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Abstract 

The human Philadelphia chromosome (Ph) arises from a translocation between 

chromosomes 9 and 22 [t(9;22)(q34;q11)]. The resulting chimeric BCR-ABL oncogene 

encodes a constitutively activated, oncogenic tyrosine kinase that induces chronic 

myeloid leukemia (CML) and B-cell acute lymphoblastic leukemia (B-ALL). The BCR-

ABL tyrosine kinase inhibitor (TKI), imatinib mesylate, induces a complete hematologic 

and cytogenetic response in the majority of CML patients, but is unable to completely 

eradicate BCR-ABL–expressing leukemic cells, suggesting that leukemia stem cells are 

not eliminated. Over time, patients frequently become drug resistant and develop 

progressive disease despite continued treatment. Two major reasons cause the imatinib 

resistance. The first one is the BCR-ABL kinase domain mutations which inhibit the 

interaction of BCR-ABL kinase domain with imatinib; the second one is the residual 

leukemia stem cells (LSCs) in the patients who are administrated with imatinib. To 

overcome these two major obstacles in CML treatment, new strategies need further 

investigation.  

As detailed in Chapter II, we evaluated the therapeutic effect of Hsp90 inhibition 

by using a novel water-soluble Hsp90 inhibitor, IPI-504, in our BCR-ABL retroviral 

transplantation mouse model. We found that BCR-ABL mutants relied more on the 

HSP90 function than WT BCR-ABL in CML. More interestingly, inhibition of HSP90 in 

CML leukemia stem cells with IPI-504 significantly decreases the survival and 

proliferation of CML leukemia stem cells in vitro and in vivo. Consistent with these 

findings, IPI-504 treatment achieved significant prolonged survival of CML and B-ALL 



VI 
 

mice. IPI-504 represents a novel therapeutic approach whereby inhibition of Hsp90 in 

CML patients and Ph+ ALL may significantly advance efforts to develop a cure for these 

diseases. The rationale underlying the use of IPI-504 for kinase inhibitor–resistant CML 

has implications for other cancers that display oncogene addiction to kinases that are 

Hsp90 client proteins. 

Although we proved that inhibition of Hsp90 could restrain LSCs in vitro and in 

vivo, it is still unclear how to define specific targets in LSCs and eradicate LSCs. In 

Chapter III, we took advantage of our CML mouse model and compared the global gene 

expression signature between normal HSCs and LSCs to identify the downregulation of 

Pten in CML LSCs. CML develops faster when Pten is deleted in Ptenfl/fl mice. On the 

other hand, Pten overexpression significantly delays the CML development and impairs 

leukemia stem cell function. mTOR is a major downstream of Pten-Akt pathway and it is 

always activated or overepxressed when Pten is mutated or deleted in human cancers. In 

our study, we found that inhibition of mTOR by rapamycin inhibited proliferation and 

induced apoptosis of LSCs. Notably, our study also confirmed a recent clinical report that 

Pten has been downregulated in human CML patient LSCs. In summary, our results 

proved the tumor suppressor role of Pten in CML mouse model. Although the 

mechanisms of Pten in leukemia stem cells still need further study, Pten and its 

downstream, such as Akt and mTOR, should be more attractive in LSCs study.   
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CHAPTER I 

INTRODUCTION 

1.Philadelphia chromosome and chronic myeloid leukemia (CML) 

In 1960, Nowell and Hungerford’s landmark discovery of the Philadelphia (Ph) 

chromosome in human CML patients provided a major clue to the cause of CML. This 

discovery was the first demonstration of a chromosomal rearrangement that is 

consistently linked to a specific cancer, and had sparked searches for associations of 

additional chromosomal aberrations with specific forms of cancer. In their study, they 

examined leukemia cells from patients with chronic phase CML and other leukemia 

patients. Surprisingly, the leukemia cells from all of seven CML patients showed a 

consistent tiny chromosome, which then was named as Philadelphia (Ph) chromosome by 

them 1. However, none of other types of leukemia patients had been detected to contain 

this minute chromosome abnormality.  Ph chromosome is now known to be present in 

over 95% of CML cases 2. In samples from patients with adult B-ALL, the Ph 

chromosome accounts for 10% to 15% of such cases 2. CML is characterized by distinct 

three clinical phases: most patients are in chronic phase (CP), in which patients can still 

produce mature granulocytes but they have an increased number of myeloid progenitor 

cells in the peripheral blood. The medium duration of the chronic phase is 3-4 years.  The 

chronic phase is relatively long term and researchers have opportunity to investigate the 

leukemia cells development.  With the disease progression and acquisition of secondary 

genetic or epigenetic abnormalities, patients enter an accelerated phase (AP) and finally 
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develop to a blast crisis (BC), in which hematopoietic development has been blocked and 

immature blasts accumulate in the bone marrow (BM) and migrate into peripheral organs.  

In BC, about 60% of the patients enter a myeloid blast stage resembling acute myeloid 

leukemia (AML) and about 30% of the patients develop a pre-B blast stage similar to 

acute lymphoid leukemia (B-ALL)3.   

The blast crisis only lasts a few months4 and this aggressive progression of blast 

crisis is directly caused by different secondary genetic mutations. Over 80% of BC 

patients have genetic abnormalities in addition of the Ph chromosome. 5  Plenty of 

oncogenic events have been associated with blast crisis, including loss of p536, 7, Myc 

amplification8, deletion of Rb9 and p1610. 

2. BCR-ABL oncoprotein and its domain functions 
 

In the effort to identify the origin of the Ph chromosome, the advent of quinacrine 

fluorescence and Giemsa banding enabled Rowley to show that the Ph chromosome 

results from a reciprocal translocation between the long arms of chromosomes 9 and 22 

t(9;22)(q34;q11) 11. Nine years later after the identification of the chromosome arms 

involved in the Ph chromosomal translocation, some key studies from several 

investigators including Heisterkamp, Groffen, Stephenson, and Canaani led to the 

definitive characterization of the Ph chromosome structure and its mRNA product. 

Chromosome mapping studies demonstrated that the human ABL gene mapped to 

chromosome 9 12. This gene was shown to be present in the Ph chromosome in CML 

cells 13-16. Breakpoints along the Ph chromosome were found to occur within the 
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breakpoint cluster region (BCR) gene, suggesting that BCR is also involved in the 

translocation that creates the Ph chromosome 17. Hybridization of both BCR and ABL 

probes to the unique mRNA product of the Ph chromosome confirmed that Ph 

chromosome mRNA was composed of BCR-ABL.15, 18, 19  Later, through sequence 

analysis, the BCR-ABL transcript was shown to contain the first 13 to 14 BCR exons and 

exons1a or a2 through a11 of ABL. 20 This BCR-ABL gene generated a large mRNA 

product that after splicing, encoded an 8.5-kB BCR-ABL chimeric transcript 20. These 

studies show that the molecular basis of the Ph chromosome is the BCR-ABL oncogene 

which encodes BCR-ABL protein.  

 



4 
 

Figure 1. Generation of chimeric BCR-ABL oncogenes. (A) Schematic diagram of the 
translocation that creates the Philadelphia chromosome. The ABL and BCR genes reside 
on the long arms of chromosomes 9 and 22, respectively. As a result of the (9;22) 
translocation, a BCR-ABL gene is formed on the derivative chromosome 22 (Philadelphia 
chromosome).  (B) Locations of breakpoints in BCR and ABL genes and structure of 
derived chimeric proteins. The major breakpoint cluster spans 5.8 kb and results in a 8.5 
kb mRNA producing BCR-ABL (P210). BCR sequences are most often fused to ABL exon 
a2 in the hybrid transcript. BCR protein domains include: OLIGO = oligomerization; A 
and B = A and B boxes; S/TKINASE = serine/threonine kinase; DBL= Dbl homology; 
PH=Pleckstrin homology; RACGAP = Rac GTPase. ABL protein domains 
include MYR = myristoylation signal; CAP = CAP hydrophobic residues; SH3 = src 
homology 3; and remaining ABL domains as described as the SH2 = src homology 
domain 2, SH1 = src homology tyrosine kinase domain, NLS = nuclear localization 
domains, DNA = DNA binding sites, and ACTIN = F and G actin binding sites. 
  
 

 

c-ABL, a non-receptor tyrosine kinase, is expressed both in the cytoplasm and 

nucleus and is involved in the cell proliferation, survival  and morphogenesis. There is a 

unique N-terminus followed by a SH3 (Src homology 3) domain, a SH2 domain, and the 

kinase domain (Figure 1B). There are F-(filamentous) and G-(globular) actin-binding 

domain, NLS (nuclear localization signal) and DNA-binding sequences in the C-terminus. 

These NSL and DNA-binding domain are crucial for its nuclear functions.21 c-ABL 

shuttles between the cytoplasmic and nuclear compartments. In nuclear, it regulates the 

cellular response induced by DNA damage, apoptosis and cell growth arrest. 22 Recent 

study points to a central role of the cytoplasmic c-ABL is in morphogenesis and F-actin 

dynamics.23 In addition, c-ABL also plays a critical role in signaling induced by 

extracellular stimuli. 24.  Plenty of studies indicated the c-ABL function in several cell 

surface receptors mediated signaling transductions which include T cell receptor25, 

angiotensin subtype 1 receptor26, EphB4 receptor27 and PDGFR28.  Abl-null mice are 
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variably affected, and the phenotypes include an increased incidence of perinatal 

mortality, lymphopenia and osteoporosis. These mice are also smaller, with abnormal 

head and eye development.29, 30 BCR is also a signaling protein that contains multiple 

modular domains (Figure 1B). Bcr deficient mice develop normally, but neutrophils of 

Bcr-/- mice showed a pronounced increase in reactive oxygen metabolite production 

upon activation and were more sensitive to priming stimuli31. The fusion of BCR to ABL 

during the translocation increases the tyrosine-kinase activity of ABL, and brings new 

regulatory domains/motifs to ABL, such as the growth factor receptor-binding protein 2 

(GRB2) and SH2-binding sites.  

          The importance of domains of BCR-ABL has been validated in vivo using a 

retroviral transduction/bone marrow transplantation (BMT) mouse model of CML. This 

BMT-based CML mouse model is an excellent system for the in vivo structure-function 

analysis of BCR-ABL 32, and various mutant forms of BCR-ABL have been expressed in 

mice using this model. Mice that express a form of BCR-ABL with a point mutation in 

the ATP-binding site of ABL, which inactivates its kinase activity, do not develop 

leukemia, even when the fusion protein is expressed in the long-term repopulating 

hematopoietic stem cells, indicating that the ABL kinase activity is absolutely essential 

for BCR-ABL leukemogenesis in vivo 33. It proves that the ABL kinase is an excellent 

target for treating CML. In addition to the ABL kinase domain, there are other important 

domains in BCR-ABL, which regulate the kinase activity of ABL or mediate the 

interaction of BCR-ABL signaling pathways (Fig. 2). The relative importance of various 

domains of BCR-ABL in neoplastic transformation has been examined in vitro and in 
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vivo, including transformation of immortalized fibroblast cell lines, growth-factor-

dependent hematopoietic cell lines and primary bone-marrow cells.  

Deletion of the SH3 domain of ABL results in a mutant form of the protein with 

increased tyrosine kinase activity, and expression of this truncated protein can transform 

both fibroblast and haematopoietic cell lines in vitro. However, it only induces lymphoid 

leukemia with a greatly extended latency in mice.34 A mutant form of BCR-ABL with a 

deletion of the SH3 domain does, however, still effectively induce a fatal 

myeloproliferative disease (MPD).35 These findings indicate that activation of ABL 

kinase alone (through the loss of SH3) is not sufficient to cause a CML-like MPD, and 

that other functional domains/motifs of BCR-ABL are also required for the induction of 

CML.  The amino-terminal coiled-coil (CC) oligomerization domain of BCR is an 

important activator of ABL kinase activity, and also promotes the association of BCR–

ABL with ACTIN fibres.36 A mutant form of BCR-ABL that lacks the BCR-CC domain 

(ΔCC-BCR-ABL) failed to induce MPD in mice, but, rather, induced a T-cell 

leukemia/lymphoma only after a long latent period.37-39 Reactivation of the kinase 

activity of ABL by mutating its SH3 domain (through deletion or a P1013L point 

mutation), rescued the ability of ΔCC-BCR-ABL to induce a CML-like MPD in mice.39 

These results demonstrate that the BCR CC domain is essential for the induction of CML 

by BCR-ABL in mice, mainly owing to its ability to activate the kinase activity of ABL. 

Another important motif in the BCR region of BCR-ABL is the GRB2-binding site. 

GRB2 binds SOS as well as the scaffolding adapter GRB2-associated binding protein 2 

(GAB2). Formation of this complex depends on BCR phosphorylation at tyrosine 177 40, 
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leading to activation of downstream RAS and recruitment of SHP2  and 

phosphatidylinositol 3-kinase (PI3K).40, 41 Mutation of the tyrosine-177 residue of BCR-

ABL to phenylalanine (Y177F) largely abolished its ability to bind GRB2 without 

affecting the kinase activity of ABL.40, 42 In the BMT CML model, the Y177F mutant 

form of BCR-ABL has a greatly reduced ability to induce CML in mice, and these mice 

eventually developed T-ALL or abdominal T-cell lymphomas after a prolonged latent 

period.37, 38, 43 These results demonstrate that phosphorylation at Y177 is required for the 

induction of CML by BCR-ABL.  

The SH2 domain of ABL is believed to activate RAS, at least partially, through 

binding to SHC, which, following tyrosine phosphorylation, can recruit GRB2.44 

Mutations in the SH2 domain of ABL reduced the ability of BCR-ABL to induce a CML-

like MPD in mice.37 The Y1294F point mutation in SH2 domain of BCR-ABL also 

attenuated leukemogenesis by BCR-ABL.39 The carboxy-terminal region of ABL is 

required for the proper function of normal ABL and for the lymphoid leukemogenicity of 

v-Abl.45 However, deletion of actin-binding domain of ABL or the entire carboxy-

terminal region downstream of the ABL kinase domain did not affect the ability of BCR-

ABL to induce CML-like MPD in mice.46 Therefore, the functions of these domains are 

dispensable in BCR-ABL-mediated leukemogenesis. It is evident that certain 

domains/motifs of BCR-ABL bear overlapping functions. Deletions of both SH3 domain 

and carboxy-terminal proline-rich SH3-binding sites (ABL-PP) of ABL, but not point 

mutations of each domain, block the ability of BCR-ABL to stimulate spontaneous cell 

migration on fibronectin-coated surfaces, and greatly reduced BCR-ABL 
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leukemogenicity in mice.47 Deletions of both SH3 and SH2 domains of ABL in BCR-

ABL also showed more severe defects in CML induction than mutating either domain.48 

Together, these structure-function analyses of BCR-ABL have shown that the activation 

of the tyrosine-kinase activity of ABL is necessary but not sufficient to induce CML in 

mice. 

 

3. BCR-ABL retroviral transduction/transplantation mouse models 

CML has been extensively studied and used as a model disease to investigate the 

molecular basis of leukemia, shedding light on the understanding of other human cancers 

as well. CML validates the concept that cancer is a genetic disease. CML is derived from 

the hematopoietic stem cells which harbor the BCR-ABL oncogene and acquire a 

selective growth advantages over the normal hematopoietic stem cells. These conditions 

are drawn based on the transplantation experiments in which peripheral blood (PB) cells, 

total bone marrow (BM) cells, and primitive cells (CD34+) from the CML patients have 

been transplanted into irradiated nonobese severe combined immunodeficient 

(NOD/SCID) mice49. Recipient mice transplanted with these PB or BM cells showed 

engraftment of the human leukemia cells in BM for up to 7 months and those 

transplanted with CD34+ cells showed a greater engraftment of leukemia cells. Although 

this xenograft model allows evaluating the capability of transplanted human leukemia 

cells to initiate and maintain CML disease in recipient mice, the mice with engrafted 

human leukemia cells did not develop lethal leukemia after 7 months.  This call for 
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further improvement of this xenograft model as it is important to establish a faithful CML 

mouse model for evaluating promising therapeutic compounds and developing new 

therapeutic strategies.  

Much effort has been made to generate mouse models of Ph+ leukemia. BCR-ABL 

transgenic models have been made to express BCR-ABL transgene in mice. Different 

promoters that drive BCR-ABL expression have been tested in these models to express 

BCR-ABL in different target cells. These promoters include Eµ 50, MPSV-LTR50, 

metallothionein50, BCR 51, and MSCV-LTR52. Although all of these models show the 

expression of BCR-ABL in mice, there are at least two obvious defects in using these 

models: (1) not all mice harboring BCR-ABL develop myeloproliferative disorder, with 

some mice only developing lymphoid leukemia; and (2) disease latency is too long, 

restricting the use of these models in developing therapeutic strategies for CML.  

In contrast, the retroviral transduction/transplantation model is a more faithful model of 

BCR-ABL induced CML. In 1990, Daley et al. co-cultured mouse bone marrow cells 

with the retroviral producer cells that produced BCR-ABL expressing retrovirus, and 

transplanted these infected bone marrow cells into lethally irradiated recipient mice.53 

Three different types of diseases were found in the recipients at up to 5 months 

after bone marrow transplantation. These diseases included CML like myeloproliferative 

syndrome, acute lymphoblastic leukemia, and a type of tumor involving macrophages. In 

the meantime, Kelliher et al. also established a retroviral system in which a JW-RX 

retrovirus expressing BCR-ABL was used to infect 5-FU pretreated donor mice bone 

marrow cells. After bone marrow transplantation, more than 90% of recipients developed 



10 
 

tumors, with 50% of them developing a myeloproliferative syndrome that shares several 

features with the chronic phase of chronic myeloid leukemia54. Both of these studies 

proved that BCRABL is the primary cause of myeloproliferative syndromes in mice. 

However, there was more than one type of disease in the recipients, further as not 100% 

of mice developed CML with similar disease latency; hence it was still difficult to 

conduct drug testing experiments using these models. To overcome these deficiencies, 

improvements on the model system have been made including modified construct, 

transient retroviral packaging system, and changes of virus infection conditions. 

 

 

 

Figure 2. Retroviral transduction/ transplantation model of BCR-ABL induced 
CML. Donor  mice are pretreated with 5-FU (150mg/Kg) for 4 days, and bone marrow 
cells are stimulated with IL3, IL6 and SCF cytokines in vitro. After infected twice with 
MSCV-BCR-ABL-GFP retrovirus, donor bone marrow cells are transplanted into lethally 
irradiated recipients for induction of CML. 
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In our lab, we use BCR-ABL expressing retrovirus to induce disease mice which 

mimic human CML or a B cell-acute lymphoid leukemia (B-ALL).32 To induce CML 

mice (Figure 2), donor mice are primed by intravenous injection with 5-fluorouracil (5-

FU) for 4 days before harvest to remove most of the dividing cells and enrich 

hematopoietic stem cells and progenitors. Donors are sacrificed and bone marrow is 

harvested. Cells are cultured in DMEM, with FCS, WEHI-3B conditioned medium, 

penicillin/ streptomycin, L -glutamine, and several cytokine combinations.  During the 

culture, we transduce the bone marrow cells with high titer BCR-ABL retrovirus for the 

first round. After first found infection, we change fresh culture medium and continue 

culture the cells overnight. Second round infection is performed before transplantation of 

the cells into lethally irradiated recipients. All of these mice will develop CML disease 

and die of CML within 3-4 weeks. The CML is characterized by massive expansion of 

maturing granulocytes in peripheral blood, spleen and bone marrow. The peripheral 

blood leukocyte count at death was about 2–4 x105/ml, composed predominantly of 

mature neutrophils.  The spleen and liver are greatly enlarged and disrupted by large 

numbers of myeloid leukemia cells. Notably, all animals have leukemia cell infiltration in 

the lung and the extensive intraparenchymal hemorrhage, which is the ultimate cause of 

death of these animals. In most cases, the CML syndrome could be efficiently transferred 

to secondary recipients by injection of bone marrow.  

 Because animals with the CML syndrome die within 4 weeks after transplantation, 

it is impossible to evaluate the transition process which CML will gradually develop to 
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acute myeloid leukemia (AML) or acute lymphoid leukemia (ALL) which are the 

common result from clinical observation.55  As HSCs are enriched  and B cell progenitors 

are eliminated in donor mice after by 5-FU treatment56, the transduction efficiency of 

HSCs by BCR-ABL greatly increases and the recipients are prone to develop CML. To 

mimic the characteristics of acute lymphoid leukemia induced by BCR/ABL, we use bone 

marrow from donors that had not been pretreated with 5-FU.  Briefly, we transduce non 

5-FU treated donor bone marrow cells with BCR-ABL retrovirus only once then 

transplant them into lethally irradiated recipients (Figure 3). All recipients will exhibit B 

cell acute lymphoid leukemia (B-ALL) phenotype within 2 weeks after bone marrow 

transplantation and die of B-ALL within 8 weeks. All the disease mice have modest 

splenomegaly (0.2–0.4 g) and lymphadenopathy with infiltration with lymphoblasts, and 

a bloody pleural effusion, containing high levels of malignant lymphoid cells that 

appeared to be the cause of death. The leukemia cells highly expressed BCR-ABL and 

they are negative for myeloid and T lymphoid cell surface markers, but positive for B220, 

CD19, indicating an immature B cell phenotype. The lymphoid leukemia is efficiently 

transplanted to secondary recipients, with animals receiving tumor cells from lymph node 

or pleural effusion succumbing to an identical disease within 4–5 weeks.  
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Figure 3. Retroviral transduction/ transplantation model of BCR-ABL induced B-
ALL. Donor bone marrow cells from mice without 5-FU treatment are harvested and  
marrow cells are stimulated with IL3, IL6 and SCF cytokines in vitro. After transduced 
with MSCV-BCR-ABL-GFP retrovirus only once. Then donor bone marrow cells are 
transplanted into lethally irradiated recipients for induction of B-ALL. 
 

Based on these two high efficient mouse models, we can induce CML or B-ALL 

in mice and monitor the disease development carefully. The disease could be induced in 

most of the inbred mouse strain including C57BL/6, BALB/c, and viable gene knockout 

mice strains and it facilitates us to evaluate the functions of certain genes in the 

leukemogenesis. Because all recipients develop CML or B-ALL with a short latency, this 

provides us an excellent model for evaluating therapeutic agents for CML or B-ALL 

treatment. As CML is derived from the hematopoietic stem cells which harbor BCRABL 

oncogene, CML leukemia stem cells can also be studied in our model. In conclusion, 

these retroviral model systems provide a powerful tool for studying BCR-ABL induced 

CML and B-ALL disease mechanism and performing translational research.  
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4. BCR-ABL kinase inhibitors 

 

The essential role of BCR-ABL tyrosine kinase activity for cellular 

transformation provided the rational for targeting this function therapeutically. Starting in 

the late 1980s, scientists at Novartis initiated projects on the identification of compounds 

with inhibitory activity against protein kinases. After several rounds of screen of small 

che micals, they found one named STI571 (now Imatinib Mesylate) emerged as the most 

promising compound for clinical development, since it had the highest selectivity for 

growth inhibition of BCR-ABL–expressing cells. Studies showed that imatinib potently 

inhibits all of the ABL tyrosine kinases. This includes cellular ABL, viral ABL (v-ABL), 

and BCR-ABL57, 58. In contrast, the compound was inactive against serine/threonine 

kinases, did not inhibit the epidermal growth factor (EGF) receptor intracellular domain, 

and showed weak or no inhibition of the kinase activity of the receptors for vascular 

endothelial growth factor (VEGF-R1 and VEGF-R2), fibroblast growth factor receptor 1 

(FGF-R1), tyrosine kinase with immunoglobulin and EGF homology-2 (TIE-2 [TEK]), c-

MET, and nonreceptor tyrosine kinases of the Src family (Fgr, Lyn, and Lck). The results 

of the kinase assays were confirmed in cell lines expressing constitutively active forms of 

ABL such as v-ABL, BCR-ABL, where imatinib was found to inhibit ABL kinase 

activity with 50% inhibitory concentration (IC50) values ranging between 0.1 and 

0.35μM58. Imatinib potently inhibits the growth of cells expressing BCR-ABL, while up 

to 10 μM did not inhibit growth of parental or v-SRC–transformed cells57. A five-year 
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follow up study showed that a complete cytogenetic response among 553 patients 

receiving imatinib was 69% by 12 months and 87% by 60 months. An estimated 7% of 

patients progressed to accelerated-phase CML or blast crisis, and the estimated overall 

survival of patients who received imatinib as initial therapy was 89% at 60 months.59 

To determine how imatinib achieves its high specificity at inhibiting BCR-ABL 

transformation, the crystal structure of the kinase domain of ABL complexed with 

imatinib was resolved by Kuriyan’s and Zimmermann’s groups.60-62 Both groups showed 

that imatinib bound to the inactive conformation of ABL in the region where the 

adenosine base of ATP would bind thereby obstructing ATP binding. So imatinib blocks 

BCR-ABL kinase activity by blocking the binding between BCR-ABL kinase domain 

and ATP.  

Although imatinib has become a powerful drug clinically, it is much less effective 

in treating CML patients containing mutations of the BCR-ABL kinase domain. 

Mutations of kinase domain are found in 50% to 90% of patients with secondary 

resistance63-65. Mutations are detected in many different amino acids, but there are 4 

distinguishable clusters: the ATP binding loop (P-loop), T315, M351, and the A-loop. 

Recently, although several new derivatives of imatinib have been developed and they can 

overcome most of these mutations, all of these drug are still ineffective against T315I 

mutated BCR-ABL. Thus, new approaches are needed to treat CML induced by this 

BCR-ABL mutant. 
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Another obstacle in CML therapy comes from leukemia stem cell (LSC). LSCs in 

many types of hematologic malignancies are believed to be a cell population required for 

initiation and sustaining growth of the leukemia.66-72  LSCs may arise from normal 

hematopoietic stem cells or normal progenitor populations.73 In BCR-ABL induced CML, 

LSCs phenotypically appear to be similar to the normal hematopoietic stem cells (HSC). 

Fialkow and colleagues examined different cell types in chronic phase CML patients for 

the presence of the Ph chromosome.74, 75 Surprisingly, both granulocytes and erythroid 

cells from chronic phase CML patients contained the Ph chromosome, even though only 

myeloid cells are expanded during chronic phase CML. The presence of the Ph 

chromosome in granulocyte and erythroid lineages suggests that the Ph chromosome is 

either generated in multiple cell types or originates in a HSC, from which it is passed 

down to other more differentiated cell lineages. Subsequent purification of HSCs from 

CML patients by cell surface markers has confirmed the presence of the Ph chromosome 

in HSCs.76 The discovery of a clonal LSCs origin of CML suggests that elimination of 

Ph+ LSCs and replacement of these cells with normal HSCs should be an effective 

therapeutic strategy.  

 To further identify CML stem cells in mice, we have assessed whether BCR-

ABL-expressing HSCs function as CML stem cells in our CML mouse model. C57BL/6 

(B6) mouse bone marrow (BM) cells transduced with BCR-ABL retrovirus were first 

sorted into two separate populations of Sca-1- and Sca-1+ cells. These two populations of 

cells were then transferred, respectively, into B6 recipient mice. Only the mice receiving 

BCR-ABL-transduced Sca-1+ cells developed and died of CML, diagnosed by detecting 
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GFP+ myeloid cells (Gr-1+) in the peripheral blood of the mice, suggesting that early BM 

progenitors contain CML stem cells. To narrow down the specific cell lineages that 

function as CML stem cells, HSCs (Lin-c-Kit+Sca-1+) were sorted out from BM cells 

transduced with BCR-ABL retrovirus, followed by transfer into recipient mice. The mice 

developed and died of CML. To confirm that BCR-ABL-expressing HSCs contain CML 

stem cells, BM cells from primary CML mice were harvested and sorted for the BCR-

ABL-expressing HSCs (GFP+Lin-c-Kit+Sca-1+) by FACS. The sorted cells were 

transferred into recipient mice, and the mice developed and died of CML, indicating that 

BCR-ABL expressing HSCs function as CML stem cells.77 When CML mice were 

treated with imatnib or dasatinib, a more potent BCR-ABL kinase inhibitor, both mice 

achieved significant longer survival curve and mice received dasatinib treatment died 

latest. However, all of the mice of imatinib or dasatinib treatment group eventually died 

as CML, indicating sole inhibition of BCR-ABL kinase is not enough to eliminate LSCs 

and targeting at least one additional component of BCR-ABL-expressing HSCs is 

required for curing the disease.77 

In CML patients, bone marrow CD34+Lin- cells, in which normal hematopoietic 

stem cells (HSCs) reside, are thought to contain CML stem cells and be responsible for 

disease initiation, progression and resistance to imatinib38, 78. Several clinical reports have 

confirmed withdraw imatinib treatment in those patients who had achieved complete 

molecular response after imtainib treatment, BCR-ABL expressing leukemia cells 

relapsed shortly after discontinuation of the therapy.79, 80 Although restart of the imatinib 

treatment induced new molecular response and most of the patients could not be detected 
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BCR-ABL, imatinib still did not eventually cure the disease. These results proved 

imatinib could not eradicate LSCs in CML patients and LSCs will reinitiate the disease 

when the inhibition of BCR-ABL kinase activity is removed. Except the clinical 

observations, human CML LSCs have also been treated by imatinib in vitro.38 When 

CFSE labeled LSCs (Lin-CD34+) from CML patients were treated with imatinib, almost 

all dividing cells were killed by imatinib. However, a significant CD34+ population cells 

were recovered in the undivided peak in all patient cells.38 This study also indicated the 

heterogeneity of LSCs in human CML LSCs and the undividing population is the most 

robust to be eliminated only based on the BCR-ABL kinase inhibitor.  To exclude the 

lower inhibitory efficiency of imatinib on BCR-ABL kinase activity, both of BCR-ABL 

kinase second generation inhibitors, dasatinib and nilotinib are also assessed in LSCs in 

vitro treatment. Dasatinib is a novel dual Src and BCR-ABL kinase inhibitor and exhibits 

greater poterncy than imatinib.81 Although dasatinib led to significant inhibition of BCR-

ABL and its downstream activity, the most primitive quiescent CML LSCs (CD34+Cd38-) 

were still resistant to dasatinib treatment.82 Similarly, nilotinib, a 20-fold-higher potency 

than imatinib, exerts quipotent antiproliferative effects to CD34+ LSCs and it could not 

induce apoptosis in LSCs.83 Taken together, both of CML LSCs in either mouse model or 

patients are resistant to the BCR-ABL kianse inhibitors, indicating LSCs maintain 

themselves not only by depending BCR-ABL kinase activity but also by counting on 

other crucial pathways. Targeting these unknown pathways should provide rational 

strategies to eventually inhibit or eradicate LSCs. 
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5. Novel targets for eliminating LSCs in CML 

LSCs in CML are BCR-ABL transformed HSCs and they not only self-renew to 

maintain the LSCs pool but also differentiate to mature leukemia cells. However, as 

BCR-ABL cannot initiate self-renew in progenitor cells to induce CML, LSCs have to 

addict to these critical self-renew pathways which are also crucial to normal HSCs to 

maintain LSCs population. β-catenin, hedgehog and Foxo are all important components 

in HSCs self-renew program and they are great target in LSCs research.  Except these 

pathways which involve in HSCs self-renew, those HSCs surface markers which promote 

or maintain HSCs homing capability are also considerated in LSCs therapy because 

inhibition of LSCs homing or promotion of  LSCs migration is also possible strategy to 

block leukemia development. Finally, investigation of novel LSCs specific pathways is 

much tough but is also most promising because inhibition of these specific pathways 

should only affect LSCs but not HSCs.  

β-catenin 

LSCs are capable of limitless self-renewal and are responsible for the 

maintenance of leukemia. Because selective eradication of CML LSCs could offer 

promising therapeutic benefit, there is interest to identify the signaling pathway that 

controls the LSCs self-renewal. 84 Wnt factors are cysteine-rich lipid-modified proteins 

that bind to several Frizzled (FZD) receptors. Under physiological conditions, Wnt 

proteins accumulate β-catenin by inhibiting its glycogen synthase kinase 3 (GSK3)-

dependent serine/threonine (S/T) phosphorylation on specific N-terminal residues. The 
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Wnt/ β -catenin cascade has also pivotal roles in the selfrenewal of hematopoietic stem 

cells (HSC), as a forced expression of a nondegradable β -catenin (S33-mutant) is 

sufficient to perpetuate themselves in vitro and sustain bone marrow reconstitution in 

vivo.85  

Several groups are investigating the role of β-catenin in the LSCs and try to target 

β-catenin in the CML therapy.  It has been reported that BCR-ABL levels control the 

degree of β-catenin protein stabilization by affecting its Y/S/T-phospho content in CML 

cells.86  BCR-ABL directly interacts with β-catenin, and the Tyr86 (Y86) and Tyr654 

(Y654) residues of β-catenin are phosphrylated by BCR-ABL kinase activity. This Y-

phosphorylated β-catenin is in a stable conformation and it binds to the TCF4 

transcription factor, thus representing a transcriptionally active pool.86 At same time, 

another group reported loss of β-catenin could impair normal HSCs and CML LSCs self-

renewal.87 In this study, a conditional β-catenin knockout strain was established. 

Although normal HSCs were established in the β-catenin deletion condition, they are 

impaired in long-term growth and maintenance following transplantation. Interestingly, 

using a BCR-ABL retrovirus mouse model, the authors also demonstrated that loss of β-

catenin block the CML development in recipients which are transplated with BCR-ABL 

transduced bone marrow cells from β-catenin null mice, due in part to the decreased self-

renewal of CML LSCs.87 This result was also confirmed in our study. Our lab recently 

reported the upregulation of  β-catenin by BCR-ABL in our LSCs microarray. To further 

test the β-catenin function in LSCs in vivo, we used wild type and β-catenin conditional 

knockout mice as donor and transduced the marrow from these mice with BCR-ABL-
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iCre coexpression retrovirus. After 14 days bone marrow transplantation, equal numbers 

of bone marrow cells from both groups of primary mice were transferred into secondary 

recipient mice. In the presence of β-catenin, all of mice developed and died of CML, 

However, all mice were free of CML in absence of β-catenin.88 These results confirmed 

the critical role of β-catenin to support LSCs self-renewal and β-catenin also becomes a 

potential therapeutic target in CML LSCs therapy.  A current exciting study proved β-

catenin also maintain the self-renewal of AML LSCs which include oncogene transduced 

HSCs or more differentiated granulocyte-macrophage progenitor (GMP). 89 Inhibition of 

β-catenin by a reversible COX inhibitor, indomethacin, can reduce the LSCs number in 

vitro and decrease LSCs frequency in vivo. 89 These exciting results suggest 

indomethacin treatment might be a promising therapy strategy in CML. 

 

Hedgehog 

As early as 1980, the hedgehog (Hh) has been indentified in development of 

Drosophila and mutants of Hh genes alter the segmental pattern of the larva and cause 

embryonic lethal.90 Later on, three homologs of Hh genes (Sonic hedgehog (Shh), Indian 

hedgehog (Ihh) and Desert hedgehog (Dhh)) have been demonstrated in mammalians.91-93 

These Hh proteins are secreted proteins and they can induce signaling transduction in 

nearby and distant tissues. Generally, in the presence of active Hh protein, they will bind 

to its specific receptor, Patched (PTC). PTC is a transmemberane protein and negatively 

regulates another seven transmemberane protein, smoothened (SMO). When SMO is 

released from the inhibition of PTC, SMO will eventually activate its downstream Gli 
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transcription factor and Gli will regulate its target gene expression94, including Gli195, 

Ptch196, Cyclin D97, Cyclin E97, and Bcl298. 

Hh signaling has also been indicated a role in the primitive hematopoiesis based 

on mouse embryonic stem cell studies. Ihh is a primitive endoderm-secreted signal 

 and it is sufficient to activate embryonic hematopoiesis and vasculogenesis in pre- or 

early-gastrulation-stage epiblasts.99 Moreover, study from zebrafish showed the 

mutations of Hh pathway members or inhibition of Hh pathway with Hh inhibitor, 

cyclopamine, will result in adult HSC development defect. 100 However, as the functional 

redundancy of those three Hh members, the individual knock mice does not provide 

convincing evidence for the role of Hh in adult hematopoiesis. 101-103 

Activation of Hh pathway has been demonstrated in different human cancers. Activating 

point mutations of Smo or inactivating point of mutations of Ptch has been shown in 

medulloblastoma,104 rhabdomyosarcoma,105 and sporadic basal cell carcinoma.106 

Recently, Christine Dierks et al showed the hedgehog signaling pathway is active in 

BCR-ABL expressing leukemia stem cells (LSCs).107  They first detected the there are 

about 4 fold induction of Gli1and Ptch1 in CML patients compared with healthy donors. 

To confirm their clinical findings, they monitored the Gli, Ptch1and Smo mRNA level in 

BCR-ABL expressing LSCs in a retrovirus mouse model. Similarly, Gli1, Ptch1 and Smo 

display enhanced expression in LSCs. When the authors subsequently treated the CML 

mice with KAAD-cyclopamine, a Smo inhibitor, the LSCs have been significantly 

inhibited in vivo.  Consistent with the treatment, the BCR-ABL transduced Smo 

deficiency mice fetal liver cells also failed to expand and induce the CML in mice. This 
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study demonstrated solid evidence to support the role of Hh pathway in leukemogenesis 

and also confirmed the new strategy in CML treatment that targeting LSCs could 

significantly prolong the CML latency.   

 

Foxo 

The Foxo (Forkhead O) subfamily of transcription factors plays critical roles in 

cell cycle arrest, stress resistance and apoptosis.108 There are four members (Foxo1, 

Foxo3, Foxo4 and Foxo6) in Foxo group and they are all important downstream of the 

PI3K-Akt pathway which transduces cell survival and proliferation signals from cell 

surface receptors. Generally, growth factors bind their cell surface receptors and they 

subsequently active PI3K-Akt. Akt directly phosphorylates Foxos members, resulting in 

nuclear Foxos exclusion and degradation in cytoplasma.109 Foxos locate in nucleus and 

activatly regulate their downstream, resulting in proapoptosis,109, 110 cell cycle arrest111 

and resistant to oxidative stress response.112 Although Foxos are vital player in cell cycle 

regulation, apoptosis and oxidation, individual knockout mice of Foxo1 and Foxo4 did 

not demonstrate overt hematopoietic phenotype. As these Foxo members could be 

functionally redundant, a Foxo1/3/4 triple conditional knockout mouse has been 

established recently.113 Interestingly, a marked decrease of HSCs was observed when 

Foxos had been deleted for 4 weeks and the Foxo deficient HSCs are defective in long-

term repopulation in vivo. Consistent with above results, a novel Foxo3a knock mice 

study showed the long-term reconstitution ability of HSCs was significantly inpaired 
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compared with the wild type mice.114 Both studies proved a crucial role of Foxos to 

maintain HSCs long term reconstitution ability. As LSCs are always highly activated in 

reconstitution ability, Foxos pathway initiate more attention in LSCs research and 

targeting Foxos pathways might be a rational strategy in CML therapy.  

As it is widely believed that BCR-ABL actives Akt and inhibits Foxo to promote 

leukemia cells proliferation and suppress apoptosis. A recently study provided solid 

evidence to prove Foxo3a has an essential role in maintaince of CML LSC.84 In this study, 

nuclear localization of Foxo3q has been detected in LSCs similar as observed in normal 

HSCs114 and the LSCs exhibited lower level of p-Akt, suggesting the Foxo3a remained 

active in LSCs owing to the decreased Akt phosphorylation. When the  

Foxo3a+/+ and Foxo3a-/- mice are used as donor mice to induce CML by using a BCR-

ABL retrovirus model, there are no difference in CML development in the primary and 

secondary recipients. However, the absolute numbers of Foxo3a-/- LSCs were much 

lower than in third round recipients that received Foxo3a+/+ LSCs. Thus, Foxo3a-/- 

LSCs lost their long-term reconstitution ability and exhaust in the third round 

transplantation. To further explain the mechanism, apoptosis rate of Foxo3a-/- LSCs has 

been detected and this indicated that Foxo3a is required for LSCs survival because it 

mediates suppression of apoptosis. Later on, TGF-β pathway has been activated in nuclei 

of LSCs which will control the Foxo3a nuclear localization and prevent LSCs apoptosis. 

To test whether inhibition of TGF-β pathway could mess up the Foxo3a localization and 

induce LSCs apoptosis, CML mice and human CML LSCs have been treated with TGF-β 
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inhibitor, Ly364947. Significantly, TGF-β inhibitor suppresses LSCs colony-forming 

ability and prolongs the CML mice disease latency. This inhibitory effect also synergize 

with imatinib therapy. This story evokes a new ankle to eradicate LSCs by inducing 

LSCs apoptosis. At the same time, current or more potent TGF-β inhibitors are promising 

drugs which need to be tested in mouse model and clinical trials.  

CD44  

Adhesion molecule CD44 is a ubiquitously expressed transmembrane 

glycoprotein that is extensively spliced and produces many variant isoforms.115 CD44 

mediates cell-cell and cell-extracellular matrix interactions through binding with its major 

ligand, hyaluronan, a glycosaminoglycan highly expressed in the endosteal region.116 

Also CD44 can bind to other ligands, including osteopontin, fibronectin, and seletin, and 

mediates cell trafficking, migrating and homing. Beyond its cell adhesion functions, 

CD44 also transduces several intracellular signals into cell when it binds to its specific 

ligands.  

Interestingly, enhanced expression of CD44 on acute myeloid leukemia (AML) 

cells has been reported and the expression of CD44 also relates with poor prognosis of 

AML.117, 118 Notably, inhibition of C44 by injection of its specific antibody blocked the 

human AML cells reconstitution in NOD-SCID mice.119 This CD44 antibody binds to 

CD44 and selectively eliminates AML leukemia stem cells in vivo by blocking LSCs 

interaction with its niche.119  Similar as AML, high expression of CD44 has also been 

detected in CML LSCs, suggesting CD44 might increases LSCs homing and maintaining 
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in bone marrow microenvironment to support their normal functions.120 To prove the 

CD44 function in LSCs homing, CD44-/- mice bone marrow are transduced with BCR-

ABL and transplanted into wild type recipients. The disease latency in recipients received 

BCR-ABL expressing CD44-/- cell was much slower than those received wild type cells. 

To further confirm the role of CD44 in regulating LSCs homing, same number of BCR-

ABL expressing wild type or CD44-/- cells was directly injected into the femoral bone 

marrow cavity of the recipients. Strikingly, a similar frequency of CML disease was 

induced in both groups. These result identified that CD44 is a crucial LSCs surface 

molecule which can medicate LSCs homing and migration.  Subsequently, blocking 

BCR-ABL expressing bone marrow cells with CD44 specific antibody before the bone 

marrow transplantation will significantly delay disease development in mice. In summary, 

the adhesion molecule CD44 mediates LSCs of CML and AML to home and migrate in 

the mice. Blocking this potent LSCs homing pathway could profoundly inhibit LSCs 

interact with their microenvironment and suppress LSCs function, eventually prohibiting 

leukemia development in mice.  

6. Novel strategy for identifying therapeutic targets in LSCs  
 

Above studies provide solid data to support the idea that inhibition and 

eradication of LSCs could suppress the CML development. However, current targets in 

LSCs are also critical molecules in regulating normal HSCs self-renewal or maintenance. 

It is still not clear how to find out the LSCs specific signaling pathways and regulators 

which LSCs addict to.  In our lab, we take advantage of our CML model and compare the 

global genes expression difference in normal HSCs and LSCs by microarray analysis 
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(Figure. 3). Isolation of LSCs and normal HSCs is a key initial step to harvest high-

quality RNA for microarray analysis. In our study, BCR-ABL-expressing HSCs 

(GFP+Lin-c-Kit+Sca-1+ ) represent LSCs in CML mice. It is important to realize that the 

microarray analysis will show many genes that are up or downregulated by BCR-ABL in 

LSCs, and the key is to select candidate genes for further functional tests. Prior to the 

functional tests, we also confirm expression change of the candidate genes by real-time 

PCR. The function of a candidate gene can be primarily determined based on the 

literature or database search. Later on, we will analyze the candidate gene function in its 

knockout mice or transgenic mice. Spontaneously, we will assess the function of 

candidate gene in human LSCs and try to transit our bench work to bedside. Finally, we 

will utilize the specific inhibitors or stimulators in the mouse model or clinical trials to 

transit our basic research to patients.  
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Figure 4. Strategy for identification of genes that play key roles in regulating the 
functions of LSCs. Normal HSCs and LSCs are sorted from BCR-ABL induced CML 
mice. Total RNAs are isolated from HSCs and LSCs and microarray is carried out using 
the RNAs. Total expression changed genes are analyzed as bioinformatics. Expression 
changes of interested candidate genes are confirmed by RT-PCR. Later, functional tests 
of candidate genes will be assessed in knockout mice, transgenic mice. Moreover, the 
expression of candidate genes are also tested in human CML LSCs. Lastly, the possible 
gene inhibitors will be applied in mouse model or human leukemia cells. 
 
 

 

Following this strategy, our lab recent study identified the arachidonate 5-

lipoxygenase (5-LO) gene (Alox5) is a novel LSCs specific regulator in CML 

development.  Alox5 has been shown to regulate numerous physiological and 

pathological progresses, including inflammation and cancer 121-123.  Alox5 is differentially 

expressed in CD34+ human CML cells and an in vitro study showed that an Alox5 

inhibitor suppressed proliferation and induced apoptosis of K562 cells (a human CML 

cell line)124-126, although an off-target effect of the Alox5 inhibitor needs to be ruled out. 

These data suggest a possibility that Alox5 is involved in CML development.  

 To investigate the role of Alox5 in BCR-ABL induced CML and –B-ALL, our lab 

first detected the Alox5 mRNA level in CML LSCs.127 We isolated total RNA 

from these BCR-ABL–expressing LSCs or from the GFP+Lin–c-Kit+Sca-1+ cells that 

expressed only GFP, and carried out DNA microarray analysis to compare gene 

expression between BCR-ABL–expressing and non-BCR-ABL–expressing Lin–c-

Kit+Sca-1+ cells. The Alox5 gene was upregulated and this upregulation was not 

abolished by imatinib treatment. Later on, the upregulation of Alxo5 by BCR-ABL in 

LSCs was also confirmed by RT-PCR. Next, to study the role of Alox5 in regulation of 
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LSC function, wild-type or Alox5-/- donor bone marrow cells in B6 background were 

used to induce CML. Recipients of BCR-ABL-transduced bone marrow cells from 5-FU-

treated wild-type donor mice developed and died of CML within 4 weeks, whereas 

recipients of BCRABL–transduced bone marrow cells from Alox5-/- donor mice were 

resistant to the induction of CML. The eventual disappearance of myeloid leukemia cells 

in CML mice in the absence of Alox5 prompted us to examine whether Alox5 is required 

for self-renewal of LSCs. We transferred bone marrow cells from primary recipients of 

BCR-ABL-transduced wild-type or Alox5-/- donor bone marrow cells to secondary 

recipient mice. BCR-ABL–expressing wild-type bone marrow cells transferred lethal 

CML, whereas BCR-ABL–expressing Alox5-/- cells could not induce CML at day 20, the 

percentage or total number of bone marrow LT-LSCs (GFP+Lin-c-Kit+Sca-1+ CD34-) was 

about half that of ST-LSCs/ MPP cells (GFP+Lin-c-Kit+Sca-1+ CD34+). However, at day 

90, the percentage or total number of LT-LSCs was about eightfold higher than that of 

ST-LSCs/MPP cells. These results suggest that Alox5 deficiency blocks differentiation of 

LT-LSCs, preventing these cells from developing CML. In these mice, the percentage of 

GFP-LT-HSCs was much lower than that of GFP-ST-HSCs/MPP cells, demonstrating 

that Alox5 deficiency did not similarly affect differentiation of normal LT-HSCs. pressing 

Alox5-/- bone marrow cells failed to induce CML in secondary recipient mice. This result 

suggests that Alox5 deficiency causes the impairment of the function of LSCs. Alox5 

deficiency caused the impairment of the function of LSCs, and these cells were GFP+Lin-

c-Kit+Sca-1+  phenotypically, containing long-term (LT) HSCs, short-term (ST) HSCs 
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and multipotent progenitor (MPP) cells. We further investigated which of these cell 

populations is affected by Alox5 deficiency.   

Zileuton, a drug that has been currently used to treat human asthma, specifically 

inhibits the enzymatic activity of 5-LO, the product of the Alox5 gene128. To test its 

therapeutic effect on CML, BCR-ABL transduced BM cells were transplanted into 

recipient mice to induce CML, and then the CML mice were treated with a placebo, 

Zileuton or imatinib alone, or two agents in combination. All placebo-treated mice 

developed and died of CML within 4 weeks after the induction of CML by BCR-ABL, 

and Zileuton alone was even more effective than imatinib in prolonging survival of CML 

mice. About 7 weeks after the treatment with Zileuton, GFP+ Gr-1+ leukemia cells in 

peripheral blood of the mice gradually declined and dropped from over 50% to less than 

2%, indicating that myeloid leukemia is eventually eliminated. Treatment of CML mice 

with both Zileuton and imatinib had a better therapeutic effect than with either Zileuton 

or imatinib alone in prolonging survival of the mice. At the early stage of CML 

development, Zileuton treatment only caused a less marked reduction of white blood cell 

counts than did imatinib treatment. This therapeutic effect of Zileuton on CML is caused 

by inhibiting LSCs. Long-term (LT)-LSCs were found to accumulate in BM of the 

treated mice; however, short-term (ST)-LSCs and multipotent progenitor cells (MPPs 

were gradually depleted, suggesting that inhibition of 5-LO by Zileuton causes the 

blockade of differentiation of LT-LSCs. The inhibitory effect of Zileuton are consistent 

with those from above-described genetic studies using Alox5-/- mice, demonstrating that 
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targeting of the Alox5 pathway is potentially curative for CML, and this idea needs to 

tested in human CML patients. 

7. Hsp90 in CML 

Hsp90 is a molecular chaperone which is responsible for managing newborn 

protein folding and quality control in the cell.129 Besides involving in the regulation of 

misfolded proteins, Hsp90 is also a critical regulator maintains the stability and activation 

of a wide range of client proteins. 130 More important, most of its client proteins are 

mutated or hyperactivated oncoproteins which are involved in the proliferation, survival 

and anti-apoptosis in cancer development.131  

Hsp90 has low ATP-dependent catalytic activity and it could be inhibited by its 

ATP competitive inhibitors, such as geldanamycin (GA) and its derivative 17-allylamino-

17-emethoxygeldanamycin (17-AAG).132 Hsp90 always function as a heterodimer or 

homodimer. When Hsp90 is in its ATP-binding conformation, the two N-domains tightly 

interact and form an activated conformation. Together with the constitutively dimerizated 

C-domain, the activated Hsp90 could hydrolyze ATP and stabilize its client proteins 

which are located in its molecular clamp. 133 Prevention of this conformational change by 

its ATP competitive inhibitors blocks activation and stability of Hsp90’s client protein 

and suppresses the tumor cell proliferation. 

HSP90 is constitutively expressed at 2- to 10-fold higher levels in tumor cells 

compared to their normal counterparts, suggesting that it is critically important for tumor 

cell growth and survival134. As early as the 1980s, Oppermann found HSP90 could 
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interact with p60v-Src, stabilizing this client oncoprotein but they did not know what the 

mechanism for stabilizing was135. In 1994, Whitesell et al. first identified GA, which 

works as inhibitor of HSP90. They reported that GA could bind to Hsp90, followed by 

destabilization of v-src protein. They also observed a rapid, apparent dissociation of 

p60v-src from Hsp90 in drug-treated cells leading to p60v-src instability. This is the first 

work which sparked the idea that HSP90 can be designed as a target in tumor therapies. 

The list of HSP90 client proteins has grown strikingly over the last several years, 

including Her-2, Akt, Npm, b-Raf, Cdk4,136 and its inhibitors have achieved several 

exciting preclinical trials.134  

In 2000, Won et al. reported that BCR-ABL is a client protein of HSP90 and they 

observed the degradation of BCR-ABL protein after they treated human CML leukemia 

cell: K562, which harbors BCR-ABL, with GA137. This work indicated Hsp90 should be 

designed as a target in CML therapies (Figure 4). Later on, Bhalla and colleagues also 

reported that high (5 μM) concentrations of either GA or 17-AAG induced apoptosis in 

CML-derived cell lines, as well as in cells transfected with the BCR-ABL gene. 138 

Notably, imatinib resistant BCR-ABL mutant cells isolated from patients are also 

sensitive to 17-AAG treatment.139 All above studies demonstrate Hsp90 inhibitors could 

be promising drugs in the CML treatment.  
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Figure 5. Mechanism of Hsp90-BCR-ABL complex and its inhibition effect. 
Nucleotide-dependent cycling of the Hsp90-based super-chaperone machine Hsp90 forms 
the basis of a super-chaperone machine that promotes the proper folding of client proteins 
so that they can respond to a stimulus or bind ligand. However, the machine is in constant 
flux and cycles between two Hsp90 conformations, determined by nucleotide binding, 
which in turn specify which set of cochaperones associate with the chaperone complex. 
Cochaperones that can associate with one conformation or the other include p23, 
p50Cdc37, p60Hop, immunophilins, cyclophilins, Hsp70, Hip, phosphatase PP5, Hsp40, 
and BAG-1. Cycling of this machine is driven by ATP hydrolysis. Although Hsp90 is a 
weak ATPase, its activity is regulated by cochaperones and dramatically enhanced by 
client protein binding. A client protein’s half-life may be stochastically determined by the 
length of time it resides in association with the Hsp90-Hsp70 form of the chaperone 
machine, because at this time, the client protein is susceptible to ubiquitination and 
delivery to the proteasome. (Modified from Isaacs et al., Cancer Cell, 2003, vol. 3, 213-
217) 
 
 
 

Although GA and 17-AAG can be used in vitro, it is still difficult to use them in 

mice and clinical trials, as they are highly toxic and lowly soluble. Recently, IPI-504, a 

novel, water soluble HSP90 inhibitor, was developed by Infinity Pharmaceutical Co140. 

IPI-504 exists as a hydrochloride salt soluble in water in excess of 200mg/mL and is 
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4000- fold more soluble than 17-AAG. It has been previously been shown that IPI-504 

inter-converts with 17-AAG and exists in a pH and enzyme-mediated dynamic redox 

equilibrium, which has been observed in human clinical trials140. These data show that 

IPI-504 is a promising HSP90 inhibitor which can be used widely in CML mouse model 

and patients. 

 

8. PTEN and leukemias 

The gene Phosphatase and tensin homologue (PTEN) is deleted or inactivated in 

many human tumor types, including glioblastoma141, 142, endometrial carcinoma143, 

prostate cancer144, melanoma145 and certain lymphoid malignancies.146  The PTEN gene 

encodes a 403 amino acid protein that shares homology to dual-specificity 

phosphatases.141, 142 PTEN demonstrates phosphatase activity against the phospholipid 

product of PI3K kinase activity, phosphatidylinositol(3,4,5)-trisphosphate (PIP3).147-149 

PIP3 plays a critical role in the regulation of cell survival and growth signaling through 

the activation of the Ser/Thr protein kinase PDK1 and its downstream target, Akt.150, 151 

Activated Akt is a key signal regulator of PI3K signaling pathway which mainly 

promotes the cell growth, metabolism, survival, and glucose homeostasis152. Pten 

negatively regulates the PI3K-Akt pathway by blocking the Akt phosphorylation. In mice, 

a complete null mutation of Pten results in early embryonic lethality at E9.5 with 

abnormally patterned enlarged brains and defective placentas.153-155 In addition, Pten 

heterozygotes develop a broad range of tumors, including mammary, thyroid, 
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endometrial and prostate cancers153-155, as well as autoimmune disease156 and most Pten 

heterozygotes die within 1 year of birth. To investigate the physiological functions of 

Pten in adult tissues and organs, several groups already generated various tissue specific 

Pten conditional knockout strains using the Cre-Loxp system157, 158. Adult mice with a 

Pten conditional deletion in their hematopoietic system develop acute myeloid leukemia 

(AML) and acute lymphoblastic leukemia (ALL), and subsequently die in one month159, 

160. AKT1, the major PTEN downstream target, remains activated upon PTEN 

inactivation in human cancers161. Recent studies showed the deficiency of Akt1 is 

sufficient to inhibit several different kinds of tumors in Pten+/- heterozygous mice, 

including prostate cancer, endometrial carcinoma, thyroid neoplasia, intestinal polyps, 

and lymphoid hyperplasia162. All of these results confirmed the crucial role of the PTEN 

and AKT1 pathway in human cancers, including leukemia.  

Compared with mutation or deletion of Pten reported in lymphoid malignancie163 

and induction of AML in Pten conditional deletion mouse models159, 160, there are few 

studies to investigate Pten functions in CML. Recently, downregualtion of PTEN has 

been found in CD34+ LSCs in human CML patients by comparing the CML LSCs and 

normal HSCs gene expression with a microarray analysis, indicating PTEN could be a 

tumor suppressor in CML. Furthermore, using gene expression profiling, another study 

showed that the expression of 105-probe sets in mononuclear cells collected from CML 

patients with raised leukocyte counts who subsequently achieved complete cytogenetic 

response after 12 months on imatinib, differed substantially from that of patients who 

failed to achieve any degree of cytogenetic response. In the non-responder cohorts, 
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downregulation of PTEN was also observed. Although how BCR-ABL downregulates 

PTEN is still unknown, both clinical results confirmed the Pten expression level changes 

in CML patients. How Pten function as tumor suppressor in CML and whether Pten 

restrain LSCs in CML development are fundamental questions which need to be detailed 

investigated.  
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Chapter II 

Inhibition of heat shock protein 90 prolongs survival of mice with BCR-ABL-

T315I–induced leukemia and suppresses leukemic stem cells 

 

The work described in this chapter has been published (Peng et al.,2007). 

 

Abstract 

Development of kinase domain mutations is a major drug-resistance mechanism 

for tyrosine kinase inhibitors (TKIs) in cancer therapy. A particularly challenging 

example is found in Philadelphia chromosome–positive chronic myelogenous leukemia 

(CML) where all available kinase inhibitors in clinic are ineffective against 

the BCR-ABL mutant, T315I. As an alternative approach to kinase inhibition, an orally 

administered heat shock protein 90 (Hsp90) inhibitor, IPI-504, was evaluated in a murine 

model of CML. Treatment with IPI-504 resulted in BCR-ABL protein degradation, 

decreased numbers of leukemia stem cells, and prolonged survival of leukemic mice 

bearing the T315I mutation. Hsp90 inhibition more potently suppressed T315I-expressing 

leukemia clones relative to the wild-type (WT) clones in mice. Combination treatment 

with IPI-504 and imatinib was more effective than either treatment alone in prolonging 

survival of mice simultaneously bearing both WT and T315I leukemic cells. These 

results provide a rationale for use of an Hsp90 inhibitor as a first-line treatment in CML 

by inhibiting leukemia stem cells and preventing the emergence of imatinib-resistant 
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clones in patients. Rather than inhibiting kinase activity, elimination of mutant kinases 

provides a new therapeutic strategy for treating BCR-ABL-induced leukemia as well as 

other cancers resistant to treatment with tyrosine kinase inhibitors. 

 

Introduction 

The human Philadelphia chromosome (Ph) arises from a translocation between 

chromosomes 9 and 22 [t(9;22)(q34;q11)].14 The resulting chimeric BCR-ABL oncogene 

encodes a constitutively activated, oncogenic tyrosine kinase that induces chronic 

myeloid leukemia (CML) and B-cell acute lymphoblastic leukemia (B-ALL). The BCR-

ABL TKI, imatinib mesylate, induces a complete hematologic and cytogenetic response 

in the majority of chronicphase CML patients,164 but is unable to completely eradicate 

BCR-ABL–expressing leukemic cells,38, 165 suggesting that leukemia stem cells are not 

eliminated. Over time, patients frequently become drug resistant and develop progressive 

disease despite continued treatment.63, 65, 166-169 Resistance is predominantly due to 

emergence of kinase domain mutations. Three newly developed BCRABL kinase 

inhibitors—dasatinib,81AP23464,170 and AMN107171—inhibit most of imatinib-resistant 

BCR-ABL mutants at biochemical and cellular levels, but are ineffective against the 

BCR-ABL-T315I mutant.172, 173 New approaches are needed to treat drug-resistant forms 

of CML as well as BCR-ABL–induced B-ALL, a leukemia that does not respond well to 

available TKIs.172, 173 Heat shock protein 90 (Hsp90) is a highly conserved, constitutively 

expressed molecular chaperone that facilitates folding of client proteins such as BCR-

ABL, and affects the stability of these proteins.131, 134, 137, 139, 174 When BCR-ABL 
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contains resistance-conferring mutations, it becomes even more dependent on Hsp90 in 

vitro.139  We therefore evaluated the therapeutic effect of Hsp90 inhibition by using a 

novel water-soluble inhibitor, IPI-504,140 in drug-resistant animal models of leukemia 

induced by BCR-ABL-WT and T315I. 

 

Results 

 

Inhibition of Hsp90 by IPI-504 causes BCR-ABL protein degradation 
 

IPI-504 is the hydroquinone hydrochloride derivative of the well-described Hsp90 

inhibitor, 17-AAG; the chemical structure of IPI-504 is shown in Figure 1A. To examine 

the effects of IPI-504 on stability of BCR-ABL protein and to test whether the 

degradation of BCR-ABL protein is initiated through IPI-504–induced disassociation of 

BCR-ABL from Hsp90, T315I-32D myeloid cells were treated with IPI-504 for 30 

minutes and 4 hours, respectively. Hsp90 protein was immunoprecipitated and Hsp90-

associated BCR-ABL protein was assessed. IPI-504 induced complete disassociation of 

BCR-ABL and Hsp90 within 30 minutes, followed by loss of BCR-ABL protein at 4 

hours (Figure 1B). These results demonstrate that BCR-ABL protein is degraded after 

inhibition of Hsp90 by IPI-504 and this degradation occurs after disassociation of BCR-

ABL from Hsp90. To further demonstrate that IPI-504 mediates the degradation of BCR-

ABL through the proteasome, T315I-32D myeloid cells were treated with IPI-504 alone 

for up to 8 hours or with both IPI-504 and a proteasome inhibitor PS-341175  that should 
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inhibit BCR-ABL degradation caused by IPI-504. PS-341 restored IPI-504–mediated 

depletion of BCR-ABL protein (Figure 1C). 
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Figure 1. Inhibition of Hsp90 by IPI-504 causes BCR-ABL protein degradation. (A) 
Structure of IPI-504. (B) IPI-504–induced disassociation of BCR-ABL and Hsp90, and 
subsequent degradation of BCR-ABL protein. BCR-ABL-T315I–expressing 32D cells 
were treated with IPI-504 (2 µM) for 30 minutes and 4 hours, respectively. Protein 
lysates were analyzed by Western blotting using antibodies indicated. WCL indicates 
whole cell lysate; IP, immunoprecipitation; and IB, immunoblotting. (C) The proteasome 
inhibitor PS-341 restored IPI-504–mediated depletion of BCR-ABL protein. BCR-ABL-
T315I–expressing 32D cells were treated with IPI-504 (2 µM) alone or IPI-504 plus PS-
341 (100 nM) for 4 or 8 hours, respectively. Protein lysates were analyzed by Western 
blotting using antibodies indicated. The well-described Hsp90 client, Akt, was evaluated 
as a positive control. Note that the cells were pretreated with PS-341 for 30 minutes prior 
to the cotreatment with IPI-504 and PS-341. The black lines indicate that the lanes that 
were not adjacent on the same original Western blotting gel were brought together to 
generate this figure. 
  



42 
 

 
 
 
 
 
 
 
 
 
 

    

 

Figure 1. Inhibition of Hsp90 by IPI-504 causes BCR-ABL protein degradation. 
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Hsp90 is a therapeutic target for BCR-ABL–induced CML 

An investigation of whether Hsp90 is an effective target for the treatment of CML 

in vivo was conducted in the bone marrow transplantation (BMT) mouse model of CML, 

in which bone marrow cells from BALB/c donor mice pretreated with 5-fluorouracil (5-

FU) and transduced with BCR-ABL results in development of CML in BALB/c recipient 

mice.32 Mice with WT or T315Itransduced bone marrow from 5-FU–treated WT BALB/c 

donor mice were treated with a placebo, the Hsp90 inhibitor IPI-504, or imatinib alone, 

or the 2 agents in combination. All placebo-treated mice developed and died of CML 

within 3 weeks after BMT (Figure 2A). As expected, imatinib treatment was effective to 

treat WT-induced CML but not CML induced by T315I (Figure 2A). In a dose-dependent 

manner, treatment with IPI-504 alone significantly prolonged survival of mice with WT 

CML, but even more markedly prolonged survival of mice with T315I-induced CML 

(Figure 2A, P <0.001). Inhibition of Hsp90 by IPI-504 appears to be more effective in 

treating CML induced by T315I than by WT BCR-ABL, consistent with results in Figure 

1A and in line with previously reported results with the Hsp90 inhibitor, 17-AAG.20 In 

both cases, inhibition of Hsp90 results in degradation of mutant BCR-ABL more readily 

than WT. Treatment of mice with WT CML with both IPI-504 and imatinib was slightly 

more effective (but statistically insignificant) than with imatinib alone in prolonging 

survival of the mice (Figure 2A), while treatment of mice with BCR-ABL-T315I–

induced CML with these 2 drugs did not further prolong survival of the mice compared 
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with the mice treated with IPI-504 alone (Figure 2A). Prolonged survival of IPI-504–

treated CML mice correlated with decreased peripheral blood BCR-ABL–expressing 

(GFP-positive) leukemia cells during therapy (Figure 2B, P <0 .001) and less 

splenomegaly at necropsy (Figure 2C). As lung hemorrhage caused by infiltration of 

mature myeloid leukemia cells is a major cause of death of CML mice,32 we further 

evaluated the therapeutic effect of IPI-504 on CML by examining the severity of lung 

hemorrhages at day 15 after BMT. Compared with placebo-treated mice, fewer 

hemorrhages were observed in the lungs of IPI-504–treated mice with BCR-ABLT315I–

induced CML (Figure 2D).Western blot analysis of spleen cell lysates from the treated 

CML mice showed that IPI-504 reduced the levels of BCR-ABL protein in CML mice 

(Figure 2E). 
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Figure 2. Hsp90 is a therapeutic target for CML induced by either BCR-ABL-WT 
or BCR-ABL-T315I. (A) Treatment with the Hsp90 inhibitor IPI-504 prolonged survival 
of CML mice. Mice with BCR-ABL-WT (left panel) or BCR-ABL-T315I (right panel) 
induced CML were treated with placebo (n=15 for BCR-ABL-WT; n=13 for 
BCR-ABL-T315I), imatinib (100 mg/kg, twice a day by gavage) (n =8 for both BCR-
ABL-WT and -T315I), IPI-504 (50 mg/kg, once every 2 days by gavage) (n=20 for both 
BCR-ABL-WT and BCR-ABL-T315I), IPI-504 (100 mg/kg, once every 2 days by 
gavage) (n=8 for both BCR-ABL-WT; n=7 for BCR-ABL-T315I), and imatinib+IPI-504 
(n=12 for both BCR-ABL-WT and -T315I), respectively, beginning at day 8 after 
transplantation. The IPI-504–treated mice with BCR-ABL-T315I–induced CML lived 
longer than those with BCR-ABL-WT–induced CML (comparing between left and right 
panels). (B) Flow cytometry evaluation of the leukemic process in IPI-504 or imatinib 
treated CML mice. The number of circulating leukemic cells (calculated as percentage of 
Gr-1+GFP+ cells X white blood cell count) in mice with BCR-ABL-WT (left panel)  or 
BCR-ABL-T315I (right panel) induced CML treated with placebo, imatinib, IPI-504, or 
the combination of imatinib and IPI-504 was determined on day 14 after transplantation. 
(C) Spleen weights of CML mice treated with placebo, imatinib, IPI-504, and 
combination of imatinib and IPI-504. (Left panel) BCR-ABL-WT. (Right panel) BCR-
ABL-T315I. (D) Photomicrographs of hematoxylin and eosin–stained lung sections from 
drug-treated mice at day 14 after transplantation. (E) Western blot analysis of spleen-cell 
lysates for degradation of BCR-ABL in IPI-504–treated CML mice. IB indicates 
immunoblot. 
  



46 
 

 
 
 
 

 

 

Figure 2. Hsp90 is a therapeutic target for CML induced by either BCR-ABL-WT 
or BCR-ABL-T315I.   
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Hsp90 is also a therapeutic target for B-ALL induced by BCR-ABL-T315I 

CML often initiates in a chronic phase and eventually progresses to a terminal 

blastic phase, in which either acute myeloid or acute B-lymphoid leukemia develops.176 

Some Ph+ leukemia patients have B-ALL as their first clinical appearance. B-ALL is 

similar pathologically to acute B-lymphoid leukemia in the blastic phase of  

CML. Notably, both forms of acute leukemia do not respond well to available BCR-ABL 

kinase inhibitors.172, 173 To model B-ALL in mice, BCR-ABL–transduced bone marrow 

cells from donor mice that are not pretreated with 5-FU are transplanted into BALB/c 

mice.32, 177 In this model, the malignant pre-B cells express the cell surface markers B220 

and CD19, and phenotypically resemble de novo Ph_ B-ALL and lymphoid blast crisis of 

CML.32, 178 To determine whether inhibition of Hsp90 is effective in treating WT or 

T315I-induced B-ALL, these mice were treated with a placebo, IPI-504 alone, imatinib 

alone, or the 2 agents in combination (Figure 3). All placebo-treated recipients of WT or 

T315Itransduced bone marrow developed and died of B-ALL within 5 to 6 weeks after 

BMT (Figure 3A). IPI-504 treatment did not prolong survival of mice with BCR-ABL-

WT–induced B-ALL (Figure 3A), in contrast to its therapeutic effect on CML induced by 

BCR-ABL-WT (Figure 2A). Given the dose response seen in the CML study and 

significant improvement in survival when the dose of IPI-504 is increased from 50 to 100 

mg, a similar increase in dose may be needed in B-ALL. However, similar to the effect 

seen in CML (Figure 2A), IPI-504 treatment significantly prolonged survival of mice 

with T315I- B-ALL (Figure 3A, P <0.001). Prolonged survival of IPI-504–treated B-

ALL mice correlated with decreased numbers of peripheral blood BCR-ABL–expressing 
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leukemia cells and spleen weights during therapy (Figure 3B-C, P <0.001). Once again, 

inhibition of Hsp90 by IPI-504 is more effective against tumor cells bearing T315 than 

BCR-ABL-WT. 
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Figure 3. Hsp90 is a therapeutic target for B-ALL induced by BCR-ABL-T315I. (A) 
Treatment with the Hsp90 inhibitor IPI-504 prolonged survival of mice with B-ALL 
induced by BCR-ABL-T315I (right panel) but not by BCR-ABL-WT (left panel). B-ALL 
mice treated with a placebo (n=9 for BCR-ABL-WT; n=8 for BCR-ABL-T315I), 
imatinib (n=8 for BCR-ABL-WT; n=10 for BCR-ABL-T315I), IPI-504 (n=13 for 
BCR-ABL-WT; n=8 for BCR-ABL-T315I), and combination of imatinib and IPI-504 
(n=10 for BCR-ABL-WT; n=8 for BCR-ABL-T315I). (B) Flow cytometric evaluation of 
the leukemic process in IPI-504– or imatinibtreated mice with B-ALL induced by BCR-
ABL-WT (left panel) or BCR-ABLT315I (right panel). The number of circulating 
leukemic cells (calculated as percentage of B220+GFP+cells X white blood cell count) in 
B-ALL mice treated with placebo, imatinib, IPI-504, or the combination of imatinib and 
IPI-504 was determined on days 11, 14, and 17 after transplantation. (C)Spleen weights 
of B-ALL mice treated with placebo, imatinib, IPI-504, and combination of imatinib and 
IPI-504. (Left panel) BCR-ABL-WT. (Right panel) BCR-ABL-T315I. 
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Figure 3. Hsp90 is a therapeutic target for B-ALL induced by BCR-ABL-T315I.  
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Hsp90 inhibition has differential effects on BCR-ABL degradation and Hsp70 

induction in myeloid and lymphoid cells in vitro.  

To investigate why inhibition of Hsp90 is more effective in treating CML than B-

ALL (Figures 2-3), we compared the effects of treatment with IPI-504 on BCR-ABL-WT 

or BCR-ABL-T315I at protein level in a mouse myeloid cell line (32D) and a mouse 

lymphoid cell line (BaF/3) (Figure 4). BCR-ABL–expressing 32D and BaF/3 cells were 

treated with different concentrations of IPI-504. After treatment, levels of BCR-ABL-WT 

protein were dramatically decreased in 32D cells (Figure 4A), but only slightly in BaF/3 

cells (Figure 4B). Compared with BCR-ABL-WT, BCR-ABL-T315I was more sensitive

to IPI-504–induced degradation in both 32D and BaF/3 cells, but levels of BCR-ABL 

protein were decreased much more markedly in 32D cells than in BaF/3 cells (Figure 4A-

B). These results indicate that inhibition of Hsp90 by IPI-504 affects BCR-ABL stability 

more strongly in myeloid cells than in lymphoid cells. It has been shown that the Hsp90 

antagonists geldanamycin and 17-AAG alter chaperone association of Hsp90 with BCR-

ABL and facilitate binding of BCR-ABL to heat shock protein 70 (hsp70), resulting in 

degradation of BCR-ABL by the proteasome.137, 138, 179, 180 Recent studies have shown 

that Hsp70 plays a positive role in BCR-ABL–mediated resistance to apoptosis.181, 182 If 

Hsp70 plays a role in decreased sensitivity of B-ALL than CML to IPI-504 treatment, we 

expect that after IPI-504 treatment, Hsp70 would be induced to a much higher level in 

BCR-ABL–expressing lymphoid cells than in myeloid cells. However, an increase in 

intracellular Hsp70 levels was observed in IPI-504–treated BCR-ABL–expressing 32D 

but not Ba/F3 cells (Figure 4A-B). This observation is consistent with our in vivo 
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observation in cells from CML and B-ALL mice, which showed that the level of Hsp70 

in leukemic cells from IPI-504-treated CML mice is higher than that in leukemic cells 

from B-ALL mice (Figure 4C-D). Thus, Hsp70 is only a partial explanation for the 

decreased sensitivity of B-ALL compared with CML upon IPI-504 treatment (Figures 2-

3). 
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Figure 4. Hsp90 inhibition has differential effects on BCR-ABL degradation and 
Hsp70 induction in myeloid and lymphoid cells in vitro and in vivo. (A) In 32D cells, 
IPI-504–induced degradation of BCR-ABL-T315I was greater than that of BCR-ABL-
WT. BCR-ABL-WT– or BCR-ABL-T315I–expressing 32D cells were treated with 
different concentrations of IPI-504 for 12 hours. Protein lysates were analyzed by 
Western blotting using antibodies indicated. (B) In Ba/F3 cells, IPI-504 induced 
significant degradation of BCR-ABL-T315I but not BCR-ABL-WT. BCR-ABL-WT– or 
BCR-ABL-T315I–expressing 32D cells were treated with different concentrations of IPI-
504 for 12 hours. Protein lysates were analyzed by Western blotting using antibodies 
indicated. (C) Mice with BCR-ABL-T315I–induced CML were treated with placebo, 
imatinib (100 mg/kg, twice a day by gavage), and IPI-504 (50 mg/kg, once every 2 days 
by gavage), respectively, for 8 days, beginning at day 8 after transplantation. At 6 hours 
after the last dose, protein lysates of leukemic cells from the spleen of the treated CML 
mice were analyzed by Western blotting using antibodies indicated. The black line 
indicates that the lanes that were not adjacent on the same original Western blotting gel 
were brought together to generate this figure. (D) Mice with BCR-ABL-T315I–induced 
B-ALL were treated with placebo, imatinib, and IPI-504, respectively, for 8 days, 
beginning at day 8 after transplantation. At 6 hours after the last dose, protein lysates of 
leukemic cells from the spleen of the treated mice were analyzed byWestern blotting 
using antibodies indicated. The black line indicates that the lanes that were not adjacent 
on the same original Western blotting gel were brought together to generate this figure. 
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Figure 4. Hsp90 inhibition has differential effects on BCR-ABL degradation and 

Hsp70 induction in myeloid and lymphoid cells in vitro and in vivo. 
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Inhibition of Hsp90 suppresses CML stem cells 

In the BMT CML model, imatinib prolongs survival of mice with BCR-ABL–induced 
CML,177, 183 but does not stop progression of the disease,177 partially due to the inability 
of imatinib to completely eradicate leukemia stem cells.77 Hematopoietic stem cells 
(HSCs) have been identified in the CML model by showing that the Lin-c-Kit+Sca-1+ 
population is sufficient to confer leukemia in recipient mice. To investigate whether 
inhibition of Hsp90 has an  inhibitory effect on leukemia stem cells in CML, we first 
isolated bone marrow cells from mice with T315I-induced CML and cultured the cells in 
conditions that support survival and growth of HSCs.184, 185 During culture, the cells were 
treated with IPI-504 or imatinib (Figure 5). Six days after the treatment, we analyzed 
survival of GFP+Lin-c-Kit+Sca-1+ cells, representing leukemia stem cells remaining in the 
culture. FACS analysis showed that compared with the untreated group, imatinib 
treatment did not lower the percentage and the number of leukemia stem cells, whereas 
IPI-504 treatment had a dramatic inhibitory effect on the stem cells (Figure 5A, P 
<0.001). We next tested whether IPI-504 inhibited leukemia stem cells in CML mice. 
BCR-ABLT315I–induced CML were treated with a placebo, imatinib, or IPI-504 for 6 
days, and bone marrow cells were analyzed by FACS for GFP+Lin-c-Kit+Sca-1+ cells. 
Consistent with the in vitro results, imatinib treatment did not lower the percentage and 
number of leukemia stem cells, compared with the untreated group, whereas IPI-504 
treatment had a dramatic inhibitory effect on the stem cells (Figure 5B). To determine 
whether IPI-504 had an effect on normal HSCs in mice, WT mice were treated with IPI-
504 or placebo for 2 weeks. Analysis of bone marrow from these mice showed that there 
was no change in levels of Lin-c-Kit+Sca-1+ cells from any treatment group (Figure 5C), 
indicating that IPI-504 treatment did not inhibit survival of normal HSCs.  
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Figure 5. Targeting Hsp90 by IPI-504 inhibits survival of leukemia stem cells. (A) 
Bone marrow cells isolated from C57BL/6 (B6) mice with BCR-ABL-T315I–induced 
CML were cultured in vitro (5 X 106 cells/6 cm tissue culture plate) under the stem cell 
condition (―Materials and methods‖) in the presence or absence of IPI-504 (0.1 µM) or 
imatinib (2 µM) for 6 days (changing the stem cell medium containing placebo or IPI-
504 at day 3) followed by FACS analysis of leukemia stem cells (GFP+Lin-c-Kit+Sca-1+). 
(B) Mice with BCR-ABL-T315I–induced CML were treated with a placebo (n=5), 
imatinib (100 mg/kg, twice a day by gavage) (n=5), and IPI-504 (50 mg/kg, once every 2 
days by gavage) (n=5), respectively, for 6 days beginning at day 8 after transplantation. 
Bone marrow cells were isolated from the treated CML mice, and leukemia stem cells 
were analyzed by FACS. The numbers of cells represent total leukemia stem cells in 
average from femur and tibia of each treated CML mouse. (C) IPI-504 had no inhibitory 
effect on survival of normal HSCs in mice. B6 mice were treated with a placebo (n=5), 
imatinib (100 mg/kg, twice a day by gavage) (n=5), and IPI-504 (50 mg/kg, once every 2 
days by gavage) (n=5), respectively, for 2 weeks. Bone marrow cells were isolated from 
the treated mice, and were analyzed by FACS. 
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Figure 5. Targeting Hsp90 by IPI-504 inhibits survival of leukemia stem cells.  
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Inhibition of Hsp90 prevents emergence of the T315I-expressing clones over the WT 

clones. 

The effectiveness of IPI-504 in prolonging survival of mice with CML and B-

ALL induced by the T315I mutant (Figures 2-3) suggests that inhibition of Hsp90 would 

preferentially prevent emergence of the T315I-expressing clones over the WT clones. To 

test this hypothesis, studies were performed in mice bearing both populations of leukemic 

cells. In the first study, bone marrow cells (BMCs) from Ly 5.1 and Ly5.2 C57BL/6 mice 

were transduced with BCR-ABL-T315I and BCR-ABL-WT, respectively. Equal numbers 

of donor BMCs were mixed and transplanted into recipient mice. Mice were treated with 

a placebo, imatinib, or IPI-504. During the treatment, FACS analysis was performed to 

assess the percentages of GFP+Gr-1+Ly5.1+ (representing T315Iexpressing cells) and 

GFP+Gr-1+Ly5.1- (representing WT expressing cells) cells in peripheral blood of the 

CML mice (Figure 6A). In placebo-treated mice, the ratio between T315I- and WT-

expressing cells remained unchanged, and in imatinib-treated mice, T315I-expressing 

cells became dominant. In contrast, with continuous treatment of IPI-504, T315I-

expressing cells gradually decreased to a low level (Figure 6A). Mice treated with IPI-

504 lived significantly longer than those treated with imatinib (Figure 6A). Consistent 

with previous data, these results indicate that inhibition of Hsp90 preferentially 

suppresses T315I-expressing leukemic clones over the WT-expressing clones. In the 

second study, BMCs from BALB/c mice were transduced with BCR-ABLT315I and 

BCR-ABL-WT, respectively, and equal numbers of the transduced cells were mixed and 

transplanted into recipient mice. Mice were treated with a placebo, imatinib, IPI-504, or 
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both agents (Figure 6B). Mice treated with the combination of IPI-504 and imatinib 

survived significantly longer than those treated with IPI-504 or imatinib alone. Results 

from these studies suggest that the combined use of IPI-504 and imatinib would be a 

viable strategy for preventing emergence of imatinib-resistant clones in the clinic. 

 

Other imatinib-resistant BCR-ABL mutants are also sensitive to Hsp90 inhibition 

Other resistance-conferring BCR-ABL kinase domain mutations have been 

observed in imatinib refractory CML patients, including E225K, M351T, and Y253F.65, 

166 Consistent with the increased dependency of BCR-ABL-T315I on Hsp90, IPI-504 also 

prolonged survival of mice with CML induced by these mutants (Figure 7).  
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Figure 6. Inhibition of Hsp90 by IPI-504 preferentially reduces growth of myeloid 
leukemic cells harboring the BCR-ABL-T315I mutant. (A) Bone marrow cells from 
C57BL/6-Ly5.2 mice were transduced by BCR-ABL-WT, and bone marrow cells from 
C57BL/6-Ly5.1 mice were transduced by BCR-ABL-T315I. The transduced cells were 
1:1 mixed, and 0.5 X 106 mixed cells were injected into each recipient mouse (C57BL/6-
Ly5.2). The mice were treated with a placebo (n=10), imatinib (100 mg/kg, twice a day) 
(n=10), and IPI-504 (50 mg/kg, once every 2 days) (n=10), respectively, beginning at 8 
days after BMT. At days 12 and 15 after BMT, GFP_ cells viable cells in peripheral 
blood of the mice were analyzed for Gr-1+Ly5.1+cells that represented BCR-ABL-T315I–
expressing myeloid cells. Gr-1+Ly5.1- cells represented BCR-ABL-WT–expressing 
myeloid cells. Percentages of BCR-ABLT315I–expressing myeloid cells in peripheral 
blood of IPI-504–treated CML mice were further analyzed at days 21 and 28 after BMT. 
The FACS results for one representative mouse from each treatment group were shown. 
IPI-504 but not imatinib significantly prolonged survival of the CML mice. (B) 
Simultaneous inhibition of Hsp90 and BCR-ABL kinase activity with IPI-504 and 
imatinib significantly prolongs survival of CML mice carrying both T315-expressing and 
WT-BCR-ABL leukemia cells. BALB/c mice were used to induce CML, and each 
treatment group had 10 mice. 
 
 
Figure 7. Other imatinib-resistant BCR-ABL mutants are also sensitive to Hsp90 
inhibition. IPI-504 treatment prolonged survival of mice with CML induced by imatinib-
resistant BCR-ABL-E225K (n=10), -M351T (n=10), or -Y253F (n=10). 
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Figure 6. Inhibition of Hsp90 by IPI-504 preferentially reduces growth of myeloid 
leukemic cells harboring the BCR-ABL-T315I mutant. 
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Figure 7. Other imatinib-resistant BCR-ABL mutants are also sensitive to Hsp90 
inhibition.  
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Discussion 

While the mechanism of primary resistance to imatinib and dasatinib therapy in 

CML patients is poorly understood, the mechanisms of secondary resistance have been 

very well characterized. Kinase domain mutations represent the predominant form of 

secondary resistance accounting for up to 90% of cases. Currently, no drugs have been 

effective in treating patients with CML and B-ALL harboring the BCR-ABL-T315I 

mutation. Recent clinical trials with dasatinib revealed that patients known to have the 

BCR-ABL-T315I mutation prior to therapy had no objective response to treatment.173 

Thus, as newer tyrosine kinase inhibitors (TKIs) that effectively block other resistant 

mutations become clinically available, the T315I mutation may become the predominant 

acquired resistance mutation. The challenge for development of an effective Ph+ 

leukemia therapy is therefore to develop an alternative treatment strategy that does not 

rely solely on kinase domain inhibition but rather results in degradation of the offending 

BCR-ABL protein regardless of its mutational status. Herein, we demonstrate that direct 

inhibition of Hsp90 function with IPI-504 represents an alternative treatment strategy that 

results in degradation of the offending BCR-ABL protein regardless of its mutational 

status. Our findings suggest that inhibition of other targets that impact Hsp90 function 

might also be effective in murine models of Ph+ leukemia. For example, histone 

deacetylatase (HDAC) inhibitors that induce acetylation and inhibition of Hsp90 might 

also be active.186-190  

While imatinib induces complete hematologic and cytogenetic remission in the 

majority of newly diagnosed chronic-phase CML patients,191 molecular remission is 



64 
 

difficult to achieve in these patients. One study designed to look at newly diagnosed 

chronic phase patients using the standard-dose imatinib (400 mg daily), with a 18-month 

follow-up showed that only 39% of patients obtained a major molecular response (greater 

than or equal to 3-log reduction of BCR-ABL mRNA), whereas even fewer patients, 4%, 

obtained a complete molecular response rate (negativity by reverse transcription–

polymerase chain reaction [RT-PCR]).190 One prediction as to why the patients do not 

obtain a complete molecular response is perhaps due to imatinib not completely 

eradicating the BCR-ABL-positive stem cells. It is likely that a small number of leukemic 

cells remain in imatinib-treated CML patients, and these cells may function as leukemia 

stem cells responsible for disease relapse. The inhibitory effects of IPI-504 on leukemia 

stem cells, while appearing to spare the normal hematopoietic stem cells, merit further 

investigation. Sole inhibition of BCR-ABL by imatinib has limited inhibitory effects on 

leukemic stem cells in mice. Thus, a pathway distinct from BCR-ABL is likely involved 

in suppression of survival of leukemic stem cells by IPI-504. A plausible explanation is 

that BCR-ABL cooperates with a non–BCR-ABL signaling pathway that is driven by an 

unknown Hsp90 client protein to maintain survival of leukemic stem cells. IPI-504 is able 

to inhibit both pathways, as would be necessary to suppress leukemic stem cells. The 

putative pathway that is Hsp90 dependent might be less critical for normal hematopoietic 

stem cells. The putative non–BCR-ABL pathway in leukemic stem cells requires further 

study. The inhibitory effects of IPI-504 on BCR-ABL-T315I–expressing cells indicate 

that Hsp90 may serve as an effective target for treating imatinib- and dasatinib-resistant 

CML patients, as well as patients with blast crisis or with Ph+ ALL. The simultaneous 
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use of IPI-504 and imatinib in chronic-phase CML patients might prevent the 

development of imatinib-resistant clones and inhibit growth of highly proliferative 

leukemic cells through 

inhibition of BCR-ABL kinase activity, thereby providing a rationale for combination 

strategy(Figure 8). Likewise, early use of IPI-504 to suppress initial B-ALL clones may 

help prevent the transition of CML to advanced B-ALL caused by the BCR-ABL-T315I 

mutation.  

Although inhibition of Hsp90 significantly prolonged the CML mice survival 

curve, eventually the mice are still dead as CML after a continuous long-term IPI-504 

treatment. There are at least three possible reasons to cause this IPI-504 resistance in 

CML mice. The first one might be that a Hsp90 mutant has gradually grown up and it 

facilitates the leukemia cells to achieve the growth advantage over the wild type Hsp90 

expressing leukemia cells. Although there are no clinical or mouse models report the 

Hsp90 mutations occurrence after Hsp90 inhibitors treatment, a recent yeast-based 

system showed a yeast Hsp90 mutant (A107N), a human Hsp90α mutant (A121N) and a 

human Hsp90β (A116N) are significantly resistant to Hsp90 inhibitors, including 

redicicol and 17-AAG.192 This study reminds us it is necessary to collect the DNA 

samples from the dying CML mice after IPI-504 long-term treatment and sequence 

Hsp90 to check whether there are IPI-504 mutations coming out. The second reason 

might be LSCs who are resistant to IPI-504 are selected from long-term treatment and 

these LSCs gradually self-renew and differentiate mature leukemia cells which are also 

insensitive to Hsp90 inhibition. This possibility has been implicated in our CML mice 
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and LSCs treatment. When we administrated CML mice with Hsp90, we found a 

dramatic reduce of LSCs after two weeks IPI-504 treatment. However, IPI-504 did not 

eliminate all the LSCs in vivo. Later on, these residual LSCs might initiate leukemia 

development and cause the disease mice death. Similar to in vivo situation, when LSCs 

were treated with IPI-504 in vitro, there was still about 3% LSCs leftover after 6 days 

IPI-504 treatment, indicating small percentage of LSCs are still alive and they might 

responsible to resistance. These results indicate inhibition of sole Hsp90 function is not 

enough to totally eradicate LSCs and small population of LSCs still can survival, 

depending on other unknown mechanisms and other chaperon protein might also be 

involved in this process. More studies are definitely needed to investigate the LSCs 

functions and how they maintain themselves.  

The third possibility might be the inhibitory effect of IPI-504 could not 

completely block the Hsp90 function. LSCs still can self-renew and initiate the disease 

based on partial function of Hsp90 after IPI-504 treatment and finally cause the death of 

mice. To test this possibility, at least two experiments could be carried out. First, a more 

potent Hsp90 inhibitor could be applied in the same assay. Second, donor bone marrow 

cells could be collected from Hsp90 deficient mice and CML mice could be induced by 

these Hsp90 deficient donor cells. Unfortunately, Hsp90β strain is not available because 

The homozygous mice failed to form a fetal placental labyrinth and died at embryonic 

day 10.193 Also the Hsp90α knockout strain is not available. A knockdown strategy by 

both isoforms shRNA might be substituted in the similar study, providing genetic 

evidence of Hsp90 in LSCs. 
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While IPI-504 was active in BCR-ABL–induced B-ALL, the activity was not as 

pronounced as in CML. Studies to evaluate the mechanism for this difference showed 

that Hsp70 was more strongly induced in myeloid cells compared with lymphoid cells. 

Hsp70 is reported to exert antiapoptotic effects in a variety of settings and cell types, 

including leukemia cells that are exposed to Hsp90 inhibitors.181, 182 In separate studies, 

inhibition of Hsp90 was shown to result in increased binding of BCR-ABL to Hsp70, 

thereby favoring proteasome-mediated degradation of BCRABL.137,138, 179, 180 Thus, on 

one hand, Hsp70 induction could counter the effects of Hsp90 inhibition, while other 

studies suggest that Hsp70 could have a positive influence on the ability of Hsp90 

inhibition to result in degradation of BCR-ABL. In addition, imatinib has been shown to 

decrease the level of Hsp70 in BCR‑ABL‑expressing HL60 cells,194 supporting the 

anti‑apoptotic role of Hsp70 in BCR‑ABL‑stimulated cell growth. 

We studied further the relationship between Hsp70 inhibition and stability of the 

BCR-ABL protein. If Hsp70 cooperates with Hsp90 to facilitate degradation of BCR-

ABL protein, inhibition of Hsp70 should increase level of BCR-ABL protein in cells. To 

test this hypothesis, we treated BCR-ABL-expressing 32D myeloid cells with an Hsp70 

inhibitor, KNK437.195 Inhibition of Hsp70 by KNK437 did not prevent BCR‑ABL 

degradation caused by inhibition of Hsp90 by IPI‑504 (Figure. 9). This result does not 

support a positive role of Hsp70 in Hsp90‑mediated degradation of BCR‑ABL. However, 

inhibition of Hsp70 by KNK347 did not synergistically increase IPI‑504‑induced 

apoptosis of BCR‑ABL‑expressing 32D myeloid cells either (data not shown). 
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Functional relationship between Hsp70 and Hsp90 needs to be studied further and 

elucidation of the mechanism of differential sensitivity to Hsp90 inhibition between 

myeloid and lymphoid leukemia will require more extensive studies, as variation in 

Hsp70 induction is not likely the cause. 

In summary, IPI-504 represents a novel therapeutic approach whereby inhibition 

of Hsp90 in CML patients and Ph+ ALL may significantly advance efforts to develop a 

cure for these diseases. The rationale underlying the use of IPI-504 for kinase inhibitor–

resistant CML has implications for other cancers that display oncogene addiction to 

kinases that are Hsp90 client proteins. While resistant conferring kinase-domain 

mutations were originally described in CML, analogous mutations have been observed in 

lung cancer, gastrointestinal stromal tumor, and the hypereosinophilic syndrome with 

resistance to kinase inhibitor therapy.196 IPI-504 is currently in clinical trials to evaluate 

its potential for treating cancer that has become resistant to therapy with tyrosine kinase 

inhibitors such as imatinib.  
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Figure 8. Combination therapy of CML using Hsp90 and BCR-ABL kinase 
inhibitors. After imatinib-resistant mutations of BCR-ABL occur in leukemic cells, two 
types of cells may exist in a patient: cells harboring mutant BCR-ABL (such as BCR-
ABL-T315I) and cells harboring wild type BCR-ABL. Treatment with a BCR-ABL 
kinase inhibitor alone (such as imatinib) would lead toselective growth of leukemic cells 
harboring mutant BCR-ABL, although leukemic cells harboring wild type BCR-ABL 
were suppressed. In contrast, treatment with both Hsp90 and BCR-ABL kinase inhibitors 
(such as IPI-504 and imatinib) would inhibit growth of both types of leukemic cells, with 
a much stronger inhibition of leukemic cells harboring mutant BCR-ABL. This 
combination therapy provides a novel therapy for Ph

+ 
leukemis.  
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Figure 8. Combination therapy of CML using Hsp90 and BCR-ABL kinase 
inhibitors. 
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Figure 9. Inhibition of Hsp70 by KNK437 does not prevent BCR-ABL degradation 
caused by inhibition of Hsp90 by IPI-504. BCR-ABL-expressing 32D cells were 
treated with KNK437 (100 or 400 mM) or IPI-504 (2 mM) alone or both for 24 hours. 
Protein lysates were analyzed by Western blotting using antibodies indicated. Inhibition 
of Hsp70 by KNK437 did not prevent BCR-ABL degradation caused by inhibition of 
Hsp90 by IPI-504. 
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Figure 9. Inhibition of Hsp70 by KNK437 does not prevent BCR-ABL degradation 
caused by inhibition of Hsp90 by IPI-504 



73 
 

Materials and methods 

 

Cell lines 

The 32D myeloid cell line was grown in RPMI 1640 medium containing 

10% FCS and 10% WEHI medium. The BaF/3 pre-B-cell line was grown in 

RPMI 1640 medium containing 10% FCS, 10% WEHI medium, and 50 µM 

2-mercaptoethanol. To generate the BCR-ABL–expressing 32D or BaF/3 

line, the cells were transduced with the BCR-ABL-WT- or BCR-ABL-T315IIRES- 

GFP-MSCV retrovirus, and the BCR-ABL–expressing cells were 

selected by GFP sorting by fluorescence-activated cell sorter (FACS). 

 

Histology 

The lungs from the placebo- or drug-treated mice were fixed in Bouin 

fixative (Fisher Scientific, Pittsburgh, PA) for 24 hours at room temperature, 

followed by an overnight rinse in water. 10-µm sections were stained with 

hematoxylin and eosin (H&E) and observed by a model DMRE compound 

microscope (Leica, Heidelberg, Germany). All sections were imaged with a 

2.5 X PH1 objective (NPLan, NA 0.25) and 10 X PH1 objective (NPLan, 

NA 0.40). All images were imported into MetaMorph software (Molecular 

Devices, Downingtown, PA) as a series of tagged image files. All images 

were then constructed in Adobe Photoshop 6.0 (Adobe, San Jose, CA). 
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Antibodies and Western blot analysis 

Antibodies against c-ABL, Hsp90, Hsp70, and actin were purchased 

from Santa Cruz Biotechnology (Santa Cruz, CA). Protein lysates were 

prepared by lysing cells in radioimmunoprecipitation (RIPA) buffer, 

and immunoprecipitation and Western blotting were carried out as 

described previously.197 

 

Generation of MSCV-BCR-ABLIRES-GFP Virus Supernatant 
 

Culture 293T cells in 15 cm tissue culture dish (there are about 1 × 108 cells in confluent 

plates). When the 293T cells reach 90% confluence in the 15 cm dish, remove the 

medium and wash cells once with 1XPBS. Remove PBS, add 3 mL of trypsin–EDTA 

solution, and stop the reaction by adding 20 mL 293T medium. Collect cells carefully in 

50 mL centrifuge tube and spin at 1500 rpm, 10 mins at room temperature. The 293T 

cells are passaged to 6 cm dish at 4 × 106 cells/dish at the day before transfection. Change 

4 mL fresh 293T medium to each dish before transfection. In a 15 mL tube, add 10µg 

MSCV-BCR-ABL-GFP plasmid, 5 µg Ecopack plasmid, 62 µl 2 M CaCl2 and sterile 

water to 500 µl total volume. Briefly vortex.  Add 500µl 2×HBS to the tube and mix by 

vortexing for 10s. Gently and quickly drop the DNA/HBS solution onto 293T cells.  

Rock the dishes forward and backward a few times to achieve even distribution of 

DNA/Ca3(PO4)2 particles. After 24 h, remove the old medium and add 4 mL fresh 293T 

medium 9. After 48 h post-transfection of 293T cells, collect the supernatant by 10 mL 
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BD syringe and filter the supernatant through 0.45 µm syringe filter. Aliquot virus 

supernatant in 4 mL/tube and store at −80ºC. 

 

Bone marrow transduction/transplantation 

The retroviral vector MSCV-IRES-eGFP198 carrying the p210 BCR-ABL 

cDNA was used to make high-titer, helper-free, replication-defective 

ecotropic virus stock by transient transfection of 293T cells using the kat 

system,199 as previously described.26 Six- to 10-week-old wild-type BABL/c 

or C57BL/6 mice (The Jackson Laboratory) were used for leukemogenesis 

experiments. Induction of CML32 and B-ALL32, 178 was as described 

previously. Briefly, to model CML, bone marrow from 5-FU–treated 

(200 mg/kg) donor mice was transduced twice with BCR-ABL retrovirus by 

cosedentation in the presence of IL-3, IL-6, and SCF. To model B-ALL, 

bone marrow from non–5-FU–treated donors was transduced without 

cytokines. Wild-type recipient mice were prepared by 900 cGy (for 

BABL/c) or 1150 cGy (for C57BL/6) gamma irradiation and a dose of 

0.5 X 106 (CML) or 1.0 X 106 (B-ALL) cells transplanted via tail vein 

injection. Diseased mice were analyzed by histopathological and biochemical 

analyses as described previously.32 

 

Flow cytometry 

Hematopoietic cells were collected from peripheral blood and bone marrow 
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of the diseased mice, and red blood cells were lysed with NH4Cl red blood 

cell lysis buffer (pH 7.4). The cells were washed with PBS, and stained with 

B220-PE for B cells, Gr1-APC for neutrophils, and Sca1-APC/c-kit-PE for 

hematopoietic stem cells. After staining, the cells were washed once with 

PBS and subjected to FACS analysis. 

 

Culture of leukemia stem cells 

Bone marrow cells isolated from CML mice were cultured in vitro in the 

presence of stemspan SFEM, SCF, IGF-2, TPO, heparin, and α-FGF as 

reported previously for culture of hematopoietic stem cells.184, 185 
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Chapter III 

Pten is a tumor suppressor in CML stem cells and BCR-ABL–induced leukemias in 

mice 

The work described in this chapter has been published (Peng et al.,2009). 

 

Abstract 

 

The tumor suppressor gene PTEN is inactivated in many human cancers. 

However, it is unknown whether PTEN functions as a tumor suppressor in human 

Philadelphia chromosome positive (Ph+) leukemia that includes chronic myeloid 

leukemia (CML) and B-cell acute lymphoblastic leukemia (B-ALL) and is induced by the 

BCR-ABL oncogene. Using our mouse model of BCR-ABL induced leukemias, we show 

that Pten is downregulated by BCR-ABL in leukemia stem cells (LSCs) in CML. 

Furthermore, Pten deletion in Pten fl/fl mice causes acceleration of CML development. In 

addition, overexpression of  Pten delays the development of CML and B-ALL, and 

prolongs survival of leukemia mice. Pten suppresses LSCs and induces cell cycle arrest 

of leukemia cells. Moreover, Pten suppresses B-ALL development through regulating its 

downstream gene Akt1. In the end, rapamycin, which specifically inhibit Akt 

downstream molecule mTOR, could significantly suppress human leukemia cells 

proliferation and induce apoptosis in these cells. These results demonstrate a critical role 

of Pten in BCR-ABL induced leukemias and increase Pten expression or inhibition of 

Akt-mTOR pathway could be a promising strategy to the CML treatment.  
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Introduction 

The human Philadelphia chromosome arises from a reciprocal translocation between 

chromosome 9 and 22, resulting in the formation of chimeric BCR-ABL oncogene. BCR-

ABL encodes a constitutively activated, oncogenic tyrosine kinase3. Philadelphia 

chromosome positive (Ph+) leukemia induced by BCR-ABL includes chronic myeloid 

leukemia (CML) and B cell acute lymphoid leukemia (B-ALL). The BCR-ABL kinase 

inhibitor imatinib mesylate induces a complete hematologic and cytogenetic response in 

the majority of chronic phase CML patients 164, but is unable to completely eradicate 

BCR-ABL-expressing leukemic cells 38, 165, suggesting that leukemia stem cells are not 

eliminated.  Over time, patients frequently become drug resistant and develop progressive 

disease despite continued treatment65, 166, 167. Moreover, B-ALL is less sensitive to 

imatinib, suggesting that inhibition of BCR-ABL kinase activity is not enough to 

suppress B-ALL development. New therapeutic strategies need to be developed for Ph+ 

leukemia.  

Tumors progress to more advanced stages after acquiring additional genetic 

alterations, and inactivation of tumor suppressor genes are common in human cancers. 

Phosphatase and tensin homologue (PTEN) 200 is often deleted or inactivated in many 

tumor types, including glioblastoma 141, endometrial carcinoma 143, and lymphoid 

malignancies 146. PTEN is a phosphatase that dephosphorylates phosphatidylinositol 

(3,4,5)-trisphosphate (PIP3)147, 148.  PIP3 is a direct product of PI3K activity, and plays a 

critical role in the regulation of cell survival and growth through activating the Ser/Thr 

protein kinase PDK1 and its downstream target Akt 150, 151. Activated Akt mediates 
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several well-described PI3K responses that include cell survival and growth, cellular 

metabolism, angiogenesis, and cell migration. Mice with a complete null mutation of 

Pten develop early embryonic lethality at E9.5 153-155. Pten heterozygous mice die within 

1 year after birth and survivors develop a broad range of tumors, including mammary, 

thyroid, endometrial and prostate cancers 153-155, as well as autoimmunity related to Fas 

mediated response 156. Mice with the tissue specific deletion of Pten using the Cre-loxP 

system have become available for studying physiological functions of PTEN in adult 

tissues and organs 157, 158. For example, mice with Pten deletion in adult hematopoietic 

cells develop and die of acute myeloid leukemia (AML) and acute lymphoblastic 

leukemia (ALL) 159. Akt1 is a major downstream signaling molecule of PTEN, and is 

activated after PTEN is mutated in human cancers. A recent study showed that the 

deficiency of Akt1 is sufficient to suppress the development of several types of tumors in 

Pten heterozygous mice, including prostate cancer, endometrial carcinoma, thyroid 

neoplasia, intestinal polyps, and lymphoid hyperplasia.162  Moreover, the rapamycin, 

which directly inhibits Akt downstream mTOR, can effectively inhibit the survival and 

proliferation of AML cells from Ptenfl/fl;Mx-1-Cre AML mice and prolong these disease 

mice.160 All of these results demonstrate a crucial role of the PI3K-Pten-Akt pathway in 

cancer development. In this study, we investigated the role of Pten in the development of 

BCR-ABL induced CML and B-ALL in mice. We also tested the effect of Pten on LSCs 

and studied the role of Akt1 as a Pten downstream signaling molecule in B-ALL 

development. Further, we evaluated the potential role of targeting the Akt1-mTOR 
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pathway in the treatment of BCR-ABL induced leukemia and the rapamycin inhibitory 

effect of human CML cells. 

Results 

PTEN expression is downregulated by BCR-ABL 

We performed a global gene expression analysis using DNA microarray to identify 

genes regulated by BCR-ABL in a BCR-ABL-expressing mouse pre-B cell line (ENU-

BCR-ABL cells).77 Comparing to non-BCR-ABL-expressing parental cells, we observed 

a 1.43 fold decrease in the level of PTEN mRNA (Figure 1A). The downregulation of 

PTEN by BCR-ABL was further confirmed by Western blotting in BCR-ABL-expressing 

Ba/F3 cells (Ba/F3-BCR-ABL) (Figure 1B). We also treated Ba/F3 and Ba/F3-BCR-ABL 

cells with the BCR-ABL kinase inhibitor imatinib, and found that imatinib did not have 

an effect on PTEN expression in Ba/F3 cells but caused the restoration of PTEN protein 

expression back to its endogenous level in Ba/F3-BCR-ABL cells (Figure 1B), indicating 

that this PTEN downregulation is dependent upon BCR-ABL kinase activity. 

There are two p53 binding sites on the human PTEN promoter and p53 positively 

regulate PTEN by binding to these two sites 201. BCR-ABL causes downregulation of p53 

in leukemia cells through the upregulation of MDM2 that inhibits p53 transcriptional 

activation and promotes p53 export and proteasome-dependent degradation in the 

cytoplasm202. In mouse, there is only one p53 binding site on Pten promoter and p53 

indeed binds to Pten promoter in our Ba/F3 murine cell line (Figure1 C). We tested 

whether Pten downregulation by BCR-ABL correlates with p53 degradation. In BCR-
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ABL-expressing Ba/F3 cells, the level of p53 was lower than that in parental Ba/F3 cells, 

and this reduced P53 level was reversed after imatinib treatment. This result suggests that 

BCR-ABL might down-regulate Pten through P53 (Figure1 D).  

  



82 
 

Figure 1. Down-regulation of Pten by BCR-ABL. (A) Total mRNAwas isolated from 
parental ENU and ENU-BCR-ABL cells for DNA microarray analysis. The level of Pten 
mRNAwas lower in BCR-ABL–expressing ENU cells than in parental ENU cells. (B) 
Pten protein level was also lower in Ba/F3-BCR-ABL cells than in parental Ba/F3 cells. 
Parental Ba/F3 and Ba/F3-BCR-ABL cells were treated with imatinib (IM; 1µM) for 48 
and 72 hours, respectively. Protein lysates were analyzed by Western blot by the use of 
antibodies indicated. Independent experiments were repeated 3 times. (C) The mouse 
Pten promoter contains only one p53 binding site. (Top) Schematic representation of the 
mouse Pten genomics locus (GenBank accession number NM_008960). The exons are 
indicated by the black bars 1 to 9. (Middle) Region directly upstream of the Pten 
translation start site. The positions of oligonucleotide probes used for mapping the 
transcription stat site by PCR are indicated. (Bottom) Nucleotide sequence of the p53 
binding site identified based on human p53 binding sequence.27 (D) p53 binds to Pten 
promoter directly. Chip was performed in BaF3 cells to show the binding of p53 to the 
Pten promoter as described in the Methods section. 
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Pten deletion causes acceleration of CML development 

Because Pten was down-regulated by BCR-ABL (Figure 1), we tested whether 

Pten functions as a tumor suppressor in CML development by using Pten conditional 

knock mice (Ptenfl/fl). To delete Pten from bone marrow cells of Ptenfl/fl mice, we 

transduced the cells with BCR-ABL-iCre-GFP retrovirus or BCR-ABL-GFP retrovirus as 

a control (Figure 2A). Western blot analysis showed expression of iCre and a significant 

decrease of the Pten protein level (Figure 2B), indicating that the Pten gene was deleted 

from the cells. To test whether deletion of Pten affects CML development, we transduced 

bone marrow cells from Ptenfl/fl mice with BCR-ABL-iCre-GFP or BCR-ABL-GFP 

retrovirus, followed by transplantation of the transduced cells into lethal irradiated 

recipient mice. Mice receiving donor bone marrow cells transduced with BCR-ABL-

iCre-GFP developed CML much faster than those receiving bone marrow cells 

transduced with BCR-ABL-GFP (Figure 2C; P < 0.005). In these CML disease mice, the 

majority of GFP cells were Gr1+ but not B220+ leukemia cells (supplemental Figure 1, 

available on the Blood website; see the Supplemental Materials link at the top of the 

online article). The accelerated death of CML mice in the absence of Pten correlated with 

a greater percentage of GFP+Gr1+ myeloid leukemia cells (Figure 2D) and a greater 

number of leukemia cells (Figure 2E) in peripheral blood of the mice. Accelerated CML 

development in the absence of Pten also correlated with more severe infiltration of 

leukemia cells in the lungs (Figure 2F, H) and splenomegaly (Figure 2G-H). These 

results demonstrated that Pten is a potent tumor suppressor in BCR-ABL–induced CML. 
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Ptenfl/fl;Mx-1-Cre mice develop AML 20 days after PIPC treatment that initiates the 

deletion of Pten.160 We wondered whether the mice receiving donor bone marrow cells 

transduced with BCR-ABL-iCre-GFP developed AML, which may contribute to the 

accelerated death of CML mice in the absence of Pten (Figure 1C). We found that these 

mice developed typical CML (Figure 2), and we did not observe any signs for AML 

development (data not shown). To further rule out the possible contribution of AML to 

the accelerated death of CML mice in the absence of Pten, we transduced normal bone 

marrow cells from Ptenfl/fl mice with MSCV-iCre-GFP retrovirus to delete Pten, followed 

by transplantation of the transduced cells into the lethal irradiated recipient mice. 

Although 20% white blood cells in peripheral blood of the recipient mice were GFP+, 

indicating that the iCre gene was expressed in the cells, none of these mice developed 

AML, and all mice survived (supplemental Figure 2). This result suggests that the 

deletion of Pten in non–BCR-ABL–expressing bone marrow cells is insufficient to 

induce AML in our bone marrow transduction/transplantation model system. 
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Figure 2. Pten deletion accelerates CML development. 
(A) Structure of BCR-ABL-iCre-GFP retroviral construct. (B) BCR-ABL-GFP and BCR-
ABL-iCre-GFP retrovirus transduced bone marrow cells from Ptenfl/fl mice were cultured 
under the Whitlock-Witte conditions for 1 week. Protein lysates were analyzed by 
Western blotting with the antibodies indicated. iCre-induced deletion of the Pten gene 
resulted in the removal of Pten protein. (C) Kaplan-Meier-style survival curves for 
recipients of BCR-ABL-iCre-GFP–transduced bone marrow cells from wild-type (WT; n 
=6) or PTENfl/fl (PTEN; n=9) mice (P <0.005). (D) The percentage of leukemia cells 
(GFP+Gr+) in recipients of BCR-ABL-iCre-GFP–transduced bone marrow cells from 
Ptenfl/fl mice was greater than that in recipients of BCR-ABL-iCre-GFP–transduced 
bone marrow cells from wild-type mice. (E) The total number of leukemia cells (total 
white blood cell count X percentage of GFP+Gr1+ cells) in the peripheral blood of 
recipients of BCR-ABL-iCre-GFP–transduced bone marrow cells from Ptenfl/fl mice 
(PTEN) was greater than that in recipients of BCR-ABL-iCre-GFP–transduced bone 
marrow cells from wild-type mice (WT). (F) Photomicrographs of hematoxylin and 
eosin-stained lung sections from recipients of bone marrow cells from PTEN-deficient 
CML mice (Pten-/-) showed more severe infiltration of the lungs with myeloid leukemia 
cells than recipients of bone marrow cells from wild-type mice (WT) at day 14 after 
BMT. (G) Spleen weight of recipients of wild-type (WT) or Ptenfl/fl (Pten-/-) bone 
marrow cells transduced with BCR-ABL-iCre-GFP retrovirus at day 14 after BMT (P 
=0 .028). (H) Gross appearance of the lungs and spleens showed severe lung 
hemorrhages and splenomegaly in recipients of BCR-ABL-iCre-GFP transduced bone 
marrow cells from Ptenfl/fl CML mice (Pten-/-) than in recipients of the transduced wild-
type (WT) bone marrow cells. 
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PTEN overexpression delays CML development 

CML developed faster in the absence of Pten (Figure 2), indicating that Pten is a 

tumor suppressor in BCR-ABL–induced leukemia. To further test this idea, we examined 

whether overexpression of Pten delays CML development.We cloned the Pten gene into 

the BCR-ABL-GFP construct for simultaneous expression of the three genes, BCR-ABL, 

Pten, and GFP (Figure 3A). Western blot analysis showed that this triple-gene retroviral 

construct allowed overexpression of Pten in cells (Figure 3B). We next transduced donor 

bone marrow cells from wild-type mice with BCR-ABL-PTEN-GFP or BCR-ABL-GFP 

retrovirus, followed by transplantation of the transduced cells into recipient mice. CML 

development was significantly slower in mice receiving bone marrow cells transduced 

with BCR-ABL-PTEN-GFP than in those receiving bone marrow cells transduced with 

BCR-ABL-GFP (Figure 3C,P <0.001), indicating that Pten overexpression caused a 

delay of CML development. The delayed CML development correlated with a less 

percentage and number of leukemia cells in peripheral blood (Figures 3D,E), and also 

with less severe splenomegaly (Figure 3F) and infiltration of leukemia cells in the lungs 

(Figure 3G). These results further support the role of Pten as a tumor suppressor in CML 

development. 

  To evaluate whether Pten overexpression in BCR-ABL–expressing cells 

synergizes with the therapeutic effect of imatinib on CML, we treated mice receiving 

bone marrow cells transduced with BCR-ABL-PTEN-GFP or BCR-ABL-GFP retrovirus 

with imatinib. As expected, imatinib treatment prolonged survival of CML mice 

receiving bone marrow cells transduced with BCR-ABLGFP (Figure 3C; P<0.001). 
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However, imatinib-treated CML mice receiving bone marrow cells transduced with BCR-

ABL-PTENGFP lived significantly longer than those not treated with imatinib 

(Figure 3C; P<0.001). The synergistic effect of Pten overexpression with imatinib 

treatment correlated with less leukemia cells in peripheral blood of the mice (Figure 3E). 

To explain how Pten reduced proliferation of leukemia cells, we performed the DNA 

content analysis to examine the effect of Pten overexpression on cell-cycle progression of 

these cells. We showed that the percentage of leukemia cells in the S _ G2M phase was 

much lower in leukemia cells with Pten overexpression than in those without Pten 

overexpression (Figure 3H; P<0.01), indicating that Pten inhibits the proliferation of 

leukemia cells by inducing a cell-cycle arrest. Furthermore, we examined whether Pten 

induces apoptosis of leukemia cells by staining the cells with PI and annexin V. 

Corresponding to the result in the cell-cycle analysis, apoptosis in leukemia cells with 

Pten overexpression was more severe than in those without Pten overexpression (Figure 

3I; P<0 .05). 
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Figure 3. Overexpression of Pten delays CML development. (A) Structure of BCR-
ABL-PTEN-GFP retroviral construct. (B) Western blot analysis shows expression of 
BCR-ABL, PTEN, and GFP from BCR-ABL-PTEN-GFP retrovirus. NIH3T3 cells were 
transduced with BCR-ABL-GFP or BCR-ABL-PTEN-GFP retrovirus for 3 hours. Then, 
2 days later, protein lysates were analyzed be Western blotting by the use of the 
antibodies indicated. (C) Overexpression of Pten alone or in combination imatinib 
treatment prolongs survival of CML mice. Mice with CML induced with BCR-ABL-GFP 
(n=20) or BCR-ABL-PTEN-GFP (n=20) were treated with a placebo (n=7) or imatinib 
(n=7, 100 mg/kg, twice a day by gavage), beginning at day 8 after transplantation. (D) 
Flow cytometry analysis showed a slower accumulation of GFP+Gr1+ leukemia cells in 
peripheral blood of recipients of BCR-ABL-PTEN-GFP–transduced bone marrow cells 
than that in recipients of BCR-ABL-GFP–transduced bone marrow cells. (E) CML was 
induced with BCR-ABL-GFP or BCR-ABL-PTEN-GFP, and the difference in peripheral 
blood leukemia cell counts (white blood cell count X the percentage of GFP+Gr1+ cells) 
in CML mice treated with a placebo or imatinib was determined at day 20 after BMT. (F) 
Spleen weight of CML mice induced with BCR-ABL-GFP or BCR-ABL-PTEN-GFP. (G) 
Photomicrographs of hematoxylin and eosin–stained lung sections from mice with CML 
induced with BCR-ABL-GFP or BCR-ABL-PTEN-GFP at day 20 after transplantation. 
(H) At day 20 after BMT, peripheral blood cells were stained with Gr1 and Hoechst blue. 
The S + G2Mphase of leukemia cells (GFP+Gr1+) was represented by the percentage of 
Hoechst blue–positive cells. Mean percentage for each cell population (n=3) was shown. 
(I) At day 20 after BMT, peripheral blood cells were stained with Gr1, Annexin V, and 
propidium iodide (PI). Apoptotic leukemia cells were represented by the 
GFP+Gr1+AnnexinV+PI+population. Mean percentage for each cell population (n=3) was 
shown. 
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Pten suppresses CML stem cells 

CML is derived from hematopoietic stem cells harboring the BCR-ABL 

oncogene.203 It is possible that Pten suppresses CMLstem cells, resulting in acceleration 

of CML when deleted (Figure 2) and delay of CML when overexpressed (Figure 3).We 

have previously identified BCR-ABL–expressing Lin-c-kit+Sca1+ cells as LSCs in CML 

induced by BCR-ABL in mice. To test whether Pten expression is affected by BCR-ABL 

in LSCs, GFP+ Lin-c-kit+Sca1+cells were sorted by FACS from CML mice treated with a 

placebo or imatinib, and total RNA was isolated for DNA microarray analysis. The 

microarray study showed that Pten mRNA was significantly down-regulated 

approximately 3.59-fold by BCR-ABL, and this down-regulation was restored upon 

imatinib treatment (Figure 4A; P <0 .001). Correlating with Pten down-regulation in 

LSCs, p53 was also down-regulated approximately 2.9-fold by BCR-ABL in LSCs 

(Figure 4B). These results further support our observations in BaF3-BCR-ABL cells 

(Figure 1). 

To test whether Pten functions as a tumor suppressor in LSCs, we transduced 

bone marrow cells with BCR-ABL-PTEN-GFP or BCR-ABL-GFP retrovirus, followed 

by transplantation of the transduced cells into recipient mice. At 14 days after the 

transplantation, bone marrow cells were isolated from CML mice, and LSCs (GFP+Lin-c-

kit+Sca1+) were analyzed by flow cytometry. The percentage of LSCs in mice with CML 

induced by BCR-ABLPTEN-GFP was significantly lower than that in mice with CML 

induced by BCR-ABL-GFP (Figure 4C), indicating that Pten uppresses LSCs. 
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To determine whether Pten affects the function of LSCs, we compared the ability to 

induce CML between LSCs that expressed BCR-ABL-PTEN-GFP and those that 

expressed BCR-ABL-GFP. At 14 days after BMT, the same number (3 X 104) of GFP+ 

Lin-c-kit+Sca1+cells sorted from CML mice receiving BCR-ABL-GFP or BCR-ABL-

PTEN-GFP transduced bone marrow cells were transferred into recipient mice. The 

percentages and numbers of leukemia cells in peripheral blood were monitored at day 25 

after BMT. The total number of leukemia cells in CMLmice receiving BCR-ABL-PTEN-

GFP transduced bone marrow cells was 4-fold lower than that in CMLmice receiving 

BCR-ABL-GFP–transduced bone marrow cells (Figure 4E), correlating with a lower 

percentage of leukemia cells in peripheral blood (Figure 4D). Consistent with less-severe 

CML induced by BCR-ABL-PTEN-GFP, the survival of mice receiving LSCs transduced 

with BCRABL-PTEN-GFP was significantly longer than that of mice receiving LSCs 

transduced with BCR-ABL-GFP (Figure 4F; P<0 .001). These results indicate that Pten 

suppresses the function of LSCs. 

Because rapamycin suppresses AML cells in vitro and prolongs the survival of 

Pten fl/fl;Mx-1-Cre AML mice, likely through inhibiting  inhibiting AML stem cells, we 

tested whether rapamycin also inhibits leukemia stem cells in CML. We isolated bone 

marrow cells from CML mice and cultured the cells under the conditions that support 

survival and growth of leukemia stem cells from CML mice.204 During the culture, the 

cells were treated with rapamycin. At 3 days after the treatment, we calculated the 

numbers of GFP+Lin-c-kit+Sca1+cells that remained in the culture based on FACS 
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analysis and total cell counts (Figure 4G). We showed that inhibition of mTOR by 

rapamycin also significantly inhibited CML stem cells in vitro.  
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Figure 4. Pten suppresses leukemia stem cells. (A) BCR-ABL down-regulates Pten 
expression, and this down-regulation is abolished upon imatinib treatment. Bone marrow 
cells were transduced with GFP or BCR-ABL-GFP retrovirus, followed by 
transplantation into recipient mice. Some recipients of BCR-ABL-GFP–transduced bone 
marrow cells were treated with imatinib (100 mg/kg, twice a day by gavage), beginning 
at day 8 after BMT. At 24 hours later, GFP+Lin-c-kit+Sca1+cells in bone marrow were 
sorted from these mice by FACS, and total RNA was isolated for DNA microarray assay. 
(B) DNA microarray assay shows that the mRNA level of p53 was down-regulated by 
BCR-ABL in LSCs. (C) Bone marrow cells were isolated from mice with CML induced 
with BCR-ABL-GFP or BCR-ABL-PTEN-GFP. The percentage of GFP+Lin-c-kit+Sca1+ 
cells in bone marrow was analyzed by FACS. (D) At day 20 after BMT, the percentages 
of GFP+Gr1+ leukemia cells in peripheral blood of recipients of bone marrow cells 
transduced with BCR-ABL-GFP or BCR-ABL-PTEN-GFP were analyzed by FACS. (E) 
Total numbers of leukemia cells in peripheral blood of recipients of bone marrow cells 
transduced with BCR-ABL-GFP or BCR-ABL-PTEN-GFP were analyzed by FACS. (F) 
Pten overexpression reduces the ability of leukemia stem cells to induce CML. Bone 
marrow cells from mice with CML induced with BCR-ABL-GFP or BCR-ABL-PTEN-
GFP were sorted by lineage-depletion MACS columns (Miltenyi Biotec), followed by 
FACS analysis for the percentages of c-Kit+Sca1+ cells. After normalization, the same 
number (3 X 104) of GFP+Lin-c-kit+Sca1+cells from each group was transferred into 
recipient mice (BCR-ABL-GFP, n=7; BCR-ABL-PTEN-GFP, n=5) to induce CML. (G) 
Rapamycin inhibits leukemia stem cells from CML mice in vitro. Bone marrow cells 
isolated from mice with CML induced by BCR-ABL-GFP were cultured (2 X 106 
cells/6-cm plate) under the stem cell conditions (see ―Methods‖) in the presence of 
DMSO or rapamycin (10µM) for 3 days, followed by FACS analysis of leukemia stem 
cells (GFP+Lin-c-kit+Sca1+). 
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Pten overexpression delays B-ALL development 

We showed previously in this report that Pten functions as a tumor suppressor in 

CML development. We determined to examine whether Pten also plays a suppressive 

role in the development of B-ALL induced by BCR-ABL. To induce B-ALL in mice, 

donor bone marrow cells were transduced with BCR-ABL-PTEN-GFP or BCR-ABL-

GFP retrovirus, followed by transplantation of the transduced cells into lethally irradiated 

recipient mice, as described previously.32 All mice receiving bone marrow cells 

transduced with BCR-ABL-GFP developed and died of B-ALL within 4 to 5 weeks after 

transplantation (Figure 5A), whereas mice receiving bone marrow cells transduced with 

BCR-ABL-PTENGFP developed B-ALL with much longer disease latency (Figure 5A, 

P<0.004). The delayed B-ALL development correlated with a lower percentage and 

number of BCR-ABL–expressing B-lymphoid cells (GFP+B220+) in peripheral blood of 

the mice (Figures 5B,C), in which GFP+Gr1+ cells were almost undetectable 

(supplemental Figure 3). 

 

To evaluate whether PTEN overexpression synergizes with imatinib in treating B-

ALL mice, we treated mice receiving bone marrow cells transduced with BCR-ABL-

PTEN-GFP or BCR-ABL-GFP retrovirus with imatinib. As expected, imatinib treatment 

prolonged the survival of B-ALL mice receiving bone marrow cells transduced with 

BCR-ABL-GFP (Figure 5A). However, imatinibtreated B-ALL mice receiving bone 
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marrow cells transduced with BCR-ABL-PTEN-GFP lived significantly longer than 

those not treated with imatinib (Figure 5A; P<0.001). The synergistic effect 

of Pten overexpression and imatinib treatment correlated with fewer leukemia cells in 

peripheral blood of the mice (Figure 5D). To examine whether Pten is overexpressed in 

vivo, leading to the inhibition of Akt phosphorylation, Western blot analysis of spleen 

cell lysates from mice with B-ALL induced by BCR-ABL-GFP or BCR-ABL-PTEN-

GFP was performed. We found that Pten was undetectable and that the levels of Akt 

phosphorylation were high in the majority of mice with B-ALL induced by BCR-ABL-

GFP. In contrast, Pten was detected and the levels of Akt phosphorylation were low in 

mice with B-ALL induced by BCR-ABL-PTEN-GFP (Figure 5E). 
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Figure 5. Pten overexpression delays B-ALL development. (A) Overexpression of 
Pten alone or in combination with imatinib treatment prolonged survival of B-ALL mice. 
Mice with B-ALL induced with BCR-ABL-GFP (n=10) or BCR-ABL-PTEN-GFP  
(n=10) were treated with a placebo (n=5) or imatinib (n=5, 100 mg/kg, twice a day by 
gavage), beginning at day 8 after BMT. (B) FACS analysis showed a slower 
accumulation of GFP+B220+ leukemia cells in peripheral blood of recipients of BCR-
ABL-PTEN-GFP transduced bone marrow cells than that in recipients of BCR-ABL-
GFP–transduced bone marrow cells. (C) The difference in peripheral blood leukemia cell 
counts (white blood cell count X percentage of GFP+B220+ cells) in B-ALL mice induced 
with BCR-ABL-GFP or BCR-ABL-PTEN-GFP was determined at day 12 or 20 after 
BMT. (D) Mice with B-ALL induced with BCR-ABL-PTEN-GFP were treated with a 
placebo or imatinib (IM). Peripheral blood leukemia cells were analyzed by FACS at day 
35 after BMT. (E) Western blot analysis of spleen cell lysates for Pten overexpression 
and Akt phosphorylation in mice with B-ALL induced by BCR-ABL-PTEN-GFP or by 
BCR-ABL-GFP mice. The protein lysates were isolated from the mice at day 20 after 
BMT. The black line indicates that the lanes not adjacent on the same original sodium 
dodecyl sulfate–polyacrylamide gel electrophoresis were brought together to generate 
this figure. 
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Figure 5. Pten overexpression delays B-ALL development. 
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Pten delays B-ALL development through its downstream gene Akt1 

The Akt pathway is downstream of Pten because Pten inactivation often results in 

Akt activation in human cancers.205, 206 There are 3 mammalian Akt genes that share 

greater than 85% sequence similarity and encode the Akt isoforms 1 to 3.162 It is still 

unclear whether the 3 Akt isoforms possess different functional specificities in vivo. A 

recent study has shown that the deletion of the Akt1 gene has a dramatic inhibitory effect 

on the development of endometrium carcinoma, prostate cancer, thyroid tumor, and 

adrenal medulla tumors.162Akt1 deficiency also inhibits the proliferation 

of lymphoid hyperplasia and expansion of both B- and T-cell populations in Pten+/- 

mice.162 In addition, the first transforming point mutation in Akt1 (E17K) has been 

discovered in human breast, colorectal, and ovarian cancers.200 

 

Furthermore, fetal liver cells from Eu-Myc transgenic mouse were transduced 

with this Akt1 (E17K), followed by transplantation into recipient mice. After 16 weeks, 6 

of 10 recipients developed pre–pro-B-cell leukemia.8 Here we determined to test whether 

Akt1 is functionally involved in the development of B-ALL induced by BCR-ABL by 

using Akt1-/- mice as donors in our B-ALL mouse model. The majority of recipients of 

BCR-ABL–transduced wild-type bone marrow cells developed and died of B-ALL within 

5 to 7 weeks (Figure 6A), whereas recipients of BCR-ABL–transduced Akt1-/- bone 

marrow cells developed and died of B-ALL with a significantly longer disease delay 

(Figure 6A; P<0.005). This delayed B-ALL development caused by the Akt1 deficiency 

correlated with a lesser percentage and number of B-leukemia cells (B220+GFP+) in the 
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peripheral blood of the mice (Figure 6B,C). We examined whether Akt1-/- have a defect 

in B-cell development because a reduction of bone marrow pro-B cells, the target cells 

for BCR-ABL to induce B-ALL, could lead to a delayed disease development. To rule 

out this possibility, we analyzed bone marrow cells of Akt1-/- mice by FACS and found 

that Akt1-/- mice have a normal percentage of pro-B cells (CD43+B220+) in bone marrow 

compared with wild-type mice (supplemental Figure 4). 

 

Because Pten overexpression synergizes with imatinib in treating B-ALL mice 

(Figure 5A), we examined whether the Akt1 deficiency also synergizes with imatinib in 

treating B-ALL. We treated mice receiving wild-type or Akt1-/- bone marrow cells 

transduced with BCR-ABL-GFP retrovirus with imatinib. As expected, imatinib 

treatment prolonged survival of B-ALL mice receiving BCR-ABL–transduced wild-type 

bone marrow cells, whereas imatinib treatment more significantly improved survival of 

B-ALL mice receiving BCR-ABL-GFP–transduced Akt1-/- bone marrow cells (Figure 

6A; P<0.001). 
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Figure 6. Loss of Akt1 delays B-ALL development. (A) Gross appearance and Kaplan-
Meier–style survival curves for recipients of BCR-ABL–transduced bone marrow cells 
from wild-type (WT) or Akt1-/- mice. B-ALL mice transduced from wild-type mice are 
treated with placebo (n=20) or imatinib (IM; n=10, 100 mg/kg, twice a day) and B-ALL 
mice transduced from Akt1_/_ mice are also treated with placebo (n=25) or imatinib 
(n=10, 100 mg/kg, twice a day). (B) Bone marrow cells were harvested from recipients of 
BCR-ABL transduced wild-type or Akt1-/- bone marrow cells and were stained with 
antibodies against CD43 and B220 (representing pro-B cells) for FACS analysis. (C) 
FACS analysis showed the numbers of peripheral blood leukemia cells (GFP+B220+) in 
recipients of BCR-ABL-GFP–transduced wild-type or Akt1-/- bone marrow cells. 
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Rapamycin inhibits proliferation and induces apoptosis of human CML cells 

Recently, downrregulation of PTEN mRNA in HSC in CML patients has been 

reported207. To confirm the PTEN expression in human CML cells, PTEN level has been 

detected in K562 cells. Western blot results showed the lower level of PTEN in k562 

cells compared with K562 cells treated with imatinib treatment for 24 hours (Figure 7A). 

To investigate whether rapamycin can inhibit the K562 proliferation, we treated K562 

cells with rapamycin in vitro for 3 days. The significant inhibitory effect has been shown 

after 48h treatment and further effect was shown after 72h treatment (Figure 7B).  At the 

meantime, the rapamycin dramatically induced the apoptosis rate in K562 cells after 48h 

treatment (Figure 7C).  These data confirmed the PTEN downregulation in human CML 

cells and indicated the rapamycin could be a promising therapeutic target in the CML.  
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Figure 7. PTEN down-regulation in K562 cells and inhibition of K562 cells by 
rapamycin. (A) PTEN protein level was elevated by K562 cells treated with imatinib 
(IM). K562 cells were treated with imatinib (1µM) for 24 hours, and protein lysates were 
analyzed by the use of Western blotting with the antibodies indicated. (B) Rapamycin 
inhibits proliferation of K562 cells. K562 cells were treated with DMSO or rapamycin 
(10µM) for 48 and 72 hours, and live cells were counted. (C) Rapamycin induces 
apoptosis of K562 cells. K562 cells were treated with DMSO or rapamycin (10 µM) for 
48 hours. Apoptotic cells (Annexin V+/7AAD+) cells were analyzed by FACS. 
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Discussion 

Some tumor suppressor genes have been shown to be inactivated or down-

regulated by BCR-ABL in Ph_ leukemia, including PP2A,208 p53209 RB,209 and interferon 

consensus sequence-binding protein.210 In this study, we show that the tumor suppressor 

Pten is also down-regulated by BCR-ABL and that overexpression of Pten delays the 

development of CML and B-ALL induced by BCRABL. Our DNAmicroarray study 

shows that Pten mRNAlevel was decreased in BCR-ABL–expressing LSCs, indicating 

that BCRABL regulates Pten at a transcriptional level. Our finding that both 

Pten and p53 are simultaneously down-regulated in BCR-ABL–expressing cells suggests 

that the Pten down-regulation by BCRABL may be mediated by P53, as PTEN 

transcription is regulated by p53.163, 211 p53 has been shown to up-regulate Pten by 

binding to its promoter201; in p53-/- MEF cells, the level of Pten is only 30% of that in 

the wild-type cells.212 Besides p53, other mechanisms might also be involved in the 

down-regulation of Pten by BCR-ABL. An analysis of the Pten promoter sequence shows 

potential binding sites for early growthregulated transcriptional factor 1 (EGR1), and 

Pten is up-regulated by EGR1 in response to radiation treatment.213 EGR1 also 

upregulates Pten, which likely mediates the apoptotic effect of the phosphatase inhibitor 

calyculin A. There are also pathways that negatively regulate Pten expression. For 

example, mitogenactivated protein kinase kinase 4 inhibits Pten transcription by 

activating nuclear factorB that binds to the Pten promoter.214 In pancreatic cancer cells215 

or mesangial cells,216 Pten is downregulated by transforming growth factor-. Pten is also 

regulated at a posttranscriptional level. Phosphorylation of Pten at specific residues in its 
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C-terminal tail is associated with an increase in its stability,217-219 whereas 

phosphorylation at other sites decreases the protein stability.220 Ubiquitin-dependent 

degradation of PTEN occurs when human bronchial cells were exposed to zinc ions,221 

and the finding of 2 major conserved ubiquitination sites on PTEN supports this 

regulation.222 BCR-ABL may regulate these pathways to down-regulate Pten expression, 

and these potential mechanisms need to be explored further. PTEN maintains normal 

hematopoietic stem cells in lineage choice and prevents the leukemia development from 

leukemia stem cells. Our microarray data show that Pten is down-regulated in BCR-

ABL–expressing LSCs, suggesting that BCR-ABL regulates the functions of LSCs 

through regulating Pten expression. This idea is supported by our finding that LSCs in 

CML mice grew significantly slower when Pten was overexpressed. The role of Pten in 

LSCs provides a potential strategy for targeting the Pten and its related PI3K/AKT 

pathways in eradication of LSCs. In this study, we also show that overexpression of Pten 

delays B-ALL development and that Akt1 is a major downstream signaling molecule of 

Pten. Moreover, the inhibition of mTOR by rapamycin significantly inhibits proliferation 

of human CML leukemia cells K562 and leukemia stem cells from CML mice. These 

findings support the use of the PTEN-PI3K-AKT-mTOR pathway as a target in treating 
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B-ALL, which is not sensitive to imatinib therapy.

 

Supplemental Figure 1. FACS analysis of peripheral blood in CML mice. PB cells 

were collected from CML mice and stained with Gr-1 and B220 and analyzed by FACS. 

Most of the GFP+ cells are also Gr-1+, indicating they are myeloid leukemia cells. 
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Supplemental Figure 2. No AML development in CML mice receiving BCR-ABL 
transduced bone marrow cells from Pten

fl/fl
 mice. Bone marrow cells from wild type or 

Ptenfl/fl mice were transduced with MSCV-iCre-GFP retrovirus, followed by 
transplantation of the transdcued cells into the lethal irradiated recipient mice. Survival of 
the mice was compared between two groups. 
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Supplemental Figure 3. FACS analysis of peripheral blood in B-ALL mice. PB cells 
were collected from B-ALL mice and stained with Gr-1 and B220 and analyzed by FACS. 
Most of the GFP+ cells are also B220+, indicating they are lymphoid leukemia cells. 
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Supplemental Figure 4. Akt1-/- mice do not have a defect in B progenitor cells. Bone 
marrow cells were isolated from wild type or Akt-/- mice, and stained with antibodies 
against CD43 and B220. The percentages of pro-B cells in wild type and Akt-/- mice were 
compared. 
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Material and Methods 

Cell lines 

Ba/F3 pre-B-cells were grown in RPMI 1640 medium containing 10% FCS, 10% 

WEHI medium, and 50 μM 2-mercaptoethanol. Ba/F3-BCR-ABL, parental ENU and 

ENU-BCR-ABL cells were grown in RPMI 1640 medium containing 10% FCS, and 

50μM 2-mercaptoethanol.  

Mice 

C57BL/6J, B6.129S4-Ptentm1Hwu/J (Ptenfl/fl) and B6.129P2-Akt1tm1Mbb/J (Akt1-/-) 

mice were obtained from The Jackson Laboratory. Mice were maintained in a 

temperature and humidity controlled environment and given unrestricted access to 6% 

chow diet and acidified water. 

Antibodies and Western blot analysis 

Antibodies against c-Abl (sc-131), p-Tyr (sc-508), PTEN (sc-7974), p53 (sc-6243) 

and Actin (sc-1616-R) were purchased from Santa Cruz Biotechnology. Cre (Cat# 69050) 

antibody was ordered from Novagen. Protein lysates were prepared by lysing cells in 

radioimmunoprecipitation (RIPA) buffer, and immunoprecipitation and Western blotting 

were carried out as described previousl204. 
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Construction of triple gene coexpression plasmids 

The original MSCV-IRES-GFP vector was first modified to add new cloning sites 

for the restriction enzymes MfeI, NotI and MluI. To do so, the IRES sequence was first 

amplified by the MSCV primer (CGTCTCTCCCCCTTGAACCTCCTCG) and the IRES-

MfeI primer (CATGCCATGGCAATTGAGCGGCCGCTTGTGGCCATATTATCATC) 

which contains the new MfeI, NotI and the existing NcoI sites (underlighted). This 

allowed us to synthesize a new IRES fragment containing the MfeI, NotI and NcoI sites. 

To replace the original IRES sequence in the original MSCV-IRES-GFP vector with the 

newly-synthesized IRES, this vector was cut with EcoRI and NcoI, and then the new 

IRES fragment was cloned into the MSCV-IRES-GFP cut with EcoRI and NcoI, forming 

a new MSCV-IRES-GFP vector that contains two additional sites, MfeI andf NotI. To 

add the MluI site to the new MSCV-IRES-GFP vector, an IRES-GFP fragment was 

amplified from this vector by the MSCV primer and the GFP-MluI primer 

(CCATCGATACGCGTAAGCTTGGCTGCAGGTCGA) which contains the existing ClaI 

and the new MluI sites (underlighted). The synthesized IRES-GFP fragment was digested 

with EcoRI and ClaI, and then cloned into new MSCV-IRES-GFP vector between the 

EcoRI and ClaI sites to generate the final MSCV-IRES-GFP vector. Compared to the 

original MSCV-IRES-GFP vector, this final MSCV-IRES-GFP vector contains additional 

sites MfeI, NotI (before the GFP sequence) and MluI (after the GFP sequence).  To clone 

the BCR-ABL cDNA into this final MSCV-IRES-GFP vector, BCR-ABL was cloned 

into it at the EcoRI site.  
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To make the MSCV-BCR-ABL-PTEN-GFP construct, total RNA was isolated 

from C57BL/6 mice liver tissue for synthesizing the Pten cDNA by RT-PCR. The Pten 

cDNA was amplified by PTEN-NotI  

(5’ AGCGGCCGCATGACAGCCATCATCAAAGAG 3’) and PTEN-MluI (5’ 

CGACGCGTTCAGACTTTTGTAATTTGTG 3’) primers. The cDNA was sequenced 

from both ends to confirm the sequence. The Pten cDNA was cloned into the MSCV-

BCR-ABL-GFP vector between NotI and MluI sites. The IRES-GFP fragment was 

amplified by MSCV-MluI (cgacgcgtAATTCCGCCCCTCTCCCTC) and GFP-MluI 

(ccacgcgtTAAGCTTGGCTGCAGGTCGA) primers using MSCV-GFP as a template, 

and the IRES-GFP fragment was inserted after the PTEN sequence at the MluI site.  

 

To make MSCV-BCR-ABL-iCre-GFP construct, the iCre (improved Cre) ORF 

was amplified by iCre-MfeI (CGCAATTGATGGTGCCCAAGAAGAAGAGG) and iCre-

ClaI (CCATCGATTCAGTCCCCATCCTCGAGCAG ) using the pBOB-CAG-iCre-SD 

(addgene, cat#12336) was used as a template. The iCre ORF was cloned into the MSCV-

BCR-ABL vector between NotI and MluI sites and the IRES-GFP fragment was cloned 

at the MluI site after the iCre ORF. 
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Whitlock-Witte culture 

Bone marrow cells were tranduced with BCR-ABL retrovirus and cultured in a 6-

well plate in RPMI 1640 medium containing 10% FCS, and 50μM 2-mercaptoethanol for 

1 week. Protein lysates were collected and analyzed by Western blotting. 

 

Bone marrow transduction/transplantation 

The retroviral constructs MSCV-GFP24, BCR-ABL-PTEN-GFP or BCR-ABL-

iCre-GFP carrying the BCR-ABL cDNA were used to make high-titer, helper-free, 

replication-defective ecotropic viral stocks by transient transfection of 293T cells using 

the kat system as previously described 156.  Six- to ten-week-old wild-type C57BL/6 and 

Ptenfl/fl (The Jackson Laboratory) mice were used for leukemogenesis experiments. 

Induction of CML and B-ALL 156 was described previously. Briefly, to induce CML, 

bone marrow cells from 5-FU–treated (200 mg/kg) donor mice were transduced twice 

with BCR-ABL retrovirus by cosedentation in the presence of IL-3, IL-6, and SCF. To 

induce B-ALL, bone marrow cells from non–5-FU–treated donors were transduced with 

BCR-ABL in the absence of any cytokines. Wild-type recipient mice were prepared by 

1150 cGy gamma irradiation. A dose of 0.5 x106 (CML) or 1.0x106 (B-ALL) cells was 

transplanted via tail vein injection. Diseased mice were analyzed by histopathological and 

biochemical analyses as described previously204 . 
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Flow cytometry 

Hematopoietic cells were collected from peripheral blood and bone marrow of the 

disease mice, and red blood cells were lysed with NH4Cl red blood cell lysis buffer (pH 

7.4). The cells are washed with PBS, and stained with B220-PE for B cells and Gr1-APC 

for neutrophils, Sca1-APC/c-Kit-PE for hematopoietic stem cells and Hoechst blue for 

DNA. After staining, the cells were washed once with PBS and subjected to FACS 

analysis. 

 

Chromatin immunoprecipitation (Chip) 

Chip assay was performed according to the protocol of Chip-TI Express kit 

(Active Motif, Carlsbad, CA). In brief, BaF3 cells were lyzed and chromatin was broken 

into smaller fregments from 200bps to 500 bps by sonication. Genomic DNA was then 

incubated with anti-rabbit immune IgG or anti-p53 antibody, and pre-incubated protein G 

sepharose beads and precipitated by centrifugation. Recovered protein-bond DNA was 

applied for PCR reaction with primers: 5’-CAAAGCCGGCGTAGCTC-3’ and  

5’-ACAAAGAGTCCCGCCACAT-3’. 

Culture of leukemia stem cell 

Bone marrow cells isolated from CML mice were culture in vitro in the presence 

of stemspan SFEM, SCF, IGF-2, TPO, heparin and -FGF as described previously204. 
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Drug treatment 

Imatinib was dissolved in water directly at a concentration of 10mg/ml, and 

administered orally by gavage in a volume less than 0.5 ml twice a day at 100mg/kg body 

weight, beginning 8 days after bone marrow transplantation and continuing until the 

morbidity or death of leukemic mice. Rapamycin (Calbiochem, Cat# 553210) was 

dissolved in DMSO and made stock concentration as 1mM.  

 
 
Acknowledgments 

This work was supported by the grants from the Leukemia & Lymphoma Society and the 

National Institutes of Health (R01- CA122142, R01-CA114199) to S.L. S.L. is a Scholar 

of the Leukemia & Lymphoma Society. 

  



120 
 

Chapter V Discussion and future directions 

Although CML has been identified as a blood cancer derived from BCR-ABL 

transformed HSCs, there is still no specific therapy for it until the emerging of imatinib 

which blocks BCR-ABL kinase activity and inhibits its functions. Now imatinib has 

become the first line clinical drug to treat CML patients and achieves a complete 

hematologic response in major CML patients. A five-year follow up study showed that a 

complete cytogenetic response among 553 patients receiving imatinib was 69% by 12 

months and 87% by 60 months, and the estimated overall survival of patients who 

received imatinib as initial therapy was 89% at 60 months.59  However, imatinib still 

cannot remove all of the BCR-ABL expressing leukemia cells, indicating more 

mechanisms of CML leukemogenesis and therapies need to be investigated. There are 

two major reasons to cause this imatinib resistance. The first one is the BCR-ABL kinase 

mutations, especially the T315I mutant, which can change the BCR-ABL kinase domain 

conformation and release the inhibition of imatinib on the kinase activity, and it is even 

still highly resistant to dasatinib and nilotinib, which are more potent to inhibit WT-BCR-

ABL kinase activity than imatinib. The second reason is the residual of leukemia stem 

cells in CML patients who receive the imatinib treatment and they can re-initiate the 

leukemia cells proliferation and relapse when imatinib is discontinued or the 

concentration is invalidated.  
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Hsp90 and T315I-BCR-ABL 

To overcome these two major obstacles in CML therapy, novel strategies need to 

be developed.  In my thesis work, we focused on two ways to solve the obstacles 

mentioned above. First, we not only inhibited the BCR-ABL kinase activity by imatinib, 

but also affected BCR-ABL oncoprotein stability to induce BCR-ABL oncoprotein 

degradation during the treatment. Although it has been reported that BCR-ABL is a client 

protein of chaperon protein, Hsp90, and inhibition of Hsp90 function with its inhibitors, 

such as GA or 17-AAG, can induce BCR-ABL degradation in vitro137, 138, 179, the 

therapeutic effects of Hsp90 inhibitors have not been proved in CML mouse models or 

patients. On the other hand, the high toxicity and low solubility of current Hsp90 

inhibitors also prevent their applications in clinical trials. In this part of my work, I 

evaluated a novel Hsp90 inhibitor, IPI504, which has less toxicity and 4000 folds higher 

solubility compared with current Hsp90 inhibitors in our CML and B-ALL mouse models. 

The in vivo treatment showed a significant prolonged survival of CML mice after IPI504 

administration, consisting with the BCR-ABL in vivo degradation and less leukemia cells 

infiltration in the lung which is the major cause of death in our CML mice. Notably, the 

T315I-BCR-ABL induced CML mice were more sensitive to IPI504 treatment compared 

with WT-BCR-ABL induced CML. We supposed the mutant BCR-ABL might rely more 

on Hsp90 function to stabilize its stability and facilitate its activation of downstream. Our 

later immunoprecipitation results also confirmed this idea because more T315I- BCR-

ABL protein has been immunoprecipitated by same dose of Hsp90 antibody compared 

with WT BCR-ABL (data not shown). So it is reasonable to observe faster degradation of 
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T315I-BCR-ABL after IPI504 treatment than WT-BCR-ABL does. Both of these results 

well explain why mutants of BCR-ABL are more sensitive to Hsp90 inhibition and this 

could also be a promising strategy to treatment CML patients who harbor the mutant 

BCR-ABL oncoproteins.  

 

Hsp90 and LSCs 

Another exciting finding in this part of work is inhibition of Hsp90 could impair 

LSCs in vitro and in vivo. As CML is a disease derived from cancer stem cells, it has 

become a paradigm model in cancer stem cell biology to investigate the critical pathways 

and therapeutic targets in cancer stem cells. As LSCs in CML are BCR-ABL transformed 

HSCs, BCR-ABL is the major player in LSCs to initiate leukemia development. Given 

the BCR-ABL degradation in vitro and in vivo, and the significantly prolonged survival 

of CML mice after IPI504 treatment, inhibition of Hsp90 not only caused BCR-ABL 

degradation but also might impair LSCs in CML. To confirm this LSCs inhibition, we 

subsequently treated CML mice total BM which contains LSCs with IPI504 in stem cell 

enrich condition for 6 days, and found a dramatic inhibition of LSCs percentage and total 

number. Similar inhibition effect was also observed in CML mice treated with IPI504. 

This inhibition of LSCs was specifically caused by suppression of Hsp90 function in 

LSCs because the potential IPI504 side-effect or toxicity has been excluded by following 

IPI504 treatment in normal WT B6 mice. This promising result indicates LSCs are more 

sensitive to Hsp90 inhibition than normal HSCs and this result also makes it more 

confident to apply IPI504 into clinical trial. Communication with Infinity Co. confirmed 



123 
 

the success of IPI504 in the clinical trial I and we also hope it will achieve success in 

further clinical trials to benefit more CML patients. 

Although all CML mice achieved significant longer survival and LSCs were 

impaired after IPI504 treatment, they still died of CML in the end. There are at least three 

possibilities to explain the failure of IPI504. The first one could be the drug concentration 

is not high enough in vivo, especially in the long term treatment. As we showed higher 

concentration of IPI504 achieved better therapeutic effect, we believe increase of IPI504 

dose will improve the treatment. Recently, a new version of IPI504, called IPI493 which 

has higher solubility and lower toxicity than IPI504, has been developed by Infinity Co. 

We are also evaluating and comparing its therapeutic effect with imatinib and IPI504 in 

our models. We also hope this new version of Hsp90 inhibitor could achieve better 

therapeutic effect. On the other hand, a genetic knockout mouse strain could solve this 

drug concentration problem, as we do not need to worry about the inhibitory efficiency of 

Hsp90 in knockout condition. However, it is unfortunate that the Hsp90β conventional 

knockout mice are embryonic lethal and the Hsp90α conventional knockout mice are also 

not available now, so it is hard to evaluate their contribution in our BCR-ABL retroviral 

mouse models. To overcome this obstacle and also to be a future plan, we are planning to 

establish both Hsp90α and Hsp90β conditional knockout mice strains. Specific deletion 

both of these Hsp90 isoforms in mouse hematologic cells will definitely help us to 

confirm their contribution in CML development.  

The second possibility might be the emerging of Hsp90 mutation during the 

treatment. In normal condition, GA, 17-AAG and IPI504 replace nucleotide in the Hsp90 
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binding pocket with an affinity much greater than either ATP or ADP, thus effectively 

short-circuiting the chaperone cycle.134 If any mutant occurs in this nucleotide binding 

pocket, it will definitely change the conformation which facilitate Hsp90 binding to 

IPI504 and cause the insensitiveness to treatment. To find out these potential Hsp90 

mutants, we can collect the DNA samples from the dead mice after IPI504 treatment and 

check the Hsp90 sequence by screening its genomic DNA. If any mutation has been 

found in the Hsp90 DNA, we can clone this mutant cDNA out and transfect it into 32D-

BCR-ABL cell line which is originally sensitive to IPI504 to test whether ectopic 

expression of this mutant Hsp90 will switch the cells to be insensitive to IPI504 treatment. 

The last one might be the residual LSCs could re-initiate the leukemia 

proliferation to cause the death of mice. Although a dramatic decrease of LSCs has been 

observed in vitro and in vivo treatment, a small percentage of LSCs were still residual. 

They might finally take over the disease initiation and promote leukemia cells 

proliferation and cause the death of mice. This small residual LSCs population also 

indicates Hsp90 inhibition alone is not enough to remove all LSCs and part of them can 

addict to other pathways to bypass the Hsp90 inhibition and remain their self-renewal and 

differentiation. Further investigations of LSCs critical pathway are still needed to be 

performed.  

 

 

Role of Pten in LSCs 
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To identify critical pathways in LSCs, we compared the global gene expression 

signature between normal HSCs and LSCs by conducting a DNA microarray analysis.223  

During this whole analysis, we already proved that Alox5 is a CML LSCs specific 

regulator and inhibition of Alox5 by either genetic knockout or inhibition with its specific 

inhibitor, zileuton, dramatically blocks the CML development.127 Interestingly, Pten, a 

most mutated and downregulated tumor suppressor in human cancers, is also listed in the 

candidate genes. 

In the second part of this thesis, we focused on the Pten function in LSCs and CML 

development. Two of reasons stimulate us to investigate Pten function in LSCs in CML. 

The first one is although PTEN is often deleted or inactivated in many human cancers, 

including glioblastoma141, endometrial carcinoma 143, and lymphoid malignancies146, 

these are few studies reporting the downregulation or mutation of  Pten in human CML 

patients. As our LSCs microarray results suggest Pten plays as a tumor suppressor in 

LSCs, it is very attractive for us to study Pten function in our CML mouse model. The 

second reason is two independent groups reported Pten distinguished normal HSCs from 

leukemia initiating cells and prevented the acute myeloid leukemia (AML) development 

in mice. These exciting studies revealed the crucial role of Pten in the self-renewal and 

differentiation of LSCs in AML and invoked us to extend Pten study from AML to CML.  

Our results in this part proved Pten functions as a tumor suppressor in LSCs and 

suppresses CML leukemogenesis. As Pten conventional knockout mice are embryonic 

lethal and specific deletion of Pten in mouse hematologic cells will induce lethal AML in 
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mice, we creatively make a triple-gene expression retroviral construct which can 

simultaneous expresses BCR-ABL, iCre (or Pten) and GFP in a same cell. The advantage 

of this construct is iCre can delete Pten in every BCR-ABL expressing leukemia cell and 

we can monitor these leukemia cells proliferation, cell cycle and apoptosis, following the 

GFP expression. In our study, we did find the acceleration of CML development when 

Pten was deleted with the MSCV-BCR-ABL-iCre-GFP retrovirus in Ptenfl/fl mice or a 

prolonged survival of CML mice induced by MSCV-BCR-ABL-Pten-GFP retrovirus 

compared with control group. However, we only used MSCV-BCR-ABL-GFP retrovirus 

induced CML mice as controls. The different sizes of dual-gene and triple-gene 

constructs might affect the titer of retrovirus. In the future experiments, to make more 

accurate control, a loss-of-function form of iCre could be cloned to make a MSCV-BCR-

ABL-iCre(mutant)-GFP construct, which will be a real control to MSCV-BCR-ABL-

iCre-GFP construct and they can achieve more reliable results by excluding the titer issue.  

 

Potential mechanisms of Pten in LSCs 

Although Pten is intensively studied in solid tumors and T cell-acute lymphoid 

leukemia (T-ALL)224-227, little is known about Pten in CML until we show that Pten 

inhibits LSCs and CML development.204 This result is supported by a clinical study 

which compared global gene expression between normal CD34+ HSCs and CD34+ 

subsets from six patients with chronic phase CML. Besides the changes of gene 

expression for several adhesion molecules, transcription factors, cell cycle and stem cell 
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fate regulators, PTEN was also downregulated.207 Another study showed that the gene 

expression profiles of mononuclear cells from CML patients who are non-responder for 

imatinib treatment also indicated the Pten downregulation.228 However, the mechanisms 

of Pten regulation of LSCs in CML still need to be investigated. We noticed that the level 

of phosphorylated-Akt (p-Akt) was significantly lower in leukemia cells in CML mice 

when Pten was overexpressed 204, suggesting that p-Akt is a critical in Pten pathway and 

inhibition of Akt could be a rational therapeutic strategy in treatment. This idea is 

supported by our finding that induction of B-cell acute lymphoblastic leukemia (B-ALL) 

in mice was largely compromised when Akt1 was absent, as shown by the prolonged 

survival of recipients of BCR-ABL transduced Akt1 deficient bone marrow cells mice.204 

The involvement of Akt1 in cancer has been shown in endometrial tumor, prostate cancer, 

thyroid tumor, adrenal medulla tumors and intestinal polyps in Pten+/- mice.162 However, 

the roles of the Akt family members (Akt1, Akt2 and Akt3) in CML are still needed to be 

studied in the future. We have shown that expression of the Alox5 gene is upregulated by 

BCR-ABL in CML LSCs,127 and it has been reported that Alox5 activates Akt through 

oxidation and inhibition of Pten.229 This potential pathway between Alox5, Pten and Akt 

are great targets in LSCs therapies.   

  When Pten is specifically deleted in mouse hematopoietic cells, the mice develop 

acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL), and all mice died 

within 4 weeks.159, 160 LSCs in these mice are highly enriched in Lin-Sca1+cKit+Flk2-

CD48- population.160 A blockade of differentiation from LT-HSC (Lin-Sca1+cKit+Flk2-) 

to ST-HSC (Lin-Sca1+cKit+Flk2+) was also found in Pten deficient mice, causing an 
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eventual exhaustion of LT-HSC.159 Increased percentage of S+G2M dividing HSCs was 

observed in Pten deficient mice, indicating that Pten functions as a molecular switch 

governing the G0-G1 transition between the quiescent and activated states of LT-HSCs to 

maintain normal HSCs pool.159 The role of Pten in cell cycle control is consistent with 

our result that Pten expression induces cell cycle arrest in BCR-ABL expressing leukemia 

cells.204 In addition, cyclin D1 is a well known target of the PI3K-Akt pathway,230 

maintaining cells at G1 stage in preparation for G1/S phase transition. In Pten deficient 

AML mice, high number of cyclin D1-expressing cells were detected in bone marrow, 

suggesting that cyclin D1 is downstream of Pten in cell cycle regulation of HSCs. Thus, 

the role of cyclin D1 in cell cycle regulation of LSCs in CML requires further study. 

Furthermore, after rapamycin administration, LSCs were depleted and normal HSCs 

restored in Pten-deficient AML mice159, indicating that Pten maintains normal HSCs pool 

and suppresses LSCs through inhibition of mTOR. It has been reported that PML 

(promyelocytic leukemia protein) plays a role in normal HSCs and BCR-ABL transduced 

quiescent LSCs, facilitating leukemia initiation and maintenance.231 Pml deficiency 

promoted transition of LSCs from quiescent to activated stage and Pml-/- LSCs finally 

failed to initiate CML disease contrary to wild type LSCs after serial transplantation. As 

PML is a repressor of mTOR, inhibition of mTOR with rapamycin restored Pml-/- HSCs 

and the long-term reconstitution functions of LSCs. This study is controversy with the 

role of Pten in AML LSCs and our finding in CML, indicating the function of mTOR 

complex still needs more studies. Furthermore, rapamycin is also could be tested in 
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different CML cell lines to confirm its inhibition of leukemia cell proliferation and 

induction of apoptosis and it is should be a promising reagent in future CML clinical trial. 

Another Pten conditional deletion mouse model demonstrated that Pten partial 

deletion in mouse fetal liver HSCs and their differentiated progeny led to a 

myeloproliferative disorder, followed by acute T-lymphoblastic leukemia (T-ALL).232 In 

this study, the Pten deficient Lin-c-KitmidCD3+ population was shown to be the T-ALL 

LSCs through a serial transplantation assay. Interestingly, ablation of one allele of β-

catenin significantly delayed the occurrence of acute leukemia. We and others have also 

shown that β-catenin plays a key role in maintaining LSCs in CML87, 88 and AML89.  

All of above results allow us to draw a potential picture connecting Pten with other 

key pathways involved in survival and proliferation of LSCs, including β-catenin, p53, 

Alox5, PI3K/Akt/mTOR pathways (Figure 1). These pathways are disturbed in CML, 

AML and other malignancies, and targeting of the pathways may be beneficial to patients. 

Taken together, the two parts of my thesis work broaden the existing BCR-ABL 

signaling pathway. The chaperon protein, Hsp90, can stabilize BCR-ABL and facilitate it 

to continually active its downstream, including PI3K, Akt, Grb2, MAPK et, al. When 

Hsp90 is inhibited by its specific inhibitor, such as IPI504, BCR-ABL will be released 

from Hsp90 complex and degraded by proteasome, finally shutting down its signaling 

transduction and suppressing the leukemogenesis. On the other hand, BCR-ABL can 

downregulate Pten expression and release its inhibition of p-Akt which is critical to 

promote leukemia cells proliferation. Notably, BCR-ABL also might inactive Pten 

function through upregulate Alox5 expression to oxidize Pten and facilitate 



130 
 

leukemogenesis (Figure 2). In this network, several therapeutic targets, such as Hsp90, 

Alox5, Akt, mTOR, are so promising in CML treatment and their novel inhibitors might 

achieve significant benefit for CML patients.  

 

 

 

Figure 1. Potential Alox5/Pten/Akt/GSk3-β/β -catenin network in CML LSCs. BCR-
ABL actives PI3K which switches PIP2 to PIP3 and activates Akt, followed by the 
activation of mTOR and β-catenin nuclear translocation to maintain LSCs self-renew and 
leukemia initiating. BCR-ABL also downregulates Pten by suppressing p53 which binds 
to Pten promoter and upregulates Pten expression. Moreover, BCR-ABL upregulates 
Alox5 expression which potentially inhibits Pten function and promotes Akt 
phosphorylation by oxidation of Pten.  
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Figure 2. Network of BCR-ABL signaling transduction pathway.  Novel components 
are added in the existing BCR-ABL signaling transduction network. Hsp90 stabilizes 
BCR-ABL and its inhibition by IPI504 induces BCR-ABL degradation. BCR-ABL 
downregulates Pten to release its inhibitory effect on Akt phosphorylation and 
upreuglates Alxo5 expression which might inactive Pten function and active Akt 
phosphorylation in leukemia cells. (Modified from Brain Druker, Blood, 2009, vol 112, 
4808-4817)  
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