404 research outputs found

    Unsupervised bayesian convex deconvolution based on a field with an explicit partition function

    Full text link
    This paper proposes a non-Gaussian Markov field with a special feature: an explicit partition function. To the best of our knowledge, this is an original contribution. Moreover, the explicit expression of the partition function enables the development of an unsupervised edge-preserving convex deconvolution method. The method is fully Bayesian, and produces an estimate in the sense of the posterior mean, numerically calculated by means of a Monte-Carlo Markov Chain technique. The approach is particularly effective and the computational practicability of the method is shown on a simple simulated example

    Basal shear strength inversions for ice sheets with an application to Jakobshavn Isbræ, Greenland

    Get PDF
    Satellite and in situ observations of ice sheet outlet glaciers around the turn of the 21st century showed that rapid changes in ice dynamics are possible and important for the evolution of ice sheets. When attempting to model these dynamic changes the conditions at the ice-bed interface are crucial. Inverse methods can be used to infer basal properties, such as the basal yield stress, from abundant surface velocity observations by using a physical model of ice flow. Inverse methods are very powerful, but they need to be applied with care, otherwise errors can dominate the solution. In this study we investigate the potentials and caveats of inverse methods. Synthetic experiments can be designed where basal conditions are assumed and an ice flow model is used to produce a set of 'synthetic' surface velocities. These can then be used to examine and evaluate inverse methods. We find that in iterative inverse methods it is essential to use a stopping criterion that will prevent overfitting the data. We introduce a new and rapidly-converging iterative inverse method called Incomplete Gauss Newton method, where the linearized problem is partly minimized in each step.In a practical application of inverse methods to the terminus region of Jakobshavn Isbræ, Greenland we investigate changes in basal conditions over time by performing inversions for different years of available surface velocity data. We find a decrease in basal yield stress in the lower areas of the glacier that agrees with effective pressure changes due to the changes in ice geometry. This supports an ocean and terminus driven system. The difference between the modeled and observed velocity fields, called residual, contains information about the ability to reproduce the velocities when only adjustment of the basal condition is allowed. With a properly regularized inversion the residual patterns can be used to investigate sources of error in the system. We find that the ice geometry and the model simplifications influence the ability to reproduce observed velocity fields more than the error in observed velocity does. This indicates that further progress must come from model improvements and improved capabilities to measure bedrock geometry

    In-network Sparsity-regularized Rank Minimization: Algorithms and Applications

    Full text link
    Given a limited number of entries from the superposition of a low-rank matrix plus the product of a known fat compression matrix times a sparse matrix, recovery of the low-rank and sparse components is a fundamental task subsuming compressed sensing, matrix completion, and principal components pursuit. This paper develops algorithms for distributed sparsity-regularized rank minimization over networks, when the nuclear- and â„“1\ell_1-norm are used as surrogates to the rank and nonzero entry counts of the sought matrices, respectively. While nuclear-norm minimization has well-documented merits when centralized processing is viable, non-separability of the singular-value sum challenges its distributed minimization. To overcome this limitation, an alternative characterization of the nuclear norm is adopted which leads to a separable, yet non-convex cost minimized via the alternating-direction method of multipliers. The novel distributed iterations entail reduced-complexity per-node tasks, and affordable message passing among single-hop neighbors. Interestingly, upon convergence the distributed (non-convex) estimator provably attains the global optimum of its centralized counterpart, regardless of initialization. Several application domains are outlined to highlight the generality and impact of the proposed framework. These include unveiling traffic anomalies in backbone networks, predicting networkwide path latencies, and mapping the RF ambiance using wireless cognitive radios. Simulations with synthetic and real network data corroborate the convergence of the novel distributed algorithm, and its centralized performance guarantees.Comment: 30 pages, submitted for publication on the IEEE Trans. Signal Proces

    Sparse variational regularization for visual motion estimation

    Get PDF
    The computation of visual motion is a key component in numerous computer vision tasks such as object detection, visual object tracking and activity recognition. Despite exten- sive research effort, efficient handling of motion discontinuities, occlusions and illumina- tion changes still remains elusive in visual motion estimation. The work presented in this thesis utilizes variational methods to handle the aforementioned problems because these methods allow the integration of various mathematical concepts into a single en- ergy minimization framework. This thesis applies the concepts from signal sparsity to the variational regularization for visual motion estimation. The regularization is designed in such a way that it handles motion discontinuities and can detect object occlusions

    Biomimetic Design for Efficient Robotic Performance in Dynamic Aquatic Environments - Survey

    Get PDF
    This manuscript is a review over the published articles on edge detection. At first, it provides theoretical background, and then reviews wide range of methods of edge detection in different categorizes. The review also studies the relationship between categories, and presents evaluations regarding to their application, performance, and implementation. It was stated that the edge detection methods structurally are a combination of image smoothing and image differentiation plus a post-processing for edge labelling. The image smoothing involves filters that reduce the noise, regularize the numerical computation, and provide a parametric representation of the image that works as a mathematical microscope to analyze it in different scales and increase the accuracy and reliability of edge detection. The image differentiation provides information of intensity transition in the image that is necessary to represent the position and strength of the edges and their orientation. The edge labelling calls for post-processing to suppress the false edges, link the dispread ones, and produce a uniform contour of objects

    Philosophy and the practice of Bayesian statistics

    Full text link
    A substantial school in the philosophy of science identifies Bayesian inference with inductive inference and even rationality as such, and seems to be strengthened by the rise and practical success of Bayesian statistics. We argue that the most successful forms of Bayesian statistics do not actually support that particular philosophy but rather accord much better with sophisticated forms of hypothetico-deductivism. We examine the actual role played by prior distributions in Bayesian models, and the crucial aspects of model checking and model revision, which fall outside the scope of Bayesian confirmation theory. We draw on the literature on the consistency of Bayesian updating and also on our experience of applied work in social science. Clarity about these matters should benefit not just philosophy of science, but also statistical practice. At best, the inductivist view has encouraged researchers to fit and compare models without checking them; at worst, theorists have actively discouraged practitioners from performing model checking because it does not fit into their framework.Comment: 36 pages, 5 figures. v2: Fixed typo in caption of figure 1. v3: Further typo fixes. v4: Revised in response to referee
    • …
    corecore