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The discovery of reliable biomarkers to predict efficacy and toxicity of anticancer drugs remains one of
the key challenges in cancer research. Despite its relevance, no efficient study designs to identify promis-
ing candidate biomarkers have been established. This has led to the proliferation of a myriad of explora-
tory studies using dissimilar strategies, most of which fail to identify any promising targets and are
seldom validated. The lack of a proper methodology also determines that many anti-cancer drugs are
developed below their potential, due to failure to identify predictive biomarkers. While some drugs will
be systematically administered to many patients who will not benefit from them, leading to unnecessary
toxicities and costs, others will never reach registration due to our inability to identify the specific patient
population in which they are active. Despite these drawbacks, a limited number of outstanding predictive
biomarkers have been successfully identified and validated, and have changed the standard practice of
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oncology. In this manuscript, a multidisciplinary panel reviews how those key biomarkers were identified
and, based on those experiences, proposes a methodological framework—the DESIGN guidelines—to stan-
dardize the clinical design of biomarker identification studies and to develop future research in this piv-
otal field.
� 2017 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Even though personalized oncology is widely perceived as an
imminent reality, few anticancer drugs are currently prescribed
based upon predictive biomarkers [1]. Moreover, despite outstand-
ing advances in molecular biology, the clinical development of
most anticancer drugs is still based on conventional randomized
studies that aim to detect statistically significant clinical benefits
in unselected patients. Several factors underlie this fact, including
the complexity of cancer, but probably one major cause is the lack
of a robust methodology to discover candidate biomarkers. Indeed,
much attention has been paid to biomarker validation [2–10], cer-
tainly a critical step in biomarker development. Yet, these resource
and time-consuming procedures cannot be applied to every candi-
date. Therefore, in analogy with classical drug development, where
phase I and II trials select which candidates should undergo further
testing, a well-defined methodology is required to identify the
most promising candidate biomarkers that should advance
towards validation.

The absence of such a methodology has relevant implications
for cancer research, including the proliferation of exploratory stud-
ies that fail to identify robust candidates; the inability to compare
biomarkers across studies and to select the most reliable results;
and foremost, the absence of solid biomarker identification pro-
grams in the clinical development of many anti-cancer drugs. This
results in many patients receiving drugs that will not benefit them;
whereas some drugs that may be effective for some specific
patients will never be registered, due to our inability to identify
such target populations.

The lack of biomarkers reduces the efficacy of many anti-cancer
drugs, ranging from cytotoxic chemotherapy to antiangiogenics.
Yet, since predictive biomarkers represent the functional presence
or absence of the molecular mechanisms of action and resistance
characteristic of each drug, it seems reasonable to hypothesize that
all drugs should have predictive biomarkers, and that these might
be identified using appropriate strategies. Moreover, discovery of
biomarkers allows to understand such mechanisms of sensitivity
and resistance, and to develop improved therapeutic strategies to
overcome resistance, such as the combination of MEK inhibitors
and BRAF inhibitors for melanoma, [11] or the design of new gen-
eration EGFR [12] or ALK inhibitors [13] for lung cancer. On the con-
trary, the lack of biomarkers hampers such developments, as well
as the validation of known biomarkers in different tumor types.

Despite these drawbacks, some outstanding biomarkers have
been successfully incorporated into standard oncology practice,
transforming drugs with limited efficacy in unselected patients
into core elements of our therapeutic arsenal. This manuscript
revisits how these biomarkers were identified and draws upon
these successful experiences to propose a methodological frame-
work, the DESIGN guidelines, to standardize and expand this piv-
otal field.
Methods

Using the published literature [14] and open-access internet
resources [15] we identified predictive biomarkers that are rou-
tinely used to prescribe targeted drugs for patients with solid
tumors. We reviewed how each biomarker was identified from a
clinical and preclinical standpoint (Table 1). The results were ana-
lyzed by a panel formed by experienced specialists in biomarker
research from several fields, including: medical and radiation
oncology, pathology, molecular oncology, cancer immunology,
cancer genetics, clinical biochemistry, research nursing, research
ethics and biostatistics. The panel also discussed how the regula-
tory and ethical environments could further support biomarker
development.
Results

We identified 8 predictive biomarkers that drive prescription of
targeted drugs for solid tumors in standard practice (Table 1):
Hormone receptors

Beatson established the basis for the hormonal treatment of
breast cancer in 1896, confirming the activity of oophorectomy
in this disease [16]. His seminal report was based on the effects
of ovarian castration on mammary glands of farm animals and,
quite amazingly, he pioneered modern translational research by
over a century, by performing for the first time sequential tumor
biopsies in patients before and after treatment.

Later on, pharmacological hormonal inhibitors were developed,
but their relatively low activity in unselected breast cancer
patients led to decreased interest in this approach [17], in favor
of chemotherapy. Jensen observed that tritium-labeled estradiol-
17, 3 injected in immature rats was preferentially bound in the
uterus [18], leading to the identification of estrogen receptors
(ER) [19]. Subsequently ER tumor levels were correlated with clin-
ical activity in retrospective analyses of 33 patients undergoing
endocrine therapy for advanced breast cancer [20] and trans-
formed a maneuver of moderate efficacy into one of the most rel-
evant therapeutic strategies in the history of oncology.
HER2 overexpression

HER2 (Receptor tyrosine-protein kinase erbB-2) was identified
in 1981 [21] and was found to be markedly amplified in breast can-
cer cell-lines [22]. Expression of activated HER2 in transgenic
mouse models induced malignant transformation of breast epithe-
lial cells [23]. HER2 overexpression was observed in 15–20% of
breast cancers, conferring a poor prognosis [24], and anti-HER2
mouse monoclonal antibodies inhibited breast cancer proliferation
in vitro [25].

Trastuzumab, a humanized anti-HER2 antibody, showed activ-
ity in breast cancer patients overexpressing HER2 [26]. Phase III
studies confirmed that trastuzumab and chemotherapy prolonged
respectively overall survival (OS) and progression-free survival
(PFS) in HER2+ breast cancer patients in advanced [27] and adju-
vant settings [28], as well as OS in patients with HER2+ advanced
gastric cancer [29]. HER2 overexpression also predicts efficacy of
HER2 tyrosine-kinase inhibitors (TKI), such as lapatinib or nera-
tinib and of newer monoclonal antibodies targeting HER2, such
as pertuzumab [30] or trastuzumab-DM1 [31].
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Table 1
Methodological characteristics of studies that identified predictive biomarkers that are routinely used in clinical practice for solid tumors.

Biomarker Studies Design Single
agent

Disease
setting

Study
endpoint

Phenotype
selection

Sample
size

Type of sample Molecular
nature of the
biomarker

Preclinical
evidence

Validation Biomarker
expression in
peripheral
blood

Interval between
target description
and discovery of
biomarker (years)a

Hormone
receptors

Jensen [20] Retrospective Yes Advanced Response
rate

No 33 Fresh or frozen
tumor biopsy

Overexpression
of tumor
receptor

Yes, before
clinical
evidence [19]

NCI Consensus [180] Yes [181] 75

Her-2 Baselga
[26]

Prospective,
phase II

Yes Advanced Response
rate

No 46 Paraffin
embedded
tumor biopsy

Overexpression
of tumor
receptor

Yes, before
clinical
evidence [25]

Phase III study [27] Yes [182,183] 15

C-KIT Joensu[37] Prospective,
single patient

Yes Advanced Response
rate

No 1 Paraffin
embedded
tumor biopsy

Mutation in
tumor receptor
kinase domain

Yes, before
clinical
evidence [36]

Phase II study [38] Yes [184] 15

EGFR Paez [52]
Lynch [53]

Retrospective Yes Advanced Response
rate

Yes 9/16 Frozen and
paraffin
embedded
tumor biopsy

Mutations in
tumor receptor
kinase domain

Yes, after
clinical
evidence
[52,53]

Retrospective [54,55]
and phase III studies
[56–58]

Yes [185] 24

ALK Kwak
[61,62]

Prospective,
phase I

Yes Advanced Response
rate

Yes 2/37b Paraffin
embedded
tumor biopsy

Translocation in
tumor receptor
gene

Yes, before
clinical
evidence
[59,60]

Phase II [62], retro-
spective [64] and
phase III studies
[65,66]

Yes [186] 2

KRAS Lievre [78] Retrospective No Advanced Response
rate, OS

No 30 Frozen tumor
biopsy

Mutation in
tumor protein

Yes, after
clinical
evidence [79]

Retrospective studies
[80–83]

Yes [187] 26

BRAF Flaherty
(escalation
phase) [94]

Prospective,
phase I

Yes Advanced Response
rate

No 55 Paraffin
embedded
tumor biopsy

Mutation in
tumor receptor
kinase domain

Yes, before
clinical
evidence [93]

Phase I (expansion
phase) [94] and phase
III studies [95]

Yes [188] 22

BRCA Fong [104] Prospective,
phase I

Yes Advanced Response
rate

No 60 Peripheral blood Germline
mutation

Yes, before
clinical
evidence
[102,103]

Retrospective,
preplanned[105]

Yes (germline) 25

Abbreviations: EGFR: Epidermal Growth Factor Receptor. NSCLC: Non-small cell lung cancer. OS: Overall survival. PFS: progression-free survival.
a From description of target relevance in cancer to identification of the biomarker.
b The study was performed in 37 patients with solid tumors, but ALK translocations were identified in 2 NSCLC patients that developed a partial response.
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c-KIT mutations

Gastrointestinal stromal tumors (GIST) express the stem cell
factor receptor c-KIT, described in 1986 [32]. Activating c-KIT
mutations, initially reported in haematological malignancies [33],
were subsequently discovered in 80–90% of GISTs [34]. Imatinib,
a TKI that targets oncogenic forms of ABL, PDGFR and c-KIT [35],
showed anti-tumor effects against GIST c-KIT mutated cell lines
[36]. Impressive activity of imatinib in one GIST patient [37] was
subsequently confirmed in 147 patients [38]. PDFGR activating
mutations also predict response to imatinib in GIST [39] and in
other diseases, such as dermatofibrosarcoma protuberans [40].

Epidermal growth factor receptor (EGFR) mutations

Cohen et al. described EGF in 1962 [41] and purified its receptor,
EGFR, in 1980 [42]. Both molecules were involved in an autocrine
loop that promoted tumor proliferation and survival [43]. The
EGFR TKIs erlotinib and gefitinib induced G1 arrest of cancer cell-
lines that expressed EGFR [44,45]. Clinical activity in non-small cell
lung cancer (NSCLC) was observed since the first phase II trials
[46,47] and led to four phase III trials comparing two standard
platinum-based regimens with or without each EGFR inhibitor
[48–51], which to the great surprise of the oncology community
were all negative.

Enthusiasm was rekindled when EGFR mutations were shown
to predict efficacy of EGFR TKIs [52,53]. Strikingly, this seminal
finding was reported in two studies including just 9 and 16
patients respectively, in sharp contrast with the more than 4000
patients enrolled in the phase III trials. Both groups sequenced
EGFR exons in human NSCLC samples and identified mutations in
exons 18–21. Such mutations were observed respectively in 8 of
9 responders and in none of the 7 gefitinib-resistant patients
[53]; and in all 5 responders and none of the 4 resistant patients
[52]. Both reports also confirmed that EGFR mutations predicted
activity of gefitinib in NSCLC cell-lines. These results were prospec-
tively validated in non-randomized [54,55] and randomized trials
[56–58].

ALK translocations

In 2007 Soda et al. described a fusion between echinoderm
microtubule-associated protein-like 4 (EML4) and anaplastic
lymphoma-kinase (ALK) genes by generating a retroviral cDNA
expression library from a lung adenocarcinoma specimen surgi-
cally resected from one patient [59]. The fusion gene drived neo-
plastic transformation and chemical interference with ALK kinase
induced cell death. Crizotinib, a dual MET/ALK kinase inhibitor,
was found to inhibit ALK-mediated signalling in cell lines present-
ing ALK rearrangements [60]. The first phase I trial with crizotinib
confirmed striking activity in two NSCLC patients harboring ALK
gene rearrangements [61,62]. Crizotinib showed a 57% response
rate in a cohort of 82 NSCLC patients presenting ALK rearrange-
ments, identified by screening 1500 patients [62]. This prompted
two phase III trials comparing crizotinib with standard first and
second-line chemotherapy in patients presenting ALK rearrange-
ments. Nevertheless, the overwhelming results of the initial trial
and of a confirmatory study [63], as well as retrospective data con-
firming that ALK rearrangements were not a favourable prognostic
factor for NSCLC untreated with crizotinib [64], led to the acceler-
ated approval of crizotinib before registration trials were reported
[65,66]. ALK translocations also predict efficacy of crizotinib in
other tumors, such as ALK-rearranged inflammatory myofibroblas-
tic tumor [67] or ALK positive lymphoma [68,69].

The inhibitory activity of crizotinib on the growth of the
ROS1-rearranged NSCLC line HCC78 prompted treatment with
crizotinib of a NSCLC patient harboring ROS1 rearrangements,
who responded to therapy [70]. A confirmatory trial performed
in 50 NSCLC patients harboring ROS1 rearrangements led to regu-
latory approval of crizotinib for this patient population [71].

RAS mutations

RAS proteins comprise a family of ubiquitously expressed
GTPases involved in cell proliferation/differentiation and include
KRAS, NRAS and HRAS. RAS acts downstream of the EGFR
receptor-signaling pathway. Sato et al. developed 225 IgG1, a mur-
ine monoclonal antibody that inhibited EGFR with comparable
affinity to the natural ligand [72] and induced receptor dimeriza-
tion and internalization, a relevant mechanism for target inhibition
[73]. Cetuximab, a chimeric human:murine version of 225, showed
higher affinity for EGFR [74] and demonstrated activity in patients
with colorectal cancer expressing EGFR [75]. Randomized studies
confirmed improved PFS and response rate of cetuximab [76] and
panitumumab [77], a fully human IgG2 anti-EGFR monoclonal
antibody, leading to regulatory approval.

In 2006, Lievre et al. retrospectively evaluated KRAS, BRAF and
PIK3CA tumor mutations and EGFR copy number in 30 colorectal
cancer patients treated with cetuximab [78]. KRAS mutations were
described in 13 tumors (43%) and they were significantly associ-
ated with lack of response to cetuximab (0% mutations in 11
responders vs. 68% in 19 non-responders, p = 0.0003) and with
OS (16.3 vs. 6.9 months, p = 0.016). Transfection of the mutant
KRAS allele (Gly12Val) to colorectal cancer cell lines rendered them
resistant to cetuximab [79]. Retrospective validation was per-
formed in independent series [80,81] and in the cetuximab and
panitumumab registration trials [82,83], leading to approval of
both agents for KRAS wild-type advanced colorectal cancer. Subse-
quently, NRAS and additional downstream mutations, have been
associated in retrospective analyses with lack of response to cetux-
imab [84,85].

BRAF mutations

In 1983 Rapp et al. cloned c-RAF, the cellular homologue of the
v-RAF oncogene [86], and two related genes (ARAF and BRAF) were
described in vertebrates [87]. RAF is a family of serine-threonine
kinases which act mainly on the RAS/RAF/MEK/ERK pathway. ERK
hyper-activation had been described in melanoma cell-lines [88]
and activating BRAF mutations were observed in 40–60% of mela-
nomas [89]. The most frequent mutation is the substitution of
valine by glutamic acid at position 600 (p.V600E) [89,90], which
locks the kinase domain into an active conformation that renders
it 480-fold more active than wild-type BRAF [91]. Mice models
with restricted transgenic expression of mutated BRAF in melano-
cytes confirmed its oncogenic role [92].

Vemurafenib selectively blocks the active kinase, inhibits ERK
phosphorylation, induces cell-cycle arrest and apoptosis in
BRAFV600E bearing tumor cell-lines and induces regressions of BRAF
mutated tumor xenograft models [93]. A phase I study with vemu-
rafenib found a 69% response rate in 16 melanoma patients harbor-
ing V600E mutations, while none of the 5 wild-type patients
responded [94]. A phase III trial confirmed that vemurafenib
improves survival in patients with advanced melanoma expressing
V600E mutations, as compared with dacarbazine [95]. BRAF V600E
mutations also predict the activity of BRAF inhibitors in other
tumor types [96].

BRCA mutations

In 1990, the 17q21 chromosome region was linked to inherited
breast cancer susceptibility, through the study of 23 families
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comprising 146 cases of breast cancer presenting familial aggrega-
tion and including a high number of early-onset and bilateral
tumors and male patients [97]. In 1994, BRCA1 was identified,
along with predisposing germinal mutations [98]. Simultaneously,
BRCA2 was mapped to chromosome 13q12-q13 [99] and the gene
and predisposing mutations were also identified [100]. Both genes
played critical roles in DNA repair, cell cycle checkpoint control,
and maintenance of genomic stability, and thereafter, recommen-
dations for cancer surveillance and risk reduction for individuals
carrying mutations in the BRCA1 or BRCA2 genes were proposed
[101].

While normal cells from affected individuals carry heterozy-
gous loss-of-function BRCA mutations, inactivation of the remain-
ing wild-type allele is required to drive carcinogenesis. This
renders tumor cells more sensitive than normal cells to blockade
of DNA repair pathways, such as poly(adenosine diphosphate
[ADP]-ribose) polymerase (PARP) [102,103].

A phase I study of the PARP inhibitor olaparib, in 60 patients
with advanced ovarian cancer showed activity in 12 of 22 patients
carrying BRCA1/2 mutations (54%) [104]. A randomized phase II
study comparing maintenance olaparib versus placebo in
platinum-sensitive ovarian cancer patients confirmed improved
PFS from 4.3 to 11.2 months in patients harboring BRCA1/2 muta-
tions, in a planned retrospective analysis [105].
Analysis of methodological aspects of biomarker identification
studies

Related to the trial design

Prospective vs retrospective design
Remarkably, despite the theoretical inferiority of retrospective

versus prospective studies, three biomarkers were identified retro-
spectively (Table 1) [20,52,53,78], and moreover, in the setting of
conventional treatments, rather than in clinical trials. This chal-
lenges the traditional concerns about retrospective studies, and
indicates that whenever the quality of the samples and of the clin-
ical data is adequate, they represent a useful tool to identify pre-
dictive biomarkers. Advantages of prospective designs include
the possibility of studying biomarkers for drugs under develop-
ment and the optimization of sample collection, whereas retro-
spective designs take advantage of the large number of patients
that receive standard treatments and of the availability of clinical
follow-up. Possibly, an adequate strategy is to collect samples
prospectively, from patients treated in clinical trials as well as in
standard care, and to study them retrospectively, once the sample
size, follow-up and working hypothesis make it appropriate.
Single-agent vs combination therapy
All the biomarkers, except KRAS mutations,[78] were identified

in monotherapy studies (Table 1). Single-agent studies seem more
adequate to identify candidate biomarkers, since they eliminate
the interactions of the combined drugs. Even though this state-
ment might seem obvious, many widely studied drugs considered
as targeted agents, such as bevacizumab, have rarely been explored
in monotherapy [106,107], and never in the setting of biomarker
identification studies.

Since combinations are fundamental in cancer therapy, it seems
logical to validate biomarkers identified for single-agents in
patients treated with combinations that include such drugs; and
to take advantage of the opportunity that combinations represent
to identify novel biomarkers (e.g.: studying patients that respond
to the combination in the absence of predictive biomarkers of sen-
sitivity to the single-agent; or despite the presence of biomarkers
of resistance to the single-agent).
Disease setting
All the biomarkers reviewed were identified in patients with

advanced disease (Table 1). This setting provides greater opportu-
nities than adjuvant therapy, because drugs are explored earlier in
advanced tumors and single-agent therapy is more frequently
administered. Also, treatment outcomes in advanced disease rely
mainly on drug activity, rather than on staging or efficacy of local
treatment, as it happens in the adjuvant setting. It also allows
access to sequential biopsies and to use tumor response as an
endpoint.

The neoadjuvant setting also allows access to sequential tumor
samples and exploration of tumor response, although patients may
only receive short courses of therapy, in order to avoid delaying
surgery excessively. Also, identification of a biomarker in a specific
setting does not allow to extrapolate it automatically to other
situations.

Clinical efficacy endpoints
Most of the studies used response rate as the endpoint, with the

exception of the study that identified KRAS mutations (response
rate and OS) [78] (Table 1).

Response rate is an adequate endpoint for biomarker identifica-
tion studies, since it correlates with either the presence or the
absence of a direct effect of the drug on tumor growth. Response
and also PFS rely directly on the efficacy of the drug, independently
of subsequent treatments, and can be evaluated in relatively short
periods. Yet, the limitations of response for targeted [108] and
immunomodulatory drugs [109]; and the lack of clear effects of
some immunotherapies on response and PFS, despite increases in
OS, should be considered [110]. OS is usually preferred for biomar-
ker validation, although the effects of treatment cross-over,
required for ethical reasons when highly active drugs are studied,
must also be considered.

Validated tumor burden-related serum biomarkers (e.g., PSA)
and metabolic imaging, (e.g., PET scans) might serve as surrogates
of response. Other relevant endpoints (e.g., cardiac toxicity, etc.)
should be characterized by the appropriate specific tests. Well-
characterized pharmacokinetic [111,112] and pharmacodynamic
variables (e.g., ERK pathway inhibition in melanoma) [94] may also
be used as primary or secondary end-points for biomarker identi-
fication studies.

Phenotype selection
While some studies were performed in unselected patients

[20,26,37,78,94,104], others selected patients presenting pheno-
types of marked sensitivity or resistance to the treatment studied
[52,53,62], leading to dramatic decreases in the required sample
size (Table 1).

Recently, some studies have identified potential predictive can-
cer biomarkers even in a single patient, following the strategy of
extreme phenotype selection (Table 2). Moreover, the US National
Cancer Institute (NCI) has created a specific research program, the
Exceptional Responders Initiative [113] and sponsors a clinical trial
based on this strategy (NCT02243592).

Extreme phenotype selection has underpinned some outstanding
discoveries in oncology, as reviewed elsewhere [114,115], and has
proved useful to interpret the large amount of data generated by
high-throughput techniques [116–120]. It reduces the sample size
required for molecular studies because it enriches biomarker expres-
sion in the patients studied and excludes from the analysis patients
with intermediate phenotypes of uncertain significance that might
confound the information provided by unequivocal phenotypes.

Extreme phenotypes may be defined as patients that present
clear responses or progressions with the drug studied; remarkably
long or short OS or PFS intervals (e.g., below the 10th, or over the
90th percentile); combinations of either criteria; or marked



Table 2
Selected cancer predictive biomarkers identified using selection of extreme phenotypes.

Reference Tumor Drug n Biomarker Predictive effect of the biomarker

Tuchman, [121] Van Kuilen-
burg [122]

Colorectal cancer 5-
fluorouracil

1 DPD polymorphisms Marked 5- fluorouracil induced
toxicity

Ando [123] Colorectal cancer Irinotecan 26 UGT1A1
polymorphisms

Severe toxicity with irinotecan

Iyer [117] Advanced urothelial
carcinoma

Everolimus 1 Inactivating TSC1
mutation

Complete response ( > 24 m)

Wagle [118] Anaplastic thyroid cancer Everolimus 1 Inactivating TSC2
mutation

Partial response (18 m)

Wagle [119] Advanced urothelial
carcinoma

Everolimus 1 Activating mTOR
mutations

Complete response (14 m)

Van Allen [120] Muscle invasive urothelial
carcinoma

Cisplatin 25 responders / 25 non-
responders

ERCC2 somatic
mutations

Correlation with complete
pathologic response

Doebele [189] Soft tissue sarcoma LOXO-101 1 LMNA–NTRK1 fusion Major partial response (4+ m)
Van Allen [190] Head and neck cancer Erlotinib 1 MAPK1 E322K

mutation
Complete response in the
neoadjuvant setting

Cools [191] Hypereosinophilic
syndrome

Imatinib 11 FIP1L1-PDGFRA
fusion

Correlation with clinical response

DPD: dihydropyrimidine dehydrogenase. UGT1A: UDP-glucuronosyltransferase 1A1.
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toxicity [121–123] (Fig. 1). This strategy may also be used to
identify biomarkers associated with increased or decreased cancer
risk [114,124,125]. Indeed, extreme phenotypes constitute real-life
clinical models of sensitivity and resistance to carcinogens and
drugs that may be used to study the underlying molecular mecha-
nisms. Patients that are resistant to a given treatment, despite
expression of biomarkers of sensitivity (e.g., NSCLC patients
Treatment /
Exposure to cancer risk f

Favorable phe
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Fig. 1. Design of biomarker identification studies using selection of extreme phenotyp
individuals presenting favorable or unfavorable extreme phenotypes. Since it is not po
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driven) or performed with high-throughput techniques (hypothesis-free).
expressing EGFR mutations who do not respond to EGFR TKIs) or
viceversa, also represent extreme phenotypes worth of evaluation.
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Sample size
None of the studies reviewed included an approach to deter-

mine the sample size for biomarker identification, as in fact occurs
in most biomarker identification studies. This calculation is jeopar-
dized by the fact that the determining factors (i.e., nature, fre-
quency of expression, capacity of prediction of the biomarker,
sensitivity and reproducibility of the techniques, etc.) are uncer-
tain. In addition, studies that use high-throughput techniques are
hypothesis-free, because they lack an alternative hypothesis
regarding which factors will be predictive [127]. Finally, the sam-
ple size is limited in real life by the scarcity of quality samples
and by the capacity and costs of molecular techniques.

The ‘‘omics” technologies (genomics, transcriptomics, pro-
teomics, etc.) have been applied to identify biomarkers in a high-
throughput manner [128]. In these experiments the number of
parameters measured (hundreds or thousands) vastly exceeds
the number of subjects included in the study, and thus many stan-
dard statistical methods are not applicable. This includes some of
the most widely used algorithms to estimate sample size and sta-
tistical power for detecting biomarkers [129,130] Indeed, some cal-
culation methods for specific technologies have been developed
[131,132], but their validity is limited by the factors mentioned
above and their inability to keep up with the constant improve-
ment in molecular biology techniques.

Since sample size determination is of paramount importance,
and until such limitations are overcome, empirical approaches
may be pursued. This strategy is already used for phase I studies,
which include 3–6 patients per dose level, figures based on no
compelling scientific evidence [133]. The sample size range of
the studies reviewed (1 [37] to 60 patients[104]) may guide empir-
ical determination of sample size and suggests that exceedingly
large samples are not required to successfully identify biomarkers.
Even though the use of very reduced samples (e.g., <5 patients)
may not be optimal, prior experiences indicate that they may be
sufficient, whenever the preclinical evidence for the biomarker is
straightforward [37,61] and/or when selection of extreme pheno-
types is used [52,53]. On the other hand, the use of larger sample
sizes should provide increased statistical power; or the possibility
to identify additional biomarkers with a similar biological effect.
Biological samples
Tumor tissue constitutes the cornerstone for biomarker identi-

fication, and was used to identify all the biomarkers reviewed,
except BRCA1/2mutations [104] (Table 1). Nevertheless, its limited
availability represents a major barrier for biomarker research and
establishes a vicious cycle in which the absence of adequate sam-
ples hampers the development of reliable biomarkers, which con-
sequently questions the rationale for obtaining biopsies.

Three biomarkers were identified in formalin-fixed paraffin-
embedded (FFPE) tissue [26,37,61,94] two in fresh or frozen tumor
[20,78] one in both FFPE and frozen tumor [52,53] and one in
peripheral blood [104]. Even though FFPE tissue is universally
available, its efficiency for high-throughput nucleic acid analyses
is compromised by the size of the DNA/RNA fragments obtained,
the presence of multiple potential inhibitors of reactions, the false
positive transitions and other artifacts related to the fixation pro-
cess in amplicon-based massively parallel sequencing (e.g., Next
Generation Sequencing, NGS). Even though technical develop-
ments and bioinformatics allow the use of FFPE tissue for NGS-
based clinical tests and research, frozen tissue is still more appro-
priate for this purpose. Therefore, routine acquisition of both fro-
zen and FFPE tumor tissue is paramount to develop solid
biomarker research programs. Tumor microenvironment is likely
a major determinant of activity of cancer therapy, and thus acqui-
sition of tumor stroma is also highly recommended.
Since biopsies are frequently small and not uniform, adequate
sample management, quality control and/or prioritization is essen-
tial to accomplish robust biomarker research. Prolonged storage of
samples under suboptimal conditions may compromise the quality
of the sample analytes (e.g., proteins, phosphoepitopes or nucleic
acids) and interpretation of results. Definition of the optimal time
periods, quality metrics, pre-analytical processing and conditions
for sample/biomolecule preservation for biomarker studies is a
major need in the field, but is beyond the scope of this article
and has been reviewed elsewhere [134–137].

The procedures underlying the acquisition of quality tumor tis-
sue were not detailed in any of the studies reviewed. Rapid on-site
evaluation (ROSE) of tissue by a well-trained pathologist increases
the yield of biopsies in the diagnostic setting [138], and also seems
useful for biomarker studies.

Blood also represents a relevant platform for biomarker devel-
opment. To date, it has mainly been used to characterize previously
identified biomarkers (Table 1), with gefitinib being the first drug
to obtain regulatory approval based on this strategy [139]. Blood
was also the primary source in the characterization of BRCA germ-
line mutations [104] and may be used to develop new biomarkers.
For instance, upon validation, expression of the androgen receptor
variant 7 (AR-V7) mRNA in circulating tumor cells (CTC) of prostate
cancer patients might become a predictive biomarker of resistance
to abiraterone and enzalutamide [140]. Sequencing of CTC may
provide a comprehensive genomic characterization of tumors,
avoiding invasive procedures [141]. Blood might also provide a
more complete landscape of the disease at a systemic level, since
it represents the genetic information from all tumor regions, rather
than the limited image of the disease obtained by sampling a single
tumor site, and may therefore contribute to solve the conundrum
generated by tumor subclonal heterogeneity [142].

Blood extractions are minimally invasive and easy to standard-
ize procedures, and the logistics required to manage them are
already widespread. Therefore, blood-based biomarker research
may vastly increase the availability of samples and consequently,
our ability to identify biomarkers. Standardization of sample pro-
cessing would foster the development of multi-institutional coop-
erative projects. Table 3 includes selected biomolecules that may
be obtained from blood and other biological fluids.

Timing of sample acquisition. Sequential samples
None of the studies reviewed controlled the interval between

biopsy acquisition and treatment administration, confirming that
this is a frequently overlooked variable, despite its potential rele-
vance. This interval frequently depends on the natural history of
the disease, and may range from few weeks or months (e.g., lung
cancer) to several years (e.g., prostate cancer), thus impacting on
the probability of variations in the tumor molecular profile over
time and jeopardizing the interpretation of studies. Therefore, it
seems reasonable to control this variable, perhaps with the excep-
tion of germline alterations [104]. Unfortunately, defining optimal
intervals is an intricate task, as they may vary between different
tumor types, patients, and even phases of the tumor evolution
within one patient. Also, technical and ethical considerations limit
access to tumor tissue at pre-specified intervals. Until more data
becomes available, reporting the time elapsed between acquisition
and initiation of therapy or the clinical event being evaluated; the
disease setting of sample acquisition (i.e., localized vs. metastatic);
and the location (primary tumor vs. metastasis) may help to inter-
pret the data and to further define these concepts in the future.

Nevertheless, the development of molecular changes over time,
rather than being an obstacle, represents a formidable opportunity
to characterize their impact on the tumor phenotype. Indeed, the
study of sequential biopsies obtained at baseline and at response,
has allowed to characterize pharmacodynamic biomarkers [94].



Table 3
Selected biomolecules that may be obtained from blood and other biological fluids in biomarker identification studies.

Biological sample Type of
sample

Analyte Extraction Storage Observationsf

Collecting tubea Volume
(mL)

Centrifugation Volume
of
aliquots
(mL)

Long term
storageb,c

Blood Serum Metabolites Proteins
Cytokines Exosomes Cell-
free nucleic acidsd

Clotting tubes 2.5–10 Wait 30 min to
coagulation in vertical
position Avoid long
delays

0.3–0.5 -70 �C Improper coagulation may influence downstream analysis.

Plasma Metabolites Proteins
Cytokines Exosomes

K3 EDTA, citrate or heparin
tubes

2.5–10 Avoid long delays 0.3–0.5 �70 �C Fibrin formation may influence downstream analysis

Cell-free nucleic acidsd K3 EDTA or citrate tubes Cell-
Free DNATM BCT Cell-Free
RNATM BCT PAXgene tubes

5–10 Avoid long delays
Follow specific
protocols

0.5–1.5 �20 �C for
weeks-
months
�70 �C

Stable for several days in special tubes at room temperature
before isolation Extract nucleic acids before freezing Plasma
DNA levels are > 3-fold lower than serum levels

Whole
blood

CTC K3EDTA tubes CellSaveTM

preservative tubes
P 7.5 Follow specific

protocols
Liquid
nitrogen for
viable cells

Follow protocols for viable cells if necessary

Peripheral blood cells,
Germline DNAe

K3EDTA or heparin tubes
Cyto-Chex BCT CPTTM or PPTTM

P 2.5 Follow specific
protocols (e.g., Ficoll)

Liquid
nitrogen for
viable cells

Follow protocols for viable cells if necessary

Urine Random
or 24 h

Metabolites Proteins
Cytokines Exosomes Cell-
free nucleic acidsd

Specific lab recipient Depends
on
sample

Avoid long delays
Refrigerate until
centrifugation

> 1 �70 �C –

Other fluids (CSF,
ascites, pleural
fluid, saliva. . .)

Metabolites Proteins
Cytokines Exosomes Cell-
free nucleic acids CTC

Specific lab recipient Depends
on
sample

Avoid long delays
Refrigerate until
centrifugation

0.3–1 �70 �C Fibrin formation may influence downstream analysis

CSF: cerebrospinal fluid. CTC: circulating tumor cells.
a Some analytes may require special preservatives
b Avoid repeat freeze–thaw cycles
c Samples are viable for years
d Including miRNAs, lncRNAs, etc.)
e Although the effect of chemotherapy on germline DNA is not well characterized, it is recommended to obtain it at baseline, before treatment.
f Some results may be misrepresented by coexistence of concomitant diseases (e.g., hepatic or renal failure, etc).
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Table 4
Selected cancer biomarkers related with acquired drug resistance identified or validated in sequential samples from initially sensitive patients or in synchronic lesions presenting
paradoxical responses.

Reference Tumor Drug n Sampling strategy Biomarker

Misale [142] KRAS wild type colorectal
cancer

Cetuximab/panitumumab 10 Sequential biopsies and
circulating DNA

KRAS mutations

Diaz [146] KRAS wild type colorectal
cancer

Panitumumab 24 Sequential circulating DNA KRAS mutations

Bettegowda
[147]

KRAS wild type colorectal
cancer

Cetuximab/panitumumab 24 Sequential circulating DNA MAPK mutations

Pao [192] EGFR mutated NSCLC Gefitinib and Erlotinib 5 Sequential biopsies EGFR T790 mutation
Choi [193] NSCLC harboring ALK

rearrangements
Crizotinib 1 Sequential biopsy ALK mutations

Katayama
[194]

NSCLC harboring ALK
rearrangements

Crizotinib 18 Sequential biopsies ALK mutations and amplification

Shaw [195] NSCLC harboring ALK
rearrangements

Lorlatinib 1 Sequential biopsies ALK mutationa

Awad [196] NSCLC harboring ROS1
rearrangement

Crizotinib 1 Sequential biopsy ROS1 mutation

Emery [197] Advanced melanoma AZD6244 (MEK inhibitor) 5 Sequential biopsies MEK1 mutation
Johannessen

[198]
BRAF mutant melanoma Vemurafenib 3 Sequential biopsies MAPK pathway activation

Nazarian
[199]

BRAF mutant melanoma Vemurafenib 12 Sequential biopsies PDGFRb upregulation /NRAS mutation

Wagle [200] BRAF mutant melanoma Vemurafenib 1 Sequential biopsy MEK1 mutation
Poulikakos

[201]
BRAF mutant melanoma Vemurafenib 19 Sequential biopsies BRAF splicing variants

Shi [202] BRAF mutant melanoma Vemurafenib / dabrafenib 20 Sequential biopsies (V600E)B-RAF amplification
Trunzer [203] BRAF mutant melanoma Vemurafenib 16 Sequential biopsies MAPK signaling reactivation/ NRAS and

MEK1 mutations
Van Allen

[204]
BRAF mutant melanoma Dabrafenib, vemurafenib 31 Sequential biopsies MAPK pathway alterations, others

Ahronian
[205]

BRAF mutant colorectal
cancer

Dabrafenib and trametinib or
panitumumab

3 Sequential biopsies MAPK pathway alterations

Wagle [118] Anaplastic thyroid cancer Everolimus 1 Sequential biopsy Somatic mTOR mutation
Cools [191] Hypereosinophilic syndrome Imatinib 1 Sequential biopsies PDGFRa mutation
Debiec [206] GIST Imatinib 26 Sequential biopsies PDGFRa and C-KIT mutations and

amplification
Wardelmann

[207]
GIST Imatinib 32 Sequential biopsies C-KIT mutations

Lim [208] GIST Imatinib 12 Sequential biopsies PDGFRa and C-KIT mutations
Liegl [209] GIST Imatinib, sunitinib 14 Sequential samples C-KIT mutations
Tamborini

[210]
GIST Imatinib 1 Synchronic biopsy C-KIT mutations

Serrano [211] GIST Imatinib 1 Synchronic biopsy KRAS and CKIT mutations
Zaretsky [212] Melanoma Pembrolizumab 4 Sequential biopsies JAK1, JAK2 and B2Mtruncating mutations

GIST: gastrointestinal stromal tumors. NSCLC: non-small cell lung cancer.
a The patient developed previously a described ALK mutation that conferred resistance to crizotinib. She responded to lorlatinib and developed a second mutation that

conferred resistance to lorlatinib, but resensitized the tumor to crizotinib.
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In addition, the study of tumor specimens from patients that pro-
gress on treatment after initial responses has led to the identifica-
tion of resistance biomarkers (Table 4), and to the development of
new treatments directed to overcome resistance, as was the case
with EGFR T790Mmutations.[12] Interestingly, acquired resistance
alterations were usually identified in the same driver genes or
pathways that conferred sensitivity to treatment. Therefore, we
hypothesize that whenever driver genes are unknown, new muta-
tions that arise upon progression following a response, may consti-
tute candidate resistance mutations that might be harbored in
such driver genes or pathways, thus helping to identify them
(reverse identification, Fig. 2). Sequencing such genes in baseline
samples of responding patients may reveal the specific driver
mutations.

Synchronous biopsies of different lesions within a single patient
that presents paradoxical responses to an anticancer drug (i.e.,
simultaneous response and progression) may also allow correlat-
ing phenotypic differences with the corresponding molecular pro-
file and may help to improve our current understanding of tumor
heterogeneity (Fig. 2, Table 4).

Sequential biopsies are not routinely performed in standard
practice. Yet, some clinical situations allow sequential tissue
samples to be obtained in standard patient care, and thus represent
excellent opportunities for biomarker research that should be pur-
sued further. In responding patients, sequential tissue may be
obtained from surgical resections following neoadjuvant therapy.
Tumor may be obtained from patients presenting progression: at
salvage surgery, following failure of induction therapy; to reassess
the molecular profile to guide subsequent therapy; to resect tumor
progressing at a single site; to assess pseudo-progression vs. true
progression; or from autopsies, which have guided medical knowl-
edge for centuries and may certainly have a role in the era of
molecular biology. Finally, some tumor lesions, such as subcuta-
neous nodules, are readily accessible for sequential biopsies, thus
entailing negligible risks and ethical concerns.

In the research setting, obtaining access to new drugs may com-
pensate patients for the risks and inconveniences associated with
investigational biopsies. Indeed, some trials with novel agents
require for inclusion the acquisition of a tumor sample to be
obtained following progression from a previous treatment (e.g.,
NCT01900652); or require to perform sequential biopsies during
the study (e.g., NCT01358721).

Blood also constitutes an excellent platform to obtain
sequential samples. Blood allows detection of predictive and
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Fig. 2. Panel 2a: Design of studies exploring responses following progression or paradoxical responses. These studies require the acquisition and study of tumor biopsies at
baseline and at progression, following a response to a given treatment; or from different tumor lesions presenting paradoxical responses (i.e.: response and progression).
Comparison of baseline and responding lesions may identify pharmacodynamic biomarkers of efficacy. Differences in the molecular profile of baseline and progressing lesions
may represent biomarkers of acquired resistance. Panel 2b: Since many of the described biomarkers of resistance occur on previously known driver genes or pathways
(Table 4), it can be hypothesized that the identification of genetic alterations arising at resistance may help to identify the driver genes or pathways that harbor them, when
these are unknown (reverse identification).
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tumor-burden-related biomarkers, and monitoring of their levels
over time, in order to evaluate tumor burden and response to treat-
ment and to anticipate clinical progression [142–145] as well as
development of resistance mutations [142,146,147], thus allowing
early switch of therapy. Sequential blood samples should be
obtained at clinically relevant moments, i.e., baseline, evaluation
of response, or marked toxicity (Fig. 3). Samples obtained before
and after radical treatment and at relapse are especially appropri-
ate to identify prognostic, diagnostic and tumor-burden-related
biomarkers (Fig. 4) [148]. Precise coordination in the collection of
samples and clinical data is essential, and the role of well-trained
and motivated research nurses, study coordinators and technicians
in this task cannot be overemphasized.
Validation of biomarkers
Although prospective randomized trials are considered the gold

standard to validate biomarkers, in fact they were not used to val-
idate several of the biomarkers reviewed (Table 1). Randomized
studies are time and resource consuming and raise ethical dilem-
mas, related to the denial of highly active treatments to control
subjects [149]. Hence, it is necessary to critically evaluate if they
are truly essential for biomarker validation.
Hormone receptors [20] and KRAS [78], c-KIT [37], and BRCA
mutations [105] were validated based on overwhelming differ-
ences over historical controls and retrospective analyses of clinical
trials. Even though randomized trials validated ALK translocations
as a predictive biomarker for crizotinib [65,66], approval was
granted before these trials ended, based on the striking results
from the initial and confirmatory non-randomized studies
[62,64]. Randomized trials validated EGFR [56–58] and BRAF muta-
tions [95]. Nonetheless, the benefit for EGFRmutated patients trea-
ted with TKI was so remarkable that the biomarker was adopted
before the results of phase III trials became available [150,151].
Moreover, novel EGFR mutations, not assessed in randomized trials
have been incorporated into clinical practice as predictive
biomarkers for EGFR TKI. As for BRAF inhibitors, randomization
involved ethical dilemmas due to the obvious superiority of the
experimental treatment [149]. Finally, randomized trials were piv-
otal in the validation of HER2 overexpression in breast [27] and
gastric cancer [29]. However, the activity of trastuzumab in
patients expressing HER2 is lower than for the other biomarkers,
and probably these subtler differences in efficacy make the ran-
domized validation essential.

Basket trials, which enroll patients with different tumor types
according to the expression of molecular alterations, constitute a
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flexible and interesting design to validate new candidate predictive
biomarkers; or to validate in new tumor types biomarkers that are
already well-established in others. The NCI Molecular Analysis for
Therapy Choice (MATCH) trial, which will screen 4,000 different
variants across 143 genes in over 5,000 patients and assign
patients carrying specific alterations to 24 treatment arms, consti-
tutes a groundbreaking initiative in this field [152]. Umbrella stud-
ies, which assess several genetic alterations on a given tumor type
and assign treatments accordingly, also constitute a relevant tool
to further explore and validate biomarkers.

Related to the molecular aspects of the biomarkers

Molecular nature of the biomarker
Biomarkers represent molecular features of tumors that acti-

vate or repress biological pathways that drive neoplastic growth,
thus rendering the tumor sensitive or resistant to drugs affecting
that pathway. Theoretically, such features might be found at differ-
ent levels of the cellular machinery as exemplified by HER2 over-
expression, which is detectable at the gene and/or at the protein
levels. To date all cancer predictive biomarkers consist of alter-
ations at the genetic or protein expression levels (Table 1), and
even though other types of biomarkers have been reported, none
has been translated into clinical practice (Table 5). Consequently,
it seems logical to prioritize gene and protein evaluation in bio-
marker identification studies.

These levels also apply to cancer immunotherapy biomarkers,
with PD-L1 expression [153] and presence and clonality of tumor
neoantigens [154–156] being the most relevant examples for
immunomodulatory antibodies. Yet, the characteristics of the
stroma and the immune infiltrate [157–159] and the functionality
of the immune system [160] must also be considered in the iden-
tification of robust biomarkers in this field. The complexity of the
immune system may require the use of quantitative or semiquan-
titative scores assessing different variables [161] that should be
correlated with benefit of single agent or combination
immunotherapy [162].

Preclinical evidence
Preclinical evidence is available for all the biomarkers reviewed

and, in most instances, preceded clinical discovery (Table 1). Nev-
ertheless EGFR [52,53] and KRAS mutations [78] were first
described in patients and validated subsequently in preclinical
models, although, even in these cases, preclinical knowledge of
the signaling pathways guided the clinical studies.

Even though modern high-throughput techniques assess count-
less molecular alterations, just a limited number of these seem
critical for tumor development (i.e., ‘‘driver” tumor alterations),



Table 5
Molecular nature of biological alterations for selected cancer predictive biomarkers.

Level Molecular alteration Example Diagnostic
test

Tumor type Treatment Validated Approved for
clinical use

Genetic Gene mutations and
deletions

EGFR mutations [52,53] PCR,
sequencing

NSCLC EGFR TKI Yes Yes

c-KIT mutations [37] PCR,
sequencing

GIST Imatinib, sunitinib Yes Yes

KRAS/ NRAS mutations [78,85] PCR,
sequencing

Colorectal cancer Cetuximab,
panitumumab

Yes Yes

Gene amplification HER2 overexpression [26] IHC, FISH Breast cancer
Gastric cancer

HER2 targeted therapy Yes Yes

Translocations ALK translocation [61] FISH NSCLC ALK inhibitors Yes Yes
Polymorphisms VEGFR3 SNPs [213] PCR RCC Sunitinib No No
Messenger RNA ARV7 [140] PCR Prostate Cancer Abiraterone.

enzalutamide
No No

Epigenetic miRNA miR-942 [214] Micro RNA
array

RCC Sunitinib No No

DNA methylation MGMT methylation [215] PCR Glioblastoma Alkylating agents No No

Protein Protein
overexpression

HER2 [26] IHC Breast
cancerGastric
cancer

HER2 targeted therapy Yes Yes

Hormone receptors [20] IHC Breast cancer Hormonal therapy Yes Yes

Phenotype Cellular
subpopulations

CD8+ tumor infiltrating
lymphocytes [157]

IHC Melanoma PD-1/ PD-L1 axis
blocking therapy

No No

AR-V7: androgen receptor variant 7. EGFR: epidermal growth factor receptor. FISH: fluorescence in-situ hybridization. IHC: immunohistochemistry. MGMT: O6-methyl-
guanine-DNA methyltransferase PCR: polymerase chain reaction. RCC: renal cell carcinoma. SNPs: single nucleotide polymorphisms. TKI: tyrosine kinase inhibitors.

Table 6
Sample requirements for selected molecular and pathological techniques in the assessment and discovery of cancer predictive biomarkers.

Technique Application/s Sample requirementa Analytical
Sensitivity

Observations

PCR-based: conventional
PCR, pyrosequencing,
Sanger sequencing, RFLP,
RT-PCR, ASO, etc

EGFR, KRAS/NRAS, BRAF, c-KIT
mutation

>5–10 ng (approx.
1000 cells)

From 3% for
pyrosequencing to
15% for Sanger
sequencing

May depend on the sensitivity and specificity of
the technique

Methylation specific:
pyrosequencing/MSP-PCR

MGMT methylation 1 lg 3–5% of
methylated DNA

NGS: gene panels Hot spots or complete coding
sequence of target genes:
assessment and discovery

20 ng to 1 lg Variable Highly dependent on the type of library and
equipment.

NGS, WES Exome analysis: discovery 2–3 lg Variable Highly dependent on the type of library and
equipment. Not for FFPE.

GWAS Discovery and identification of
SNPs or loci related to the
phenotype under study

1 lg of DNA from
peripheral blood

Variable

FISH ALK and ROS1 rearrangements FFPE sections with at
least 50–100 cancer
cells, cytology
smears

15% of rearranged
cells

FISH is not validated for cytology smears, when
used, negativity in the smear does not exclude the
possibility that the tumor contains translocated
genes

IHC HER2 overexpression, hormonal
receptors, ALK IHC Test (Ventana),
CD8+ tumor infiltrating
lymphocytes

Cytology smear, FFPE
sections

15% of positive
cells

ASO: Allele specific oligonucleotide; FFPE: formalin-fixed paraffin-embedded tissue; GWAS: Genome-wide association study. FISH: Fluorescence in situ hybridization. IHC:
Immunohistochemistry. MSP-PCR: Methylation specific polymerase chain reaction; NGS: Next generation sequencing; PCR: Polymerase chain reaction; RFLP: Restriction
fragment length polymorphism; WES: Whole exome sequencing.

a In all cases the DNA optical density (OD) 260/280 must be between 1.8 and 2.0.
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as opposed to others that seem to be bystanders in the process of
carcinogenesis (‘‘passenger” alterations) [163]. Also, while some-
times the biomarkers consist of a unique molecular alteration,
identical in all patients (e.g., BRAF V600E mutation) [94], in other
instances they are represented by diverse molecular alterations
that induce comparable phenotypes (e.g., the different EGFR sensi-
tizing mutations) [52,53]. Moreover, due to tumor heterogeneity
and clonal evolution, different tumor lesions may present different
molecular alterations. This biological diversity poses a challenge
for biomarker discovery using unsupervised methods and renders
preclinical validation essential for biomarker identification. Com-
putational tools to estimate pathogenicity of genetic alterations
based on its location, frequency or predicted structural impact
may help to select candidate variants, but it is unlikely that they
may substitute functional validation in a preclinical model. Preclin-
ical evidence is also fundamental to identify mechanisms of
acquired resistance to targeted drugs and to guide strategies to
overcome them [164–167].

Conventional vs high-throughput techniques
Identification of biomarkers is inherently related to the techno-

logical capacities to analyze samples/analytes and correlate the



Table 7
Summary of conclusions.

1. Even though prospective studies are the gold standard for medical research, retrospective designs also represent a useful tool to identify predictive cancer biomarkers
and should be considered for this purpose.

2. Single-agent studies should be preferred over combination studies to identify biomarkers.
3. Advanced disease seems the more appropriate setting to perform biomarker identification studies, due to methodological and logistical advantages.
4. Response rate has been the most widely used endpoint for studies to identify predictive biomarkers, because of its direct correlation with drug activity. Nevertheless,

other endpoints may also be used.
5. Extreme phenotype selection is a useful strategy for biomarker identification studies, because it enriches the expression of biomarkers, allows lower sample sizes to

be used and aids in the interpretation of the large amounts of data generated by high-throughput techniques.
6. The development of reliable statistical methods to calculate the optimal sample size for biomarker identification studies is an unmet need. Until such methods are

available, empirical determination of sample size, based on currently available successful experiences, may be an adequate approach.
7. Tumor tissue remains the preferred sample for biomarker identification studies. Acquisition of adequate samples of paraffin-embedded and frozen tissue is

paramount to develop solid biomarker research programs. Strategies to increase the yield of biopsies, such as Rapid On-Site Evaluation (ROSE) of samples by a
pathologist should be encouraged.

8. Blood is an excellent platform for biomarker research. To date, blood has mainly been used to detect already known biomarkers, but it also may be used for primary
identification of biomarkers.

9. Timing of sample acquisition is a relevant variable that should be controlled in biomarker identification studies, although the optimal and maximum intervals
between sample acquisition and the clinical event being evaluated remain to be defined. Reporting these intervals in biomarker identification studies should help to
define them in the future.

10. Studies with sequential biological samples, obtained at clinically relevant moments are an excellent platform to identify predictive biomarkers. Biopsies obtained at
progression have revealed resistance mechanisms in driver genes, and may be useful to discover new driver genes. Synchronous biopsies of tumor lesions presenting
paradoxical responses are also useful for this purpose. Blood is especially appropriate for biomarker studies with sequential samples.

11. Although randomized trials remain the gold standard to validate candidate biomarkers, non-randomized approaches have also been successful. The confirmation of
large differences in efficacy in comparison with historical controls in one or more prospective -or even retrospective- studies has been a widely accepted strategy for
this purpose.

12. All validated predictive biomarkers available have been identified at the genetic and/ or protein expression levels. Consequently, it seems logical to prioritize such
levels.

13. Preclinical evidence is essential to confirm the reliability of candidate predictive biomarkers. It can be obtained either upfront, to guide clinical studies; or
subsequently, to validate the results of clinical studies.

14. Regulatory authorities and pharmaceutical industry should discuss and implement an adequate regulatory framework to further support drug development based
on biomarkers.

15. Ethical regulations should guarantee the rights of the individuals without compromising the development of translational research. The development of broad
research projects with one-time informed consents seems a useful tool for this purpose.
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results with clinical outcomes. Genomic, transcriptomic, epigenetic
and protein profiling can determine up to thousands of markers
simultaneously, with continuously decreasing time frames, costs
and sample requirements, and will likely dominate the field in
the coming years. However, all the predictive biomarkers reviewed
were identified using relatively simple, low throughput methods,
such as immunohistochemistry (IHC), fluorescence in situ
hybridization (FISH), quantitative PCR, capillary electrophoresis
and hotspot/targeted sequencing. Even though some high-
throughput methods, such as gene arrays help to select patients
for adjuvant therapy, for example in breast cancer [168–171], these
cannot be considered predictive biomarkers for targeted agents.
Table 6 reviews some of the most widely used conventional and
high-throughput techniques commonly used for biomarker
research.

Theoretically, high-throughput technologies using unbiased/
unsupervised discovery approaches should increase the ability to
find biomarkers, perhaps allowing identification of initially unex-
pected candidates; selection of the optimal biomarker, whenever
several candidates are identified; or the development of composite
biomarkers. Yet, high-throughput techniques provide an extremely
large number of variables that are difficult to interpret reliably. In
addition, performing multiple comparisons leads to many false sig-
nificant associations. Several methods to adjust for multiple testing
are available, with the preferred approach being to control the false
discovery rate (FDR), which represents the probability that any
particular significant finding represents a false positive result
[172]. Biomarker identification approaches are normally based on
pattern matching algorithms [173,174]. Classification is the pro-
cess of finding a model that distinguishes data classes based on
the analysis of a training population (subjects whose class label
is known). Once the model is established, it is applied to one or
more independent validation sets to challenge its capacity to pre-
dict the class in a population whose class label is unknown. This
controls for statistical overfitting and any particular population/
selection bias. Evaluation of biomarker performance in indepen-
dent data sets is cumbersome, and thus statistical approaches
based on cross-validation or bootstrapping are commonly used
[175]. One of the most salient issues for biomarker discovery is that
datasets are inevitably biased by subject selection. As mentioned
above, sampling individuals (cases and controls) from the
extremes of a quantitative distribution (observable or inferred
from a statistical model) may increase power [176,177].

Therefore, while high-throughput technologies may generate a
great number of candidate biomarkers with potential clinical
value, to date their use remains mainly exploratory and directed
towards the screening of candidate biomarkers. Standardization
of high-throughput sequencing-based methods across laboratories
and incorporation of novel statistical approaches will be required
to develop more efficient biomarker discovery programs.
Regulatory and ethical aspects

Despite the efforts of regulatory agencies and pharmaceutical
companies to define drug development based on biomarkers
[178], few drugs as yet follow that path, as compared with those
developed based on conventional phase III studies. This situation
probably indicates that the regulatory authorities and industry
need to keep collaborating to define a regulatory environment that
further supports biomarker-based drug development.

As for ethical aspects, legislators and ethical review boards
must guarantee the rights of the individuals that donate biologic
samples according to the highest standards, while they must also
acknowledge that the availability of human samples is a key limit-
ing factor in cancer research; and that most patients are willing to
collaborate in this purpose and trust researchers to act ethically
[179].

Research projects with broad and comprehensive one-time
informed consents that contain all the information required by
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legal authorities and ethical review boards seem an adequate strat-
egy to protect the patient0s rights without compromising the
development of translational research. Such projects should allow
investigators to interrogate the samples with a wide variety of
molecular techniques, including high-throughput strategies and
the development of in vitro and in vivo models. They should pro-
vide a contact point, where patients may exert forthcoming rights
in the future: obtain additional information, withdraw consent,
etc.; and they should be adequately monitored by ethical review
boards.

Instead, stringent interpretations of legislations that demand to
define the specific biomarker that is being pursued -which is
unknown, by definition-, to provide technical details (i.e., labora-
tory procedures, location of the research laboratories, etc.), or to
contact patients again whenever any ancillary condition is modi-
fied, severely restrain investigators from optimizing the yield of
the samples and are not generally demanded by patients.

The implementation of broad research projects should decrease
the administrative and financial burden dedicated to project man-
agement; and should increase the number of samples available for
translational research. The establishment of homogeneous policies
at an international level would also simplify the development of
translational projects across country borders, as is the case with
clinical trials (i.e., Good Clinical Practice guidelines). This would
be especially relevant for the identification and study of patients
presenting very infrequent extreme phenotypes.

Conclusions

The identification of predictive biomarkers is one of the greatest
challenges of cancer research. While major advances have been
achieved in this field, solid methodological designs must be devel-
oped to maximize our potential to identify new biomarkers.

Despite the intrinsic complexity of this field, several biomarkers
are already available for clinical use, and it is rewarding to confirm
that the time required to identify reliable predictive biomarkers
has decreased dramatically in recent years (Table 1). This experi-
ence should guide the design of studies to identify predictive
biomarkers (Table 7). Since the technology is already available, this
effort will certainly accelerate progress in this pivotal field and will
foster the development of personalized medicine, which in the end
will require personalized research.
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