1,022 research outputs found

    Immune-mediated mechanisms influencing the efficacy of anticancer therapies

    Get PDF
    Conventional anticancer therapies, such as chemotherapy, radiotherapy, and targeted therapy, are designed to kill cancer cells. However, the efficacy of anticancer therapies is not only determined by their direct effects on cancer cells but also by off-target effects within the host immune system. Cytotoxic treatment regimens elicit several changes in immune-related parameters including the composition, phenotype, and function of immune cells. Here we discuss the impact of innate and adaptive immune cells on the success of anticancer therapy. In this context we examine the opportunities to exploit host immune responses to boost tumor clearing, and highlight the challenges facing the treatment of advanced metastatic disease

    Molecular Pathogenesis and Treatment Strategies of Chronic Myeloid Leukemia (CML)

    Get PDF
    Chronic Myeloid Leukemia (CML) is a myeloproliferative disease diagnosed in bone marrow, arising from a chromosomal translocation between chromosomes 9 and 22, resulting in the formation of fusion oncogene BCR–ABL. The product of this fusion oncogene is a new oncoprotein bcr–abl which possesses abnormal tyrosine kinase activity. In response to this, abnormal signaling pathway activation occurs, leading to cell transformation. BCR–ABL oncogene could be targeted by tyrosine kinase inhibitors (TKIs) to delay or inhibit the disease progression. Imatinib is the first drug designed against CML but resistance to this has led to the development of the second- and third generations of inhibitors that are active against many types of BCR–ABL gene mutations. However, somehow, due to disease progression, TKIs do not remain as effective. There are three well-characterized phases of CML: The chronic phase (CP), the accelerated phase, and the terminal stage which is the blast crisis (BC) stage. In the CP of CML, mature granulocytes and myeloid precursors become aggregated majorly in the bone marrow and peripheral blood. The accelerated phase is marked by increased disease severity and an increase in progenitor/precursor cell number. In the BC stage, undifferentiated blast cells grow in number. Many patients with CML are diagnosed during the CP of the disease, so the survival rate of CML is high. However, 20% of CML patients proceed to advanced stages that result in drug resistance, intolerance, and mortality. So, for proper CML treatment, drugs are needed to target multiple BCR– ABL mutations, delay or stop disease progression, and overcome resistance caused by BCR–ABL independent mechanisms, especially during advanced phases of CML. Moreover, drugs could be developed to eradicate the stem cells of CML. These targets could be achieved by understanding mechanisms of disease progression, disease relapse, and drug resistance by utilizing high throughput molecular genetics, cell biology and immunology techniques

    Novel Therapeutic Targets for Ph+ Chromosome Leukemia and Its Leukemia Stem Cells: A Dissertation

    Get PDF
    The human Philadelphia chromosome (Ph) arises from a translocation between chromosomes 9 and 22 [t(9;22)(q34;q11)]. The resulting chimeric BCR-ABLoncogene encodes a constitutively activated, oncogenic tyrosine kinase that induces chronic myeloid leukemia (CML) and B-cell acute lymphoblastic leukemia (B-ALL). The BCR-ABL tyrosine kinase inhibitor (TKI), imatinib mesylate, induces a complete hematologic and cytogenetic response in the majority of CML patients, but is unable to completely eradicate BCR-ABL–expressing leukemic cells, suggesting that leukemia stem cells are not eliminated. Over time, patients frequently become drug resistant and develop progressive disease despite continued treatment. Two major reasons cause the imatinib resistance. The first one is the BCR-ABL kinase domain mutations which inhibit the interaction of BCR-ABL kinase domain with imatinib; the second one is the residual leukemia stem cells (LSCs) in the patients who are administrated with imatinib. To overcome these two major obstacles in CML treatment, new strategies need further investigation. As detailed in Chapter II, we evaluated the therapeutic effect of Hsp90 inhibition by using a novel water-soluble Hsp90 inhibitor, IPI-504, in our BCR-ABL retroviral transplantation mouse model. We found that BCR-ABL mutants relied more on the HSP90 function than WT BCR-ABL in CML. More interestingly, inhibition of HSP90 in CML leukemia stem cells with IPI-504 significantly decreases the survival and proliferation of CML leukemia stem cells in vitro and in vivo. Consistent with these findings, IPI-504 treatment achieved significant prolonged survival of CML and B-ALL mice. IPI-504 represents a novel therapeutic approach whereby inhibition of Hsp90 in CML patients and Ph+ ALL may significantly advance efforts to develop a cure for these diseases. The rationale underlying the use of IPI-504 for kinase inhibitor–resistant CML has implications for other cancers that display oncogene addiction to kinases that are Hsp90 client proteins. Although we proved that inhibition of Hsp90 could restrain LSCs in vitro and in vivo, it is still unclear how to define specific targets in LSCs and eradicate LSCs. In Chapter III, we took advantage of our CML mouse model and compared the global gene expression signature between normal HSCs and LSCs to identify the downregulation of Pten in CML LSCs. CML develops faster when Pten is deleted in Ptenfl/fl mice. On the other hand, Pten overexpression significantly delays the CML development and impairs leukemia stem cell function. mTOR is a major downstream of Pten-Akt pathway and it is always activated or overepxressed when Pten is mutated or deleted in human cancers. In our study, we found that inhibition of mTOR by rapamycin inhibited proliferation and induced apoptosis of LSCs. Notably, our study also confirmed a recent clinical report that Pten has been downregulated in human CML patient LSCs. In summary, our results proved the tumor suppressor role of Pten in CML mouse model. Although the mechanisms of Pten in leukemia stem cells still need further study, Pten and its downstream, such as Akt and mTOR, should be more attractive in LSCs study

    Strategies to design clinical studies to identify predictive biomarkers in cancer research

    Get PDF
    The discovery of reliable biomarkers to predict efficacy and toxicity of anticancer drugs remains one of the key challenges in cancer research. Despite its relevance, no efficient study designs to identify promising candidate biomarkers have been established. This has led to the proliferation of a myriad of exploratory studies using dissimilar strategies, most of which fail to identify any promising targets and are seldom validated. The lack of a proper methodology also determines that many anti-cancer drugs are developed below their potential, due to failure to identify predictive biomarkers. While some drugs will be systematically administered to many patients who will not benefit from them, leading to unnecessary toxicities and costs, others will never reach registration due to our inability to identify the specific patient population in which they are active. Despite these drawbacks, a limited number of outstanding predictive biomarkers have been successfully identified and validated, and have changed the standard practice of oncology. In this manuscript, a multidisciplinary panel reviews how those key biomarkers were identified and, based on those experiences, proposes a methodological framework—the DESIGN guidelines—to standardize the clinical design of biomarker identification studies and to develop future research in this pivotal field

    STAT5 in Cancer and Immunity

    Get PDF
    Signal transducers and activators of transcription 5 (STAT5a and STAT5b) are highly homologous proteins that are encoded by 2 separate genes and are activated by Janus-activated kinases (JAK) downstream of cytokine receptors. STAT5 proteins are activated by a wide variety of hematopoietic and nonhematopoietic cytokines and growth factors, all of which use the JAK-STAT signalling pathway as their main mode of signal transduction. STAT5 proteins critically regulate vital cellular functions such as proliferation, differentiation, and survival. The physiological importance of STAT5 proteins is underscored by the plethora of primary human tumors that have aberrant constitutive activation of these proteins, which significantly contributes to tumor cell survival and malignant progression of disease. STAT5 plays an important role in the maintenance of normal immune function and homeostasis, both of which are regulated by specific members of IL-2 family of cytokines, which share a common gamma chain (Îłc) in their receptor complex. STAT5 critically mediates the biological actions of members of the Îłc family of cytokines in the immune system. Essentially, STAT5 plays a critical role in the function and development of Tregs, and consistently activated STAT5 is associated with a suppression in antitumor immunity and an increase in proliferation, invasion, and survival of tumor cells. Thus, therapeutic targeting of STAT5 is promising in cancer

    Kindlin-3 loss curbs chronic myeloid leukemia in mice by mobilizing leukemic stem cells from protective bone marrow niches.

    Get PDF
    Kindlin-3 (K3)-mediated integrin adhesion controls homing and bone marrow (BM) retention of normal hematopoietic cells. However, the role of K3 in leukemic stem cell (LSC) retention and growth in the remodeled tumor-promoting BM is unclear. We report that loss of K3 in a mouse model of chronic myeloid leukemia (CML) triggers the release of LSCs from the BM into the circulation and impairs their retention, proliferation, and survival in secondary organs, which curbs CML development, progression, and metastatic dissemination. We found de novo expression of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) on CML-LSCs but not normal hematopoietic stem cells and this enabled us to specifically deplete K3 with a CTLA-4-binding RNA aptamer linked to a K3-siRNA (small interfering RNA) in CTLA-4+ LSCs in vivo, which mobilized LSCs in the BM, induced disease remission, and prolonged survival of mice with CML. Thus, disrupting interactions of LSCs with the BM environment is a promising strategy to halt the disease-inducing and relapse potential of LSCs
    • …
    corecore