can be extended through the use of

plugins. Plugins are small applications written in C++ that add specific features to the

ParaView client. Plugins can only be executed by ParaView because their architecture is

designed to be run from within the ParaView Client. For example, a plugin has been

designed by a third party to read and visualize a specialized file type ‘HD5Part,’ which

describes particle simulation data. Since this file type is not normally supported by

ParaView, a software developer wrote a C++ plugin to extend ParaView’s capabilities to

read and visualize it.

ParaView

Plugin

ParaView

Client

OpenNI

Drivers and

Algorithms

VRPN Server

Figure 4.1 - Data pathway between the Kinect and ParaView

Data travels from the Kinect camera to the OpenNI Drivers which send hand position

data to the VRPN Server. The VRPN server broadcasts the position data to a custom

ParaView plugin which processes the data and creates commands for ParaView Client.

96

Camera Position and Orientation: ParaView makes it possible to manipulate the

position and orientation of the camera and its focal point. The (x,y,z) coordinates

describing these camera properties are easily accessible through the plugin interface. The

Kinect camera can supply the plugin with position information, which the plugin can then

use to change the camera’s position and orientation. At normal performance levels, the

Kinect system supplies Interaction Data at approximately 30 Hz. It may be necessary to

down sample the camera data to a rate that is consistent with ParaView’s ability to

receive and carry out instructions on changing the position of the camera. This down

sampling can be performed in either the VRPN server or in the plugin itself. It may be

favorable to perform this step within the plugin, as it will have access to the state of the

ParaView client, which would allow for adjustable down sampling depending of the

current abilities of the client.

The plugin must have a means to map the (x,y,z) position data of the hand into

viable position coordinates of the camera. For example, the hand’s x-position could map

to the camera’s elevation, the y-position to the azimuth and the z-position the roll.

Elevation, azimuth and roll are illustrated below. A 360º sweep of Azimuth produces a

full orbit around the camera’s focal point, which is held steady throughout the sweep

(Figure 4.2). It is ParaView’s convention to place the camera’s focal point at the

geometric center of the object/volume of interest. This proposed mapping of hand data to

camera position is one of many possible solutions and may not lead to optimal results.

97

Figure 4.2 - Elevation, Azimuth and Roll camera operations

By linking specific hand position data coordinates to these operations the

developer would be able to use the Kinect camera to control the camera

position and orientation in real time. Graphic adapted from [12].

Potential Roadblocks and Solutions: The process of adjusting the camera’s

position and orientation requires ParaView to render the volumetric data for each

incremental change in any position field. This describes a state in which ParaView will

attempt to fully render the volume for each increment is elevation, azimuth, position or

orientation. By attempting to do this, performance will be slowed and memory use will

grow rapidly. In order to maintain real-time performance (defined as latency <125 ms for

hand/eye coordinated events) [2], it is likely that using a Level of Detail (LOD) filter will

be required. ParaView has a built-in LOD filter that down samples the object of interest

while commands are received. When the object is sufficiently down sampled, the

graphics can be rendered in synchrony with the camera repositioning commands, thus

maintaining the real-time data interaction. When new commands cease to arrive for a

98

specific period of time, a full volume rendering can be performed to produce graphics at a

more realistic resolution. The settings for the LOD filter will likely need to be adaptive to

the size and complexity of the volume being rendered, meaning that a separate function

will be needed to set up and control the adaptive LOD filter.

Application of Filters: The application of ParaView filters extends the range of

what can be visualized and appreciated using the ParaView client. For example, using the

Slice filter allows users to view 2D image slices sampled from within a complex multi-

dimensional data set such as CT medical imaging data. The information required by the

ParaView Slice filter can be supplied by the Cartesian coordinates of the hand, which is

tracked by the OpenNI Algorithms and broadcast by the VRPN Server (see Figure 4.1

and Figure 4.3). These coordinates are then received by the custom plugin and mapped to

a specific property of a ParaView filter.

It is possible to design a custom plugin such that the (x,y,z) position of the hand is

mapped to (x,y,z) specific filter properties. It would also be possible to use gestures to

select the current property whose value is set by the hand position. A state machine

similar to (but more complex than) the state machine developed in Aim 2 could be used

to control the flow of data between setting the filter property values and selecting the

active filter property. An example describing the use of the Kinect camera to set the Slice

filter is described below.

The Slice filter requires these properties be supplied with data before the filter is

applied:

 Input (of type vtkDataSet)

 Slice Type (choose from Plane, Box or Sphere)

 Input Bounds (x,y,z coordinates describing slice’s location in space)

99

 Slice Offset Values

As seen in Figure 4.1 and Figure 4.3 Interaction Data is obtained by the Kinect

camera and processed by the OpenNI Drivers and Algorithms. These isolate the position

of the dominant hand and also scan the data for any particular gestures that are performed

by the user. A continuous stream of hand position data is sent along a VRPN server to the

custom ParaView plugin which receives the data and routes its numeric value to the

property of its active filter. When the user is satisfied with the current value assigned to

the filter property, he performs a gesture, which is recognized by the OpenNI Algorithms

and an event is triggered in the ParaView plugin. The plugin sets the “Next Property”

(see Figure 4.3) to the “Active Property” and the hand position data is once again used to

set the value of the property. Specific gestures may allow the user to navigate between

the many properties of a filter and adjust them as he deems necessary. When all filter

properties have been assigned to the satisfaction of the user a set of instructions is sent to

the ParaView client. The client receives these instructions and applies the filter to the

data.

100

OpenNI Drivers and

Algorithms

ParaView Client

Interaction Data

Position of right hand OR gesture events

(via VRPN Server)

ACTIVE FILTER: Slice

ACTIVE PROPERTY: Input Bounds [x]

Setting Input Bounds Property on Slice filter

Custom ParaView Plugin

NEXT PROPERTY: Input Bounds [y]

PREVIOUS PROPERTY: Slice Type

Instructions on how to

set up Slice filter

Figure 4.3 - Potential plugin configuration

Representation of how user inputs from a medical professional are obtained by the

Kinect camera, processed by the OpenNI Drivers and Algorithms then broadcast to a

custom ParaView Plugin via the VRPN server. The internal design of the plugin allows

the user to cycle between the properties of the Active Filter and set numeric or

categorical inputs to the filter. Gestures, recognized by the OpenNI Algorithms, signal to

the plugin when to cycle between the previous and next filter properties. When all

properties are set, a complete set of implementation instructions is sent to the ParaView

client which then caries them out.

Potential Roadblocks and Solutions: There is an exhaustive list of potential filters

built into ParaView and VTK that may be applied to the data. In order to provide users

with access to all filters, it will likely become necessary for the developer to establish a

standardized method of accessing, displaying and populating the properties of the filters.

The system designer must also develop some means of determining the expected input

type to each property. For example, the Slice Type property of the Slice filter must be set

by one of three possible inputs; numerical input is not accepted. It would be necessary for

the developer to recognize this special input type and provide some means of allowing

the user to select one of the possible input values.

Developing a preliminary plugin that creates adapted versions of a select number

of standard ParaView filters (and therefore can support the special cases more directly)

may be an alternative to developing an all-encompassing plugin. By limiting the number

101

of filters supported by the plugin, development will be less complicated by developing a

gesture-based user interface, and more on the technical details of integrating the gesture

and position data into the filter properties.

4.1.2 Display Technology

We have shown results in IVEs, projector-based visualization systems and

desktop computer monitors, each of which rely on a multiplexing technique to achieve

the stereoscopic representation of the depth dimension. Current state-of-the-art

technology points towards a progression in displays to adopting autostereoscopic

technology. With this technology users are no longer required to wear any kind of special

eyewear. The technology used to achieve generally falls into one of two categories. The

first, known as parallax barrier, uses LCD pixel elements placed between the viewer and

the picture source. By selectively occluding the picture source LCDs, each of the

viewer’s eyes sees a slightly offset image, thus creating an image with depth information

[23]. The second technology, lenticular lens, places a specialized lens atop the picture

source. The lens selectively refracts light from the pixels into slightly offset trajectories,

directing pixel data meant for the left eye towards the viewer’s left eye. There are several

variations of the lenticular lens concept, but most function under this basic premise [23].

Using an autostereoscopic display in place of a time-multiplexing display as

shown in Section 3.6 eliminates the need for the user to wear specialized eyewear. In

many cases this provides an advantage, as the user can appreciate the stereoscopic effect

without having to don or remove the specialized glasses. In an operating room setting this

may be especially advantageous, whereby a surgeon can review the stereoscopic

visualization content on-demand by doing nothing more than looking at the monitor.

102

Coupled with the gesture-based control system described previoulsy, this suggests a

promising technological tool for use in the surgical setting.

4.1.3 Applications in Medical Education

The concept of Virtual Reality can be extended to the field of medical education

by creating virtual environments that mimic many aspects of a real clinical setting. As

seen in Figure 4.4, a virtual hospital room can be created to a realistic scale for the

purpose of training nursing students in a realistic, yet simulated, environment. In addition

to the realistic graphics, content of the virtual environment can be generated to emulate

real-world scenarios. In the scenario pictured in Figure 4.4 the virtual heart rate monitor

on the wall displays real, time-varying heart rate data and audio feedback in the form of

audible alarms for abnormal heart rates and rhythms. By training in such an environment,

students can gain experience and confidence in handling complex situations with many

forms of input, distraction and decision making factors.

103

Figure 4.4 – Virtual environments used for educational purposes

A student and instructor wear active stereo glasses and perceive the

objects projected onto the walls in stereoscopic 3D. The audio data

embedded in the simulation provides students with clinical cues which

they must incorporate into their clinical decision making.

4.2 Conclusions

The field of visualization has developed as a result of the 1987 NSF Report titled

“Visualization in Scientific Computing” by DeFanti et al. [11]. In this report, the authors

outline a broad definition of visualization and its ties to computer. More than 20 years

later, the field of visualization is still experiencing rapid growth, especially due to the

increased interest in visualization, the data deluge and advancements in high performance

computing [8,10,93]. The scientific and non-scientific communities alike produce

massive amounts of data that makes it difficult to process and analyze in full.

Visualization is well-positioned to serve as a tool to alleviate this bottleneck.

Aim 1 described how advanced visualization allows users the ability to visualize

biomedical and scientific data in stereoscopic, immersive environments. We showed that

the use of an IVE presents many opportunities for enhanced understanding through direct

104

interaction with data and allows a greater level of spatiotemporal knowledge of

simulation results. We described the development of a method to rapidly produce

immersive VR content from scientific and biomedical data. We demonstrated the

flexibility of our method by applying it to the LCX coronary and carotid arteries, which

were imaged with OCT and MR respectively. The ability for IVEs to display large

quantities of data in a manner that is understandable is a viable solution to the problem of

the data deluge. The retention of the depth-dimension allows a greater amount of

spatiotemporal data to be displayed and used to establish new relationships between

vascular form and function.

 In Aim 2 we described an advanced visualization system that uses hand gestures

to control the stereoscopic visualization of medical imaging data. The use of hand-

gestures provides many advantages, including the ability to maintain a sterile field within

an operating environment and a more intuitive HCI than can be afforded by keyboards or

mice. The hand gestures were used to control the visualization of 3D, stereoscopic

renderings of medical imaging data. This data was processed with an algorithmic

framework designed to create high quality, useful visualizations with open-source

visualization software packages. The system was designed to serve as a pre-surgical

planning tool for cardiovascular surgeons. The use of open-source software packages

reduces the costs associated with the software and may allow additional users to adopt the

use of advanced visualization.

As the data deluge continues to grow with the increases in computational capacity

predicted by Moore’s Law, it will become increasingly necessary to use tools like

visualization to understand large sets of data. By using tools like those developed here,

105

we have taken the first steps towards integrating advanced scientific visualization with

biomedical research and established how it can aid in the understanding of large datasets.

106

BIBLIOGRAPHY

[1] Subcommittee on Research and Science Education, The State of Research

Infrastructure at U.S. Universities, (2010).

[2] A. van Dam, A.S. Forsberg, D.H. Laidlaw, J.J. LaViola, R.M. Simpson, Immersive

VR for scientific visualization: a progress report, IEEE Computer Graphics and

Applications. 20 (2000) 26-52.

[3] C.A. Stewart, R.Z. Roskies, S. Subramaniam, Opportunities for Biomedical

Research and the NIH through High Performance Computing and Data

Management, 2003.

[4] R.G. Baraniuk, More is less: signal processing and the data deluge, Science. 331

(2011) 717-9.

[5] J.F. Gantz, D. Reinsel, The Digital Universe Decade - Are You Ready?, IDC

Corporation. (2010).

[6] J.F. Gantz, D. Reinsel, Extracting Value from Chaos, IDC Corporation. (2011).

[7] R.R. Schaller, Moore’s law: past, present and future, IEEE Spectrum. 34 (1997) 52-

59.

[8] P. Fox, J. Hendler, Changing the equation on scientific data visualization, Science.

331 (2011) 705-8.

[9] I. Foster, Rethinking Cyberinfrastructure for Massive Data, (2012).

[10] N.D. Gershon, C.G. Miller, Environment-dealing with the data deluge, IEEE

Spectrum. 30 (1993) 28-32, 42.

[11] T.A. DeFanti, M.D. Brown, Visualization in Scientific Computing, Computer

Graphics. 21 (1987).

[12] W. Schroeder, K. Martin, B. Lorensen, L.S. Avila, R. Avila, C.C. Law, The

Visualization Toolkit, 4th ed., Kitware, Inc., Clifton Park, NY, 2006.

[13] D. Chung, R. Hirata, T.N. Mundhenk, J. Ng, R.J. Peters, E. Pichon, et al., A New

Robotics Platform for Neuromorphic Vision: Beobots, Lecture Notes in Computer

Science. 2525 (2002) 325-340.

[14] L. Itti, C. Koch, Computational modelling of visual attention., Nature Reviews

Neuroscience. 2 (2001) 194-203.

107

[15] J.D. Pfautz, Depth perception in computer graphics, University of Cambridge,

2002.

[16] I.K. Fodor, A survey of dimension reduction techniques, Livermore, CA, 2002.

[17] W.B. Thompson, R.W. Fleming, S.H. Creem-Regeher, J.K. Stefanucci, Visual

Perception From a Computer Graphics Perspective, 1st ed., CRC Press, Boca

Raton, FL, 2011.

[18] E.B. Goldstein, Spatial layout, orientation relative to the observer, and perceived

projection in pictures viewed at an angle., Journal of Experimental Psychology:

Human Perception and Performance. 13 (1987) 256-266.

[19] P.R. DeLucia, Pictorial and motion-based information for depth perception., Journal

of Experimental Psychology: Human Perception and Performance. 17 (1991) 738-

748.

[20] N.A. Dodgson, Variation and extrema of human interpupillary distance, in:

Proceedings of SPIE, SPIE, 2004: pp. 36-46.

[21] N.S. Holliman, N.A. Dodgson, G.E. Favalora, L. Pockett, Three-Dimensional

Displays: A Review and Applications Analysis, IEEE Transactions on

Broadcasting. 57 (2011) 362-371.

[22] C. Wheatstone, Contributions to the Physiology of Vision.--Part the First. On Some

Remarkable, and Hitherto Unobserved, Phenomena of Binocular Vision,

Philosophical Transactions of the Royal Society of London. 128 (1838) 371-394.

[23] H. Urey, K.V. Chellappan, E. Erden, P. Surman, State of the Art in Stereoscopic

and Autostereoscopic Displays, Proceedings of the IEEE. 99 (2011) 540-555.

[24] W. Rollmann, Zwei neue stereoskopische Methoden, Annalen Der Physik Und

Chemie. 166 (1853) 186-187.

[25] H. Jorke, A. Simon, M. Fritz, Advanced Stereo Projection Using Interference

Filters, in: 2008 3DTV Conference: The True Vision - Capture, Transmission and

Display of 3D Video, IEEE, 2008: pp. 177-180.

[26] I. Sexton, P. Surman, Stereoscopic and autostereoscopic display systems, IEEE

Signal Processing Magazine. 16 (1999) 85-99.

[27] Y. Galifret, Visual persistence and cinema?, Comptes Rendus Biologies. 329 (n.d.)

369-85.

[28] C. Landis, Determinants of the critical flicker-fusion threshold., Physiological

Reviews. 34 (1954) 259-86.

108

[29] D. Kelly, H. Wilson, Human flicker sensitivity: two stages of retinal diffusion,

Science. 202 (1978) 896-899.

[30] C. Cruz-Neira, D.J. Sandin, T.A. DeFanti, R.V. Kenyon, J.C. Hart, The CAVE:

Audio Visual Experience Automatic Virtual Environment, Commun. ACM. 35

(1992) 64-72.

[31] T.A. DeFanti, G. Dawe, D.J. Sandin, J.P. Schulze, P. Otto, J. Girado, et al., The

StarCAVE, a third-generation CAVE and virtual reality OptIPortal, Future

Generation Computer Systems. 25 (2009) 169-178.

[32] Nvidia Corporation, NVIDIA 3D Vision 2, (n.d.).

[33] Request for Quotation (RFQ), Amira Visualization Software - Quote for Marquette

University, (n.d.).

[34] S. LaScalza, J. Arico, R. Hughes, Effect of metal and sampling rate on accuracy of

Flock of Birds electromagnetic tracking system, Journal of Biomechanics. 36

(2003) 141-144.

[35] J.E. Moore, C. Xu, S. Glagov, C.K. Zarins, D.N. Ku, Fluid wall shear stress

measurements in a model of the human abdominal aorta: oscillatory behavior and

relationship to atherosclerosis., Atherosclerosis. 110 (1994) 225-40.

[36] D.N. Ku, D.P. Giddens, C.K. Zarins, S. Glagov, Pulsatile flow and atherosclerosis

in the human carotid bifurcation. Positive correlation between plaque location and

low oscillating shear stress., Arteriosclerosis. 5 (1985) 293-302.

[37] G.K. Hansson, Inflammation, atherosclerosis, and coronary artery disease., The

New England Journal of Medicine. 352 (2005) 1685-95.

[38] A.M. Malek, S.L. Alper, S. Izumo, Hemodynamic shear stress and its role in

atherosclerosis, The Journal of the American Medical Association. 282 (1999)

2035.

[39] D.A.H. Steinman, D.A. Steinman, The Art and Science of Visualizing Simulated

Blood-Flow Dynamics, Leonardo. 24 (2007) 71-76.

[40] D. Drascic, P. Milgram, J. Grodski, Learning effects in telemanipulation with

monoscopic versus stereoscopic remote viewing, IEEE International Conference on

Systems, Man and Cybernetics. (1989) 1244-1249.

[41] A. Chaudhry, C. Sutton, J. Wood, R. Stone, R. McCloy, Learning rate for

laparoscopic surgical skills on MIST VR, a virtual reality simulator: quality of

human-computer interface., Annals of the Royal College of Surgeons of England.

81 (1999) 281-6.

109

[42] J. Jordan, A. Gallagher, J. McGuigan, N. McClure, Virtual reality training leads to

faster adaptation to the novel psychomotor restrictions encountered by laparoscopic

surgeons., Surgical Endoscopy. 15 (2001) 1080-4.

[43] A.S. Forsberg, D.H. Laidlaw, R.M. Kirby, G.E. Karniadakis, J.L. Elion, M.

Hospital, Immersive Virtual Reality for Visualizing Flow Through an Artery, in:

Proceedings of IEEE Visualization Conference, 2000.

[44] J.F. LaDisa, M. Bowers, L. Harmann, R. Prost, A.V. Doppalapudi, T. Mohyuddin,

et al., Time-efficient patient-specific quantification of regional carotid artery fluid

dynamics and spatial correlation with plaque burden, Medical Physics. 37 (2010)

784-792.

[45] J. Justice, M. Bergerud, J. Garrison, D. Cafiero, L. Churches, EON Studio, (2011).

[46] M. Aumüller, R. Lang, D. Rainer, J.P. Schulze, A. Werner, P. Wolf, et al.,

COVISE, (2008).

[47] B.C. Nelson, D.J. Ketelhut, Scientific Inquiry in Educational Multi-user Virtual

Environments, Educational Psychology Review. 19 (2007) 265-283.

[48] R.L. Jackson, W. Winn, Collaboration and learning in immersive virtual

environments, Proceedings of the 1999 Conference on Computer Support for

Collaborative Learning - CSCL ’99. (1999) 32-es.

[49] L.M. Ellwein, H. Otake, T.J. Gundert, B.-K. Koo, T. Shinke, Y. Honda, et al.,

Optical Coherence Tomography for Patient-specific 3D Artery Reconstruction and

Evaluation of Wall Shear Stress in a Left Circumflex Coronary Artery,

Cardiovascular Engineering and Technology. 2 (2011) 212-227.

[50] W.S. Kerwin, F. Liu, V. Yarnykh, H. Underhill, M. Oikawa, W. Yu, et al., Signal

features of the atherosclerotic plaque at 3.0 Tesla versus 1.5 Tesla: impact on

automatic classification., Journal of Magnetic Resonance Imaging. 28 (2008) 987-

95.

[51] V.L. Yarnykh, M. Terashima, C.E. Hayes, A. Shimakawa, N. Takaya, P.K. Nguyen,

et al., Multicontrast black-blood MRI of carotid arteries: comparison between 1.5

and 3 tesla magnetic field strengths., Journal of Magnetic Resonance Imaging. 23

(2006) 691-8.

[52] T.J. Gundert, S.C. Shadden, A.R. Williams, B.-K. Koo, J.A. Feinstein, J.F. LaDisa,

A Rapid and Computationally Inexpensive Method to Virtually Implant Current and

Next-Generation Stents into Subject-Specific Computational Fluid Dynamics

Models., Annals of Biomedical Engineering. 39 (2011) 1423-1437.

110

[53] D.W. Holdsworth, C.J.D. Norley, R. Frayne, D.A. Steinman, B.K. Rutt,

Characterization of common carotid artery blood-flow waveforms in normal human

subjects, Physiological Measurement. 20 (1999) 219-240.

[54] B.S. Gow, D. Schonfeld, D.J. Patel, The dynamic elastic properties of the canine

left circumflex coronary artery, Journal of Biomechanics. 7 (1974) 389-395.

[55] I.E. Vignon-Clementel, C.A. Figueroa, C.A. Taylor, K.E. Jansen, Outflow

boundary conditions for three-dimensional finite element modeling of blood flow

and pressure in arteries, Computer Methods in Applied Mechanics and Engineering.

195 (2006) 3776-3796.

[56] D.J. Quam, L.M. Ellwein, H. Otake, R.Q. Migrino, J.F. LaDisa, Mobile Virtual

Reality System for Cardiovascular CFD Analysis, in: Biomedical Engineering

Society Annual Meeting, 2011.

[57] T.O. Kiviniemi, M. Saraste, J.W. Koskenvuo, K.E.J. Airaksinen, J.O. Toikka, A.

Saraste, et al., Coronary artery diameter can be assessed reliably with transthoracic

echocardiography., American Journal of Physiology. Heart and Circulatory

Physiology. 286 (2004) H1515-20.

[58] M. Williams, A. Nicolaides, Predicting the normal dimensions of the internal and

external carotid arteries from the diameter of the common carotid, European Journal

of Vascular Surgery. 1 (1987) 91-96.

[59] C.C. Presson, N. DeLange, M.D. Hazelrigg, Orientation-specificity in kinesthetic

spatial learning: the role of multiple orientations., Memory & Cognition. 15 (1987)

225-9.

[60] C. Dede, Immersive Interfaces for Engagement and Learning., Science. 323 (2009)

66-9.

[61] J. Fornaro, S. Leschka, D. Hibbeln, A. Butler, N. Anderson, G. Pache, et al., Dual-

and multi-energy CT: approach to functional imaging, Insights into Imaging. 2

(2011) 149-159.

[62] D.R. Obaid, P.A. Calvert, J.H.F. Rudd, D. Gopalan, M.R. Bennett, 113 Dual

Energy CT improves differentiation of coronary atherosclerotic plaque components

compared to conventional single energy CT, Heart. 97 (2011) A64-A65.

[63] C.K. Zarins, D.P. Giddens, B.K. Bharadvaj, V.S. Sottiurai, R.F. Mabon, S. Glagov,

Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization

with flow velocity profiles and wall shear stress., Circulation Research. 53 (1983)

502-14.

111

[64] I. Marshall, S. Zhao, P. Papathanasopoulou, P. Hoskins, Y. Xu, MRI and CFD

studies of pulsatile flow in healthy and stenosed carotid bifurcation models., Journal

of Biomechanics. 37 (2004) 679-87.

[65] S.Z. Zhao, X.Y. Xu, a D. Hughes, S. a Thom, a V. Stanton, B. Ariff, et al., Blood

flow and vessel mechanics in a physiologically realistic model of a human carotid

arterial bifurcation., Journal of Biomechanics. 33 (2000) 975-84.

[66] H.G. Bezerra, M. a Costa, G. Guagliumi, A.M. Rollins, D.I. Simon, Intracoronary

optical coherence tomography: a comprehensive review clinical and research

applications., JACC. Cardiovascular Interventions. 2 (2009) 1035-46.

[67] P.H. Stone, A.U. Coskun, Y. Yeghiazarians, S. Kinlay, J.J. Popma, R.E. Kuntz, et

al., Prediction of sites of coronary atherosclerosis progression: In vivo profiling of

endothelial shear stress, lumen, and outer vessel wall characteristics to predict

vascular behavior., Current Opinion in Cardiology. 18 (2003) 458-470.

[68] I.-K. Jang, B.E. Bouma, D.-H. Kang, S.-J. Park, S.-W. Park, K.-B. Seung, et al.,

Visualization of coronary atherosclerotic plaques in patients using optical

coherence tomography: comparison with intravascular ultrasound., Journal of the

American College of Cardiology. 39 (2002) 604-9.

[69] A. Tatu, G. Albuquerque, M. Eisemann, P. Bak, H. Theisel, M. Magnor, et al.,

Automated Analytical Methods to Support Visual Exploration of High-Dimensional

Data., IEEE Transactions on Visualization and Computer Graphics. (2010).

[70] C.A. Taylor, M.T. Draney, J.P. Ku, D. Parker, B.N. Steele, K. Wang, et al.,

Predictive Medicine: Computational Techniques in Therapeutic Decision-Making,

Computer Aided Surgery. 4 (1999) 231-247.

[71] J. Wortham, With Kinect Controller, Hackers Take Liberties, The New York

Times. (2010).

[72] IHS iSuppli, The teardown, Engineering & Technology. 6 (2011) 94-95.

[73] A. Shpunt, Z. Zalevsky, Depth-Varying Light Fields for Three Dimensional

Sensing, U.S. Patent 8050461, 2011.

[74] B. Freedman, A. Shpunt, M. Machline, Y. Arieli, Depth Mapping Using Projected

Patterns, U.S. Patent Application 0118123, 2010.

[75] Microsoft Research, Kinect for Windows SDK Programming Guide, (2011).

[76] OpenNI Organization, OpenNI, (2011).

112

[77] A. Gordon, The COM and COM+ Programming Primer, Prentice Hall PTR, Upper

Saddle River, 2000.

[78] P. Wimmer, Stereoscopic player and stereoscopic multiplexer: a computer-based

system for stereoscopic video playback and recording, in: Proceedings of SPIE,

SPIE, 2005: pp. 400-411.

[79] Kitware Inc, ParaView, (2012).

[80] A. Rosset, L. Spadola, O. Ratib, OsiriX: an open-source software for navigating in

multidimensional DICOM images., Journal of Digital Imaging. 17 (2004) 205-16.

[81] Kitware Inc, VolView, (2011).

[82] D. Maupu, M.H. Van Horn, S. Weeks, E. Bullitt, 3D Stereo Interactive Medical

Visualization, IEEE Computer Graphics and Applications. 25 (2005) 67-71.

[83] Planar Systems Inc., Planar SA2311W Specification Manual, (n.d.).

[84] J.P. Wachs, M. Kölsch, H. Stern, Y. Edan, Vision-based hand-gesture applications,

Communications of the ACM. 54 (2011) 60.

[85] Hometheater.com, Samsung Consumer Electronics 2012 Product Briefing, (2012).

[86] Amazon.com, (2012).

[87] Vicon Bonita Camera System, (2012).

[88] B. Temkin, E. Acosta, A. Malvankar, S. Vaidyanath, An interactive three-

dimensional virtual body structures system for anatomical training over the

internet., Clinical Anatomy. 19 (2006) 267-74.

[89] Z. Sun, CT virtual endoscopy and 3D stereoscopic visualisation in the evaluation of

coronary stenting, Biomedical Imaging and Intervention Journal. 5 (2009).

[90] M.D. Ford, G.R. Stuhne, H.N. Nikolov, D.F. Habets, S.P. Lownie, D.W.

Holdsworth, et al., Virtual angiography for visualization and validation of

computational models of aneurysm hemodynamics., IEEE Transactions on Medical

Imaging. 24 (2005) 1586-92.

[91] A. Persson, Postmortem Visualization: The Real Gold Standard, in: J. Steele,

N.P.N. Iliinski (Eds.), Beautiful Visualization, 1st ed., O’Reilley Media,

Sebastopol, CA, 2010: pp. 311-28.

113

[92] R.M. Taylor, T.C. Hudson, A. Seeger, H. Weber, J. Juliano, A.T. Helser, VRPN, in:

Proceedings of the ACM Symposium on Virtual Reality Software and Technology -

VRST ’01, ACM Press, New York, New York, USA, 2001: p. 55.

[93] G. Bell, T. Hey, A. Szalay, Beyond the data deluge, Science. 323 (2009) 1297-8.

114

COMPUTER SOURCE CODE

All relevant computer source code involved in this project has been submitted in

hard and soft copy form to Dr. John LaDisa. Requests for copies should be directed to

David Quam at +1 (612) 520-1357 or Dr. LaDisa at the following address.

Department of Biomedical Engineering

Marquette University

PO Box 1881

Milwaukee, WI 53201-1881

115

Appendix A: Aim 1 Implementation Details

A.1 Use of Individual Scripts for Application of Post-Processing Methods

There are two possible mechanisms with which to apply the post-processing

methods described in Section 2.4. The first is to run each script separately using the steps

described below. This workflow indicates the order of operations, expected inputs and

outputs at each step and special notes on the use of the scripts. It also relates these to the

steps indicated in Figure 2.1 on page 26. However, applying the post-processing methods

with this technique presents challenges that have been mitigated with our second

mechanism, a GUI written in MATLAB (see next page).

Important Note about Formatting: In this section, text that appears in this font

refers to the names of scripts or the files produced by those scripts.

116

Table A.1 – Input/Output information for individual post-processing steps
Step In

Flowchart

Sub-

step
Expected Input Name of Script Expected Output Overall Purpose/Function Special Notes

G –

Resample

3D Model

H –

Transform to
meet VR

environment

scale

1
Series of files with

convention foo_mesh#.vis
gui_visMeshParser

foo_mesh_nodes.vis

foo_mesh_connectivity.vis

Calculates/extracts the connectivity

between the points

foo_mesh_nodes.vis describes the
XYZ location of the nodes of the CFD

mesh

foo_mesh_connectivity.vis describes
how the nodes are connected

2†
Series of files with

convention foo_mesh#.vis

gui_visFileParser
Note: this script calls

gui_visResultsParser

[quantity]_foo_res#.vis

Where ‘quantity’ is one of: WSS,
velocity, traction, displacement,

pressure

Separates the quantity data from
each foo_mesh#.vis file into a

quantity file

Each foo_mesh#.vis file describes all
hemodynamic data at the # point in

time

3† [quantity]_foo_res#.vis gui_visFileRename

foo_res#_[quant].vis

Where ‘quant’ is one of: wss, vel,
tract, press, disp

Renames input files to

“foo_mesh#_[quant].vis”
convention

Each foo_mesh#_[quant].vis file
describes a single hemodynamic

quantity for all nodes at the # point in

time

4
foo_mesh_nodes.vis

foo_mesh_connectivity.vis

gui_vessel_location_pre
p

Trans_Rot_Operations.mat
Scales and rotates the models and
data such that the flow is parallel to

the IVE floor

The script opens 3 dialog boxes for

the user to input rotation amounts and

to visually verify results

Trans_Rot_Operations.mat

describes the translation and

rotations that are to be applied to all
parts of the model

5

foo_mesh_nodes.vis

wall.ebc
Trans_Rot_Operations.mat

wall.ebc is produced by the
CFD simulation

gui_wall_mesh_creator
Note: this script calls

gui_TransRot

vessel_wall_pts.txt

vessel_wall_conn.txt

vessel_wall_norm_txt

Extracts vessel surface; removes

redundant points

vessel_wall_pts.txt describes the XYZ

location of each node of the mesh;
where ‘vessel’ is the name of the

region (e.g. carotid, coronary)

vessel_wall_conn.txt describes how

the nodes are connected

vessel_wall_norm_txt describes the

normal to the surface described by the
nodes/connectivity

6‡

foo_mesh_nodes.vis

stent.ebc

Trans_Rot_Operations.mat

stent.ebc is produced by the

CFD simulation

gui_stent_mesh_creator
Note: this script calls

gui_TransRot

vessel_stent_pts.txt

vessel_stent_conn.txt

vessel_stent_norm.txt

Extracts surface of stent structure;
removes redundant points

vessel_stent_pts.txt describes the XYZ

location of each node of the mesh;

where ‘vessel’ is the name of the
region (e.g. carotid, coronary)

vessel_stent_conn.txt describes how

the nodes are connected
vessel_stent_norm_txt describes the

normal to the surface described by the

nodes/connectivity

7
Trans_Rot_Operations.mat
RGBColorMap.mat

foo_mesh#_wss.vis

gui_wss_eon_prep
Note: this script calls

gui_PolyDataScalars

eon_wss_vert_color_#.txt
eon_wss_time_avg_vert_color.txt

Interpolates the hemodynamic data
(WSS) onto the vessel wall and

exports data understandable by

One eon_wss_vert_color#.txt file
describing entire vessel WSS values

for a single point in time created for

117

Step In

Flowchart

Sub-

step
Expected Input Name of Script Expected Output Overall Purpose/Function Special Notes

RGBColorMap.mat is a file

describing 60 colors in

Red/Green/Blue colorspace

EON

each point in cardiac cycle

eon_wss_time_avg_vert_color.txt

describes TAWSS of entire vessel in

single file

8

Trans_Rot_Operations.mat

RGBColorMap.mat

OSI VTK file
wall.ebc

foo_mesh_connectivity.vis

gui_osi_eon_prep
Note: this script calls

gui_PolyDataScalars

eon_osi_vert_color.txt

Interpolates the hemodynamic data
(OSI) onto the vessel wall and

exports data understandable by

EON

eon_osi_vert_color.txt describes OSI

as a single, time-invariant quantity

J – Generate

custom 3D

content

1
Trans_Rot_Operations.mat
RGBColorMap.mat

foo_mesh#_vel.vis files
gui_velocity_eon_prep

eon_node_locations.txt

OrientMagCol_#.txt
-

A single OrientMagCol_#.txt file

create for each velocity vector; this
file describes the orientation and

magnitude of the vector for each point

in the cardiac cycle

eon_node_locations.txt

describes location of all vectors in

single file

2 PressHist.dat gui_pressure_plotter
pressure_coordinate.txt

pressure.png

Creates a plot of pressure whose

time scale is normalized to the

length of the cardiac cycle; outputs
a text file describing the XY

coordinate of the pressure plot

When the pressure plot appears on the
screen, the user needs to manually

save the file as a PNG file; no other

image format will work

K – Prepare

VR

environment

1

vessel_wall_pts.txt

vessel_wall_conn.txt
vessel_wall_norm_txt

MeshScript.vbs -

Transfers the MATLAB

coordinates of mesh nodes,
connectivity and normal into the

EON mesh format

Must be run explicitly by pressing

‘INSERT’ key in EON
Need only be run once

2

vessel_stent_pts.txt

vessel_stent_conn.txt

vessel_stent_norm.txt

StentScript.vbs -

Transfers the MATLAB
coordinates of mesh nodes,

connectivity and normal into the

EON mesh format specific to the
stent

Must be run explicitly by pressing ‘Z’

key in EON

Need only be run once

3
eon_node_locations.txt
OrientMagCol_#.txt

VelocityVectors.vbs -

Creates velocity vectors and

associates the time-varying data so
that they can change during the

course of the cardiac cycle

Must be run explicitly by pressing

‘HOME’ key in EON

Need only be run once

L – Medical

image

registration

with 3D

model

OCT
data 1

normals_points-[time].dat

final_ul_vectors.dat

reg_points_trans.dat

eon_oct_orient eon_parameters.txt

Calculates the Cartesian

coordinates of the image center
using the heading and plane

locations provided

Outputs a text file where each line

contains image number, XYZ

image center and image normal

normal_points-[time].dat describes

the normal vector to each image
final_ul_vectors.dat describes the

heading of the Upper Left corner of

each image
reg_points_trans.dat describes the

origin of each image

OCT
data 2

eon_parameters.txt
OCT images

EON_OCT_Orientation.vbs -
Creates 2D planes on the 3D
model, translates, orients and

The OCT images need to be numbered
with the same convention in the image

118

Step In

Flowchart

Sub-

step
Expected Input Name of Script Expected Output Overall Purpose/Function Special Notes

associates the image with the plane file and the eon_parameters file.

MRI

data 1

Segmented MR images

Image slice numbers

File name root

mri_prep Cropped MR images
Crops the MR images to a region

surrounding the carotid artery

This step is not essential to the

function of the system, but it does

make it easier to appreciate co-

location of plaque components with

hemodynamic data

MRI

data 2
Cropped MR images MRIScript.vbs -

Places 2D MR slices at 2mm slice

intervals along the vessel
-

NOTES

† These steps are not required if the user has already applied the existing “parse_vis_file.exe” application to the data

‡ This step is only applied if a stent model is present in the simulation

119

A.2 Use of MATLAB GUI for Post-Processing Methods

The following MATLAB GUI incorporates the workflow described in the

previous section and automates much of the file input/output that makes the previous

mechanism challenging. Also, the GUI automatically creates the necessary file structure

that is expected by the IVE software. In order to use the MATLAB GUI (seen in Figure

2.2) the user completes the following series of commands in the GUI.

Enter Preliminary

Information

(GUI Steps 1-3)

Foo_mesh?

(GUI Step 4)

Locate

foo_mesh_nodes.vis

(GUI Step 5)

Locate

foo_mesh.vis

(GUI Step 5)

Stented

model?

(GUI Step 6)

Locate stent.ebc

file

(GUI Step 8)

Locate wall.ebc

(GUI Step 7)

Locate wss.vtk

(GUI Step 9)

Locate osi.vtk

(GUI Step 10)

Locate

PressHist.dat

(GUI Step 11)

Execute GUI

Steps 13-20 by

pressing Button

Figure A.1 – Required steps in using the MATLAB GUI.

The final step indicated above (“Steps 13-20”) is simple to execute. The user need only

press the corresponding button on the GUI. These steps are best performed separately to

prevent errors in early scripts from causing fatal errors in subsequent scripts.

120

121

Table A.2 – User information for MATLAB GUI
Location

Number
Description Overall purpose/function Typical Information Provided

Related Steps from

Table Above

1 Vessel Information

Allows the user to name the vascular region being

modeled; this name is used in the naming of files

for better file management

Typical names include:

lcx_coronary
converged_carotid

Do not use spaces, instead use

‘_’ character

Vis file prefix is usually

‘foo_mesh’ but be sure to verify

N/A

2 Frame Increments Indicates the numerical part of filenames

The foo_mesh#.vis file with

the smallest numerical

component indicates frame

minimum

N/A

3
Allow pop-up graphs and

plots

The series of scripts used in the post-processing

methods generates several output plots; these can be

suppressed (not shown) at the user’s discretion

It is suggested that the user

allow the plots to be shown as

they provide useful information

N/A

4 Data source selection

If the user has already processed the

foo_mesh.vis file, foo_mesh_nodes.vis is

already present and the user should select this

option

If foo_mesh_nodes.vis is not available, the

user should select foo_mesh.vis and the

foo_mesh_nodes.vis will be generated by the

“Parse Vis” button (Step 13)

The user uses the radio button

to indicate if the scripts should

look for foo_mesh.vis or

foo_mesh_nodes.vis

N/A

5 Data source location

The user presses the “Select…” button to locate the

file of interest

The Red color will disappear when the proper file

has been located

- N/A

6 Stented model? Indicates whether or not the model contains a stent - N/A

7 Wall.ebc file location
Use the “Select…” button to locate the wall.ebc

file
- N/A

8† Stent.ebc file location Use the “Select…” button to locate the stent.ebc - N/A

122

file

This box will not be visible if Step 6 is set to “No”

9
Wall shear stress file

location

Use the “Select…” button to locate the

vessel_wss.vtk file
- N/A

10 OSI file location
Use the “Select…” button to locate the

vessel_osi.vtk file
- N/A

11 PressHist.dat file location
Use the “Select…” button to locate the

PressHist.dat file
- N/A

12 Show/Hide functions Shows/Hides buttons related to Steps 13-20 - N/A

13 Parse Vis Files
Reads foo_mesh.vis and separates into

foo_mesh#.vis and foo_mesh#_quant.vis

Requires that Steps 1-5 have

accurate information*
Step G/H, Sub-Steps 1-3

14 Vessel Location Prep
Allows the user to rotate the vessel such that flow is

parallel to the floor of the IVE

Requires that Steps 1-8 have

accurate information*
Step G/H, Sub-Step 4

15 Wall Meshing
Resamples the mesh and removes the surface and

redundant points

Requires that Steps 1-8 have

accurate information*
Step G/H, Sub-Step 5

16 WSS Mapping
Removes redundancies in the WSS data and maps it

to match the nodes of the wall mesh

Requires that Steps 1-9 have

accurate information*
Step G/H, Sub-Step 7

17 Velocity Prep Using spacing parameters from the user, places
Requires that Steps 1-8 have

accurate information*
Step J, Sub-Step 1

18† Stent Meshing
Resamples the mesh and removes the surface and

redundant points

Requires that Steps 1-8 have

accurate information*
Step G/H, Sub-Step 6

19 Pressure Mapping

Reads the PressHist.dat file and creates a plot and

exports a Pressure Versus time file describing the

proper location of the marker

Requires that Steps 1-11 have

accurate information*
Step J, Sub-Step 2

20 OSI Prep
Removes redundancies in the OSI data and maps it

to match the nodes of the wall mesh

Requires that Steps 1-10 have

accurate information*
Step G/H, Sub-Step 8

NOTE

*The system checks for the necessary files and will flag an error if not all requisite information is available

†This step should only be employed if a stented model is being used

123

Appendix B: Aim 2 Implementation Details

B.1 Technical Details of Real-Time GUI

The Stereoscopic Control application is written as a multi-threaded, C# Windows

Form GUI. C# is used because of its built-in memory management and integration with

Microsoft’s .NET framework. This reduces the amount of overhead that must be written

in order to make the software operable on a Microsoft Windows computer. C# also

supports syntax enforcement whereby the arguments to a method are validated by

variable type and location; this effectively performs error-checking as the code is being

written. This feature speeds development because errors are caught before attempting to

run the code, and provides the developer with a stronger ability to locate bugs in the code.

The code’s methods and fields are broken into 9 classes, associated with a single

namespace (PanelViewer).

Important Note about Formatting: When text appears in this font() it is

referring to a specific method (software function) described in Figure B.1. When text

appears in this font without “()” parenthesis it is referring to a class referenced in

Table B.1. In some cases methods are identified along with the class to which they

belong in this fashion class_name::method_name().

124

B.1.1 Class Structure

Table B.1 – Class and Inheritance listing
Class Inheritance† Function No.

Methods

No.

Fields

Lines

of

Code

Program‡ - Opens and continuously

updates the GUI created

by ViewingPaneForm

1 0 22

config_dlg Form Creates the dialog box

in which the user adjusts

the parameters for

gesture recognition

7 55 81

About_Diag_Box Form Creates the “About”

dialog box and

associated control

methods

4 9 108

ConfigurationVars - Sets the default gesture

recognition parameters

and provides a global set

of variables

0 12 161

Confirm_Exit Form Creates the dialog box

that confirms the user’s

wish to exit the software

5 5 30

control_functions - Contains the Methods

used to send commands

to the Stereoscopic

Video Player

14 9 328

Error_result Form Creates the dialog box

that informs the user of

errors

4 6 20

ViewingPaneForm Form Creates the main GUI 38 52 766

Select_MultiFile_Format Form Creates the dialog boxes

needed to open

stereoscopic video files

7 7 42

Total - - 80 155 1558

‡This class is automatically created by the Windows Form template.

†Inheritance describes the process by which a lower-level class (such as the ones created

for this Aim) inherits the methods and fields of an existing, higher-level class. For

example, the About_Diag_Box class inherits from the Form class. This means that all

the methods and fields that exist in the Form class are automatically available to the

About_Diag_Box class. The Form class inherits from 7 other classes, which provide a

large number of available methods and fields to the Classes developed in Aim 2.

Inheritance is illustrated below:

125

namespace PanelViewer
{
 partial class About_Diag_Box : Form
…

}

The COM Server used to send commands to the Stereoscopic Player is not

treated as a class of the Stereoscopic Control Application code. Instead, we simply use

the methods that are made available through server. The GUI displays a real-time depth

image from the Kinect camera via the ViewingPaneForm::OnPaint() method,

actively monitors hand position for gestures and maintains a COM connection to the

Stereoscopic Video Player. Table B.2 below describes the primary functions that are

carried out by the software the threads on which they are executed.

B.1.2 Multi-Threaded Architecture

Table B.2 - Distribution of computing tasks across multiple threads
Description of Function Primary Thread Render Thread

Create depth image and actively update X

Establish connection with OpenNI interface X

Establish connection with Stereoscopic Player X

Instantiate gesture recognition objects and monitor for gestures X

Create State Machine and route data as described X

The Program::Main() function executes to continuously update the visible

GUI (Figure B.1.1). The visible GUI is created by the code contained in the

ViewingPaneForm class (Figure B.1.2). The Control_Functions class provides the

means to send commands to the Stereoscopic Player, like the

Control_Functions::togglePlay() method (Figure B.1.3).

126

Figure B.1 - Class diagram ofprimary classes of Real-Time GUI

Each class contains fields (single values/variables) and methods (executable functions).

Many of the methods contained in the ViewingPaneForm class call methods and rely on

fields in the Control_Functions class.

B.1.3 Loop Operation

ENTRY POINT: ViewingPaneForm() is called when the form is opened (the

method is called once)

1. Open the GUI window with Program::Main()

2. Initialize connections to the Kinect camera, which relies on the ‘CVTEC-

Tracking.xml’ resource file (a copy of the file is found below)

1

2

3

127

3. Initialize/start the gesture recognition nodes (including detectors,

broadcasters, router)

4. Set up the connections between the nodes that define the State Machine (e.g.

Flow Router connected to Broadcaster connected to gesture recognition

algorithms)

5. Set the default values for the gesture recognition parameters (e.g. swipe

velocity, swipe duration)

6. Register the gesture events with event handling methods

7. Create the second thread (Render Thread) and connect it to the

ViewingPaneForm::OnPaint() method described below.

MAIN LOOP: When a new frame arrives to the ViewingPaneForm, the following

steps are executed (approximately 30 times per second) regardless of the

Hand/Slider Mode state of the system

1. Check if the system is In Session with

ViewingPaneForm::OnPaintBackground(). Update the indicator on the

GUI if the system state has changed since the last frame.

2. Calculate the elapsed time since the last frame arrived with

ViewingPaneForm::OnPaintBackground(); display the rate as Frames

Per Second on the GUI.

3. Assemble the depth information with ViewingPaneForm::CalcHist()

and apply a color map and render it on the GUI with

ViewingPaneForm::OnPaint().

128

EXIT POINT: When the user uses the GUI’s Menu to select Exit (or makes the

circle gesture while in Slider Mode), the following events are executed (these called

once)

1. Join the Render Thread back into the Primary with

ViewingPaneForm::OnClosing(), which effectively ends the second

thread so that the application can be safely closed

2. Disassemble/destroy the State Machine

3. Close the associated instance of the Stereoscopic Player

4. Exit the GUI application

Main Loop

(Hand Mode)

Main Loop

(Slider Mode)

Toggle

Fullscreen

Toggle Play/

Pause

Select Playback

Position

Set Play at

Position

Exit PointIncrease Zoom

Decrease Zoom

Left Slider Event

Upward Slide
Push Event Circle Event

Push Event

Left/Right Slide

D
ow

nw
ar

d
Slid

e

R
ig

h
t S

w
ip

e E
v
en

t

Entry Point

Figure B.2 – Schematic of Loop Structure

After the necessary set-up functions are executed at the Entry Point, the system will run

in the Main Loop continuously until the proper command is sent to reach the Exit Point.

The gestures used to achieve specific commands with the Stereoscopic Player are

indicated along the arrows.

129

CVTEC-Tracking.xml
<OpenNI>
 <Licenses>
 <License vendor="PrimeSense" key="insert key here"/>
 </Licenses>
 <Log writeToConsole="false" writeToFile="false">
 <!-- 0 - Verbose, 1 - Info, 2 - Warning, 3 - Error (default) -->
 <LogLevel value="2"/>
 <Masks>
 <Mask name="ALL" on="true"/>
 </Masks>
 <Dumps>
 </Dumps>
 </Log>
 <ProductionNodes>
 <GlobalMirror on="true"/>
 <Node type="Depth" name="myDepth"/>
 <Node type="Hands" name="myHand"/>
 <Node type="Gesture" name="gesture" />
 </ProductionNodes>
</OpenNI>

At the Entry Point to the Loop the State Machine is created and other set-up

functions are executed. The flow of Interaction Data through the Stereoscopic Control

Application is controlled by the State Machine. The State Machine is defined in the

ViewingPaneForm class’s constructor method, ViewingPaneForm(). The following

code from the constructor method connects the major components of the state machine:

{...}
1) this.InteractionData.AddListener(this.router);

2) this.FlowRouter.ActiveListener(this.broadcaster);

3) this.broadcaster.AddListener(this.pushDetector);
4) this.broadcaster.AddListener(this.swipeDetector);

5) this.aux_broadcaster.AddListener(this.circleDectector);
6) this.aux_broadcaster.AddListener(this.slider);
7) this.aux_broadcaster.AddListener(this.aux_pushDect);

{...}

1.

130

Interaction

Data

Auxiliary

Broadcaster

Primary

Broadcaster

1
2

3

4

Swipe

Push

Push

Slider

Circle

6

7

8

9

10

Steady

Detector

Flow Router

5

S
et F

lo
w

 R
o

u
ter to

 S
tea

d
y

 D
etecto

r

Figure B.3- Alternative representation of State Machine

Table B.3 State Machine connections control flow of Interaction Data
Line of

Code

Connects

Parts of

Figure 3

Function

1 1 to 2 Connects Interaction Data to the Flow Router

2 2 to 3 Routes all Interaction Data to the Primary Broadcaster

3 3 to 6 Connects Primary Broadcaster to Swipe recognition algorithm

4 3 to 7 Connects Primary Broadcaster to Push recognition algorithm

5 4 to 10 Connects Auxiliary Broadcaster to Circle recognition algorithm

6 4 to 9 Connects Auxiliary Broadcaster to Slider recognition algorithm

7 4 to 8 Connects Auxiliary Broadcaster to Push recognition algorithm

Table B.3 describes the initial set-up of the State Machine that controls the flow

of Interaction Data about the system. When the Push gesture is recognized

ViewingPaneForm::pushDetector_Push() toggles the system State, and the

connection between the Flow Router and the broadcasters is changed such that:

131

 When the system is in Slider mode, Flow Router is connected to Auxiliary

Broadcaster

 When the system is in Hand made, Flow Router is connected to Primary

Broadcaster.

When a gesture is recognized, the Flow Router is set to the Steady Detector.

When the Steady Detector criteria have been satisfied, the Flow Router is set back to the

Primary Broadcaster via ViewingPaneForm::steadyDetector_Steady().

The flow of Interaction Data within the Main Loop can be described in these 3

steps, or as illustrated in Figure B.3.

1. Data from the Kinect camera arrives at the ViewingPaneForm class where the

gesture recognition algorithms are located. These algorithms continually process

the camera data on the Primary thread. When gestures are recognized, events

contained in the ViewingPaneForm class call methods in the

Control_Functions class. Methods in Control_Functions depend on

methods and data from the COM Server, as indicated by the thick arrow

connecting the two boxes in Figure B.4.

2. The COM Server provides access to the Stereoscopic Player’s functions, which

are exposed to the Control_Functions class. This class of functions queries

the current state of the player and determines if the player is ready to receive

commands.

a. If the player is not ready to receive commands, no command is sent

through the COM server, even if a gesture has been recognized; such

commands are ignored.

132

b. If the player is ready, the logic contained in the methods determines the

proper command to send. For example, if the player is currently in the

Play state, the Control_Functions::togglePlay() function will

set the state to Pause. If the player is currently in the Pause state, the

Control_Functions::togglePlay() function will set the state the

Play.

3. If the user changes the gesture recognition parameters using the dialog box

created by the config_dlg class, the new parameters are sent to the

ViewingPaneForm class via the configurationVars variables class and

subsequently to the gesture recognition algorithms.

 Figure B.4 - Figure illustrating the flow of data between the classes.

The thickness of the arrow communicates how much data flows; the direction of the

arrow points towards the source of the data. The Control_Functions class relies

heavily on the methods defined in the COM Server.

B.2 User/Camera Orientation and Gesture Recognition Algorithms

The swipe gesture detectors are less sensitive to the orientation between the user

and the camera than the push detector. This is because the swipe gesture detectors ignore

the depth dimension (z) and examine only (x,y) position. As seen in Figure B.5 (right) the

133

x component of the swipe gesture vector is still visible to the camera, while the z

component is ignored. The system is capable of determining the swipe gestures error free

for 0 28 . When 28 45 , the system accurately detects the swipe gesture

approximately 90% of the time. These values were acquired when the hand was 48” from

the camera.

The push gesture detector relies heavily on the z component of user hand

movement. For this reason, the angular orientation, , between the camera and the user’s

hand is influential in the camera’s ability to interpret movements (see Figure B.5, left). If

the x component of the motion vector is too large, the z component will be ignored, and

the movement interpreted as a swipe instead of a push. The system is capable of detecting

the push gesture accurately for 0 35 . For 35 45 the accuracy of the

system will vary depending on the displacement and velocity of the motion, as well as the

“angle of attack” – the path of the hand in the YZ plane. For 45 accuracy is 0%.

These values obtained when the hand was 48” from the camera.

134

γ

x

z

Push Gesture

φ

x

z

x

y z

Swipe Gesture

Figure B.5 – User/camera orientation schematic

Interpretation of user hand motions and their directional components. The push gesture

detector requires depth information. For 0 35 the push detector operates accurately,

but performance degrades as 45 . The swipe detector operates sufficiently well for

0 45 .

When starting up, the Real-Time GUI does not immediately track any user

motions. The user must perform a training gesture to initialize the hand tracking features

of the Real-Time GUI. In its current form, the system relies on the Push gesture (similar

to the gesture described above) to initialize hand tracking. It was observed that the Push

training gesture was difficult to master without specific instruction. A guide has been

supplied with this Thesis to help other users learn the commands use of the system.

It was also observed that the system was able to detect the hand most rapidly

(fewest number of attempts) when the user performed the Push training gesture with a

γ=0, meaning that the hand’s direction of motion is directly towards the camera’s sensor

(see Figure B.5). Performance was further improved when the user performed the Push

training gesture at a modest pace: a full extension and retraction of the arm within the

camera’s FOV in approximately 0.8±0.04 seconds. At full extension the hand should be

135

no closer to the camera than 24”, as the depth information supplied on objects nearer than

this tends to be unreliable if it is even present.

Anecdotal evidence suggests that Push gesture rates that greatly deviate from the

0.8 second average will not cause the system to initiate hand tracking. In such cases the

user can attempt the Push gesture again without impact on future performance.

Comments from user indicate that the commands are simple and easy to learn.

B.3 User Scenarios and Suggested Settings of Configuration Dialog

In general there are two cases in which the system can be used. The first is a

situation when the user is within 60” of the Kinect. Such a situation would arise when the

user intends to interact with the system at a desk. The second situation arises when the

user interacts with the system from a distance, such as while performing a medical

procedure. The following section describes the settings that are best suited for each case.

When the user is within 60” of the Kinect Camera (such as when working at a desk):

The user should leave the parameters at their default setting.

When the user is >60” from the Kinect camera (such as when performing a medical

procedure):
The user should set the following parameters; other parameters should be left at

their default setting. In additional to recommended settings for these parameters, we offer

a discussion on how the parameters influence the performance of the system.

 Minimum Velocity: 0.15

o This setting changes how quickly the user must move his hand to trigger

the detection

 Swipe Duration: 1500

136

o More deliberate hand gestures are assumed to be of longer duration, where

the user’s hand is in motion for a longer period of time. By increasing the

required duration of hand motions we can ensure that the motions are

more deliberate. This allows the user in the scene to make other hand

motions without the risk of them being interpreted as gestures.

 Steady Duration: 1500

o The amount of time required for the user to hold his hand steady;

increasing this setting allows for more deliberate gestures.

 Angular Deviation: 15

o This setting makes the system enforce more horizontal hand motions. The

default settings (45º) are more forgiving and allow the user to have a

greater vertical component to his hand motions.

 Slider Width: 200

o This setting makes the horizontal scroll bar more narrow and therefore less

movement is required to traverse the entire scrolling region.

The user should interpret these proposed settings as suggestions. The values were

established during the course of investigation in an averaged size room with some

ambient light from natural and artificial sources, and very little obstacles for the infrared

tracking light. In the event that the system is used in a less ideal environment, it may be

necessary to further refine these parameters in order to achieve optimal results. The

discussion provided in the above section was included in order to clarify how each setting

may impact performance.

137

Appendix C: User Guide

C.1 Instructions for Use: Real-Time GUI

These instructions outline the basic operation of the software and gestures used in the

Real-Time GUI (Figure 1) component of the Stereoscopic Visualization System.

Figure 1 - Real-Time GUI window

To Open and Run the Ream-Time GUI:

1. Run Microsoft Visual Studio 2010 and open the PanelViewer solution file

2. Click Debug > Start without Debugging

To Open a 3D video file for playback with the Stereoscopic Visualization System:

1. Open and run the PanelViewer solution as described above

2. On the Real-Time GUI window select File > Open > 3D File

3. You can select a single 3D file video that contains both left and right eye images

with the 3D Video File option

4. You can also select separate left and right eye video files with the Left and Right

Files option.

138

To Change the User-Defined Parameters:

1. Open and run the PanelViewer solution as described above

2. On the Real-Time GUI window select Tools > Configure

3. Click Save to commit the changes and Cancel to clear changes.

γ

x

z

Figure 2 - Bird's eye view of a user performing a push gesture

To Initiate Hand Tracking with the Real-Time GUI:

1. Open and run the PanelViewer solution as described above

The user should bear in mind that the image displayed on the Real-Time GUI

represents the data captured by the camera. The user must ensure his hand is visible

on the Real-Time GUI when performing the training gesture.

2. With the hand at least 24” from the camera perform a Push gesture such that:

 the direction of motion of your hand is directly towards the Kinect camera

such that γ=0 from Figure 2.

 the gesture should last approximately 0.8 seconds in which the user fully

extends and retracts his arm

2. If the first attempt to initialize hand tracking fails, the user may attempt again 2

seconds after the completion of the first

3. Once the system has recognized the user’s hand, the icon will appear in the

lower left corner of the Real-Time GUI window (see Table 1)

 At this time the system is ready to recognize other gestures and send the

corresponding commands to the Stereoscopic Player

139

Table 1 - Key of System Icons, Significance and Location

Icon Significance Location

 System actively tracking a hand Lower Left

 System not actively tracking any hand points Lower Left

 Hand points missing from FOV, waiting for hand to reappear Lower Left

 Downward swipe detected Lower Right

 File successfully opened Lower Right

 Hand is steady, system ready for next gesture Lower Right

 Leftward swipe detected Lower Right

 Rightward swipe detected Lower Right

 System closing Lower Right

 Upward swipe detected Lower Right

Considerations for Interacting with the Real-Time GUI with Gestures:

 Attempt to maintain a perpendicular orientation to the camera. While the camera

can correct for angular offsets up to ~35º, the most predictable and consistent

system performance occurs when the user maintains an angle of <10º between the

user and camera lines of sight.

 Use the Real-Time GUI’s icon and textual indicators to learn how the system is

interpreting your gestures. Watching the Real-Time GUI and observing how your

actions are captured and processed will help you to achieve the best system

performance.

 Use the User-Defined Parameters to customize the performance of the system to

meet your needs. Changes are immediate and can be made any number of times.

	Marquette University
	e-Publications@Marquette
	Advanced Visualization and Intuitive User Interface Systems for Biomedical Applications
	David Quam
	Recommended Citation

	Chapter 1 : Introduction
	1.1 Specific Aims
	1.2 The Data Deluge
	1.3 Visualization as a Solution
	1.4 Challenges in Visualization
	1.5 Current Visualization Methods
	1.5.1 Display Technologies
	1.5.2 Computer Graphics and Human Depth Perception
	1.5.3 Color Multiplexing for Stereoscopy
	1.5.4 Polarization Multiplexing for Stereoscopy
	1.5.5 Time Multiplexing for Stereoscopy
	1.5.6 Computer Science and Visualization Software Libraries
	1.5.7 Human-Computer Interaction

	Chapter 2 : A Method to Process and Display CFD Simulation Data in an Immersive VR Environment
	2.1 Computational Fluid Dynamics
	2.1.1 CFD with Immersive VR
	2.1.2 Objective

	2.2 Currently Available Software Tools
	2.2.1 EON Studio Visualization Software
	2.2.2 COVISE – Collaborative Visualization Environment

	2.3 Data Acquisition Methodology
	2.4 Post Processing Methods
	2.4.1 Resample 3D Model and Hemodynamic Results
	2.4.2 Transform Data to Meet VR Environment Scale
	2.4.3 Generate Custom 3D Content
	2.4.4 Prepare Data for VR Environment
	2.4.5 Medical Image Registration with 3D Simulation Results
	2.4.6 Presentation of Results
	2.4.7 Simplified Methods for Expedited Results

	2.5 Results
	2.5.1 Transformation and Registration Process
	2.5.2 Visualization Results
	2.5.3 Human Interactive Virtual Environment (HIVE)
	2.5.4 Mini-CAVE Hardware Prototype

	2.6 Discussion
	2.6.1 Immersive Visualization for Patient-Specific CFD Data
	2.6.2 Extension to Other Imaging Modalities
	2.6.3 Case Study 1: Carotid Artery
	2.6.4 Case Study 2: LCX Coronary Artery
	2.6.5 Limitations

	2.7 Conclusions

	Chapter 3 : Stereoscopic Visualization System with Intuitive Gesture-Based Control for Biomedical and Scientific Datasets
	3.1 Introduction and Motivations
	3.1.1 Pre-Surgical Planning Tools
	3.1.2 Microsoft Kinect Camera
	3.1.3 Objective

	3.2 Methods
	3.3 Interaction Data
	3.3.1 Gesture Libraries and User Interfaces
	3.3.2 Processing of Kinect Data

	3.4 Software Solution
	3.4.1 Software Solution: Real-Time GUI
	3.4.2 Software Solution: State Machine
	3.4.3 Software Solution: Configuration Dialog

	3.5 Visualization Content
	3.5.1 Data Selection
	3.5.2 Image Processing Methods
	3.5.3 Visual Content Generation

	3.6 Hardware Solution
	3.6.1 Commercial Stereoscopic Solutions
	3.6.2 Display Devices

	3.7 Results
	3.7.1 Hardware and Software Performance
	3.7.2 Volumetric Medical Data Processing Results

	3.8 Discussion
	3.8.1 System Performance
	3.8.2 Display Techniques and Hardware Considerations
	3.8.3 Gesture-Based Controls
	3.8.4 General Applicability
	3.8.5 Limitations

	3.9 Conclusion

	Chapter 4 : Conclusions and Future Directions
	4.1 Future Directions
	4.1.1 Application Development
	4.1.2 Display Technology
	4.1.3 Applications in Medical Education

	4.2 Conclusions
	Appendix A: Aim 1 Implementation Details
	A.1 Use of Individual Scripts for Application of Post-Processing Methods
	A.2 Use of MATLAB GUI for Post-Processing Methods

	Appendix B: Aim 2 Implementation Details
	B.1 Technical Details of Real-Time GUI
	B.1.1 Class Structure
	B.1.2 Multi-Threaded Architecture
	B.1.3 Loop Operation

	B.2 User/Camera Orientation and Gesture Recognition Algorithms
	B.3 User Scenarios and Suggested Settings of Configuration Dialog

	Appendix C: User Guide
	C.1 Instructions for Use: Real-Time GUI

