443,849 research outputs found

    The role of perceived source location in auditory stream segregation: separation affects sound organization, common fate does not

    Get PDF
    The human auditory system is capable of grouping sounds originating from different sound sources into coherent auditory streams, a process termed auditory stream segregation. Several cues can inïŹ‚uence auditory stream segregation, but the full set of cues and the way in which they are integrated is still unknown. In the current study, we tested whether auditory motion can serve as a cue for segregating sequences of tones. Our hypothesis was that, following the principle of common fate, sounds emitted by sources moving together in space along similar trajectories will be more likely to be grouped into a single auditory stream, while sounds emitted by independently moving sources will more often be heard as two streams. Stimuli were derived from sound recordings in which the sound source motion was induced by walking humans. Although the results showed a clear effect of spatial separation, auditory motion had a negligible inïŹ‚uence on stream segregation. Hence, auditory motion may not be used as a primitive cue in auditory stream segregation

    Modulation-frequency acts as a primary cue for auditory stream segregation

    Get PDF
    In our surrounding acoustic world sounds are produced by different sources and interfere with each other before arriving to the ears. A key function of the auditory system is to provide consistent and robust descriptions of the coherent sound groupings and sequences (auditory objects), which likely correspond to the various sound sources in the environment. This function has been termed auditory stream segregation. In the current study we tested the effects of separation in the frequency of amplitude modulation on the segregation of concurrent sound sequences in the auditory stream-segregation paradigm (van Noorden 1975). The aim of the study was to assess 1) whether differential amplitude modulation would help in separating concurrent sound sequences and 2) whether this cue would interact with previously studied static cues (carrier frequency and location difference) in segregating concurrent streams of sound. We found that amplitude modulation difference is utilized as a primary cue for the stream segregation and it interacts with other primary cues such as frequency and location difference

    Preliminary analysis of tone-excited two-stream jet velocity decay

    Get PDF
    Acoustic research related to jet flows has established that sound, by amplifying the naturally occuring large-scale structures in turbulent shear layers, can cause a more rapidly decay of the jet plume velocity and temperature and an increase in jet spreading rate. One possible application of this sound-flow interaction phenomenon is to future STOL aircraft that may require modified jet plume characteristics in order to reduce the loads and temperatures on the deflected flaps during take-off and landing operations. The tone-excitation effect on the velocity decay of model-scale, two-stream jet plumes is analyzed. Measured data are correlated in terms of parameters that include excitation sound level and outer-to-inner stream velocity ratio. The effect of plume tone-excitation on far-field jet noise is examined and its implication for large-scale two-stream jets is discussed

    Roaring lions and chirruping lemurs: How the brain encodes sound objects in space.

    Get PDF
    The dual-stream model of auditory processing postulates separate processing streams for sound meaning and for sound location. The present review draws on evidence from human behavioral and activation studies as well as from lesion studies to argue for a position-linked representation of sound objects that is distinct both from the position-independent representation within the ventral/What stream and from the explicit sound localization processing within the dorsal/Where stream

    Sound predictability as a higher-order cue in auditory scene analysis

    Get PDF
    A major challenge for the auditory system is to disentangle signals emitted by two or more sound sources that are active in a temporally interleaved manner (sequential stream segregation). Besides distinct characteristics of the individual signals (e.g., their timbre, location, and pitch), one important cue for distinguishing the sound sources is how their emitted signals unfold over time. It seems intuitively plausible that signals that unfold predictably with respect to their acoustic features and time-points of occurrence, such as the repetitive signature of a train moving on the rails, can be more readily identified as originating from one sound source. Based on this rationale, predictive elements have successfully been incorporated into computational models of auditory scene analysis for many years

    Live Demonstration: Real-time neuro-inspired sound source localization and tracking architecture applied to a robotic platform

    Get PDF
    This live demonstration presents a sound source localization and tracking system implemented with Spike Signal Processing (SSP) building blocks on FPGA devices. The system architecture is based on the ability of the mammalian auditory system to locate the direction of a sound in the horizontal plane using the interaural intensity difference. We used a binaural Neuromorphic Auditory Sensor to obtain spike rates similar to those generated by the inner hair cells of the human auditory system and the component that obtains the interaural intensity difference is inspired by the lateral superior olive. The spike stream that represents the interaural intensity difference is used to turn a robotic platform towards the sound source direction. The system was tested with pure tones (1-kHz, 2.5-kHz and 5- kHz sounds) with an average error of 2.32 degrees.Ministerio de EconomĂ­a y Competitividad TEC2016-77785-

    Turbulent shear-layer mixing: growth-rate compressibility scaling

    Get PDF
    A new shear-layer growth-rate compressibility-scaling parameter is proposed as an alternative to the total convective Mach number, Mc. This parameter derives from considerations of compressibility as a means of kinetic-to-thermal-energy conversion and can be significantly different from Mc for flows with far-from-unity free-stream-density and speed-of-sound ratios. Experimentally observed growth rates are well-represented by the new scaling

    Multiple pure tone elimination strut assembly

    Get PDF
    An acoustic noise elimination assembly is disclosed which has a capability for disrupting the continuity of fields of sound pressures forwardly projected from fans or rotors of a type commonly found in the fan or compressor first stage for air-breathing engines, when operating at tip speeds in the supersonic range. The assembly includes a tubular cowl defining a duct for delivering an air stream axially into the intake for a jet engine. A sound barrier, defined by a number of intersecting flat plates or struts has a line of intersection coincident with a longitudinal axis of the tubular cowl, which serves to disrupt the continuity of rotating fields of multiple pure tonal components of noise
    • 

    corecore