24 research outputs found

    Association between hemodynamic activity and motor performance in six-month-old full-term and preterm infants: a functional near-infrared spectroscopy study

    Get PDF
    FAPEMIG - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE MINAS GERAISFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOThis study aimed to assess task-induced activation in motor cortex and its association with motor performance in full-term and preterm born infants at six months old. A cross-sectional study of 73 sixmonth- old infants was conducted (35 full-term and 38 preterm infants). Motor performance was assessed using the Bayley Scales of Infant Development third edition-Bayley-III. Brain hemodynamic activity during motor task was measured by functional near-infrared spectroscopy (fNIRS). Motor performance was similar in full-term and preterm infants. However, differences in hemodynamic response were identified. Full terms showed a more homogeneous unilateral and contralateral activated area, whereas in preterm-born the activation response was predominantly bilateral. The full-term group also exhibited a shorter latency for the hemodynamic response than the preterm group. Hemodynamic activity in the left sensorimotor region was positively associated with motor performance measured by Bayley-III. The results highlight the adequacy of fNIRS to assess differences in task-induced activation in sensorimotor cortex between groups. The association between motor performance and the hemodynamic activity require further investigation and suggest that fNIRS can become a suitable auxiliary tool to investigate aspects of neural basis on early development of motor abilities.5118FAPEMIG - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE MINAS GERAISFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFAPEMIG - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE MINAS GERAISFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO215502012/02500-82013/07559-

    Mapping the Early Cortical Folding Process in the Preterm Newborn Brain

    Get PDF
    In the developing human brain, the cortical sulci formation is a complex process starting from 14 weeks of gestation onward. The potential influence of underlying mechanisms (genetic, epigenetic, mechanical or environmental) is still poorly understood, because reliable quantification in vivo of the early folding is lacking. In this study, we investigate the sulcal emergence noninvasively in 35 preterm newborns, by applying dedicated postprocessing tools to magnetic resonance images acquired shortly after birth over a developmental period critical for the human cortex maturation (26-36 weeks of age). Through the original three-dimensional reconstruction of the interface between developing cortex and white matter and correlation with volumetric measurements, we document early sulcation in vivo, and quantify changes with age, gender, and the presence of small white matter lesions. We observe a trend towards lower cortical surface, smaller cortex, and white matter volumes, but equivalent sulcation in females compared with males. By precisely mapping the sulci, we highlight interindividual variability in time appearance and interhemispherical asymmetries, with a larger right superior temporal sulcus than the left. Thus, such an approach, included in a longitudinal follow-up, may provide early indicators on the structural basis of cortical functional specialization and abnormalities induced by genetic and environmental factor

    Rapid cortical oscillations and early motor activity in premature human neonate.

    Get PDF
    International audienceDelta-brush is the dominant pattern of rapid oscillatory activity (8-25 Hz) in the human cortex during the third trimester of gestation. Here, we studied the relationship between delta-brushes in the somatosensory cortex and spontaneous movements of premature human neonates of 29-31 weeks postconceptional age using a combination of scalp electroencephalography and monitoring of motor activity. We found that sporadic hand and foot movements heralded the appearance of delta-brushes in the corresponding areas of the cortex (lateral and medial regions of the contralateral central cortex, respectively). Direct hand and foot stimulation also reliably evoked delta-brushes in the same areas. These results suggest that sensory feedback from spontaneous fetal movements triggers delta-brush oscillations in the central cortex in a somatotopic manner. We propose that in the human fetus in utero, before the brain starts to receive elaborated sensory input from the external world, spontaneous fetal movements provide sensory stimulation and drive delta-brush oscillations in the developing somatosensory cortex contributing to the formation of cortical body maps

    Measurement of neurovascular coupling in neonates

    Get PDF
    Neurovascular coupling refers to the mechanism that links the transient neural activity to the subsequent change in cerebral blood flow, which is regulated by both chemical signals and mechanical effects. Recent studies suggest that neurovascular coupling in neonates and preterm born infants is different compared to adults. The hemodynamic response after a stimulus is later and less pronounced and the stimulus might even result in a negative (hypoxic) signal. In addition, studies both in animals and neonates confirm the presence of a short hypoxic period after a stimulus in preterm infants. In clinical practice, different methodologies exist to study neurovascular coupling. The combination of functional magnetic resonance imaging or functional near-infrared spectroscopy (brain hemodynamics) with EEG (brain function) is most commonly used in neonates. Especially near-infrared spectroscopy is of interest, since it is a non-invasive method that can be integrated easily in clinical care and is able to provide results concerning longer periods of time. Therefore, near-infrared spectroscopy can be used to develop a continuous non-invasive measurement system, that could be used to study neonates in different clinical settings, or neonates with different pathologies. The main challenge for the development of a continuous marker for neurovascular coupling is how the coupling between the signals can be described. In practice, a wide range of signal interaction measures exist. Moreover, biomedical signals often operate on different time scales. In a more general setting, other variables also have to be taken into account, such as oxygen saturation, carbon dioxide and blood pressure in order to describe neurovascular coupling in a concise manner. Recently, new mathematical techniques were developed to give an answer to these questions. This review discusses these recent developments. © 2019 Hendrikx, Smits, Lavanga, De Wel, Thewissen, Jansen, Caicedo, Van Huffel and Naulaers. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms

    Consistent Anterior–Posterior Segregation of the Insula During the First 2 Years of Life

    Get PDF
    The human insula is a complex region characterized by heterogeneous cytoarchitecture, connectivity, and function. Subregional parcellation of the insula in adults has revealed an interesting anterior–posterior subdivision pattern that is highly consistent with its functional differentiation. However, the development of the insula's subregional segregation during the first 2 years of life remains unknown. The aim of this study was to test the hypothesis that similar segregation of the insula exists during this critical time period based on the resting-state functional magnetic resonance imaging study of a large cohort of infants (n = 143) with longitudinal scans. Our results confirmed a consistent anterior–posterior subdivision of the insula during the first 2 years of life with dissociable connectivity patterns associated with each cluster. Specifically, the anterior insula coupled more with frontal association areas, whereas the posterior insula integrated more with sensorimotor-related regions. More importantly, dramatic development of each subregion's functional network was observed, providing important neuronal correlates for the rapid advancement of its related functions during this time period

    Measurement of Neurovascular Coupling in Neonates

    Get PDF
    Neurovascular coupling refers to the mechanism that links the transient neural activity to the subsequent change in cerebral blood flow, which is regulated by both chemical signals and mechanical effects. Recent studies suggest that neurovascular coupling in neonates and preterm born infants is different compared to adults. The hemodynamic response after a stimulus is later and less pronounced and the stimulus might even result in a negative (hypoxic) signal. In addition, studies both in animals and neonates confirm the presence of a short hypoxic period after a stimulus in preterm infants. In clinical practice, different methodologies exist to study neurovascular coupling. The combination of functional magnetic resonance imaging or functional near-infrared spectroscopy (brain hemodynamics) with EEG (brain function) is most commonly used in neonates. Especially near-infrared spectroscopy is of interest, since it is a non-invasive method that can be integrated easily in clinical care and is able to provide results concerning longer periods of time. Therefore, near-infrared spectroscopy can be used to develop a continuous non-invasive measurement system, that could be used to study neonates in different clinical settings, or neonates with different pathologies. The main challenge for the development of a continuous marker for neurovascular coupling is how the coupling between the signals can be described. In practice, a wide range of signal interaction measures exist. Moreover, biomedical signals often operate on different time scales. In a more general setting, other variables also have to be taken into account, such as oxygen saturation, carbon dioxide and blood pressure in order to describe neurovascular coupling in a concise manner. Recently, new mathematical techniques were developed to give an answer to these questions. This review discusses these recent developments

    Investigating Task-Free Functional Connectivity Patterns in Newborns Using functional Near-Infrared Spectroscopy

    Get PDF
    Robust functional connectivity in sensorimotor resting-state network (RSN) has been linked to positive neurodevelopmental outcomes in neonates. In the current study, we aimed to map the developmental trajectory of sensorimotor RSN in awake neonates using functional near-infrared spectroscopy (fNIRS). We acquired fNIRS resting-state data from 41 healthy newborns (17 females, gestational age range=36+0 to 42+1 weeks) within the first 48 hours after birth. At the group level, we observed robust positive connectivity in numerous channel-pairs across the sensorimotor network, especially in the left hemisphere. Next, we examined the relationship between functional connectivity, gestational age and postnatal age, while controlling for sex and subject effects. We found both gestational and postnatal age to be positively associated with an increase in functional connectivity in the posterior portion of sensorimotor RSN. In summary, our findings demonstrate the feasibility of fNIRS for monitoring early developmental changes in functional networks in awake infants

    Neuromagnetic studies on cortical somatosensory functions in infants and children : Normal development and effect of early brain lesions

    Get PDF
    Until recently, objective investigation of the functional development of the human brain in vivo was challenged by the lack of noninvasive research methods. Consequently, fairly little is known about cortical processing of sensory information even in healthy infants and children. Furthermore, mechanisms by which early brain insults affect brain development and function are poorly understood. In this thesis, we used magnetoencephalography (MEG) to investigate development of cortical somatosensory functions in healthy infants, very premature infants at risk for neurological disorders, and adolescents with hemiplegic cerebral palsy (CP). In newborns, stimulation of the hand activated both the contralateral primary (SIc) and secondary somatosensory cortices (SIIc). The activation patterns differed from those of adults, however. Some of the earliest SIc responses, constantly present in adults, were completely lacking in newborns and the effect of sleep stage on SIIc responses differed. These discrepancies between newborns and adults reflect the still developmental stage of the newborns’ somatosensory system. Its further maturation was demonstrated by a systematic transformation of the SIc response pattern with age. The main early adult­like components were present by age two. In very preterm infants, at term age, the SIc and SIIc were activated at similar latencies as in healthy fullterm newborns, but the SIc activity was weaker in the preterm group. The SIIc response was absent in four out of the six infants with brain lesions of the underlying hemisphere. Determining the prognostic value of this finding remains a subject for future studies, however. In the CP adolescents with pure subcortical lesions, contrasting their unilateral symptoms, the SIc responses of both hemispheres differed from those of controls: For example the distance between SIc representation areas for digits II and V was shorter bilaterally. In four of the five CP patients with cortico­subcortical brain lesions, no normal early SIc responses were evoked by stimulation of the palsied hand. The varying differences in neuronal functions, underlying the common clinical symptoms, call for investigation of more precisely designed rehabilitation strategies resting on knowledge about individual functional alterations in the sensorimotor networks.Lääketieteellisen teknologian kehitys on vasta viime vuosina mahdollistanut lasten aivotoiminnan tarkan, objektiivisen tutkimuksen. Näin ollen esimerkiksi aistiärsykkeiden aivoprosessoinnista vastasyntyneillä tiedetään varsin vähän, samoin kuin monien aivotoimintojen kehittymisestä lapsen kasvaessa. Myös ymmärrys erilaisten aivovaurioiden vaikutuksesta kehittyviin aivoihin on puutteellista. Magnetoenkefalografialla (MEG) tutkitaan aivohermosolujen toimintaa mittaamalla niissä syntyvien sähkövirtojen tuottamia magneettikenttiä pään ulkopuolelta. Väitöskirjassa MEG:n avulla tutkittiin tuntoaivokuoren toimintaa vastasyntyneillä ja tämän toiminnan kehitystä ensimmäisten elinvuosien aikana. Lisäksi tuntoaivokuoren toimintaa tarkasteltiin pikkukeskosena syntyneillä vauvoilla sekä nuorilla, joilla on varhaisen aivovaurion aiheuttama toispuoleinen CP-vamma. Jo vastasyntyneellä useat aivoalueet aktivoituivat käden alueen kosketusärsykkeen jälkeen. Tuntoaivokuoren aktiivisuus poikkesi kuitenkin oleellisesti aikuisesta: tietyt aikuistyyppiset aivovasteet puuttuivat vastasyntyneiltä täysin heijastaen vastasyntyneen vauvan hermoston keskeneräistä kehitysvaihetta. Tuntoaivovasteet kehittyivät iän myötä järjestelmällisesti siten, että kaksivuotiailla ne alkoivat morfologisesti muistuttaa aikuisten vasteita. Pikkukeskosten primaarisen tuntoaivokuoren vaste oli lasketussa ajassa heikompi kuin terveillä täysaikaisilla vauvoilla, mikä voi johtua pienemmästä aktivoituneesta hermosolujoukosta tai aktivaation epäsynkroniasta. Sekundaarisen tuntoaivokuoren vasteen puuttuminen liittyi poikkeaviin ultraääni- ja magneettikuvauslöydöksiin. Tämän havainnon ennusteellista merkitystä selvitetään parhaillaan seurantatutkimuksella. CP-vammaisilla nuorilla tuntoaivovasteissa havaittiin verrokkeihin nähden useita poikkeavuuksia, jotka olivat osin laaja-alaisempia kuin oli pääteltävissä kliinisistä oireista tai aivojen rakenteellisesta vauriosta. Esimerkiksi potilailla, joiden sairauden taustalla oli subkortikaalinen aivovaurio, etu- ja pikkusormien edustusalueet tuntoaivokuorella olivat verrokkeihin nähden lähempänä toisiaan sekä vaurion puoleisessa että vastakkaisessa aivopuoliskossa. Aivojen erilaisten rakenteellisten vaurioiden aiheuttamien toiminnallisten muutosten tarkempi ymmärtäminen voi osoittautua merkittäväksi CP-potilaiden kuntoutuksen ja hoidon yksilöllisessä räätälöinnissä
    corecore