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Abstract

The computation of visual motion is a key component in numerous computer vision tasks

such as object detection, visual object tracking and activity recognition. Despite exten-

sive research effort, efficient handling of motion discontinuities, occlusions and illumina-

tion changes still remains elusive in visual motion estimation. The work presented in

this thesis utilizes variational methods to handle the aforementioned problems because

these methods allow the integration of various mathematical concepts into a single en-

ergy minimization framework. This thesis applies the concepts from signal sparsity to the

variational regularization for visual motion estimation. The regularization is designed in

such a way that it handles motion discontinuities and can detect object occlusions.

The first part of this thesis estimates visual motion between two consecutive video

frames by mapping co-visible scene points. This mapping is commonly known as optical

flow. The accurate handling of motion discontinuities is essential for a better visual per-

ception and quality of the estimated optical flow. To this end, the discontinuity preserving

and sparsity promoting robust ℓ1 norm is investigated in the context of variational regu-

larization. A sparse variational regularizer is proposed which exploits the sparsity of the

gradient field of optical flow. The signal sparsity enables us to recover a signal from a few

measurements; thus, by utilizing this regularizer, the problem of recovering optical flow

from a small set of linear measurements is also investigated. It is found that exploiting

the sparsity of partial derivatives of optical flow results in a decrease in the computational

complexity and memory requirements.

XVIII



Notation and Acronyms

The second part of the thesis investigates the use of optical flow for the detection of

the occluded video regions under varying illumination of the scene. Since the occluded

video regions are usually small in any frame of a video sequence taken at a sufficiently high

temporal rate, a sparsity constraint is imposed on these regions. Moreover, illumination

changes are explicitly modeled to counter for geometric and photometric brightness vari-

ations of the scene. A generalized dynamic image model (GDIM) is used to construct the

data term; occlusion is then detected as the sparse residual of the data term. Brightness

change parameters of the GDIM are also estimated by imposing a smoothness constraint

over them. A modification of this method is also presented which does not require the

estimation of brightness change parameters under certain conditions. Experimental re-

sults demonstrate that the presented optical flow estimation method is able to accurately

detect occluded video regions under varying illumination of the scene.
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1.1 Introduction

Much of the information about our surroundings is conveyed to us by dynamic scene

events. The motion associated with any object in the scene contains very rich information,

which is used in the process of decision making by humans and animals. The observation

of dynamic scene events enables us to discover meaningful information, for example, speed

and direction of moving objects, their properties like transparency and rigidness, three-

dimensional structure of the scene, and time to collision of objects. The extraction of
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meaningful information from images or image sequences is the main topic of computer

vision tasks. Artificial vision systems try to describe dynamic scene events happening in

the real world by analyzing and understanding visual motion in digital video sequences.

Visual motion provides a rich source of information for understanding dynamic scenes.

The problem of inferring the motion of objects is fundamental to computer vision as most

of computer vision tasks rely on motion information. The successes of these tasks depend

upon good estimates of the motion. Therefore, obtaining a good estimate of visual motion

from image sequences is essential.

This chapter first provides the reader with an introduction to visual motion in digi-

tal videos and its relation to optical flow. Second, it describes research motivations by

discussing major problems in optical flow estimation. Moreover, it summarizes main con-

tributions and presents the thesis outline. Finally, publications resulted from this thesis

are listed.

1.2 Visual Motion

This section presents the relation between visual motion in digital videos and optical flow.

It also summarizes a few commonly used applications of motion estimation in computer

vision tasks.

1.2.1 Motion Field

What do we mean by motion in digital videos? Digital videos are made up of image

sequences recorded by an imaging device like a camera. These image sequences are formed

when three-dimensional (3D) world points are projected onto a two-dimensional (2D)

imaging surface, such as the back of a human eye or a light sensor array of a digital camera.

The brightness or intensity of the formed image changes when positions of world points

and objects, relative to the imaging surface, change in the 3D world. This movement of

projected scene points is referred to as the image velocity or the motion field.

The motion field in digital videos is an ideal description of the actual three-dimensional
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motion. In practice, only an approximation of the motion field can be determined from

image sequences because it is a two-dimensional projection of the actual three-dimensional

motion. In other words, this projection normally results in a data loss.

1.2.2 Optical Flow

The approximation of the motion field, in digital videos, is achieved by the mapping of

visible scene points from one video frame to another. This mapping is commonly known

as optical flow. Optical flow can be defined as a two-dimensional apparent motion field

which is made up of the object motion as well as the motion of the camera. It can describe

dynamic scene events by giving a pattern of the apparent motion of objects and surfaces

in the scene. The motion field is generally different from optical flow as described in [7].

However, a reasonably good approximation of the motion field is provided by optical flow.

Optical flow from one video frame to another is depicted in different ways; it is some-

times shown as a quiver plot, or presented as a color image. In the quiver plot, the

magnitude and the direction of any vector at a particular point gives an estimate of the

motion at that point. Figure 1.1 (a) and (b) show two consecutive frames of a video

sequence. The quiver plot between these two frames is given in Figure 1.1 (c). Figure 1.1

(d) presents optical flow vectors in color. The hue corresponds to the direction, whereas

the saturation shows the magnitude of flow vectors at each point. The respective color

scheme is shown in Figure 1.1 (e). In this thesis, we use this color scheme to illustrate

optical flow vectors.

1.2.3 Applications

Optical flow has been used in a wide variety of tasks. It is used, for example, to dif-

ferentiate moving objects from the stationary background in a scene. The tracking of

moving objects also use optical flow; tracked objects can further be used for driving assis-

tance systems [8], robot navigation [9], human face tracking [10] and obstacle avoidance

systems [11], to name a few. Moreover, optical flow is used in abnormal activity and

behavior detection [12, 13]. Motion estimation methods are extensively used in video
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(a) (b)

(c) (d) (e)

Figure 1.1: Optical flow field between (a) the reference video frame and (b) the target video
frame, shown as (c) a quiver plot and (d) a color plot. The arrows in (c) and the color in (d)
show the magnitude and the direction of optical flow vectors. (e) The color scheme used to show
the color plot in (d).

compression techniques to encode the interframe dynamic scene information as motion

vectors [14]. Other examples include video stabilization [15], object segmentation [16],

three-dimensional shape recovery [17], and image stitching [18]. The estimated motion of

objects can be combined with machine learning techniques for human detection in a scene

[19], human action recognition [20], and facial expression recognition [21], to name but a

few. These techniques are usually used in human machine interfaces. Therefore, optical

flow estimation is of fundamental importance to many computer vision applications.
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1.3. Research Motivations

1.3 Research Motivations

The estimation of optical flow is error-prone and remains a challenging task despite the

enormous research effort spent on the topic. Several commonly occurring situations in

digital videos pose trouble to most optical flow estimation methods. These methods en-

counter difficulties in handling motion boundaries, occluded video regions, and varying

illumination of the scene. The motivation of this thesis is to understand and handle afore-

mentioned problems. Here, we discuss these problems and their effects on performances

of optical flow estimation methods.

1.3.1 Motion Boundaries

Motion boundaries are problematic for most optical flow estimation methods when special

care is not taken to handle them properly. Motion boundaries occur at depth discontinu-

ities in the scene; these convey useful information for the visual perception of the object

shape and the three-dimensional structure of the scene. It is most likely that multiple

objects are present at motion boundaries; thus, the motion estimation of multiple ob-

jects requires the preservation of these boundaries. Most optical flow estimation methods

either blur motion boundaries or result in their delocalization when optical flow is not

constrained properly. Figure 1.2 displays the effect of two different types of computed

optical flows on the reconstruction of a video frame; computed optical flows and resulting

motion boundaries are shown in Figure 1.2(c) and (d), respectively. In this figure, the 2nd

and the 3rd rows show results by the method that preserves motion boundaries and the

method that blurs motion boundaries, respectively. It can be observed that edges of the

reconstructed video frame in the 2nd row are preserved, whereas same edges are blurred

in the 3rd row of Figure 1.2 (e). This observation suggests that there is a strong need to

handle motion discontinuities for the preservation of sharp boundaries.
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(c) Optical flow                       (d) Motion boundaries                (e) Reconstructed frame

(a) Reference video frame                                     (b) Target video frame
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Figure 1.2: The effect of optical flow computed by two different methods on the reconstruction
of digital videos. (a) The reference and (b) the target video frames. (c) Optical flow, (d) motion
boundaries computed from optical flow, and (d) the reconstructed target video frame using the
reference frame and optical flow. The results in (c)-(e) are shown for the method that preserves
motion boundaries (2nd row) and the method that blurs motion boundaries (3rd row).

1.3.2 Illumination Change

The matching of scene points may be erroneous or even not possible during optical flow

estimation when the illumination of the scene is varying with time. Consider a video
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(a) Brightness decrease

(b) Brightness increase

Figure 1.3: The brightness change in digital videos: (a) the brightness decrease and (b) the
brightness increase from the reference video frame (left) to the target video frame (right).

sequence obtained by imaging a scene under constant illumination. The brightness of any

point in that video remains constant over time when that point does not move. However,

when the illumination of the scene is changing, the brightness of a static point also changes

in the video sequence. Consequently, optical flow methods may wrongly infer that the

static point is moving because of wrong matching of the pixels between two consecutive

video frames. Furthermore, the motion of a moving point may be estimated incorrectly

when the brightness of that point changes due to varying illumination of the scene. Figure

1.3 shows the effect of varying illumination in two consecutive video frames. Scene points

to be matched across video frames change their brightness due to either a decrease or an

increase in the illumination of the scene. These points can not be matched by matching

the brightness across the video frames. Thus, illumination variation needs to be handled

properly in optical flow estimation methods for correct matching of moving patterns.
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(a) Occlusion 

(b) Disocclusion 

Figure 1.4: The disappearance and appearance of pixels in digital videos: the phenomena
of (a) occlusion and (b) disocclusion from the reference video frame (left) to the target frame
(right), as shown in the highlighted parts of frames.

1.3.3 Occlusion

The presence of occluded objects in the scene causes the appearance or disappearance

of pixels in any digital video. Occluded objects can not be matched across video frames

because moving patterns are undefined in occluded regions. Occlusion is considered as a

bottleneck for optical flow estimation methods. These methods rely on the matching of

scene points or regions across video frames. Pixels should not be matched in occluded

regions because optical flow is undefined there. Figure 1.4 shows the phenomena of occlu-

sion and disocclusion in two digital videos. The disappearance and appearance of moving

patterns can be observed in highlighted parts of Figure 1.4 (a) and (b), respectively.

There could be wrong matching of pixels in the reference and the target video frames

when occlusions are not handled explicitly. The situation is further complicated when the

illumination of the moving imagery is varying with respect to time. Optical flow estima-

tion methods use a matching cost function; the matching of moving patterns using this
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function may be wrong or may not be possible at all under varying illumination of the

scene. In the absence of appropriate modeling of the brightness change of the scene, these

methods can wrongly detect occlusion in visible video regions and vice versa. The wrong

matching of occluded video regions significantly increases optical flow estimation error.

Therefore, it is highly desirable to model these regions for their accurate and efficient

detection.

1.4 Thesis Outline and Contributions

This thesis contributes to optical flow estimation by introducing numerous technical in-

novations to solve problems mentioned in Section 1.3. This section describes the thesis

outline, and provides the chapter by chapter summary of major contributions.

Chapter 2 reviews several existing optical flow estimation methods proposed over

time. Since the presented work in this thesis is based on variational methods, more focus

has been put on the state-of-the-art in variational methods. The main contributions of

Chapter 2 are:

• A succinct review of capabilities of existing methods to handle problems inherent to

optical flow estimation. This review helps the reader understand techniques, when

integrated with variational methods, which lead to the gradual improvement in the

accuracy of the estimated optical flow.

• This review attempts to disclose factors, such as the choice of the objective function,

weighting of different constraints, and optimization methods, which can be combined

together to enhance optical flow estimation quality.

Chapter 3 briefly reviews commonly used variational regularization techniques for

optical flow estimation. The emphasis is put on robust regularization techniques, par-

ticularly total variation regularization. A robust regularizer is proposed which enforces

the gradient continuity of an unknown multidimensional signal in a small neighborhood.
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Therefore, the proposed regularizer promotes the sparsity of partial derivatives of the com-

puted solution. This regularizer is shown to be rotationally invariant to camera motions.

Extensive experimental results are presented to show the superiority of the proposed reg-

ularizer over existing robust regularizers for the preservation of sharp boundaries. The

main contributions of Chapter 3 are:

• A novel edge preserving and sparsity enhancing variational regularizer is proposed.

The sparsity enhancing capability of this regularizer enables it to estimate sparse

signals from a small set of available measurements.

• The proposed regularizer has been applied to problems of image denoising and

image restoration from incomplete measurements. To show the effectiveness of the

proposed regularizer for image denoising and image restoration, a comparison has

been conducted with three existing total variation based regularizers.

• Extensive experimental results are conducted to reveal that image restoration using

the proposed regularizer generally results in higher PSNR of the restored images

than local TV regularizers.

Chapter 4 addresses the problem of estimating dense optical flow while preserving

sharp motion boundaries. First, the regularizer proposed in Chapter 3 is integrated in a

variational energy minimization framework along with various optical flow data matching

terms. This regularizer exploits the sparsity of the gradient field of optical flow. Second,

an efficient convex optimization solver is used to estimate a piecewise smooth flow field.

Since the minimization of the proposed variational energy results in a sparse gradient

field of the estimated optical flow, the problem of estimating a dense optical flow from

highly incomplete measurements is also solved. The proposed method has been compared

against numerous existing approaches; extensive experimental results demonstrate that

the proposed method performs comparable to or better than the state-of-the-art tech-

niques when optical flow is estimated from full or incomplete measurements, respectively.

The main contributions of Chapter 4 are:
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• A sound characterization of motion boundaries by the integration of the proposed

regularizer of Chapter 3 into a variational energy minimization framework.

• A significant reduction in the computational complexity of variational optical flow

estimation by the use of stochastic sampling. It has been shown that a reliable

optical flow can be estimated from a small set of available measurements, as low as

10%, without too much sacrificing the accuracy of optical flow.

• An increased robustness of the proposed method to not only the noise but also the

regularization parameter.

Chapter 5 is dedicated to occlusion detection in digital videos using optical flow, un-

der constant and varying illumination of the scene. State-of-the-art methods in occlusion

detection using optical flow are reviewed. Since these methods use the optical flow con-

straint (OFC) to construct data terms, the successes of these methods are based on the

assumption that the OFC is not violated. The method presented in this chapter aims

to accurately detect occlusion under varying illumination of the scene in a consistent

variational formulation, thereby improving the quality of the estimated optical flow sig-

nificantly. The proposed method treats occluded video regions as sparse because these

regions form a small portion of any video frame. Furthermore, this method utilizes a

generalized dynamic image model (GDIM), which can capture brightness change in its

parameters. The GDIM is then used to construct a data term which explicitly models

occlusion and the brightness change. A computationally less expensive version of the

proposed method is also presented, which does not require the estimation of brightness

change parameters of the GDIM under certain conditions. Since the proposed method

exhibits robustness against illumination changes, experiments on both synthetic and real

video sequences show promising results for optical flow estimation and occlusion detection.

The main contributions of Chapter 5 are:

• A separate modeling of occluded regions and the brightness change. Occlusion is

modeled as a sparse term because its domain is very small compared to the domain of
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a video frame. The brightness change is modeled such that it is linearly parametrized

in the GDIM.

• A novel estimation algorithm that jointly estimates optical flow, occlusion and

brightness change parameters of the GDIM by minimizing a single variational en-

ergy.

Chapter 6 provides a summary of the problems discussed in this thesis, and proposed

methods to solve these problems. It also suggests future research work after identifying

some of the remaining challenges.

1.5 Publications

This section lists the articles resulted from the work presented in this thesis.

• M. W. Nawaz, A. Bouzerdoum, and S. L. Phung, "Motion estimation with adaptive

regularization and neighborhood dependent constaint," in Proceedings of the Digital

Image Computing, Techniques and Analysis, pp. 387 − 392, Dec. 1 − 3, 2010.

• M. W. Nawaz, A. Bouzerdoum, and S. L. Phung, "Optical flow estimation using

sparse gradient representation," in Proceedings of the IEEE International Conference

on Image Processing, pp. 2681 − 2684, Sep. 11 − 14, 2011.

• M. W. Nawaz, A. Bouzerdoum, and S. L. Phung, "A novel sparse variational regu-

larizer for optical flow estimation", (under review)

• M. W. Nawaz, A. Bouzerdoum, and S. L. Phung, "Sparse occlusion detection using

optical flow under varying illumination", (under review)
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2.1 Introduction

Optical flow estimation is considered as a low-level computer vision problem which is

utilized in mid-level and high-level vision tasks. The computation of optical flow from
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video sequences has been studied extensively because vision applications, which use mo-

tion information, greatly depend on the accuracy of the computed optical flow. This

chapter reviews existing optical flow estimation methods. Several models for optical flow

estimation have been proposed over time, and there are different ways to classify optical

flow methods based on these models. However, this chapter abstains from any strict cate-

gorization of these methods. Methods are presented according to their model complexity

and their ability to solve problems mentioned in Section 1.3.

The rest of the chapter is organized as follows. Section 2.2 presents the optical flow

constraint (OFC), which is commonly used to match brightness (or intensity) patterns

across video frames. Section 2.3 describes the local optical flow estimation model, and re-

views local region matching and gradient methods. Section 2.4 presents the global optical

flow model; it also describes global parametric, spline based and nonparametric methods.

Section 2.5 discusses the role of different data and regularization terms used in variational

methods. Section 2.6 presents optical flow based occlusion detection techniques. Finally,

Section 2.7 concludes the chapter.

2.2 Optical Flow Constraint

Let us define a time varying video sequence I(x, y, t), where I represents the intensity

(or brightness) of pixels, x and y are spatial coordinates, and t is the time variable.

Most optical flow estimation techniques assume that the change in the image intensity

is only due to discrete displacements of pixels from one video frame to another [22].

This intensity constancy assumption between two consecutive video frames I(x, y, t) and

I(x − vxdt, y − vydt, t − dt) can be expressed as

I(x, y, t) − I(x − vxdt, y − vydt, t − dt) = 0, (2.1)

where dt is the temporal sampling interval, and vx and vy are, respectively, the horizontal

and vertical components of optical flow between video frames at time t and (t − dt).

Equation (2.1) is nonlinear in the flow vector field; therefore, a linearized version of this
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Figure 2.1: The intensity constancy assumption between (a) the reference video frame I(x, y, t)
and (b) the target video frame I(x − vx, y − vy, t − dt). The pixel intensity is shown in color in
both frames. Arrows in (a) are showing the direction of movement for each pixel.

assumption is usually used in a multiresolution scheme [23]. The linearized version of

(2.1), also known as the optical flow constraint (OFC) or brightness constancy constraint,

can be written as
[
Ix Iy

] [vx

vy

]
+ It = (∇I)T~v + It = 0, (2.2)

where ~v = [vx vy]T is a 2D velocity vector, ∇ is the gradient operator, ∇I = [Ix Iy]T and

It are, respectively, spatial and temporal intensity derivatives. Note that we have omitted

the spatiotemporal dependency of terms in (2.2) for the sake of brevity. Intensities of

moving pixels from reference video frame I(x, y, t) to target frame I(x − vx, y − vy, t − dt)

are preserved as shown in Figure 2.1. Moving pixels follow Equation (2.2) when their

intensities do not change over time. The OFC is used for the pixel matching across video

frames by most optical flow estimation methods. A variant of the OFC or advanced

matching terms can be employed when the brightness constancy assumption is violated.

The OFC is a pointwise constraint. It can only calculate the local motion component

that is normal to an image structure or parallel to the intensity gradient. The motion of

an edge or a contour is inherently ambiguous when observed locally. This local motion is

consistent with numerous possible directions. The perceived direction of local motion of
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Figure 2.2: The aperture problem: (a) an edge translating to the right as seen through a
circular aperture; (b) local solutions to the aperture problem, which are consistent with numerous
possible motion directions.

an object is perpendicular to the orientation of that object for any motion direction. This

problem is widely known as the aperture problem. The direction of motion of an object

is indistinguishable when seen through an aperture. The pointwise OFC at each pixel

acts like an aperture; thus, it computes optical flow at each pixel independently of other

pixels. A similar observation has also been reported in motion sensors present in the visual

cortex of mammals [24]. Since these motion sensors have finite receptive fields, they are

capable of detecting only local motion of objects. Figure 2.2 shows an edge, translating

from left to right, viewed through a circular aperture. This left to right motion produces

the same spatiotemporal pattern as a set of lines moving from bottom to top. Hence, this

phenomenon creates the ambiguity in determining the actual motion. To cope with the

aperture problem, extra information needs to be incorporated. This could either be local

integration of the image information or the inclusion of a global regularization term along

with the OFC.

2.3 Local Optical Flow Model

This section presents the local model to avoid aperture problem in optical flow estimation

methods. The local optical flow model uses a few local measurements of image intensity in
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a neighborhood. There are two major types of methods based on the local model: region

matching methods and gradient methods. These two types of methods, in general, are

able to estimate a single motion in a local neighborhood. Some variants of both methods

have been proposed which can estimate multiple motions as well. Here, both types of

methods are discussed for single and multiple motion estimation.

2.3.1 Region Matching

Region or patch-based matching methods are simple and easy to implement. These meth-

ods assume that there is only a single motion in the patch. This type of motion arises

when a plane moves in front of a camera [25]. Region matching methods are widely used in

video compression techniques because the goal is to achieve the highest possible compres-

sion ratio. In these methods, a similarity measure is chosen to calculate the resemblance

between image patches. The sum of the squared differences (SSD) between image patches

can be minimized to achieve the maximum similarity:

E(~v) = min
~v

∑

R

[
I(x, y, t) − I(x − vxdt, y − vydt, t − dt)

]2

, (2.3)

where R represents a local neighborhood, and E(~v) denotes the energy between image

patches which is sought to be minimized. After choosing an image region R, a search for

the pixels of the template image I(x, y, t) is conducted in the target image I(x − vx, y −
vy, t − dt) in such a way that the similarity measure is maximized. The estimated motion

vector, which maximizes the similarity measure, is then used to replace a matched patch

across video frames.

The cross-correlation serves as a substitute for image intensity difference to calculate

the similarity between image patches [26, 27]. A method using the cross-correlation seeks

to maximize the product of patches across video frames as

E(~v) = max
~v

∑

R

[
I(x, y, t)I(x − vxdt, y − vydt, t − dt)

]
. (2.4)

Methods using either the intensity difference or the cross-correlation assume that the in-

tensity of consecutive video frames to be matched does not change over time. However, the
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intensity constancy assumption may not hold across video frames whenever the exposure

is varied or the illumination of the light source is changed during the video acquisition.

The normalization of the intensity constraint provides robustness against varying illu-

mination [28, 29, 30]. For color images, color channels can also be normalized to mitigate

the effect of the brightness variation [31, 28]. Similarly, the normalized cross-correlation

(NCC) is substituted for the cross-correlation in some methods as in [32, 33]. In an image

patch, let I(x, y, t) and I(x − vxdt, y − vydt, t − dt) be mean intensities for I(x, y, t) and

I(x − vxdt, y − vydt, t − dt), respectively. Furthermore, let us define the mean subtracted

pixel intensities in I(x, y, t) and I(x − vxdt, y − vydt, t − dt) as

Î(x, y, t) = I(x, y, t) − I(x, y, t), (2.5)

and

Î(x−vxdt, y−vydt, t−dt) = I(x−vxdt, y−vydt, t−dt)−I(x−vxdt, y−vydt, t−dt). (2.6)

The NCC is now given as

E(~v) = max
~v

∑
R

[
Î(x, y, t)

][
Î(x − vxdt, y − vydt, t − dt)

]2
√∑

R[Î(x, y, t)]
√∑

R[Î(x − vxdt, y − vydt, t − dt)]
. (2.7)

Note that intensities of image patches in (2.7) are normalized by subtracting mean inten-

sity values. This normalization makes the NCC robust against variations in intensity but

it increases computations.

The cross-correlation or the NCC are more expensive to compute than the intensity

difference. An efficient way to compute the cross-correlation or the NCC is to take the

Fourier transform of both video frames to be matched. A correlation function appears

as a multiplication in Fourier domain which can significantly accelerate computations

[34]. For an n pixel video frame, the complexity of operations is thus reduced from n2 to

nlog(n) using the fast Fourier transform (FFT). The complexity of the cross-correlation

can also be decreased in the spatial domain by using box filtering techniques [35], which

are invariant to the size of correlation windows. In the spatial domain, partial elimination
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Figure 2.3: A five level coarse-to-fine image pyramid representing a single image at different
resolutions.

technique has been employed for early termination of the template matching calculation

[36]. This technique stops matching computations at a particular search location when the

match is less reliable than an already computed best matching candidate location [37].

The computational advantage of partial elimination techniques over frequency domain

techniques may not be significant for large template sizes. However, when the template

size reduces, spatial domain elimination techniques perform better than frequency domain

techniques.

Performances of region based matching techniques deteriorate for large inter-frame

motion of objects. The estimation of large motions requires large matching windows

which results in a computationally intensive search within these windows. Selecting a large

neighborhood is not a feasible solution. There is also a potential risk of mismatch in the

big search space. In order to reduce the burden of calculations, hierarchical approaches are

used. Since large motions appear small at low resolution, an image pyramid is constructed.

Optical flow is then estimated at each level of the pyramid. The estimated optical flow

at a low resolution level of the pyramid serves as an initial guess for images at next fine

level. Figure 2.3 shows five levels of such a pyramid which contains the same image at

different resolutions.
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In [23], Anandan employs a Laplacian pyramid to describe a coarse-to-fine matching

strategy for a dense optical flow estimation. The image intensity at coarser levels of the

pyramid is used to obtain initial motion estimates, which are then refined by using small

scale intensity information at higher resolution levels of the pyramid. This method first

uses a quadratic approximation of the SSD surface for the patch matching. A confidence

measure is then derived by computing the curvature at the minimum of the SSD surface.

Estimated optical flow vectors are then propagated into less textured video regions ac-

cording to this confidence measure. Another hierarchical method, presented by Singh [38],

uses two stages for the matching of video frames. This method requires three video frames

in contrast to two video frames used by Anandan. The SSD is computed in the first stage

on highpass filtered images. The SSD surface is then converted into a probability distri-

bution. Subpixel motion estimates are obtained by computing the weighted mean of this

distribution. In the second stage, a smoothing term is used which is weighted according to

covariance matrices associated with velocity estimates of the first stage. Singh’s method

generates a dense optical flow estimate by propagating the estimated motion vectors into

low-textured video regions.

2.3.2 Gradient Methods

The OFC expresses optical flow in terms of the spatiotemporal gradient. At each pixel,

the OFC constrains optical flow vector to a line in the (vx, vy) plane. Every pixel in a

small neighborhood has its OFC line. Multiple OFC lines associated with pixels in a

small neighborhood can be integrated to over-constrain optical flow. The resulting over-

constrained system of equations resolves the aperture problem. These equations have

been solved by minimizing the error in a weighted least squares approach by Lucas and

Kanade [39]:

E(~v) = min
~v

∑

R

W (x, y)
( [

Ix Iy

] [
vx vy

]T
+ It

)
= min

~v

∑

R

W (x, y)
(
(∇I)T~v + It

)
, (2.8)

where W (x, y) is a weighting function which usually decreases with the distance from the

center of the neighborhood. The least squares solution can be written in the matrix form
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as [ ∑
RW (x, y)I2

x

∑
RW (x, y)IxIy∑

RW (x, y)IxIy

∑
RW (x, y)I2

y

]
~v = −

[∑
RW (x, y)IxIt∑
RW (x, y)IyIt

]
. (2.9)

This local gradient method produces one flow vector in each image patch by assuming that

optical flow is constant. Since the method of Lucas and Kanade is based on the linearized

version of the brightness constancy assumption, it is limited to small displacements only.

Nagel [40] and Uras et al. [41] replaced the first-order Taylor series approximation of

the brightness constancy with the second-order approximation to handle large motions.

The second and higher-order derivatives are noisy, and it is likely that the noise in their

estimated values would overshadow their benefit. Therefore, these techniques are rarely

used in practice as pointed out by Baker and Matthews [42]. A coarse-to-fine pyramidal

approach is employed for large displacements in [43]. This method uses down-sampled

image sequences to find an initial estimate of optical flow. This estimate is utilized as

initial guess for final optical flow estimation.

The OFC is inherently noisy and error-prone because it is based on the brightness

constancy assumption which may be violated. The least squares approach is optimal when

the brightness change is zero-mean Gaussian, and independent and identically distributed

(i.i.d.). In case of the brightness constancy violation, the i.i.d. assumption does not hold.

Therefore, instead of a least squares penalty, a robust measure is needed. Techniques

from robust statistics are sometimes applied to acquire the robustness against noisy OFC

measurements. The least median of squares regression performs significantly better than

the ordinary least squares when the OFC is violated [44]. Total least squares has also been

used to obtain a robust flow estimate after pre-filtering video sequences with multiscale

filters of different orientations and frequency responses [45]. Multiple constraints are thus

obtained in the neighborhood which are solved using the total least squares.

Gradient methods are computationally less expensive than most of local optical flow

estimation methods. In practical situations, a fast and real time algorithm is desirable.

Therefore, gradient methods are widely used in the tracking of the moving objects [46, 47,

48, 49]. Moreover, if the source and target video frames appear to be similar, the gradient
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of the second warped frame can be replaced by the first frame in (2.8). Thus, a speed up of

gradient methods can be achieved by pre-computing gradients of the source frame instead

of the warped target frame. This results in a substantial decrease in computations. This

technique is first developed by Hager and Belhumeur [47], and then refined by Baker and

Mathews [42]. The inverse of the estimated incremental motion is added to the previously

estimated motion; therefore, it is named as inverse compositional algorithm. A further

speed up of about 15 percent is achieved by utilizing mutual information in place of the

intensity difference in the algorithm of Dowson and Bowden [50].

Probabilistic techniques have been used with gradient methods to handle uncertainty

in optical flow estimation. The noise in image acquisition, the aperture problem, the

brightness change and the presence of multiple motions in a small neighborhood are a few

of many factors causing this uncertainty. In [51], Simoncelli models these uncertainties by

utilizing the image gradient and the probability distribution of the motion. A Gaussian

distribution is assumed over these gradients. The motion is then taken as the maximum

likelihood estimate (MLE), which is the mean of this distribution. The computation of

the MLE of a Gaussian distribution is the same as the linear least squares estimation.

This model works well for normally distributed motion field errors; however, sophisticated

models are needed when these errors have different distributions. In [52], Govindu uses a

Fuzzy bow-tie distribution, described in [53], on brightness gradients. This representation

is integrated with the method of Lucas and Kanade as well as with the affine optical flow

model. The resulting method is then used to estimate a normalized version of multiframe

optical flow in a spatiotemporal volume.

2.3.3 Multiple Motion Estimation

The underlying assumption behind local methods is that the motion is locally constant.

Therefore, these methods produce a single optical flow vector in the neighborhood region

R. The constancy of optical flow in a spatial neighborhood is a restrictive condition for

many common situations in videos. Motion discontinuities and occlusion boundaries are
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particularly problematic for methods utilizing this assumption. Multiple motions are ex-

pected to be observed at motion discontinuities and occlusion boundaries. One way to

handle multiple motions is to reduce the size of the neighborhood in local methods. In

[54], Okutomi and Kanade use a probabilistic approach to adapt the size of the match-

ing window in a region-based matching approach by analyzing the uncertainty of the

computed motion. Since adapting the window size merely decreases the size of the rect-

angular window in the vicinity of multiple motions, this approach does not really address

the underlying problem.

Some local methods are based on the idea of first segmenting or over-segmenting images

by using the intensity information before actual motion estimation [55, 56]. However, in

these methods, the quality of the final estimated motion depends upon initial segmentation

results. When the segmentation results are erroneous, the optical flow estimates will be

wrong in subsequent stages after segmentation. In [57], hard thresholding is replaced

by soft thresholding for over-segmentation of regions to minimize the effect of wrong

segmentation. This method is based on the framework of Malik et al. [58], which groups

sampled image points by using an image based affinity metric. Thus, in this method, the

use of soft thresholding reduces the effect of initial segmentation on the final estimated

motion.

Robust statistics can also be used for the estimation of multiple motions in local

methods. Suppose, for example, that there are two motions in a small neighborhood. The

pooling of constraints in the neighborhood will result in two different types of constraints.

The first type of constraint is consistent with one of the motion, while the second type

is associated with the other motion. The constraint of the first type of motion appears

as an outlier for the second type of constraint. To detect these outliers for multiple

motion estimation, a statistical framework is used in a gradient based method by Black

and Anandan [59]. Their method replaces the ℓ2 penalty function with robust Geman-

McClure and Lorentzian penalty functions to detect multiple motions in a local window.
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2.4 Global Optical Flow Model

The global optical flow model incorporates measurements over the entire image frame by

defining a global energy functional. Methods based on the global model solve for optical

flow by minimizing this energy functional. These methods have gained more popularity

for their ability to produce higher quality results compared to their local counterparts.

A variety of global techniques has been proposed over time. Here, global methods are

discussed according to their complexity and their capabilities to handle commonly en-

countered optical flow estimation problems mentioned in Section 1.3. Global methods, in

a very loose sense, can be described as being parametric, semi-parametric (spline based)

or nonparametric (variational). The following discussion highlights the advantages and

limitations of global methods.

2.4.1 Parametric Methods

The assumption of constant motion in local methods is attractive due to its simplicity

and moderate computational cost. This restrictive assumption is not suitable for many

tasks which require more sophisticated models. Consider, for example, the video sequence

generated when a moving camera is panned through the scene. The motion of image points

can be described by an affine transformation in this case. Therefore, a parametrized

motion vector seems to be more appropriate, instead of a constant translational motion

vector. This parametrized motion vector describes the spatially varying motion field. The

corresponding parameters of the motion field are then sought to be estimated rather than

estimating the motion vectors themselves. In [60], Bergen et al. use parametric motion

model for affine, planar surface and rigid body optical flows. The affine motion can be

described by a six element vector a = [a1 a2 a3 a4 a5 a6] as follows:

vx(x, y) = a1 + a2x + a3y, (2.10)

vy(x, y) = a4 + a5x + a6y, (2.11)
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where x and y are spatial coordinates. The parameter vector a is then directly estimated

in place of the motion field. The final motion estimate is obtained by using (2.10) and

(2.11). The parametric motion model is usually embedded into a global motion estimation

method; however, it is important to note that this model can also be applied to a small

neighborhood in a local method.

The affine motion model can over-constrain the system of equations when applied

to the entire image domain containing multiple moving objects. Therefore, a quadratic

parametric motion model is preferable to represent the motion [60, 61, 62]. The quadratic

motion model accounts for more complex motions than what an affine model can represent,

such as the planar surface flow. It can be modeled by an eight element parameter vector

a = [a1 a2 a3 a4 a5 a6 a7 a8] as follows:

vx(x, y) = a1 + a2x + a3y + a7x
2 + a8xy, (2.12)

vy(x, y) = a4 + a5x + a6y + a7xy + a8y
2. (2.13)

The quadratic motion model is valid for planar surfaces and rigid objects. Robust es-

timation techniques have also been applied to parametric motion estimation methods

[61, 63, 64]. The quadratic model along with robust error norms yields accurate flow

fields when a camera moves freely in a static rigid world where there are no large 3D

motions.

The parametric model is also applied to 3D motion estimation when a suitable camera

representation is used. In [65], Irani et al. use plane plus parallax representation to

recover the motion and the three-dimensional structure relative to the planar surface

in the scene. A fairly accurate motion estimate is obtained provided there is a sufficient

three-dimensional structure present in the scene. The problem becomes ill-conditioned for

primarily planar or distant scenes because the basic quadratic motion model is applicable

to the planar surface. In [66], a method called Q-Warping is proposed to deal with the

quadric reference surface. Q-warping generates a residual optical flow proportional to the

three-dimensional deviation of the surface from a virtual quadric surface. It has been

successfully employed to find the warping between two views of an object.
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The computational cost in parametric models is higher than in models with pure

translational motion due to increased number of parameters. For a motion constrained

by p parameters in an n pixel video frame, the computational complexity is O(p2n). The

computational cost of these methods can be significantly reduced by dividing the video

frame into smaller patches, and performing pixel level operations within small sub-blocks

[67].

2.4.2 Spline based Methods

Parametric motion models represent image motion with a small number of parameters.

These methods are applicable to the planar surface flow; therefore, they can be used

in applications such as video stabilization where the camera motion has to be removed.

A large number of parameters is required for relatively complex motion patterns. These

motion patterns of image points can be modeled in terms of smooth polynomial functions,

widely known as splines. Splines are piecewise smooth polynomial functions. Methods

which use splines constrain optical flow less than parametric methods. Thus, spline based

methods lie in between parametric and nonparametric optical flow methods; the latter

are discussed in the next section. Splines represent optical flow in terms of spline basis

functions which are controlled by control nodes [68]:

~vi =
∑

j

= v̂jSj(xi, yi), (2.14)

where Sj(xi, yi) are spline basis functions, v̂j are control nodes and ~vi = [vxi vyi]
T. Figure

2.4 (a) shows an example of a spline motion field. The spline representation can be used

with any error metric, for example, the SSD error metric given in (2.3). The resulting

system of equations is similar to parametric motion equations given in Section 2.4.1.

Splines are simple to construct but they can approximate fairly complex motions due to

their curve fitting and smoothness capabilities. Spline based motion estimation methods

impose smoothness on the motion field; therefore, these methods remove the need for any

additional regularization such as a smoothness constraint in many situations. However, in

the presence of large low-textured video regions, it becomes essential to impose an extra

26



2.4. Global Optical Flow Model

++

+

+

++ +

+

+

+

+

+

+

+

++ + + + + +

++ + + + + +

++ + + + + +

++ + + + + +o

o o

o

(a) (b)

$% ! &%"!'

$%( #&%("#'

Figure 2.4: The spline motion field: (a) motion vectors ~vi = (vxi vyi) are shown as pluses
which are controlled by control nodes v̂j = (v̂xj v̂yj) shown as circles [1]. (b) A quadtree spline
grid which is used to control the size of cells in the control grid.

regularization to avoid the aperture problem [69]. Spline based methods allow for local

deformations, and lead to a compact motion representation. However, particular care has

to be made to handle motion discontinuities. Since a small number of control vertices is

usually used in these methods, the estimation at flow discontinuities can be of poor quality,

unless a large number of vertices is used. One way to mitigate the effect of this problem

is to use a quadtree spline representation [70]. Such a representation allows the use of

variable cell sizes in the control grid for different video regions. Applying extra number of

cells near motion boundaries consequently improves the quality of results in these regions.

Figure 2.4 (b) shows an example of a quadtree spline control grid with different cell sizes.

Since they allow local deformations, spline based methods are attractive for a number of

applications especially nonrigid medical image registration [71, 72, 73, 74]. The interested

reader is referred to [75] for a performance evaluation of several optimization algorithms

for medical image registration.

2.4.3 Variational Methods

The parametric and spline based methods are practicable for image registration due to

their simplicity. However, these methods can not handle very complex motions. Their

performances deteriorate at depth and motion discontinuities because they over-constrain
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the motion field in these regions. The most general class of global optical flow methods is

based on nonparametric variational model. The methods based on the variational model

compute an independent and a dense estimate of the motion field at each pixel. The basic

variational model, originally proposed by Horn and Schunck [22], seeks to minimize an

energy E(~v) of the form:

E(~v) = min
~v

Edata(~v) + λEreg(~v), (2.15)

where Edata(~v) is the data fidelity term, Ereg(~v) is the regularization term, and λ is a

regularization parameter. A matching cost function is used to construct a data term

which can be based on the OFC or its variants. A smoothness constraint is used as a

regularization term, which resolves the aperture problem.

Due to its elegant mathematical formulation, the variational optical flow model, can

embed application specific knowledge, such as the expected noise level in video sequences

[76, 77], and the brightness change [78, 4, 30]. Furthermore, robust norms [79, 80] and

discontinuity preserving regularizers [2, 81, 82, 83] can easily be employed. In variational

methods, the energy is usually minimized in the spatial domain; thus, these methods

should not be confused with the energy based optical flow methods which extract the

motion energy in the frequency domain [84, 85, 86, 87]. Several variants of the basic

variational optical flow model of Horn and Schunck have been proposed. Providing a

detailed review of these variants is beyond the scope of this thesis. The interested reader

is referred to [1, 88] for an in-depth study of variational methods. In the following section,

we give an overview of data and regularization terms which have been used to solve

problems mentioned in Section 1.3.

2.5 Data and Regularization Terms in Variational

Methods

Recent advancements in the design of data and regularization terms have led to significant

improvements in the performance of optical flow estimation methods. Here, the techniques
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and the practices which result in improved estimation quality are discussed with respect

to the data and regularization terms.

2.5.1 Data Term

Variational optical flow methods usually construct the data term by using the optical flow

constraint (OFC). The first variational method proposed by Horn and Schunck [22] uses

a quadratic data term that can be expressed as

Edata(~v) =
∑

D

(Ixvx + Iyvy + It)
2, (2.16)

where D is the discrete image domain. The linearized OFC is valid only for small dis-

placements. Therefore, similar to the other optical flow methods, an image pyramid is

constructed to handle large displacements [89, 90]. The OFC is then used in a coarse-to-

fine warping scheme to estimate large displacements.

The OFC is inherently noisy and a model that incorporates the quadratic penalty of the

OFC can not cope with the deviations from model assumptions. Techniques from robust

statistics are popular for handling noisy measurements. Thus, the quadratic penalization

of the OFC is usually replaced by robust error functions. In [59], Black and Anandan use

robust Geman-McClure and Lorentzian penalty functions which are given, respectively,

as

ρ(x, ǫ) =
x2

x2 + ǫ
, (2.17)

ρ(x, ǫ) = log[1 +
1

2
(
x

ǫ
)2], (2.18)

where the parameter ǫ is used to control the amount of penalty on values of x. The robust

version of the OFC is then given as

Edata(~v) =
∑

D

ρ(Ixvx + Iyvy + It, ǫ). (2.19)

The use of aforementioned robust penalty functions makes the data term nonconvex. The

graduated nonconvexity can be used for the convex approximation of resulting energy

functionals [79]. A better approach is to use a convex ℓ1 norm with the data term as
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Figure 2.5: Commonly used penalty functions for data and regularization terms of variational
optical flow methods. Semi-ℓp norms of an arbitrary signal x are also shown for p = 0.1 and
p = 0.5.

employed in many recent optical flow methods [91, 92, 4, 30, 82, 93]. Bruhn et al. [76]

and subsequently Sun et al. [4] use robust Charbonnier penalty, which is a differentiable

approximation of the linear penalty. It is given as

ρ(x, ǫ) =
√

x2 + ǫ2. (2.20)

Figure 2.5 shows commonly used penalty functions in variational optical flow methods. It

can be observed that aforementioned penalty functions heavily penalize small magnitude

of x and vice versa. Therefore, these functions promote the sparsity of the computed

solution because it is well known that the ℓp norm minimization generates sparse solutions

when p ≤ 1.

Since the brightness constancy assumption is frequently violated in many real video

sequences, the OFC should not be used to map points across consecutive video frames

when various radiometric factors cause the change in the scene radiance and irradiance.

One alternative to the OFC is to impose the constancy of the image intensity gradient
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2.5. Data and Regularization Terms in Variational Methods

[94, 91, 95]. A data term using this constancy assumption can be expressed as

Edata(~v) =
∑

D

(
∇I(x, y, t) − ∇I(x − vxdt, y − vydt, t − dt)

)2
. (2.21)

The constancy of higher-order image derivatives can also be used, for example, Laplacian

and Hessian constancy [78]. However, it is worth mentioning that these derivatives are

hard to estimate. The noise in estimated values of higher-order derivatives can deteriorate

results instead of introducing any improvement. Moreover, it has been recently shown

in [82] that in some areas of video sequences with the brightness constancy violation,

selection of one appropriate constancy constraint performs better rather than combining

multiple constancy constraints together to form the data term. Aforementioned constancy

assumptions are mostly used on gray level images. The natural way to extend these

constraints on color images is to apply them separately on each channel [96], or use a

color space that has a distinct level of photometric invariance greater than RGB, for

example, HSV color space [30].

Physics based brightness change models are sometimes used to replace the OFC for

complex brightness change patterns resulting from physical phenomena [97]. These models

can be approximated by a generalized dynamic image model (GDIM) for two frame motion

estimation as proposed by Negahdaripour [98]. The GDIM can be given as

I(x, y, t) − I(x − vxdt, y − vydt, t − dt) = d(x, y, t)I(x, y, t) + c(x, y, t), (2.22)

where the multiplier field d(x, y, t) permits the change in the image contrast while the

offset field c(x, y, t) allows for the mean brightness change. Thus, a data term using the

GDIM captures the brightness change as an affine function of the image intensity, and it

exhibits robustness against this change.

2.5.2 Regularization Term

A simple form of flow field regularization is the quadratic regularization used by Horn

and Schunck [22], which can be expressed as

Ereg(~v) =
∑

D

(|∇vx|2 + |∇vy|2). (2.23)
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2.5. Data and Regularization Terms in Variational Methods

This regularization with the use of the quadratic penalty applies the same amount of

weighting of the smoothness constraint throughout the image domain D. Such type

of regularization blurs motion boundaries and discontinuities. Different methods have

been proposed to handle the blur problem associated with the quadratic penalization

of flow field variations. Some methods use the structure of the underlying image to

vary the weighting of the smoothness term. In [99], Nagel introduced the concept of

the oriented smoothness which performs anisotropic diffusion on the gradient flow. The

oriented smoothness applies the smoothness along motion boundaries but inhibits it across

them. Mathematically, this can be given as

Ereg(~v) =
∑

D

(∇~vTW (∇I)∇~v), (2.24)

where ∇~v = (∇vx ∇vy)T and W (∇I) is a weighting function. It can be given as

W (∇I) =

(
Iy

−Ix

)(
Iy

−Ix

)T

+ α

(
Iyy −Ixy

−Ixy Ixx

)(
Iyy −Ixy

−Ixy Ixx

)T

, (2.25)

where the weighting of terms is controlled by a positive constant α. In [100], Alvarez et

al. used an image driven regularization given by

Ereg(~v) =
∑

D

W (∇I)(|∇vx|2 + |∇vy|2), (2.26)

where the weighting function W (∇I) is a positive decreasing function of the image in-

tensity gradient. Weighted regularization generally performs better than regularization

without weighting. Therefore, modern state-of-the-art methods use the regularization

weighted by the image gradient [82, 2, 5, 101]. Since image driven regularization use

intensity gradient information to control the amount of the regularization, it avoids the

undesirable smoothing of only those motion discontinuities which coincide with image dis-

continuities. When motion discontinuities are different from image discontinuities, these

methods produce artefacts in highly textured regions.

To cope with the situation where image and flow boundaries do not coincide, some

methods use the flow driven regularization to respect motion discontinuities [95, 102]. A
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2.5. Data and Regularization Terms in Variational Methods

flow driven regularization is of the form

Ereg(~v) =
∑

D

ϕ(|∇vx|2 + |∇vy|2), (2.27)

where ϕ(x2) is a convex increasing function of x:

ϕ(x2) = βx2 + (1 − β)γ2
√

1 + x2/γ2, for 0 < β << 1 and γ > 0.

The flow driven regularization term, proposed in [103], can be expressed as

Ereg(~v) =
∑

D

tr(ϕ(∇vx∇vT
x + ∇vy∇vT

y ), (2.28)

where tr is the trace operator, and the term in the argument of ϕ is called the structure

tensor of ∇~v. Computing the trace in the preceding equation is equivalent to finding

the sum of eigenvalues of the structure tensor. Since the structure tensor is a symmet-

ric positive semi-definite matrix, it has two orthonormal eigenvectors which are used to

change the weighting of the regularizer across flow boundaries. Flow driven methods are

computationally more expensive than image driven methods. Moreover, latter methods

do not localize optical flow boundaries well compared to image driven methods.

Robust penalty functions have also been applied to regularization terms of variational

methods. The use of either of the robust penalty functions given in Figure 2.5 for optical

flow regularization leads to more penalization of small deviations from the smoothness

constraint, and vice versa. Consequently, discontinuities in optical flow are better han-

dled by these penalty functions than by the quadratic penalty. Modern state-of-the-art

variational methods use the robust ℓ1 norm with the gradient magnitude of optical flow

[3, 4, 82, 30]. The ℓ1 norm of the gradient magnitude is referred to as total variation

(TV). It is worth mentioning that TV minimization favors a piecewise smooth optical

flow with a sparse gradient field. We discuss the use of the ℓ1 norm for the design of a

novel sparsity promoting regularizer in Chapter 3.

Minimizing a continuous energy functional in variational methods involves the solution

of partial differential equations. In these methods, the application of the gradient descent

scheme generates a system of diffusion-reaction equations. Optical flow computed from
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2.6. Occlusion Detection using Optical Flow

these equations is expected to preserve sharp motion boundaries when these equations

are generated from regularizers using image or flow driven weighting schemes. In [103],

a detailed discussion of partial differential equations and convex regularizers is provided

for the computation of optical flow.

2.6 Occlusion Detection using Optical Flow

In any video sequence, it is most likely that moving objects will obstruct the view of

other objects. The phenomenon of occlusion causes the blockage of some scene points

and reveals some new portions of the scene across video frames. Occlusions play an

important role in the visual perception of the three-dimensional shape of objects and the

scene structure [104]. Occlusions are usually observed at moving object boundaries and

discontinuities in the scene depth.

(d) (e) (f)

(a) (b) (c)

Figure 2.6: The phenomenon of occlusion in digital videos. A camera is capturing a scene at
time (a) t − 2dt, (b) t − dt and (c) t. The corresponding two-dimensional images are shown in
(d)-(f), respectively. There is an occlusion between t − 2dt and t − dt whereas new scene points
are revealed between t − dt and t. Both situations cause problems for optical flow methods.
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2.6. Occlusion Detection using Optical Flow

The matching of pixels across video frames is possible when objects in the scene

remain visible over time. Pixels in a frame, not co-visible in the succeeding frame of the

same sequence, should be taken as occluded pixels. Figure 2.6 shows the phenomenon

of occlusion and dis-occlusion in digital videos. Occluded or dis-occluded regions of the

scene may either be mismatched or not matched at all when constraints mentioned in

Section 2.5.1 are used to form a data term. The data term should be trusted less in

occluded regions; therefore, occlusion detection methods generally use a measure of the

data term confidence for occlusion detection. The variational optical flow model with

occlusion detection can be expressed as

E(~v) = min
~v

w(x, y)Edata(~v) + λEreg(~v), (2.29)

where w(x, y) is a positive weight that depends upon the occlusion detection confidence

o(x, y); it can be given as

w(x, y) = max(1 − o(x, y), δ).

A small positive constant δ ensures that the data term is always greater than 0. The

larger is the o(x, y), the less is the weight given to the data term.

Optical flow based occlusion detection methods use techniques from computational

stereo to detect occluded pixels. Occlusion detection has been widely studied in two

frame stereo vision [105, 106, 107, 108, 109]. Some stereo methods exploit the symmetry

between left and right views of a stereo sequence to detect occlusion [105, 106, 109]. Since

occlusions often occur at image discontinuities, some optical flow methods use image or

flow driven anisotropic diffusion to detect occluded video regions by exploiting the motion

symmetry [100, 110, 111]. These types of methods compute forward as well as backward

optical flow, and use a consistency function between both flows. Video regions with

low consistency are taken as occluded ones. The cross-check of the motion symmetry

can be effective in occlusion detection; however, these methods compute optical flow bi-

directionally, which is computationally expensive. A method which does not compute

optical flow bidirectionally is presented in [82]. This method is based on an observation
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2.6. Occlusion Detection using Optical Flow

that pixels in the reference video frame should uniquely correspond to pixels in the target

frame [107]. The mapping of multiple pixels in the target frame to the same pixel in

the reference frame is used as an indication of occluded pixels in this method. For the

occlusion detection confidence o(x, y), the mapping uniqueness criteria can be given as

o(x, y) = F (n(x − vx, y − vy) − 1, 0, 1),

where n represents the number of pixels mapped to the position (x − vx, y − vy) in the

target video frame. The function F truncates this number if it is outside the [0, 1] range.

The residual of the OFC can also be used to find occluded regions when the mapping

of scene points is not possible across video sequences. In [112], the residual of the OFC is

used in a bilateral filter to detect occlusion. This method weights the data term according

to the magnitude of the OFC residual. Since it is desirable to use a differentiable function

for the weight function w(x, y), this method uses

w(x, y) =
1

2
+

1

π
tan−1

[(
I(x, y, t) − I(x + vx, y + vy, t − dt)

)2 − ǫ

]
, (2.30)

where the soft threshold parameter ǫ is used to decide whether a pixel is occluded or not.

Another method uses a similar kind of approach for occlusion detection after representing

the motion as particles [113]. The residual of a data term, which represents particles to

be matched, is combined with the divergence of optical flow to detect occlusion. In [114],

a neural network approach is proposed in parallel to optical flow for occlusion detection.

The difference of velocities computed by optical flow and a neural network reveals occluded

video regions. This approach is then used to track occluded objects. In [115], occlusions

are detected from video frames by first dividing each video frame into numerous triangular

shapes which are allowed to move relative to each other. The resulting occlusion effects

are then detected using a numerical scheme. This approach is computationally expensive

because it uses multiple video frames to detect occlusion.

Occlusion detection has also been considered in probabilistic optical flow estimation

methods [116, 117, 118, 119]. In [116], a bidirectional Bayesian framework is used to

estimate optical flow. The consistency of the computed motion is then used to reveal
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occluded video regions. In [117], the histogram of pixel intensities is used, along with a

consistency term based on nonlinear diffusion, to detect occluded pixels. In [118, 119],

video frames are represented as overlapping moving layers in a probabilistic graphical

model. This method segments moving layers, and uses a consistency function for the

layer segmentation process to detect occluded pixels.

2.7 Conclusions

This chapter provides a description of commonly used optical flow estimation methods. It

is intended to highlight strengths and weaknesses of these methods. Vision applications

which use specific class of optical flow estimation model, according to the required accu-

racy and the computational complexity, have also been highlighted. This chapter does

not use any strict classification of optical flow. Global methods, as an example, have been

presented as parametric or nonparametric but the same could be applied to local gra-

dient based methods. Global nonparametric variational optical flow methods have been

discussed in detail because the subsequent work proposed in this thesis is based on these

methods.
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Chapter 3
A Sparsity Enhancing Regularizer for

Variational Methods
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3.1. Introduction

3.1 Introduction

Most of image processing and computer vision tasks are inverse problems where the aim is

to find the solution of an unknown signal from inadequate and possibly noisy observations.

Variational methods stabilize the solution of these ill-posed problems by regularizing un-

known signals [120, 121]. The regularization is required to obtain physically plausible

solutions. A good regularizer ensures a stable estimation of the unknown signal; there-

fore, the design of an efficient variational regularizer is crucial.

Variational methods impose a smoothness constraint to regularize ill-posed image pro-

cessing tasks. A quadratic regularizer blurs strong edges and object boundaries by pe-

nalizing intensity variations at or across them, as mentioned in Section 2.5.2. To protect

sharp edges and boundaries, robust norms are used with the smoothness constraint [59].

The ℓ1 norm is of particular interest because it makes the variational functional convex.

The noteworthy total variation (TV) regularizer of Rudin et al. uses the ℓ1 norm with the

smoothness term [122]. TV regularization has been successfully used in numerous com-

puter vision and image processing tasks such as image denoising [122, 123, 124, 125], image

restoration [126, 127, 128], image deconvolution [129, 130], image deblurring [131, 125],

optical flow estimation [2, 132, 3, 133, 134, 82, 101], and stereo vision [135, 136, 137].

The TV regularizer promotes the sparsity of the computed solution. It preserves object

boundaries better than a quadratic regularizer; however, it performs poor in low-textured

image regions because it generates undesirable staircase artefacts. Thus, this chapter pro-

poses a novel sparsity enhancing regularizer, which aims to overcome shortcomings of the

TV regularizer. The proposed regularizer is applied to the problems of image denoising

and image restoration from incomplete measurements. Extensive experimental results

are conducted to reveal that image restoration using the proposed regularizer generally

results in higher PSNR of the restored images than local TV regularizers.

The rest of the chapter is organized as follows. Section 3.2 discusses sparsity pro-

moting regularization for variational methods. Isotropic, anisotropic and higher order

total variation regularization are focussed in this discussion. Section 3.3 proposes a novel
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3.2. Sparsity promoting TV Regularization

sparsity enhancing regularizer that enforces the continuity of partial derivatives of the

unknown signal. The rotational invariance of the proposed regularizer is proved. An

analysis is conducted with the TV regularizer to analyze sparsity promoting capabilities

of the proposed regularizer. Section 3.4 embeds the proposed regularizer into a varia-

tional framework to solve two common problems in image restoration: image denoising

and image reconstruction from incomplete measurements. It also gives algorithmic details

to solve aforementioned image restoration problems. Section 3.5 presents experimental

results to show the superiority of the proposed regularizer over total variation for noisy

image restoration. It also demonstrates the capability of the proposed regularizer to recon-

struct images from highly incomplete measurements. Section 3.6 concludes the chapter.

3.2 Sparsity promoting TV Regularization

TV regularization has been introduced to the task of edge preserving image denoising by

Rudin, Osher and Fatemi (ROF) [122]. TV and its variants have been extensively used

in image processing and computer vision tasks ever since. This section presents sparsity

promoting isotropic, anisotropic and higher order TV regularizers.

3.2.1 Isotropic Total Variation

An isotropic quantity does not change its value regardless of its direction of measurement.

An isotropic regularizer applies the same amount of regularization in each direction [122].

Let a digital image F (i, j) be defined for the horizontal and vertical co-ordinates i and j,

respectively, over a domain D. The discrete isotropic TV (iTV) of F (i, j) can be defined

as the sum of the magnitude of the image gradient at each pixel:

||∇F (i, j)||iTV :=
∑

i,j∈D

|∇F (i, j)| =
∑

i,j∈D

√
[∇xF (i, j)]2 + [∇yF (i, j)]2. (3.1)

The sum of the gradient magnitude makes TV a semi ℓ1 norm. It is well-known that ℓ1

norm of the gradient promotes the sparsity of the image in the gradient domain. Therefore,

a piecewise smooth image is obtained by minimizing (3.1) An isotropic TV can preserve
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3.2. Sparsity promoting TV Regularization

sharp horizontal and vertical edges; however, it causes the unnecessary smoothing of

those edges and strong intensity regions which are at an angle other than 0◦ or 90◦. This

problem arises because isotropic TV minimizes the gradient magnitude. This problem

can be reduced by using variants of TV, for example, anisotropic TV [138, 139, 81, 140],

nonlocal TV [141, 142] or higher order TV [143, 144].

3.2.2 Anisotropic Total Variation

Anisotropic TV applies a direction dependent regularization to the underlying image. It

imposes the smoothing along strong intensity structures but not across them [145]. For a

discrete image F (i, j), the anisotropic TV (aTV) can be defined as the sum of the absolute

difference of partial image derivatives:

||∇F (i, j)||aTV :=
∑

i,j∈D

|∇xF (i, j)| + |∇yF (i, j)|. (3.2)

Anisotropic TV regularization performs better than isotropic TV at strong intensity struc-

tures such as edges and object boundaries. However, unlike isotropic TV, it is not rota-

tionally invariant to the pixel grid. Thus, it produces suboptimal solutions in the presence

of rotations of the camera or the pixel grid [146].

Discontinuities in an image occur along object boundaries where the image gradient is

high. Therefore, making the regularization adaptive to the image structure can preserve

sharp boundaries better than a non-adaptive regularization. To this end, anisotropic TV

regularization is sometimes weighted by an image-driven weight function w(|∇I|) as

Ereg(F (i, j)) =
∑

i,j∈D

w(|∇I|)
(
|∇xF (i, j)| + |∇yF (i, j)|

)
. (3.3)

For small positive numbers α and β, w(|∇I|) can be chosen as w(|∇I|) = exp(−α|∇I|β).

Anisotropic TV is easier to minimize than its isotropic counterpart. Therefore, numerous

convex minimization methods can be used to minimize anisotropic TV. These include

gradient methods [147, 148, 149, 150], primal dual methods [127, 151], iterative shrinkage

or thresholding based methods [152, 153, 125], and graph cuts based methods [154, 155,

146].
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3.2.3 Higher Order Total Variation

Isotropic and anisotropic TV produce staircase artefacts in low-textured and flat image

regions. To reduce this undesirable effect, higher order total variation regularization has

been proposed [143]. Mathematically, higher order total variation (HOTV) can be given

as

||∇F (i, j)||HOTV :=
∑

i,j∈D

|∇F (i, j)| + α|∇kF (i, j)|, (3.4)

where k represents the order of the regularization, and a positive constant α balances the

effect of gradient and higher order derivatives. The idea of using higher order derivatives

has been modified to include Laplacian ∆ with the gradient for the regularization of

unknown images as

||∇F (i, j)||Lap-TV :=
∑

i,j∈D

|∇F (i, j)| + α|∆F (i, j)|. (3.5)

The use of higher order derivatives may result in the blurring of sharp image boundaries.

Thus, higher order TV regularization uses an adaptive functional which makes the regu-

larizer act as ordinary TV at sharp boundaries, whereas it uses higher order derivatives

in textured and flat image regions.

Total generalized variation (TGV) has been proposed as a generalization of higher

order TV regularization [144, 156]. By changing the order of the regularizer, TGV allows

to reconstruct piecewise smooth, affine and quadratic images. The TGV regularizer can

be used to obtain a globally optimal solution because, similar to the TV regularizer, it is

also convex. TGV and HOTV are computationally more expensive than the ordinary TV

because of the calculation of higher order derivatives.

3.3 Proposed Sparsity Enhancing Regularizer

This section proposes a novel sparsity enhancing regularizer capable of avoiding the short-

comings of TV based regularizers. The proposed regularizer is based on the variational

measure introduced in [157], which imposes the intensity continuity of partial image
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derivatives at each pixel in a small neighborhood. The variational measure is defined

for scalar images only. However, the proposed regularizer is designed to handle multi-

channel vector valued images. This regularizer, in contrast to TV based regularizers, can

preserve edges and object boundaries which are not either horizontal or vertical. It is also

able to reduce undesirable staircase artefacts produced by TV in flat regions where there

is a little intensity change. First, the regularizer is formulated for multi-channel images.

Second, the rotational invariance of the proposed regularizer is proved for multi-channel

images. Finally, its sparsity enhancing capabilities are theoretically compared against the

local TV regularizer.

3.3.1 The Formulation

Let F = [F1 F2 · · · Fc]
T be a multi-channel image with c number of channels. Dis-

crete partial derivatives of this image F at pixel location (i, j) can be given as forward

differences:

∇x(i,j)F(i, j) = F(i + 1, j) − F(i, j),

and

∇y(i,j)F(i, j) = F(i, j + 1) − F(i, j).

Now, for each channel of F, let us consider the continuity of its partial derivatives in

a 2 × 2 neighborhood. Partial derivatives ∇x(i,j) and ∇y(i,j) can be continuous along

all directions except their own directions because they are desired to be discontinuous to

preserve sharp edges and boundaries. For example, ∇x(i,j) enforces the continuity along all

directions except the horizontal direction. The continuity of partial derivatives depends

upon the direction associated with the boundary. Continuity constraints for different

boundary directions in a 2 × 2 neighborhood are as follows:

• vertical, ∇xx(i,j) = ∇x(i,j+1) − ∇x(i,j) = 0;

• horizontal, ∇yy(i,j) = ∇y(i+1,j) − ∇y(i,j) = 0;

• diagonal 45◦, ∇xy(i,j) = ∇x(i,j) + ∇y(i+1,j) = 0;
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Figure 3.1: The gradient continuity: (a) a 2 × 2 neighborhood showing pixel positions, (b)-
(e) the vertical, horizontal, diagonal 45◦ and diagonal 135◦ boundaries, respectively. Required
derivatives for the gradient continuity are shown in blue colour in (b)-(e), for each direction of
the boundary.

• diagonal 135◦, ∇yx(i,j) = ∇y(i,j) − ∇x(i,j) = 0.

Figure 3.1 shows these four boundaries along with associated image derivatives in a 2 × 2

neighborhood. For vertical, horizontal, diagonal 45◦ and 135◦ boundaries, the directional

continuity of partial derivatives ∇x and ∇y is enforced by minimizing ∇xx(i,j), ∇yy(i,j),

∇xy(i,j) and ∇yx(i,j), respectively. To regularize the multi-channel image F, we minimize

the ℓ1 norm of aforementioned partial derivatives as

Ereg(F) = ||(∇xF)||21 + ||(∇yF)||21 + ||(∇xyF)||21
+||(∇yxF)||21 + ||(∇xxF)||21 + ||(∇yyF)||21. (3.6)

A careful inspection of continuity constraints reveals that

∇xxF = F(i + 1, j + 1) + F(i, j) − F(i + 1, j) − F(i, j + 1) = ∇yyF.

Given the goal to recover sparsest partial derivatives, ∇xx(i,j) = 0 or ∇yy(i,j) = 0 implies

zero partial derivative along the horizontal or vertical direction, respectively. This is

equivalent to ∇x(i,j) = 0 or ∇y(i,j) = 0. In this case, the minimization of ||∇xxF||1 and

||∇yyF||1 is redundant under the minimization of either ||∇xF||1 or ||∇yF||1. Therefore,

these two terms can be omitted in (3.6). Since F = [F1 F2 · · · Fc]
T, we penalize the

magnitude of horizontal, vertical and diagonal derivatives of each channel, and denote
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this regularizer as HVD(F):

Ereg(F) = HVD(F) :=

||√(∇xF1)2 + (∇xF2)2 + · · · + (∇xFc)2||21+||
√

(∇yF1)2 + (∇yF2)2 + · · · + (∇yFc)2||21+

||
√

(∇xyF1)2 + (∇xyF2)2 + · · · + (∇xyFc)2||21+||
√

(∇yxF1)2 + (∇yxF2)2 + · · · + (∇yxFc)2||21. (3.7)

The regularizer HVD(F) enforces the continuity of partial image derivatives at each pixel,

and minimizes their ℓ1 norm separately. Therefore, regularizing an image using (3.7) is

expected to preserve sharp horizontal, vertical as well as diagonal edges. Furthermore,

the inclusion of diagonal derivatives along with the horizontal and vertical derivatives in

a neighborhood around each pixel imposes more constraints on the image to be restored.

Consequently, the HVD regularizer reduces staircase artefacts in flat regions. In addition,

it is more robust against outliers than traditional TV regularizer. The separate minimiza-

tion of partial derivatives favors a solution which is sparser than the solution obtained by

using TV. As an implication, HVD(F) requires fewer number of measurements than TV

for the estimation of unknown signals.

3.3.2 Rotational Invariance

We prove the rotational invariance of the proposed regularizer given in (3.7) for multi-

channel images. We use 2D rotations to give proof for 2-channel images; nevertheless, by

using higher dimensional rotations, it is easy to show that the regularizer is invariant to

rotations for multi-channel images. Let R be a 2D rotation matrix for a 2-channel image

F = [F1 F2]
T. When the camera is rotated by an an angle θ, the rotated image RF is

given as

RF =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
F1

F2

)
(3.8)

or

RF = R1F1 + R2F2, (3.9)

where R =
(

R1 R2

)
. For the proposed regularizer, we will prove that HVD(F) =

HVD(RF). Considering the first term in the square root of (3.7), i.e., (∇xF1)
2 +(∇xF2)

2,
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3.3. Proposed Sparsity Enhancing Regularizer

and substituting rotated image RF into this term, we get

(∇xR1F1)
2 + (∇xR2F2)

2 = (∇xF1 cos θ − ∇xF2 sin θ)2 + (∇xF1 sin θ + ∇xF2 cos θ)2,

= (∇xF1 cos θ)2 + (∇xF2 sin θ)2 − 2(∇xF1 cos θ)(∇xF2 sin θ)

+ (∇xF1 sin θ)2 + (∇xF2 cos θ)2 + 2(∇xF1 sin θ)(∇xF2 cos θ).

By canceling common terms and after some rearrangements, we obtain

(∇xR1F1)
2 + (∇xR2F2)

2 = (∇xF1)
2(cos2 θ + sin2 θ) + (∇xF2)

2(cos2 θ + sin2 θ),

= (∇xF1)
2 + (∇xF2)

2,

which is identical to the image without rotation. The similar proof can be provided for

terms involving ∇y, ∇xy and ∇yx. Hence the proposed regularizer is invariant to camera

rotations.

3.3.3 Sparsity Comparison with Total Variation

We compare the sparsity promoting capabilities of the TV and proposed HVD regularizers.

Let us denote the set of partial derivatives as z = {x, y, xy, yx}. The magnitude of these

derivatives can be computed as |∇zF|. The proposed regularizer penalizes the magnitude

of each partial derivative separately; therefore, we compare the sparsity of each partial

derivative with the sparsity of the gradient magnitude which is minimized in TV. The

gradient magnitude is given as

|∇F| =
√

(∇xF)2 + (∇yF)2.

The sparsity of the gradient magnitude |∇F| is the number of nonzero ∇xF or ∇yF.

Hence, |∇F| is less sparse than either |∇xF| or |∇yF|. Diagonal derivatives depend upon

the horizontal and vertical derivatives as shown in Figure 3.1. Therefore, their sparsity

is also less than or equal to the sparsity of the gradient magnitude |∇F|. Hence each

partial derivative is either sparser than the gradient magnitude or its sparsity is equal to

the sparsity of the gradient magnitude. Thus, a sparse signal can be reconstructed by
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Figure 3.2: Diagonal edge recovery using TV and HVD: (a) a sharp diagonal edge, its recon-
struction from 50% measurements using (b) TV and (c) HVD. Note that the edge is recovered
correctly by HVD in (c). (d) The mean square error as a function of percentage of measurements.

TV as well as by the proposed regularizer because HVD(F) produces a solution that is

sparser than the solution obtained by TV. A consequence of the above analysis is that

the proposed regularizer requires fewer measurements than TV for the recovery of an

unknown image from highly incomplete measurements.

To illustrate the sparsity comparison of HVD and TV, we recover a diagonal image

by both regularizers. Figure 3.2 shows the recovery of a diagonal image edge of size 8 × 8

pixels from reduced measurements. An undesirable blurring of the edge can be seen in

TV based recovery, whereas HVD correctly recovers the sharp edge. Figure 3.2 (d) shows

the recovery of the same edge from different percentage of measurements by using TV and

HVD. It is obvious that HVD requires fewer measurements than TV for a mean square

error close to zero.
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3.3.4 Reduction in Staircase Artefacts

Local TV regularizers produce staircase artefacts in low-textured image regions because

these regularizers under-constrain the underlying image in flat regions. To mitigate un-

desirable staircase artefacts, low-textured regions should be constrained more. The pro-

posed HVD regularizer includes diagonal derivatives along with the horizontal and vertical

derivatives in a neighborhood around each pixel. Thus, it constrains the image more than

local TV regularizers. Consequently, staircase artefacts are considerably reduced by the

proposed regularizer. Another advantage of using diagonal derivatives is that HVD pre-

serves diagonal edges better than TV regularizers. In addition, the separate minimization

of partial derivatives makes HVD more robust against outliers than traditional TV regu-

larizers which penalize the horizontal and vertical flow derivatives only.

3.4 Image Restoration using Proposed Regularizer

Restoration techniques aim to recover or reconstruct images degraded by some known

degradation phenomena. The problem of image restoration models the degradation pro-

cess and applies the inverse of this process to reconstruct the original image. In this

section, we apply the proposed regularizer to the problem of image restoration. Let

f = [f1 f2 · · · fc]
T be the lexicographically vectorized multi-channel image F, g be the

degraded version of f and S be a linear matrix operator that represents the degradation

process. The image restoration model can now be given as

g = Sf + η, (3.10)

where η denotes multichannel noise. One popular example of the restoration process is

image denoising. When the matrix S is assumed to be an identity matrix In of size

n × n, we get g to be a noisy version of the original image f . We denoise (3.10) using the

proposed regularizer. The variational energy E(f) incorporating (3.10) and the proposed

regularizer can now be given as

E(f) = min
f

||f − g||21 + λ[HVD(f)], (3.11)
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3.4. Image Restoration using Proposed Regularizer

where λ is a regularization parameter. The first term in (3.11) represents the data fidelity

term that enforces the restored image to be close to the noisy image. Note that we have

used the robust ℓ1 norm with the data fidelity term to handle outliers in the restoration

process.

A second example of the restoration process is image reconstruction from incomplete

measurements. In this case, the matrix S is an underdetermined linear operator which

measures the image f such that the dimension of the measured image g is less than the

original image f . The image reconstruction using the proposed regularizer can be given

as

E(f) = min
f

||Sf − g||21 + λ[HVD(f)]. (3.12)

Note that both data and regularization terms in (3.12) are convex; thus, convex opti-

mization methods can be used to solve for f from the resulting energy E(f). Here, we

demonstrate how a fast algorithm, NESTA, presented in [150] can be modified to solve

Equations (3.11) and (3.12). NESTA has been used to solve large-scale variational prob-

lems [158]. Here, we give the algorithmic details for the image reconstruction. The same

algorithm can be applied to the image denoising problem by taking the matrix S as an

identity matrix. NESTA uses a differentiable Huber norm approximation to the ℓ1 norm;

therefore, it can handle smooth as well as nonsmooth convex functionals. We modify

NESTA to solve image restoration problem. The Huber norm is given as

||x||ǫ =

{
x2

2ǫ
, if |x| ≤ ǫ,

|x| − ǫ
2
, otherwise.

The derivative of the Huber norm is given by

∂

∂x
||x||ǫ =

x

max(ǫ, |x|) . (3.13)

We use differentiable Huber norm in place of the ℓ1 norm in (3.12). The combined data
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3.4. Image Restoration using Proposed Regularizer

and the regularization energy E(f) is now given as

E(f) = min
f

||Sf − g||2ǫ+

λ

(
||√(∇xf1)2 + (∇xf2)2 + · · · + (∇xfc)2||2ǫ + ||

√
(∇yf1)2 + (∇yf2)2 + · · · + (∇yfc)2||2ǫ+

||
√

(∇xyf1)2 + (∇xyf2)2 + · · · + (∇xyfc)2||2ǫ + ||
√

(∇yxf1)2 + (∇yxf2)2 + · · · + (∇yxfc)2||2ǫ
)

,

(3.14)

where ∇x, ∇y, ∇xy and ∇yx are sparse difference matrices to calculate derivatives of

vectorized images. An iterative scheme is used to find the minimum of (3.14) at iteration

k as

∂E(fk)

∂fk
= ∂fkE(fk) =

[
2ST(fk − g) + λ

(
∇

T
x

(∇xfk)

max(ǫ, |∇xfk|)+

∇
T
y

(∇yfk)

max(ǫ, |∇yfk|) + ∇
T
xy

(∇xyfk)

max(ǫ, |∇xyfk|) + ∇
T
yx

(∇yxfk)

max(ǫ, |∇yxfk|)

)]
. (3.15)

The algorithm computes two auxiliary variables pk and qk at each iteration from ∂fkE(fk).

It then combines both auxiliary variables to get next estimate fk. The choice of ǫ plays

an important role in the algorithm. The speed of the convergence is shown to have

direct relationship with this approximation constant [150]. A small value of ǫ gives good

accuracy at the cost of slow convergence and vice versa. The proposed algorithm uses

Lipschtz continuity; therefore, a Lipschitz constant L is required for the computation of

auxiliary variables from (3.15). Lipschitz constant L depends on λ, Huber norm parameter

ǫ, and the norms of sparse difference matrices.

To compute the Lipschitz constant L, we need to find the upper bound for the norm

of HVD. It has been shown in [159] that difference matrices used to calculate TV are

bounded above by 8. A similar analysis can be made for difference matrices used in

HVD. The ℓ1 norm of any matrix is maximum absolute column sum of that matrix. HVD

consists of four sparse difference matrices: ∇x, ∇y, ∇xy and ∇yx, which are used to

compute discrete differences. These matrices have exactly two nonzero entries +1 or −1.

Therefore, they satisfy ||∇x||1 = 2, ||∇y||1 = 2, ||∇xy||1 = 2 and ||∇yx||1 = 2. Since we
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minimize the magnitude of each partial flow derivative in HVD,

||∇T
x ∇x||1 + ||∇T

y ∇y||1 + ||∇T
xy∇xy||1 + ||∇T

yx∇yx||1 = 4 + 4 + 4 + 4 = 16. (3.16)

Hence, difference matrices used in HVD are bounded above by 16. Lipschitz constant L

is then given as L = 16λ/ǫ. The algorithm runs for a fixed number of iterations or until

it reaches the convergence. The summary of the algorithm is shown in Table 3.1.

Table 3.1: The proposed algorithm for image restoration.

Initialization: f0 = 0.
Set iteration index k = 1,
while(not converged & k ≤ max_iter)

1. compute ∂fkE(fk) from (3.15),
2. compute γk = 1

2
(k + 1) and τ k = 2

k+3
,

3. compute pk = fk − 1
L

∂fkE(fk),
4. compute qk = f 0 − 1

L

∑k
i γi, ∂f iE(f i),

5. update fk = τ kpk + (1 − τ k)qk,
k = k + 1,

end while

3.5 Experimental Results

The proposed regularizer has been tested on several images to evaluate its performance

under noise and incomplete measurements. For the validation of the proposed regular-

izer, a comparative analysis is conducted with isotropic, anisotropic and higher order

TV regularizers by assessing the quality of the restored images. First, the experimental

setup, describing images used in experiments, is presented. Second, the restoration per-

formance is analyzed on images corrupted by a controlled amount of noise. Third, images

are restored from randomly sensed incomplete measurements. Finally, the computational

complexity of the proposed method, and the sensitivity of the regularization parameter

is assessed.
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Table 3.2: Optimal regularization parameters for different regularizers.

λiTV λaTV λHVD λHOTV

0.05 0.05 0.01 0.006

3.5.1 Experimental Setup

All experiments have been performed on publically available real world images which are

used as benchmarks for various vision and image processing tasks. The image dataset used

in these experiments comprises of greyscale images Cameraman, Barbara, Boat and Man,

and colour images Baboon, House, Monarch and Pepper. These images are corrupted

by a controlled amount of noise. The quality of restored images have been assessed by

calculating the peak signal to noise ratio (PSNR), which is given as

PSNR = 20 ∗ log(
f 2

max

MSE
), (3.17)

where fmax = 255 for an 8 bit image and MSE is the mean squared error:

MSE =
1

n

∑

n

(f − g2). (3.18)

To conduct a fair comparison of aforementioned three TV regularizers and the proposed

regularizer, same algorithm has been used to minimize their variational regularization en-

ergies. Therefore, the energies of proposed regularizer and the three TV regularizers are

minimized using NESTA ([150]). It should be mentioned that the use of different regular-

izers alter the variational energy to be minimized. Consequently, the values of optimum

regularization parameters for these regularizers also change. In these experiments, we

have manually tuned regularization parameters of these regularizers to get best restora-

tion results for all of these regularizers. Table 3.2 shows the values of these parameters

for our experiments.

3.5.2 Image Denoising

These experiments have been conducted to test the capability of the proposed regularizer

to denoise images. A controlled amount of Gaussian noise is added to images described
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Table 3.3: PSNR results on all eight images for optimum values of regularization param-
eters.

Image Anisotropic TV Isotropic TV Proposed HVD Higher order TV

Cameraman 27.85 27.18 30.21 29.38
Barbara 28.65 28.27 30.28 30.43

Boat 26.6 26.94 30.46 30.07
Man 27.36 27.02 31.09 30.42

Baboon 26.95 26.15 29.84 30.67

House 27.61 27.09 30.48 30.12
Monarch 28.58 28.07 30.92 30.15
Pepper 28.64 28.56 30.67 29.81

above. Since clean images are available, performances of the proposed and TV based

regularizers have been measured quantitatively by calculating the PSNR for denoised

images. The influence of the controlled noise is also analyzed qualitatively on denoised

images.

Table 3.3 shows quantitative results for all four regularizers on eight images. These

results have been taken for a standard deviation of noise σ = 25. Optimum values of

regularization parameters are used for all regularizers. It can be observed that the HOTV

regularizer performs better than both isotropic and anisotropic TV regularizers. However,

the proposed HVD regularizer outperforms the HOTV for most of images.

Figure 3.3 demonstrates the denoising of the greyscale image Cameraman when it is

contaminated with a noise of σ = 25. Highlighted parts of images in Figure 3.3 (c) and

(d) show staircase artefacts, whereas highlighted parts in Figure 3.3 (e) and (f) show

a significant reduction in these artefacts. However, the image denoised by the HVD

has a higher value of PSNR = 30.21 as compared to the image denoised by the HOTV

regularizer with a PSNR = 29.38, as given in Table 3.3. Highlighted parts of Figure 3.3

are also shown in Figure 3.4 as 3D plots for a better visualization of staircase artefacts.

Denoising results on the colour image Monarch are shown in Figure 3.5. A qualitative

comparison of images in Figure 3.5 (b) and (c) with (d) and (e) reveals that HVD and

HOTV regularizers outperform anisotropic and isotropic TV especially in highlighted
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Original Anisotropic TV denoising

Isotropic TV denoising HVD denoising HOTV denoising
        (a)                           (b)           (c) 

 

   ( d)             (e)                     (f) 

Figure 3.3: The denoising of the greyscale image Cameraman. (a) Original image, (b) image
corrputed by a Gaussian noise of σ = 25, image denoised by (c) anisotropic TV, (d) isotropic
TV, (e) the proposed HVD and (f) higher order TV regularizers. Highlighted parts of these
images are also given in the bottom.
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Figure 3.4: Highlighted parts of Figure 3.3 shown as 3D plots for the visualization of staircase
artefacts.

textured regions of denoised images. The image denoised by the HVD regularizer in

Figure 3.5 (d) has a higher PSNR = 30.92 than anisotropic, isotropic and higher order

TV regularizers with PSNR = 28.58, 28.07 and 30.15, respectively. Moreover, staircase

artefacts can be observed in highlighted parts of images in Figure 3.5 (b) and (c). HVD

and HOTV regularizers do not show noticeable staircase artefacts.

Figure 3.6 presents PSNR as a function of standard deviation of noise σ for all four

regularizers. An average PSNR has been calculated over all eight images, and the results

are reported in Figure 3.6 (a). These results clearly indicate that the proposed regularizer

outperforms TV based regularizers for increasing values of standard deviation of noise.

Similar kind of results can be observed for Cameraman and Pepper in Figure 3.6 (b) and

(c), respectively.
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Original Noisy Anisotropic TV denoising

Isotropic TV denoising HVD denoising HOTV denoising

                 (a)                    (b)           (c) 

 

            (d)               (e)              (f) 

 

Figure 3.5: The denoising of the colour image Monarch. (a) Original image, (b) image
corrputed by a Gaussian noise of σ = 25, image denoised by (c) anisotropic TV, (d) isotropic
TV, (e) the proposed HVD and (f) higher order TV regularizers. Highlighted parts of these
images are also given in the bottom.
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Figure 3.6: The PSNR as a function of the standard deviation σ of noise for anisotropic TV,
isotropic TV, proposed HVD and higher order TV regularizers. Results for (a) the whole dataset
of 8 images (b) Cameraman and (c) Peppers. Regularization parameters of all four regularizers
have been tuned to get best PSNR performances.
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Figure 3.7: Reconstruction of the colour image Lena from 50% measurements. (a) Original
image, (b) 50% randomly selected pixels of the original image, image reconstructed by (c)
anisotropic TV, (d) isotropic TV, (e) the proposed HVD and (f) higher order TV regularizers.
Highlighted parts of these images are also given in the bottom.
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3.5.3 Reconstruction using Incomplete Measurements

In these experiments, the performance of the proposed regularizer is tested against TV

based regularizers for the reconstruction of images from incomplete measurements. We

define m/n as measurement ratio for m number of randomly made measurements in an n

pixel image. The performance of each regularizer is evaluated for different measurement

ratios. Note that if m/n = 1, then full measurements are used, i.e., there is no reduction.

Measurements are gradually increased, and the PSNR is plotted against each set of mea-

surement ratio. Since image measurements are made randomly, we run all regularizers

multiple times for each measurement ratio. In these experiments, we take the average

of results after we run each regularizer five times to reconstruct images from randomly

chosen measurements.

Figure 3.7 reports the reconstruction of the colour image Lena for a measurement ratio

of 0.5. Results in highlighted parts of Figure 3.7 (c) and (d) show that TV regularizers

blur highly textured hair of Lena. A significant decrease of this blurring can be observed

by the proposed and higher order TV regularizers as shown in Figure 3.7 (e) and (f),

respectively. However, the image reconstructed by HVD in Figure 3.7 (e) has a higher

PSNR = 29.47 than the higher order TV with PSNR = 27.95.

Figure 3.8 presents the PSNR as a function of measurement ratio m/n. Results in

Figure 3.8 (a) show the superiority of the proposed HVD over TV based regularizers

for the reconstruction of Lena from small measurement ratios. Results in Figure 3.8

(b) are reported by averaging the PSNR of 8 reconstructed images against each set of

measurement ratio. It can be observed that the proposed HVD regularizer is able to

reconstruct images from measurements smaller than measurements required by TV based

regularizers. Higher order TV regularizer performs better than isotropic and anisotropic

regularizers; however, the proposed regularizer shows even superior results in terms of the

PSNR of reconstructed images.
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Figure 3.8: The PSNR as a function of the measurement ratio (m/n). These results are
plotted for (a) Lena and (b) the whole dataset of 8 images.

3.5.4 Computational Complexity and Parameter Sensitivity

In this subsection, we perform experiments to compute the complexity and parameter

sensitivity of all four regularizers. Images are corrupted by a Gaussian noise of σ = 25.

For a fair comparison, noisy images are restored by TV based regularizers by using the

same algorithm that has been used for the proposed regularizer.

Figure 3.9 shows time taken by all four regularizers to restore noisy image Pepper of
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different sizes. Note that a logarithmic scale is used on y-axis for time consumed. The plot

reveals that isotropic and anisotropic TV regularizers have nearly similar complexity. The

proposed and higher order TV regularizers are computationally more expensive than other

two regularizers. For small images, the difference between the computational complexity

of the proposed regularizer and the higher order TV is not significant. However, it can

be noticed that the proposed regularizer is considerably faster than the higher order TV

for large images.
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Figure 3.9: The computational complexity of all four regularizers on images of different sizes.

Figure 3.10 shows the effect of changing regularization parameters λ on PSNR per-

formances of regularizers. Variational regularizers are known to produce good image

restoration results for a range of regularization parameter values. The larger the range,

the more robust is the regularizer against change in the value of λ. In these results, it

can be observed that the proposed regularizer shows more robustness to the change of the

parameter than other regularizers.

3.6 Conclusions

This chapter was dedicated to the regularization of ill-posed imaging problems. We in-

vestigated sparsity enhancing regularizers in the context of variational methods. A novel
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Figure 3.10: The sensitivity analysis of TV and proposed regularizers against the regularization
parameter λ. Eight images have been used for this analysis.

variational regularizer HVD was presented after we discussed shortcomings of existing

TV based regularizers. The HVD regularizer was proven to be rotationally invariant to

camera motions. A sparsity comparison of the proposed regularizer was conducted with

total variation regularizer. It was revealed that the proposed regularizer can produce

more sparse solutions than TV regularizer. TV regularizer is known to generate staircase

artefacts in the computed solution. However, the HVD regularizer was shown to reduce

these artefacts significantly.

The proposed regularizer was applied to the problems of image denoising and image

reconstruction from incomplete measurements. Experiments were conducted to show

that the proposed regularizer can produce results better than TV based regularizers. The

improvement in results is fundamental because the proposed regularizer will be used in

subsequent chapters of this thesis. It will be used to regularize optical flow estimation in

Chapter 4 and occlusion detection using optical flow in Chapter 5.

62



Chapter 4
Dense Optical Flow using Sparse Regularizers
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4.1 Introduction

The retrieval of motion from digital videos is a major task of computer vision systems. Op-

tical flow methods compute an estimate of the motion between consecutive video frames.

There is an interest in estimating accurate optical flow because numerous vision tasks

require accurate motion for the extraction of semantic information from video sequences.

Object detection and tracking, surveillance, motion compensated coding, depth measure-

ment, robot navigation, video stabilization, 3D structure from motion are among some
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of the applications that use optical flow. Therefore, it is essential to obtain good optical

flow estimates.

Optical flow estimation is an ill-posed problem because of infamous aperture problem.

Variational methods regularize optical flow field to resolve aperture problem. This chapter

is dedicated to the use of variational regularizers for optical flow estimation. The attention

has been focused on those regularizers which promote the sparsity of the solution. For a

real positive number p such that 0 ≤ p ≤ 1, the ℓp pseudo-norm gives rise to sparse and

robust regularization. However, for p < 1, the regularization term does not define a norm,

and the resulting regularization is not convex. The use of the ℓ1 norm is of particular

interest in this context because it results in convex regularizers. Therefore, efficient convex

optimization techniques can be used to minimize them. One of the most commonly used

example of such robust and convex regularizer is total variation (TV), which uses ℓ1 norm

with the gradient magnitude [122]. TV penalizes large signal coefficients less than the

small signal coefficients and vice versa. Consequently, discontinuities in optical flow are

better handled by this regularizer than a quadratic regularizer. TV regularization favors

a piecewise smooth optical flow with a sparse gradient field. However, regularization

of optical flow using the TV regularizer suffers from the shortcomings as mentioned in

Chapter 3. In this chapter, we use the regularizer proposed in Chapter 3 for the estimation

of optical flow.

This chapter is organized as follows. Section 4.2 provides the relevant work on sparse

regularization, such as total variation (TV) regularization, for optical flow estimation.

Section 4.3 embeds the proposed sparse regularizer of Chapter 3 with numerous optical

flow data terms in a variational framework. It also presents details of a first order, fast

and convex algorithm to compute optical flow. Section 4.4 reports the experimental setup,

results and performance evaluation on various types of synthetic and real video sequences

to show the efficacy of the proposed method.

64



4.2. Relevant Background

4.2 Relevant Background

Variational methods regularize ill-posed problems by introducing smoothness constraints

or bounds on the norms of vector spaces. The regularization can be considered as a

tradeoff between data fitting and norm reduction of the solution. The regularization of

optical flow proposed by Horn and Schunck’s [22] is based on Tikhonov regularization

[160]. This is a quadratic regularization which uses Euclidean distance or ℓ2 norm. A

quadratic regularization does not respect discontinuities in the flow field because it causes

blurring of motion boundaries by imposing the same amount of smoothness everywhere

in the video frame.

To preserve motion boundaries, the regularization can be made adaptive to motion

discontinuities. It is commonly observed in digital videos that motion boundaries co-

incide with object boundaries. Therefore, large image gradients are produced at these

boundaries. Based on this observation, Nagel [99] introduced the concept of oriented

smoothness which weights the smoothness according to the orientation of motion bound-

aries. Nagel’s method applies the smoothness along motion boundaries but inhibit it

across them. To prevent undesirable blurring of motion boundaries, robust penalty func-

tions have been used with the regularization term of the variational optical flow model

(2.15). The quadratic regularization of optical flow has been replaced by the regulariza-

tion which either uses nonconvex Geman-McClure [59, 80] or Lorentzian penalty functions

[161, 162]. The regularization using these robust functions is able to preserve sharp motion

boundaries. The use of these penalty functions with the regularization term of variational

optical flow promotes the sparsity of optical flow in the gradient domain.

TV has been used to regularize optical flow in [91, 92]. TV favors a piecewise smooth

optical flow with a sparse gradient field; it preserves motion boundaries better than by

a quadratic regularizer. Homogeneous TV regularization has been used for optical flow

in [2]. However, homogeneous TV can cause unnecessary smoothing of those edges and

strong intensity regions which are not horizontal or vertical, i.e., boundaries at an angle

other than 0◦ or 90◦. Since most of motion boundaries coincide with image disconti-
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nuities, making the regularization adaptive to the image structure can better preserve

motion boundaries. To this end, image structure adaptive TV [3, 132, 163, 82] have been

employed.

The isotropic and anisotropic TV regularizers compute local derivative features of

an image. These regularizers assumes that the image is a set of connected objects with

each object smooth inside. Thus, these regularizers face difficulties in preserving the

texture and fine details of objects. Moreover, unavailability of significant derivatives

deteriorates performances of isotropic and anisotropic TV regularizers in flat and low-

textured video regions. Undesirable staircase artefacts are thus developed in low-textured

video regions. These problems can be mitigated by combining image gradients in a small

neighborhood. Nonlocal TV has been used to mitigate these problems [134, 156]. Nonlocal

TV is considerably slower than local isotropic and anisotropic TV for large nonlocal

window sizes.

The matching term of variational methods can not deal with outliers when it is based

on quadratic penalization. Therfore, the robust Charbonnier penalty [76, 4], and sparsity

promoting convex ℓ1 norm have been used with data matching terms of variational optical

flow methods [92, 132]. Nonconvex penalty functions have also been used to construct

data terms [80, 162]. However, it has been pointed out in [4] that the use of convex ℓ1

norm gives better results than the use of nonconvex penalties with regularization terms

of variational optical flow methods. This is partly due to the fact that, in contrast to

nonconvex methods, efficient convex optimization methods are available.

A data term based on the OFC is unable to cope with brightness change scenarios.

Under the violation of intensity constancy, intensity derivatives are relatively less affected

than the intensity itself. The data term based on the constancy of first-order image deriva-

tives have been used in [91, 95, 82]. The constancy of higher-order intensity derivatives

is also investigated to construct the data term of variational optical flow model in [78].

The computation of higher-order derivatives is difficult for noisy videos. Moreover, it is

expensive to compute higher-order derivatives. Thus, the constancy of higher-order image
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derivatives is rarely used for optical flow estimation.

4.3 Optical Flow using Proposed Regularizer

In this section, we embed the proposed regularizer of Chapter 3 into a variational frame-

work. The resulting variational energy of the data and the regularization terms is min-

imized using a first-order convex algorithm. The details of the proposed algorithm are

also given in this section.

4.3.1 The Formulation

Let Ix, Iy and It be lexicographically vectorized horizontal, vertical and temporal intensity

derivatives, respectively. Moreover, let vx and vy, respectively, denote the vectorized

horizontal and vertical flow components. The linearized version of the OFC given in (2.2)

can now be written as
(
diag(Ix) diag(Iy)

)(vx

vy

)
= −It, (4.1)

where diag(Ix), diag(Iy) are diagonal matrices made up of horizontal and vertical intensity

derivative vectors, respectively. Let us define

A = [diag(Ix) diag(Iy)], v = [vx vy]T and y1 = −It.

The data term in the matrix-vector form can now be given as

Edata1(v) = ||Av − y1||22. (4.2)

The proposed regularizer given in Equation (3.6) is applied to the vectorized optical flow

v as

Ereg(v) = ||(∇xv)||1 + ||(∇yv)||1 + ||(∇xyv)||1 + ||(∇yxv)||1. (4.3)

The combined variational energy E(v) of the data and the regularization terms given in

Equations (4.2) and (4.3), respectively, is now expressed as

E(v) = min
v

||Av − y1||22 + λ
[
||(∇xv)||1 + ||(∇yv)||1 + ||(∇xyv)||1 + ||(∇yxv)||1

]
. (4.4)
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Since Equation (4.4) uses a data term that is based on OFC, it can not handle intensity

change scenarios. A data term based on the constancy of the intensity gradient, for

example, can be embedded with the proposed regularizer. The constancy of the intensity

gradient is given as

∇I(x, y, t) − ∇I(x − vxdt, y − vydt, t − dt) = 0. (4.5)

The first-order approximation of this assumption is usually used to construct a data term

that is robust against intensity change. The linearization of (4.5) results
(

Ixxvx + Ixyvy

Iyxvx + Iyyvy

)
= −

(
Ixt

Iyt

)
, (4.6)

(
Ixx Ixy

Iyx Iyy

)(
vx

vy

)
= −

(
Ixt

Iyt

)
. (4.7)

Let Ixx, Ixy, Iyx and Iyy be lexicographically vectorized second-order intensity derivatives.

Moreover, let Ixt, Iyt represent second-order spatiotemporal intensity derivatives. The

linearized version of the intensity gradient constancy assumption can now be written as
(

diag(Ixx) diag(Ixy)
diag(Iyx) diag(Iyy)

)(
vx

vy

)
= −

(
Ixt

Iyt

)
, (4.8)

where diag(Ixx), diag(Ixy), diag(Iyx) and diag(Iyy) are diagonal matrices made up of

second-order intensity derivative vectors (Ixx), (Ixy), (Iyx) and (Iyy), respectively. Let us

define

B =

(
diag(Ixx) diag(Ixy)
diag(Iyx) diag(Iyy)

)
, and y2 = −

(
Ixt

Iyt

)
.

Now the data term utilizing the intensity gradient constancy assumption can be con-

structed as

Edata2(v) = ||Bv − y2||22. (4.9)

Note that both (4.2) and (4.9) have similar form. However, Edata2(v) is computationally

more expensive than Edata1(v) because it involves the solution of two equations. When

the brightness change is not abrupt, it can be modeled as an affine function of the image

intensity as

I(x, y, t) − I(x − vxdt, y − vydt, t − dt) = d(x, y, t)I(x, y, t) + c(x, y, t), (4.10)
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where the multiplier d(x, y, t) permits change in the image contrast and the offset c(x, y, t)

allows for the mean brightness change[98]. The linearized GDIM is expressed as

Ixvx + Iyvy + It = dI + c. (4.11)

Let I, d and c be lexicographically vectorized I, d and c, respectively. The vector form

of (4.11) is given as

(
diag(Ix) diag(Iy) −diag(I) −I

) (
vx vy d c

)T
= −It, (4.12)

where I is an identity matrix. Let C =
(
diag(Ix) diag(Iy) −diag(I) −I

)
and u =

(
vx vy d c

)T
. The data term based on (4.12) can now be given as

Edata3(v, d, c) = ||Cu − y1||22. (4.13)

The data term Edata3(v, d, c) involves brightness change parameters which have to be

estimated along with v. A smoothness constraint is applied to estimate brightness change

parameters because they vary slowly in spatial domain.

4.3.2 Algorithmic Details

To estimate optical flow from Equation (4.4), we use a fast algorithm, NESTA, presented

in [150]. This algorithm has been used to solve large-scale variational problems [158].

NESTA uses a differentiable Huber norm approximation to the ℓ1 norm; therefore, it can

handle smooth as well as nonsmooth convex functions. The Huber norm is given as

||x||ǫ =

{
x2

2ǫ
, if |x| ≤ ǫ,

|x| − ǫ
2
, otherwise.

The derivative of the Huber norm is given by

∂

∂x
||x||ǫ =

x

max(ǫ, |x|) . (4.14)

We use differentiable Huber norm in place of the ℓ1 norm in (4.4). The combined data

and the regularization energy E(v) is now given as

E(v) = min
v

[
λ

(
||
√

(∇xvx)2 + (∇xvy)2||ǫ + ||
√

(∇yvx)2 + (∇yvy)2||ǫ

+||
√

(∇xyvx)2 + (∇xyvy)2||ǫ + ||
√

(∇yxvx)2 + (∇yxvy)2||ǫ
)

+ ||
[
Av − y

]
||2
]
. (4.15)
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The minimum of (4.15) at iteration k is computed by using an iterative scheme as

E1(v) = min
v

[
λ

(
||
√

(∇xvx)2 + (∇xvy)2||ǫ + ||
√

(∇yvx)2 + (∇yvy)2||ǫ

+||
√

(∇xyvx)2 + (∇xyvy)2||ǫ + ||
√

(∇yxvx)2 + (∇yxvy)2||ǫ
)

+ ||
[
Av − y

]
||2
]
. (4.16)

The algorithm computes two auxiliary variables pk and qk at each iteration from ∂vkE(vk).

The proposed algorithm uses Lipschtz continuity; therefore, a Lipschitz constant L is re-

quired for the computation of auxiliary variables in (4.16). Lipschitz constant L is given

as L = 16λ/ǫ as computed in Section 3.4.

Table 4.1: The proposed algorithm for optical flow estimation.

Initialization: v0 = [v0
x v0

y]T = 0.

for level=pyramid_levels, ... , 1
if (level= pyramid_levels)

v = v0,
else

v0 = up-sample(v),
end
Set iteration index k = 1,
while(not converged & k ≤ max_iter)

1. compute ∂vkE(vk) from (4.16),
2. compute γk = 1

2
(k + 1) and τ k = 2

k+3
,

3. compute pk = vk − 1
L

∂vkE(vk),
4. compute qk = v0 − 1

L

∑k
i γi, ∂viE(vi),

5. update vk = τ kpk + (1 − τ k)qk,
k = k + 1,

end while
v = v + v0.

end for

The proposed algorithm is applied in a coarse-to-fine pyramid to handle large dis-

placements of pixels. A Laplacian image sequence pyramid is constructed which contains

consecutive video frames at different resolutions for a coarse-to-fine estimation of optical

flow. Optical flow is initialized at 0 in the coarsest level. The estimated optical flow v

at each level of the pyramid is propagated to the next fine level as initial guess v0. The
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algorithm runs for a fixed number of iterations at each pyramid level or until it converges.

The summary of the algorithm is shown in Table 4.1.

4.4 Experimental Results and Analysis

In this section, we evaluate the performance of the proposed method, and analyze exper-

imental results. First, the experimental setup is described in Section 4.4.1. Second, the

proposed regularizer is embedded with various data terms to assess its performance for

different energy functionals in Section 4.4.2. Third, to determine the capability of the

proposed method to estimate optical flow from reduced number of measurements, exper-

iments are presented in Section 4.4.3. Finally, the performance of the proposed method

is compared to a number of existing methods in Section 4.4.4.

4.4.1 Experimental Setup

The proposed method is run in a pyramid with a down-sampling factor of 0.70 to handle

large displacements. It is found that a value of λ ∈ [0.001 0.1] gives reasonable accuracy;

therefore, we manually tuned this parameter in our experiments. The value of ǫ in Huber

norm approximation of the ℓ1 norm plays an important role in the convergence of the

algorithm. In these experiments, a value of ǫ = 0.01 is used which gives reasonable accu-

racy with a good convergence rate. The algorithm converges in a few hundred iterations;

therefore, it is run for a maximum of 1000 iterations or until it converges.

The color scheme given in Figure 1.1 (e) has been used to visualize the magnitude and

the direction of the estimated optical flow. Quantitative results are reported in terms of

the mean end point error (MEPE) for video sequences with known ground-truth optical

flow. The MEPE is given as

MEPE =
1

n

n∑

i=1

√[
(vx)i − (vxGT)i

]2
+
[
(vy)i − (vyGT)i

]2
, (4.17)

where vGT = [vxGT vyGT]T is the ground-truth flow, and n denotes the number of pixels

in one video frame.
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4.4.2 Proposed Regularizer with Various Data terms

Middlebury database is used for these experiments because it provides eight synthetically

generated training video sequences with known ground-truth [164]. All sequences, except

Dimetrodon, undergo motion of rigid objects or camera motion; thus, their ground-truth

optical flow is piecewise smooth. Dimetrodon has a small part of the background un-

dergoing a nonrigid motion. Grove2, Grove3 and Hydrangea sequences have motion of

thin structures like leaves, whereas Rubberwhale contains several independently moving

objects. Urban2 and Urban3 have large motion of objects, and Venus is a stereo pair.

Figure 4.1 shows the estimated optical flows as color plots. It is clear from Figure

4.1 (b) and (c) that there is not much visible difference between the ground-truth and

estimated optical flows. These results show that motion boundaries are preserved by

the proposed method. Figure 4.1 (d) indicates that the error occurs at the occluded

boundaries only. This error is prominent in Urban2 and Venus sequences because these

two sequences exhibit occlusions at image boundaries.

Table 4.2 presents quantitative results in term of MEPE for aforementioned video

sequences. Five different data terms have been used with the proposed regularizer. Data

terms which use the optical flow constraint (OFC) and the OFC based neighborhood

dependent constraint (NDC) [132] perform well when brightness constancy assumption

is followed. However, other three data terms, i.e., the gradient constancy assumption

(GCA), the generalized dynamic image model (GDIM) [98] and the normalized optical flow

constraint (N-OFC), can handle brightness change. Rubberwhale and Urban3 sequences

exhibit brightness change. GCA, GDIM and N-OFC perform better than other data terms

on these two sequences in terms of the MEPE.

We have also applied the proposed method on real world sequences. A value of

λ = 0.005 is found to be optimal for the sequences used in these experiments. To gain

robustness against brightness change, real video sequences are pre-processed. A Gaus-

sian filter of size 9 × 9 and a standard deviation of 1 is used for the smoothing of these

sequences. These smoothed sequences are subtracted from raw sequences, and resultant
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      (a)                         (b)                              (c)                (d) 

Figure 4.1: Optical flow estimation by the proposed method using the OFC. Each row corre-
sponds to one video sequence. (a) Video frame, (b) the ground-truth flow and (c) the estimated
optical flow. (d) The error between the ground-truth and the estimated optical flow. The color
scheme used to indicate the direction and magnitude of the flow vectors is given in Figure 1.1
(e).
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Table 4.2: MEPE results of the proposed regularizer with various data terms on Mid-
dlebury training dataset.

Data terms OFC GCA [78] GDIM [98] NDC [132] N-OFC [30]

Dimetrodon 0.15 0.17 0.21 0.16 0.12

Grove2 0.12 0.14 0.18 0.21 0.15
Grove3 0.41 0.55 0.43 0.52 0.48

Hydrangea 0.16 0.18 0.21 0.22 0.25
Rubberwhale 0.16 0.10 0.10 0.18 0.15

Urban2 0.41 0.48 0.43 0.54 0.58
Urban3 0.65 0.45 0.51 0.62 0.49
Venus 0.28 0.26 0.32 0.34 0.29

sequences are used for optical flow estimation. The rest of the algorithm settings remain

the same.

Figure 4.2 shows optical flow estimation results on real world sequences: Flower gar-

den, Dumptruck, Walking and Camera motion. In Flower garden sequence, a moving

camera captures the static scene. Dumptruck and Walking are chosen from Middlebury

test dataset. The camera is static in the former, whereas both camera and person are

moving in the latter. We do not have ground-truth for aforementioned real sequences be-

cause obtaining ground-truth motion data for real video sequences is a challenging task.

However, Camera motion video sequence has been selected because its ground-truth op-

tical flow is available. This sequence has been taken from annotated sequence database

[165]. In Camera motion sequence, a moving camera captures the video of a complex

multi-object traffic scene. These results are visually plausible because ti can be observed

that motion boundaries are preserved in all four sequences.

4.4.3 Optical Flow Estimation from Reduced Measurements

In these experiments, the performance of the proposed method given in (4.16) is tested

under reduced measurements of intensity derivatives. Three different schemes are used

for the selection of intensity derivatives:

• selection of derivatives randomly;
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Figure 4.2: Optical flow estimation on real sequences (a) Walking, (b) Dump truck, (c) Flower

garden and (d) Camera motion. Video frames are shown in the top row whereas estimated
optical flows are in the bottom.

• selection of those derivatives which have significant magnitude;

• selection of a combination of random and significant derivatives.

Let m be the number of measurements in an n pixel video frame, we define the measure-

ment ratio as m/n. The performance is evaluated for different values of the measurement

ratio. Note that if m/n = 1, then full measurements are used, i.e., there is no reduction.

These measurements are gradually increased in each type of selection, and the MEPE

is plotted against each set of measurement ratio. In the case of random and combined

selection schemes, the algorithm is run five times for each set of measurements, and the

average of results is taken at the end. The regularization parameter λ has been set to

0.01 for these experiments.

We have also compared the number of measurements required to estimate optical flow

with the sparsity (percentage of nonzero elements) of partial flow derivatives. To this

end, the magnitude maps of the ground-truth partial flow derivatives and the ground-

truth flow gradient are calculated. Otsu’s global thresholding method is used to convert

these maps into binary maps, then the number of nonzero in each result is counted to

compute the sparsities of these maps. We have used Middlebury’s training sequences for
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                         (a)                            (b)                                  (c)     
 

Figure 4.3: The sparsity of the ground-truth flow. (a) Video frame, the gradient magnitude
map of (b) the horizontal vxGT and (c) vertical vyGT ground-truth flows.

these experiments because their ground-truth is available.

Figure 4.3 (a), (b) and (c) show the gradient flow magnitude maps of the horizontal

and vertical ground-truth flows computed over 3 video sequences. These edge maps form

motion boundaries, which are shown as white color in Figure 4.3(b) and (c). It can

be seen that motion boundaries are formed from a small percentage of total number of

pixels. Figure 4.4 clearly shows that only less than 5% of pixels form nonzero partial flow

derivative magnitude and gradient flow magnitude maps in these video frames. Note that

magnitude maps of partial flow derivatives |∇xvGT|, |∇yvGT|, |∇xyvGT| and |∇yxvGT|
are sparser than the gradient flow magnitude map |∇vGT|.

Figure 4.5 presents the MEPE as a function of the measurement ratio for three dif-

ferent types of selections of intensity derivatives. In case of significant selection, and a

measurement ratio of 0.4 or less, an increase in the error can be observed for most of

video sequences. When a scene contains moving objects with strong edges and others
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Figure 4.4: The percentage of nonzero pixels in derivative maps of the ground-truth flow.
These eight video sequences are taken from Middlebury’s training video sequences dataset.

with weak edges, then sensing only significant intensity derivatives fails to detect moving

objects with weak edges. Consequently, it results in a higher value of the MEPE.

The error remains almost constant when the proposed method uses random selection

of intensity derivatives up to m/n = 0.1, except for Grove3 and Rubberwhale sequences.

Grove3 sequence has motion of small objects, and a measurement ratio of 0.1 correspond-

ing to randomly selected derivatives misses details of small moving objects. Therefore,

the error rises in this sequence, see Figure 4.5(b). Rubberwhale sequence has nonzero

partial flow derivatives comparable to Grove2, Urban2, Urban3 and Venus sequences,

but it contains motion of several independently moving objects. Thus, unlike these se-

quences, the error rises in Rubberwhale for a measurement ratio of 0.1 as shown in Figure

4.5(d). Hydrangea sequence has the most number of nonzero partial flow derivatives in the

ground-truth flow compared to other sequences as shown in Figure 4.4, but this sequence

has only two distinct motions of Hydrangea bush and the background. Thus, optical

flow is recovered correctly for a measurement ratio of 0.1. Unlike significant and random

sensing, the combined sensing correctly estimates optical flow in all video sequences even

when m/n = 0.1.
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(e) Urban2
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Figure 4.5: The MEPE as a function of the measurement ratio for three different selection
schemes. Results are reported for (a) Grove2, (b) Grove3, (c) Hydrangea, (d) Rubberwhale and
(e) Urban2 sequences. An average MEPE over all videos of (f) Middlebury training database is
also shown.

4.4.4 Comparison with Existing Methods

In these experiments, the performance of the proposed method is compared against state-

of-the-art optical flow methods. Anisotropic TV regularization based method TV-L1-

improved [2], image structure adaptive regularization based method Adaptive [3], struc-

ture adaptive TV and neighborhood dependent constraint method Ad-TV-NDC, and

nonlocal TV regularization based method Classic + NL [4] have been selected for the

comparison. Moreover, to test the effect of adaptive regularization, we have implemented
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Table 4.3: Performance comparison of the proposed method with existing methods on Middlebury training dataset. The
structure adaptive regularization is used with the proposed method, referred to as Adaptive HVD, and added to the
comparison.

Methods
TV-L1
improved [2]

Adaptive [3]
Classic + NL

[4]
Ad-TV-NDC

[132]
Proposed

HVD
Adaptive

HVD
Dimetrodon 0.18 0.16 0.13 0.17 0.15 0.14

Grove2 0.19 0.16 0.16 0.17 0.15 0.13
Grove3 0.62 0.51 0.48 0.58 0.41 0.39

Hydrangea 0.25 0.21 0.15 0.25 0.16 0.17
Rubberwhale 0.21 0.18 0.15 0.16 0.12 0.11

Urban2 0.57 0.49 0.39 0.46 0.41 0.37
Urban3 0.77 0.64 0.52 0.68 0.56 0.59
Venus 0.38 0.33 0.29 0.32 0.28 0.26

Average 0.39 0.34 0.28 0.33 0.25 0.24
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Figure 4.6: The MEPE as a function of the measurement ratio, computed on (a) Dimetrodon,
(b) Grove3 and (c) Venus. An average MEPE over all videos of (d) Middlebury training database
is also computed. The proposed method using combined sensing is compared against TV-L1-

improved [2], Adaptive [3], Ad-TV-NDC and Classic + NL [4]. The structure adaptive
regularization is also used with the proposed method, referred to as Adaptive-HVD, and added
to the comparison.

structure adaptive regularization in the proposed method. The same adaptive weight-

ing scheme is used as proposed in [3]. It is referred to as Adaptive HVD in these

experiments. The comparison is also conducted under reduced measurements. Since a

combination of random and significant intensity derivative sensing performs better, this

comparison is carried out using only the combined sensing scheme. In the combined sens-

ing, we have used 0.05n significant derivatives, whereas the rest of the measurements are

taken randomly.

Table 4.3 shows a performance comparison of the proposed method with aforemen-

tioned methods on Middlebury training dataset. It can be observed that TV-L1-improved,

Adaptive and Ad-TV-NDC have higher MEPE than other three methods. For most

of videos, the proposed method using the adaptive regularization Adaptive HVD out-

performs other methods. Classic + NL ranks second in the comparison. However, the

performance of Perposed HVD is comparable to Classic + NL.

Figure 4.6 presents the MEPE as a function of the measurement ratio for different
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Figure 4.7: The estimated optical flow and the estimation error for m/n = 0.2 by using a
combined sensing scheme. Each row corresponds to one video sequence. (a) Video frame, (b)
the ground-truth optical flow, the estimated optical flow and the resulting flow estimation error
for the methods (c)-(d) Adaptive and (e)-(f) proposed HVD, respectively.

methods on Middlebury training dataset. The measurement ratio is gradually increased

in these methods by using a combined sensing scheme. The error remains almost constant

in case of Proposed HVD and Adaptive-HVD up to m/n = 0.1. It can be observed

that there is not much improvement in terms of the error performance when adaptive

regularization is used along with the HVD regularizer in the proposed method. This

implies that the HVD regularizer, due to its anisotropic nature, can be used without

adaptive weighting to preserve sharp motion boundaries. Classic + NL method, in

general, gives similar performance as the proposed method. This method constrains

optical flow by imposing multiple constraints in a neighborhood around each flow vector,

and also uses occlusion detection techniques.

Figure 4.7 shows the estimated optical flow and the estimation error obtained by the

proposed method and Adaptive for a measurement ratio of 0.2. The estimated optical flow

by the method Adaptive in Figure 4.7(c) indicates that motion details in the highlighted

portion of Rubberwhale video sequence have been lost. Furthermore, excessive blurring

can be seen in the lower middle part of Venus sequence by the same method. On the

contrary, the proposed method does not experience these problems, as shown in Figure

4.7 (b) and (e).

We have also compared the run time of the proposed method with Adaptive and
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Figure 4.8: Run time as a function of the measurement ratio for Adaptive, Proposed HVD

and Classic + NL methods.

Classic + NL methods against the number of measurements. Figure 4.8 shows the

time taken to compute optical flow by these methods. Our experiments show that by

using 20% of the measurements in Adaptive, we reduce the computation time by up to

30%. Moreover, about 20% time gain is obtained for same number of measurements in

the proposed method. Though the performance of Classic + NL is comparable to the

proposed method, we have found that this method is much slower compared to Proposed

HVD and Adaptive. Classic + NL takes the most time because minimization of

nonlocal terms lead to a higher computational cost in this method.

4.5 Discussion and Conclusions

This chapter utilizes the proposed HVD regularizer for the estimation of dense optical

flow. The proposed regularizer exploits the sparsity of the gradient field of motion vectors

in the spatial domain. It imposes the continuity of partial flow derivatives in a small

neighborhood around each flow vector, and minimizes them separately.

We have used five different data terms with the proposed method. First, optical flow

constraint is used to construct a data term. Second, a neighborhood dependent constraint

is used for the design of data term. However, these two data terms can not handle
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brightness change in digital videos. To estimate optical flow under changing brightness

conditions of underlying videos, three data terms are used. Normalized OFC, gradient

constancy assumption and a generalized dynamic image model based data terms are

embedded with the proposed regularizer to handle brightness change.

Experiments have been conducted to estimate optical flow from synthetic as well as

real video sequences. Results presented in this chapter show that the proposed method

is able to reduce undesirable staircase artefacts as generated by TV based regularization

of optical flow. The proposed method also preserves sharp horizontal, vertical as well as

diagonal motion boundaries. Though computationally less expensive, its performance is

comparable to the nonlocal total variation.

To estimate optical flow from highly incomplete measurements, three different types

of sensing schemes are used for the selection of spatiotemporal intensity derivatives: sig-

nificant, random and the combined sensing. Our experiments show that the combined

sensing of spatiotemporal intensity derivatives performs better than random only or sig-

nificant only sensing. By using a combined sensing scheme and the HVD regularizer, it has

been shown that optical flow can be estimated by using only 10% of total measurements

without too much sacrificing the accuracy of the estimation.
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Chapter 5
Joint Optical Flow Estimation and Sparse

Occlusion Detection under Varying

Illumination
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5.1. Introduction

5.1 Introduction

In any video sequence, it is most likely that moving objects will obstruct the view of

other objects. The phenomenon of occlusion causes the blockage of some scene points,

and reveals some new portions of the scene across video frames. Occlusions play an im-

portant role in the visual perception of the three-dimensional shape of objects and the

scene structure [104]. Occlusions are usually observed at moving object boundaries and

discontinuities in the scene depth. The knowledge of these occlusions can be effectively

used in object segmentation as well as in video coding techniques to improve their effi-

ciency. Low-level image processing techniques and high-level vision tasks also get benefit

from occlusion detection methods [6].

The matching of the image pixels from one video frame to another is possible only

when objects in the scene remain visible over time. Optical flow, which is used to match

brightness patterns across video frames, is not defined in occluded regions. Moreover,

the matching of the brightness patterns may not be possible in the presence of varying

illumination conditions. Consequently, optical flow estimation methods can wrongly de-

tect occlusion in those visible video regions which exhibit the violation of the brightness

constancy.

In this chapter, the problem of occlusion detection using optical flow is solved under

changing illumination of the scene. Since occluded video regions form a small portion in

any video frame, the method proposed in this chapter imposes a sparsity prior on these

regions for joint optical flow estimation and occlusion detection. The problem of sparse

occlusion detection with optical flow has been addressed in [5], which assumes Lamber-

tian surface and constant illumination of the scene. The OFC is then used under these

assumptions for the joint estimation of optical flow and occlusion detection. Our work is

close in spirit to this approach; however, unlike the method presented in [5], the proposed

method can work under brightness change. The proposed method uses a generalized

dynamic image model (GDIM) [98] in place of the OFC to handle brightness change.

The GDIM captures the violation of brightness constancy assumption, caused by diffuse
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5.2. Occlusion Detection using Optical Flow under Homogeneous Illumination

shading and specular flows, in its parameters. These parameters are also estimated along

with joint optical flow estimation and occlusion detection in this chapter. An extension

of the proposed method has also been presented which does not require the estimation of

brightness change parameters. Therefore, this modified method is computationally less

expensive than the original proposed method at the cost of a small decrease in optical

flow estimation and occlusion detection performances.

The rest of the chapter is organized as follows. Section 5.2 describes optical flow

methods to detect occluded video regions for Lambertian reflectance under homogeneous

illumination. Section 5.3 proposes the method to jointly estimate optical flow and de-

tect sparse occlusion under varying illumination. It also presents a modification to the

proposed method, which does not require the estimation of brightness change parameters

under certain conditions. Section 5.4 gives algorithmic details of the proposed method.

Finally, Section 5.5 presents the experimental setup and results to evaluate the perfor-

mance of the proposed method.

5.2 Occlusion Detection using Optical Flow under

Homogeneous Illumination

Optical flow is undefined in occluded video regions; therefore, the data term can be used

to detect occlusion where it is violated as a result of the appearance or the disappearance

of scene points. This section describes the methods which use the residual of the data

term for occlusion detection. Since occluded regions between two consecutive video frames

usually form a small portion in any video frame, a sparsity constraint can be applied to

these regions. This section also presents sparse occlusion detection technique using optical

flow.

5.2.1 The Residual of the Data Term

Since the data term is used to match the scene points across the image sequences, its

residual can give a clue about occluded regions when the matching of the points is not
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possible. A pixel is taken as occluded when the residual of the data term exceeds a

threshold. The residual of the OFC, for example, can be used for occlusion detection,

which is given as

ρ(~v) =





1 if

((
I1(x, y, t) − I2(x − vx, y − vy, t − dt)

)2
> ǫI ,

0 otherwise,
(5.1)

where the threshold ǫI decides whether the pixel is occluded or not, ρ = 1 indicates the

occlusion, whereas ρ = 0 means that the pixel is visible across video frames. Equation

(5.1) is an example of hard thresholding. To obtain a continuous differentiable function

ρ(~v), a soft thresholding can be used in place of hard thresholding. In [112], for example,

the following soft thresholding is used

ρ(~v) =
1

2
+

1

π
tan−1

((
I1(x, y, t) − I2(x − vx, y − vy, t − dt)

)2 − ǫI

)
, (5.2)

which is a differentiable approximation of the Heaviside function. The data term can also

be a modified form of the OFC. In [113], for example, the video motion is represented

as particles. Brightness patterns are matched by using a data term, which resembles the

OFC. This data term is combined with the divergence of optical flow to detect occlusion.

Occlusions often occur at image discontinuities. Therefore, some methods use image

driven anisotropic diffusion to detect occluded image regions by exploiting the motion

symmetry [100, 110, 111]. This type of methods compute forward as well as backward flow,

and use a consistency function between both flows. This consistency function depends

upon the residual of the data term; video regions with low consistency values are taken

as occluded regions.

The cross-checking of the motion symmetry can be effective in occlusion detection, but

these methods compute optical flow bi-directionally. Another class of methods are based

on an observation that pixels in the reference video frame should uniquely correspond to

other pixels in the target frame [107, 108]. The mapping of multiple pixels in the target

frame to the same pixel in the reference frame can be used as an indication of occluded

pixels. This mapping uniqueness criteria also uses the residual of the data term, and has

been used to label occluded pixels in [82].
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5.2.2 Sparse Occlusion Detection

This section reviews sparse occlusion detection using optical flow estimation method pre-

sented in [5]. This method serves as a basis for our proposed method. It considers

occluded regions to be sparse, and uses convex optimization techniques to detect them.

The ℓ1 norm of the residual of the OFC is minimized in a variational framework to de-

tect sparse occlusion regions. The method assumes constant illumination of the scene;

therefore, it works on the assumption that the change in the image brightness is only

due to discrete displacements of pixels from one video frame to another. This brightness

constancy assumption is used as a matching term in a variational energy minimization

framework.

Let us define a time-varying grayscale image I(x, y, t) on a domain D, where (x, y) ∈ D
are spatial coordinates and t is the time variable. Moreover, we define R and R′ to be

co-visible and occluded video regions such that R ∪ R′ = D and R ∩ R′ = ∅. Under

the assumption of Lambertian reflectance and constant illumination, the OFC for two

consecutive video frames can be expressed as

I(x, y, t) =

{
o(x, y, t), (x, y) ∈ R′,
I(x − vxdt, y − vydt, t − dt) + e(x, y, t), (x, y) ∈ R,

(5.3)

where o(x, y, t) is an occlusion term, e(x, y, t) represents the error in the measurement

process, dt is the temporal sampling interval, vx and vy are, respectively, the horizontal

and vertical flow components between video frames at time t and t − dt. The occlusion

term o(x, y, t) is generally unrelated to I(x − vxdt, y − vydt, t − dt), and the image can

take on any value inside R′. Therefore, o(x, y, t) should not be matched with the initial

image brightness I(x, y, t). The term e(x, y, t) accumulates a large number of independent

phenomena such as un-modeled illumination changes in the scene, measurement error,

quantization error and sensor noise, to name a few. Thus, this term is assumed here as

an independent and identically distributed random variable e(x, y, t) ∼ N (0, σ) with the

standard deviation σ. The residual on the entire image domain D can now be defined as

r(x, y, t; dt) := I(x, y, t) − I(x − vxdt, y − vydt, t − dt). (5.4)
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Using this definition in (5.3), residuals in occluded video regions r1(x, y, t; dt) and co-

visible regions r2(x, y, t; dt) can be given as

(
r1(x, y, t; dt)
r2(x, y, t; dt)

)
=

{
o(x, y, t) − I(x − vxdt, y − vydt, t − dt), (x, y) ∈ R′,
e(x, y, t), (x, y) ∈ R.

(5.5)

Note that occluded region r1(x, y, t; dt) is undefined inR, and co-visible region r2(x, y, t; dt)

is undefined in R′. Therefore, they can take on any value where they are undefined, in-

cluding zero, which is assumed in this model. The OFC can now be written as the sum

of two residual terms in co-visible and occluded video regions:

I(x, y, t) − I(x − vxdt, y − vydt, t − dt) = r1(x, y, t; dt) + r2(x, y, t; dt). (5.6)

The term I(x − vxdt, y − vydt, t − dt) in (5.6) is a nonlinear term in vx and vy. It can

be linearized when dt and optical flow between t and t − dt are sufficiently small. The

linearized OFC can be written as

(∇I(x, y, t))T~v(x, y, t) + It(x, y, t) = r1(x, y, t; dt) + r2(x, y, t; dt), (5.7)

where ∇ = [∇x ∇y]T is a gradient operator, ∇I(x, y, t) = [Ix Iy]T is the spatial image

gradient, It(x, y, t) is the temporal brightness derivative, and ~v(x, y, t) = [vx vy]T is a two-

dimensional velocity vector. The method uses Equation (5.7) to construct a data term

Edata(~v(x, y, t), r1(x, y, t; dt)) for the matching of the brightness of moving patterns across

video frames. In any image sequence, r1(x, y, t; dt) is generally sparse and r2(x, y, t; dt) is

dense; therefore, the inference criteria for ~v(x, y, t) and r1(x, y, t; dt), used in [5], can be

given as

Edata(~v, r1) = α||r1||0 + ||r2||2 subject to (∇I)T~v + It = r1 + r2, (5.8)

where α is a positive weighting factor for the occlusion term r1(x, y, t; dt), and ||.||0 is

the so called ℓ0 "norm" of r1(x, y, t; dt). Note that we have omitted the spatiotemporal

dependence of terms for the sake of brevity. Equation (5.8) can also be written as

Edata(~v, r1) = α||r1||0 + ||(∇I)T~v + It − r1||2. (5.9)
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Brightness patterns across video frames are matched by the second term in (5.9). This

term imposes a pointwise similarity on the unknown ~v; it can only estimate the normal

velocity component. Thus, it can not be used alone to estimate optical flow. This is

known as the aperture problem in optical flow literature. To cope with the aperture

problem, some extra information needs to be incorporated. Variational methods usually

impose a smoothness constraint over optical flow to regularize the problem. Nonlinear

edge preserving smoothness, for example, the weighted total variation ||∇~v||TV can be

used to regularize optical flow as

Ereg(~v) = λ1||∇~v||TV = λ1

∑

i,j

|∇vx(i,j)| + |∇vy(i,j)|, (5.10)

where λ1 is a regularization parameter and |∇vx,y| =
√

(∇xvx,y)2 + (∇yvx,y)2. To control

the weight of the regularizer, the regularization parameter λ1 can be made adaptive to

the structure of the image:

λ1 = λ exp(−γ||
√

(∇xI)2 + (∇yI)2||2) + κ, (5.11)

where λ is a constant, γ controls the variations in the weight of the regularizer according

to the image structure, and a small constant κ is used to avoid the weight of the regularizer

to become zero in flat regions where there is a little intensity change. The regularization

parameter λ1 gives less weight to the regularizer at image boundaries which are likely to

be motion boundaries; thus, it is expected to reduce the undesirable blurring of motion

boundaries. The joint optical flow estimation with sparse occlusion detection can now

be formulated as the minimization of the data energy Edata(~v, r1) and the regularization

energy Ereg(~v):

E(~v, r1) = min
~v,r1

α||r1||0 + ||(∇I)T~v − r1 + It||2 + λ1||∇~v||TV. (5.12)

The domain D is discretized for the digital video sequences; thus, (5.12) can be written

in the matrix form. For an n-dimensional lexicographically vectorized video frame, let

v ∈ R2n×1 and r1 ∈ Rn×1 represent the columnwise stacked 2n-dimensional optical flow
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and n-dimensional occlusion term, respectively. Moreover, let the vector y1 corresponds

to the stacked temporal brightness derivative It in a similar fashion. The matrix form of

(5.12) is now given as

E(v, r1) = min
v,r1

α||r1||0 + ||
[
diag(Ix) diag(Iy)

]
v − r1 + y1||2 + λ1||∇v||TV, (5.13)

where Ix and Iy are, respectively, columnwise stacked horizontal and vertical intensity

derivatives, diag(Ix) and diag(Iy) are corresponding diagonal matrices, and ∇ = [∇x ∇y]T

is the matrix to calculate the horizontal and vertical derivatives of the vectorized optical

flow v. Let us define the matrix A to be a concatenation of three n × n matrices as

A = [diag(Ix) diag(Iy) − I]T,

where I is the identity matrix. Equation (5.13) can be written as

E(v, r1) = min
v,r1

α||r1||0 + ||Au + y1||2 + λ1||∇v||TV, (5.14)

where u = [v r1]
T. The problem in (5.14) is NP-hard as it involves the so called "ℓ0

norm" minimization of the occlusion term r1. Alternatively, under certain conditions, the

ℓ0 is replaced by a convex ℓ1 norm [166]. Since the ℓ1 norm relaxation may undesirably

penalize strong (large residual of the OFC) occluded regions, it is more suitable to use a

weighted ℓ1 norm [167]. Optical flow and sparse occlusion can now be jointly estimated

by solving the following energy functional:

u = arg min
v,r1

α||Wr1||1 + ||Au + y1||2 + λ1||∇v||TV, (5.15)

where diagonal weight matrix W iteratively adapts weights for a better ℓ0 approximation.

It can be chosen as W = 1
|r1|+δ

. The ℓ1 norm reweighting with such a scheme significantly

enhances the sparsity of the solution; therefore, it computes r1 close to an indicator

function by less penalizing strong occluded pixels. Equation (5.15) is used to detect sparse

occlusion using optical flow estimation under homogeneous illumination of the scene.
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5.3 Sparse Occlusion Detection using Optical Flow

under Varying Illumination

The OFC is violated and the mapping of the pixels across consecutive video frames may

not be possible when various radiometric and geometric factors cause a change in the scene

radiance and irradiance. The OFC is also violated in occluded regions as mentioned above;

therefore, optical flow estimation methods may erroneously detect occlusion in the visible

regions undergoing violation of the brightness constancy assumption. The violation in

the brightness constancy assumption is caused by physical and radiometric factors: light

source motion with respect to the scene, change in the moving surface orientation and

shadows cast on moving objects are some of the examples. Figure 5.1 shows the effect of

these violations in the OFC based optical flow estimation. The OFC results in incorrect

matching of the scene points under varying illumination of the scene as shown in Figure

5.1(b) and (c).

This section presents the proposed method for sparse occlusion detection using optical

flow estimation. First, to capture brightness constancy violations, a generalized dynamic

image model (GDIM) is presented in Section 5.3.1. Since the matching term in the

proposed method treats co-visible and occluded video regions separately, the GDIM is

described for both regions. Second, the GDIM based brightness matching data term

has been embedded into sparse occlusion detection method in Section 5.3.2. Third, a

modification to the proposed method, which does not require the estimation of brightness

change parameters of the GDIM, is presented in Section 5.3.3.

5.3.1 Generalized Dynamic Image Model (GDIM)

Light reflected from mirror like objects, and shadows cast over the scene points are two

major sources of the violation of brightness constancy assumption. As a result, the esti-

mated optical flow and the detected occlusion obtained by solving (5.15) can be severely

biased and unreliable. To cope with the brightness constancy violation, the brightness

change can be modeled as an affine function of the reference image brightness in the form
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(a)

(b)

(c)

Reference frame                           Target frame

Figure 5.1: The OFC based optical flow estimation between the reference and target video
frames. A bright pattern is translating from left to right in all three scenarios (top, middle and
bottom). The correct matching of pixels is achieved (straight red arrows) in case of no brightness
constancy violation (top) while wrong points are matched when there is an increase (middle) or
decrease (bottom) in the brightness of moving pattern.

of a multiplier and an offset field [98]. This model can be described mathematically as

I(x, y, t) − I(x − vxdt, y − vydt, t − dt) = d(x, y, t)I(x, y, t) + c(x, y, t), (5.16)

where the multiplier field d(x, y, t) permits changes in the image contrast and the offset

field c(x, y, t) allows for mean brightness changes from one video frame to another. The

multiplier field is related to diffuse reflection; this type of reflection occurs when the

incident light is reflected from rough surfaces. The reflection from mirror like surfaces,

which is known as specular reflection, is modeled by the offset field c(x, y, t) in this model.

Please refer to Figure 5.2 for these two types of reflections.

Following occlusion modeling given in (5.3), the generalized dynamic image model

(GDIM) for co-visible and occluded video regions can be given as

I(x, y, t) =





o(x, y, t), (x, y) ∈ R′,
I(x − vxdt, y − vydt, t − dt) + d(x, y, t)I(x, y, t)
+c(x, y, t) + e(x, y, t), (x, y) ∈ R.

(5.17)
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(a) Specular reflection                 (b) Diffuse reflection

Figure 5.2: Light reflection from a glazing and a rough surface giving rise to (a) specular and
(b) diffuse reflections, respectively.

The brightness of moving patterns, in co-visible video regions, satisfies the GDIM while

o(x, y, t) can take on any value because optical flow is undefined in occluded regions;

therefore, occluded scene points are not matched across video frames.

5.3.2 Proposed method with Parameter Estimation

The proposed method uses the GDIM in place of the OFC to construct the data term.

Since two brightness change parameters d(x, y, t) and c(x, y, t) appear in the GDIM, op-

tical flow based sparse occlusion detection using the GDIM requires these parameters to

be estimated. Therefore, to estimate the brightness change parameters of the GDIM,

the proposed method constrains them properly. Similar to Equation (5.6), the GDIM for

both co-visible R and occluded R′ image regions can be written as

I(x, y, t) =
(
I(x − vxdt, y − vydt, t − dt) + d(x, y, t)I(x, y, t) + c(x, y, t)

)

+r1(x, y, t; dt) + r2(x, y, t; dt). (5.18)

Following the same procedure as in Section 5.2.2, the discretized data term employing the

GDIM can be expressed as

Edata(v, r1, d, c) = α||Wr1||1 +

||
[
diag(Ix) diag(Iy) −I −I −I

] [
vx vy r1 d c

]T
+ y1||2, (5.19)

where lexicographically vectorized I, vx, vy, d and c are, respectively, the brightness of

the reference video frame, the horizontal flow, the vertical flow, the multiplier field and
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the offset field, and I is the identity matrix. Let us define

x =
[
vx vy r1 d c

]T
=
[
v r1 d c

]T

and

B =
[
diag(Ix) diag(Iy) −I −I −I

]T
.

Equation (5.19) can be written as

Edata(v, r1) = α||Wr1||1 + ||Bx + y1||2. (5.20)

The parameter vector x is formed by the concatenation of brightness change parameters

d and c with optical flow and the occlusion term. Since the estimation of x involves

the estimation of brightness change parameters, we need to impose constraints on these

parameters. When the digital videos are captured at sufficiently high spatial and tem-

poral sampling rates, the natural causes of the brightness constancy violation do not

appear suddenly in these videos. Therefore, it is quite safe to assume that the brightness

constancy violation is not abrupt spatiotemporally [97, 168, 169]. The spatiotemporal

variation of brightness change parameters is smooth in this case. To estimate d and c,

we impose a smoothness assumption over them. The term integrating the smoothness

assumption over these parameters can be written as

Eparams(d, c) = λ2||∇d||2 + λ3||∇c||2, (5.21)

where the weights λ2 and λ3 control the smoothing of these parameters. The overall

energy to be minimized can now be given as

E(v, r1, d, c) = Edata(v, r1) + Ereg(v) + Eparams(d, c), (5.22)

and the parameter vector x is obtained by minimizing this energy as

x = arg min
v,r1,d,c

α||Wr1||1 + ||Bx + y1||2 + λ1[HVD(v)] + λ2||∇d||2 + λ3||∇c||2. (5.23)

Though data terms in (5.15) and (5.23) are different, the regularization term Ereg(v), how-

ever, remains the same. Note that (5.23) jointly estimates optical flow and detect occlusion

95



5.3. Sparse Occlusion Detection using Optical Flow under Varying Illumination

for two consecutive video frames because the generalized dynamic image model captures

brightness constancy violations between these frames. This method can be extended to

multiple video frames by modeling the brightness change nonlinearly, as presented in [97].

However, their approach also boils down to the linearized parameter estimation over time

for complicated physical processes, for example, the brightness change caused by changing

surface orientation and moving illumination envelopes, to name a few.

5.3.3 Proposed method without Parameter Estimation

It is sometimes useful to construct a data matching term that allows small variations in

the value of the brightness. The brightness gradient can be one of the examples which

permits small deviations from the brightness constancy assumption, and is relatively less

sensitive to the brightness changes as compared to the brightness itself. Let us apply the

gradient operator on both sides of (5.16); the gradient of the GDIM for co-visible and

occluded video regions can now be given as

∇I(x, y, t) =





o(x, y, t), (x, y) ∈ R′,

∇
(

I(x − vxdt, y − vydt, t − dt) + d(x, y, t)I(x, y, t) + c(x, y, t)

)

+e(x, y, t), (x, y) ∈ R.

(5.24)

Similar to Equation (5.6), the gradient of the GDIM for both co-visible R and occluded

R
′ regions can be written as

∇I(x, y, t) =

(
∇
(
I(x − vxdt, y − vydt, t − dt)

)
+ ∇

(
d(x, y, t)I(x, y, t)

)
+ ∇c(x, y, t)

)

+r1(x, y, t; dt) + r2(x, y, t; dt). (5.25)

The term ∇I(x − vxdt, y − vydt, t − dt) in (5.25) is nonlinear, it can be linearized as

∇I(x−vxdt, y −vydt, t−dt) ≈
{

Ix(x, y, t) − Ixx(x, y, t)vx(x, y, t) − Ixy(x, y, t)vy(x, y, t),
Iy(x, y, t) − Iyx(x, y, t)vx(x, y, t) − Iyy(x, y, t)vy(x, y, t),

where Ixx, Ixy, Iyx and Iyy are second derivatives of the image brightness. Moreover,

∇
(
d(x, y, t)I(x, y, t)

)
= d(x, y, t)∇I(x, y, t) + I(x, y, t)∇d(x, y, t). (5.26)
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Using the linearized term and (5.26) in (5.25), we get:

(
Ixxvx + Ixyvy + Ixt − dIx − Idx − cx

Iyxvx + Iyyvy + Iyt − dIy − Idy − cy

)
=

(
r1 + r2

r1 + r2

)
, (5.27)

where dx, cx are horizontal, and dy, cy are vertical derivatives of brightness change pa-

rameters, such that ∇d = [dx dy]T and ∇c = [cx cy]T. Note that we have omitted the

spatiotemporal dependence of terms in (5.27). Following the same procedure as in Section

5.2.2, we arrive at the data term that incorporates the gradient of the GDIM:

Edata(~v, r1) = α||r1||1 + ||
(

Ixxvx + Ixyvy + Ixt − dIx − Idx − cx

Iyxvx + Iyyvy + Iyt − dIy − Idy − cy

)
−
(

r1

r1

)
||2. (5.28)

When the multiplier and the offset fields vary smoothly in the spatial domain, dx, dy, cx

and cy are small; thus, these can be neglected. Neglecting Idx, Idy, cx and cy in (5.28)

results in:

Edata(~v, r1) = α||r1||1 + ||
(

Ixxvx + Ixyvy + Ixt − dIx

Iyxvx + Iyyvy + Iyt − dIy

)
−
(

r1

r1

)
||2. (5.29)

A careful inspection of (5.29) reveals that the multiplier term d appears with the spatial

image brightness derivatives Ix and Iy. A smoothly varying brightness change results in

negligible values of Ix and Iy in low-textured video regions. Hence, dIx and dIy do not

contribute much to the brightness constancy violation in smooth image regions. Image

boundaries are likely to be associated with motion boundaries, and occlusion usually oc-

curs at overlapping moving objects. Occluded regions also cause the brightness constancy

violation at motion boundaries. The terms dIx and dIy may be neglected in low-textured

image sequences. However, the contribution of these terms will be high for highly textured

sequences and at image boundaries; therefore, these may not be neglected there. When

image boundaries coincide with the occluded motion boundaries, it is safe to overlook dIx

and dIy at image boundaries. Neglecting the terms dIx and dIy in (5.29), we get a data

term that uses the brightness gradient constancy assumption (GCA):

Edata(~v, r1) = α||r1||1+ ||
(

Ixxvx + Ixyvy + Ixt

Iyxvx + Iyyvy + Iyt

)
−
(

r1

r1

)
||2. (5.30)
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Equation (5.30) can be written in the matrix form as

Edata(v, r1) = α||r1||1 + ||
[
diag(Ixx) diag(Ixy) −I
diag(Iyx) diag(Iyy) −I

] 

vx

vy

r1


+

[
Ixt

Iyt

]
||2, (5.31)

where Ixx, Ixy, Iyx and Iyy are lexicographically vectorized second derivatives of the image

brightness, and diag(Ixx), diag(Ixy), diag(Iyx) and diag(Iyy) are corresponding diagonal

matrices, respectively. Let us define

C =

[
diag(Ixx) diag(Ixy) −I
diag(Iyx) diag(Iyy) −I

]
and y2 =

[
Ixt

Iyt

]
.

The data term integrating the occlusion term with the gradient constancy assumption is

now given as

Edata(v, r1) = α||Wr1||1 + ||Cu + y2||2, (5.32)

where we have again replaced the ℓ1 norm of r1 by the weighted ℓ1 norm for a better

approximation of the occlusion term as an indicator function. The following energy is

then minimized for the joint optical flow estimation and occlusion detection:

u = arg min
v,r1

α||Wr1||1 + ||Cu + y2||2 + λ1[HVD(v)]. (5.33)

A comparison of (5.15) and (5.33) reveals that the regularization term remains the same.

However, A and y1 have been replaced by C and y2 in the data term of (5.33). Optical

flow estimation and occlusion detection by this modification of the proposed method

can provide robustness against slowly varying brightness change patterns due to diffuse

shading and specular flows.

5.4 Algorithmic details

In this section, we modify and then use a fast and first order algorithm NESTA, presented

in [150], for the joint optical flow estimation and occlusion detection. The algorithmic

details have been discussed for the minimization of the energy functional proposed in

(5.23). The same algorithm can be applied for the modification of the proposed method
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in (5.33) by letting λ2 and λ3 equal to zero in (5.23). We use differentiable Huber norm

in place of the ℓ1 norm for the occlusion term Wr1 in (5.23). The regularization energy

E(x), to be minimized, can now be given as

E(x) = min
v,r1,d,c

α||Wr1||ǫ + ||Bx + y1||2 + λ1[HVD(v)] + λ2||∇d||2 + λ3||∇c||2. (5.34)

The algorithm solves the problem iteratively. The minimum of (5.34) at iteration k is

computed as

∂E(xk)
∂xk = ∂xkE(x) = αW T (W rk

1
)

max(ǫ,|W rk
1

|)
+ BT(Bxk + y1)

+λ1

(
∇

T
x

(∇xvk)
max(ǫ,|∇xvk|)

+ ∇
T
y

(∇yvk)
max(ǫ,|∇yvk|)

+ ∇
T
xy

(∇xyvk)
max(ǫ,|∇xyvk|)

+∇
T
yx

(∇yxvk)
max(ǫ,|∇yxvk|)

)
+ λ2∇

T
∇dk + λ3∇

T
∇ck. (5.35)

The algorithm computes two auxiliary variables pk and qk at each iteration from ∂xkE(xk),

and combines them to get the next estimate of the parameter vector xk. Lipschitz con-

stant L is required for the computation of auxiliary variables in the proposed algorithm.

Lipschitz constant depends on α, λ1, λ2, λ3, Huber norm parameter ǫ and norms of B

and TV, which can be given as

L = max(
16λ1, α

ǫ
, λ2, λ3) + ||BTB||2. (5.36)

The proposed algorithm is applied in a coarse-to-fine image sequence pyramid to han-

dle large displacements of pixels. A Laplacian image sequence pyramid is constructed

which contains consecutive video frames at different resolutions for a coarse-to-fine esti-

mation of optical flow. Sparse occlusion term r1, optical flow v, and brightness change

parameters d and c are initialized at 0 in the coarsest level of the pyramid. At each level

of the pyramid, the detected occlusion, the estimated optical flow and estimates of these

parameters are propagated to the next finer level as initial guesses. The algorithm runs

for a fixed number of iterations at each pyramid level or until it reaches the convergence.

The summary of the algorithm is given in Table 5.1.
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Table 5.1: The summary of the algorithm for the joint optical flow estimation and occlusion
detection.

Initialization: x0 = [v0
x v0

y r0
1 d0 c0]T = 0,

for level=pyramid_levels, ... , 1
if(level= pyramid_levels)

x = x0,
else

x0 = up-sample(x),
end
Set iteration index k = 1,
while(not converged & k ≤ max_iter)

1. compute ∂xkE(xk) from Equation (5.35),
2. compute γk = 1

2
(k + 1) and τ k = 2

k+3
,

3. compute pk = xk − 1
L

∂xkE(xk),
4. compute qk = x0 − 1

L

∑k
i γi∂xiE(xi),

5. update xk = τ kpk + (1 − τ k)qk,
k = k + 1,

end while
x = x + x0.

end for

5.5 Experimental Results and Analysis

In this section, the performance of the proposed method is evaluated and experimental re-

sults are analyzed. The experimental setup and datasets used in experiments are described

in Section 5.5.1. The performance of the proposed method is assessed and compared with

other methods on three different kinds of brightness change scenarios: diffuse shading,

specular, and the combined diffuse shading and specular flows. Therefore, three different

sets of experiments are conducted on video sequences undergoing brightness change due

to diffuse shading only in Section 5.5.2, specular only in Section 5.5.3 and the combined

diffuse shading and specular flows in Section 5.5.4. Finally, the proposed method have

been applied to challenging real sequences where multiple factors cause the brightness

change in Section 5.5.5.
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5.5.1 Experimental Setup and Video Datasets

The proposed method has been implemented in a coarse-to-fine pyramid with a down-

sampling factor of 0.70. A maximum of 10 pyramid levels are used to handle large

displacements. It is found that values of (α, λ1) ∈ {0.01, ..., 1} and (λ2, λ3) ∈ {0.1, ..., 10}
give reasonable accuracy; thus, these parameters are manually tuned to get the best results

in terms of small optical flow estimation error and high occlusion detection precision. The

value of ǫ in the ℓ1 norm approximation plays an important role in the convergence of

the proposed algorithm. A value of ǫ = 0.01 is used in all of the experiments which gives

reasonable accuracy with good convergence rate. The proposed algorithm converges in a

few hundred iterations; therefore, it is run for a maximum of 1500 iterations or until it

reaches the convergence.

In all of the experiments, the performances of the proposed method and its modified

version, referred to as proposed w/o PARA, have been compared with the brightness

constancy based sparse occlusion detection method of Ayvaci et al. [5]. Since pre-filtering

of video sequences provides robustness against the brightness change, the aforementioned

sparse occlusion detection method is run with video sequences preprocessed by a high pass

filter. This method has been referred to as PreFilt Ayvaci et al. in the experiments; it

has also been compared with the proposed method.

These experiments are conducted on video sequences taken from publicly available

datasets. Middlebury video sequence dataset is one of the most famous to evaluate per-

formances of optical flow estimation methods. However, this dataset does not provide

the ground-truth for occluded regions. To compare performances of occlusion detection

methods, video sequences of Middlebury have been manually labeled either visible or oc-

cluded in [5]. Labeled videos of this dataset are used here to assess and compare the

performance of the proposed method with the aforementioned methods. The values of

α = 0.01, λ1 = 0.2, λ2 = 5 and λ3 = 5 have been used for video sequences of Middlebury

dataset. The aforementioned methods are also tested on real video sequences which have

been taken from the dataset produced by Stein and Hebert [6]. This dataset contains
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indoor and outdoor scenes; it has been used for occlusion and object boundary detection

[170]. The presence of image noise, artefacts due to compression, and abrupt camera

motions makes this dataset quite challenging. The values of α = 0.004, λ1 = 0.1, λ2 = 5

and λ3 = 5 have been used for the real sequences of this dataset.

Middlebury provides the ground-truth optical flow for training videos; however, these

video sequences do not violate the brightness constancy assumption. To analyze per-

formances of aforementioned methods under brightness changes due to diffuse shading,

specular, and the combined diffuse shading and specular flows, a controlled magnitude of

violation is used in these video sequences. A smoothly varying Gaussian function G is

used to model smooth brightness change. Diffuse shading and specular flows are modeled,

respectively, as the multiplier and additive fields by using this function. The magnitude

of this function is changed to get different amounts of brightness changes. Since the func-

tion G has values in the [0 1] range, the brightness (intensity) of video sequences is also

normalized to the values in the same range. The brightness change ∆I in any video frame,

due to the function G, gives a measure of the brightness constancy violation. Here, the

normalized brightness change is defined as the mean of the ratio of the brightness change

to the original brightness as

Normalized brightness change (NBC) := mean(|δI|/I),

where the mean is taken over the entire image domain. A high value of the NBC represents

severe violation of the brightness constancy and vice versa. A value of NBC = 0 means

that the brightness constancy assumption is satisfied. The magnitude of the brightness

change is gradually increased in the subsequent video frame, to be matched with the

reference frame, by increasing the value of the NBC. The aforementioned methods are

then applied on the resulting sequences undergoing brightness changes for the comparison

of their performances.

Separate evaluation measures for the estimated optical flow and the detected occlusion

are provided. Optical flow estimation results are reported in terms of the mean end point
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error (MEPE) for video sequences with known ground-truth. The MEPE is given as

MEPE =
1

n

n∑

i=1

√
[(vx)i − (vxgt)i]2 + [(vy)i − (vygt)i]2, (5.37)

where vgt = [vxgt vygt]
T is the ground-truth optical flow. The MEPE is drawn against

the NBC for a quantitative comparison of estimated optical flows. Furthermore, precision

recall (PR) curves are drawn against the NBC to measure the performances of the afore-

mentioned methods to detect occlusion. Different color schemes are also used to show the

estimated optical flow and the detected occlusion for visual comparison of their quality.

5.5.2 Violation due to Diffuse Shading Flow

The first set of experiments are carried out on aforementioned methods when the bright-

ness constancy violation is only due to diffuse shading flow. Figure 5.3 shows the mean

end point error results against the NBC for methods: Ayvaci et al. [5], PreFilt Ayvaci

et al., the proposed method and the proposed w/o PARA. In this figure log10 (MEPE) is

plotted for a better display. These results have been computed on eight training sequences

of Middlebury whose ground-truth is known. An average of the MEPE is taken over all

of these sequences for each of the method. A sharp rise in the MEPE can be observed

for increasing values of the NBC by the method of Ayvaci et al. The results by PreFilt

Ayvaci et al. do not show much increase in the error; however, this method results in

larger values of MEPE than the proposed method as the NBC increases. The MEPE

remains almost constant in the proposed method and the proposed w/o PARA even for

large values of NBC.

Figure 5.4 presents the estimated optical flows shown in color by these methods. These

results have been obtained when the target video frame, to be matched with the reference

video frame, exhibits a brightness constancy violation corresponding to the NBC = 0.5.

Figure 5.4 (b) shows that the method of Ayvaci et al. fails to estimate optical flow

correctly, thereby producing erroneous flow vectors especially in the highlighted part of

the video sequence. The performance of PreFilt Ayvaci et al. is comparatively better

than Ayvaci et al.; however, a slight blurring of motion boundaries can be observed which
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Figure 5.3: Optical flow estimation results computed on eight training sequences taken from
Middlebury under brightness constancy violation caused by diffuse shading flow only. The
log10 (MEPE) is given as a function of the NBC for all methods.

Multiplier  (This page has to be printed out)            

    (a) Ground-truth            (b) Ayvaci et al.        (c) PreFilt Ayvaci et al.         (d) Proposed          (e) Proposed w/o PARA            

Figure 5.4: The estimated optical flow, displayed in color, in Middlebury Grove3 sequence.
(a) The ground-truth optical flow and the results by methods: (b) Ayvaci et al. [5], (c) PreFilt
Ayvaci et al., (d) the proposed method and (e) the proposed w/o PARA. These results have been
reported for a diffuse shading flow violation corresponding to NBC = 0.5. The color scheme
used to display the estimated optical flow is also shown.
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(a)  Ayvaci et al.                 (b) PreFilt Ayvaci et al.     

    (c) Proposed          (d) Proposed w/o PARA  

Figure 5.5: Occlusion detection results computed on eight training sequences of Middlebury
under brightness constancy violation caused by diffuse shading flow only. PR curves as functions
of the NBC for methods: (a) Ayvaci et al. [5], (b) PreFilt Ayvaci et al., (c) the proposed method
and (d) the proposed w/o PARA.

results in an increased MEPE in this method. Figure 5.4 (d) and (e), respectively, show

that estimated optical flows by proposed method and proposed w/o PARA are close to

ground-truth flow,

Figure 5.5 shows precision recall (PR) curves for the comparison of occlusion detection

performances of aforementioned methods. These curves have been drawn against a set

of increasing NBC. Each PR curve shows an average of the results computed on eight

training sequences of Middlebury. These curves are smoothed by the use of a Gaussian

filter for a better display. Figure 5.5 (a) shows that the precision of the method of Ayvaci

et al. decreases rapidly as the NBC increases. PreFilt Ayvaci et al. and the proposed

method, on the other hand, perform much better than Ayvaci et al. for relatively higher

values of the NBC. However, there is a decrease in the occlusion detection precision of

105



5.5. Experimental Results and Analysis

Multiplier  (This page has to be printed out)        

    (a) Ground-truth         (b) Ayvaci et al.         (c) PreFilt Ayvaci et al.          (d) Proposed          (e) Proposed w/o PARA      

Figure 5.6: The detected occlusion in Middlebury Grove3 sequence. (a) The ground-truth
occlusion and the results by methods: (b) Ayvaci et al. [5], (c) PreFilt Ayvaci et al., (d) the
proposed method and (e) the proposed w/o PARA for the NBC = 0.5 under diffuse shading
flow violation.

PreFilt Ayvaci et al. for higher values of the NBC. Results by the proposed method

and the proposed w/o PARA in Figure 5.5 (c) and (d), respectively, indicate that both

perform superior to PreFilt Ayvaci et al. for the task of occlusion detection under severe

violation of the brightness constancy.

Figure 5.6 presents the detected occlusion shown in color for a value of NBC = 0.5.

The results in Figure 5.6 (b) show that the method of Ayvaci et al. wrongly detects

occlusion. Moreover, PreFilt Ayvaci et al. fails to detect some of occluded regions. This

happens when the strong dominant violation across the motion boundaries results in the

wrong matching of scene points of the reference video frame with occluded points of the

consecutive video frame. Figure 5.6 (e) shows that the proposed w/o PARA also shows

some true negatives. Moreover, the performance of the proposed method in Figure 5.6

(d) is better than the rest of the methods.

5.5.3 Violation due to Specular Flow

The second set of experiments are conducted on video sequences when specular flow

causes the brightness constancy violation. Figure 5.7 shows the mean end point error

results against increasing values of the NBC. In this figure log10 (MEPE) is plotted for

a better display. The MEPE increases for increasing values of the NBC by the method

of Ayvaci et al. Unlike the first set of experiments, there is a less rise in the MEPE

by this method under specular flow violation. This is due to the image smoothing by a

small Gaussian filter in coarse-to-fine image pyramid construction. This filter is applied
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Figure 5.7: Optical flow estimation results computed on eight training sequences of Middlebury
under brightness constancy violation caused by specular flow only. The log10 (MEPE) is given
as a function of the NBC for all methods.

to raw video sequences to avoid aliasing in the resultant low resolution video frames.

This filtering provides some robustness against specular flow violation. The proposed

method does not show much increase in the error for higher values of the NBC, and its

performance is better than PreFilt Ayvaci et al. specially for higher values of the NBC.

To assess the occlusion detection performance of all four methods, precision recall

curves have been drawn against increasing values of the NBC (see Figure 5.8). A rapid

decrease in the precision of the method of Ayvaci et al. can be seen in Figure 5.8 (a)

as the NBC increases. PreFilt Ayvaci et al. and the proposed method demonstrate

the capability to detect occlusion in video regions undergoing the brightness constancy

violation. However, the precision of the detected occlusion decreases in the former method

as the value of the NBC increases. For small values of the NBC, observe that precisions

of the proposed method and the proposed w/o PARA in Figure 5.8 (c) and (d) are more

than the precision of PreFilt Ayvaci et al., as shown in Figure 5.8 (b).

Figure 5.9 and Figure 5.10, respectively, show estimated optical flows and detected

occlusions for aforementioned methods. These figures report the results for a value of

NBC = 0.5. The method of Ayvaci et al. estimates flow erroneously as shown in the
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(a)  Ayvaci et al.                 (b) PreFilt Ayvaci et al.     

                     (c) Proposed           (d) Proposed w/o PARA    

Figure 5.8: Occlusion detection results computed on eight training sequences of Middlebury
under brightness constancy violation caused by specular flow only. PR curves as functions of
the NBC for methods: (a) Ayvaci et al. [5], (b) PreFilt Ayvaci et al., (c) the proposed method
and (d) the proposed w/o PARA.

    (a) Ground-truth          (b) Ayvaci et al.       (c) PreFilt Ayvaci et al.         (d) Proposed        (e) Proposed w/o PARA

Figure 5.9: The estimated optical flow, displayed in color, in Middlebury Urban2 sequence.
(a) The ground-truth optical flow and the results by methods: (b) Ayvaci et al. [5], (c) PreFilt
Ayvaci et al., (d) the proposed method and (e) the proposed w/o PARA. These results have
been reported for a specular flow violation corresponding to NBC = 0.5.
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Additive (March 2013)

      (a) Ground-truth     (b) Ayvaci et al.    (c) PreFilt Ayvaci et al.         (d) Proposed         (e) Proposed w/o PARA  

Figure 5.10: The detected occlusion in Middlebury Urban2 sequence. (a) The ground-truth
occlusion and the results by methods: (b) Ayvaci et al. [5], (c) PreFilt Ayvaci et al., (d) the
proposed method and (e) the proposed w/o PARA, for NBC = 0.5 under specular flow violation.

highlighted part of Figure 5.9 (b). The erroneous flow results in the wrong detection

of occluded video regions as shown in Figure 5.10 (b). The proposed method detects

occlusion better than PreFilt Ayvaci et al., see Figure 5.10 (c) and (d) for the comparison.

Observe that some false positives are detected by the proposed method w/o PARA as

shown in the highlighted part of Figure 5.10 (e). However, these results are better than

the results obtained by PreFilt Ayvaci et al.

5.5.4 Combined Diffuse Shading and Specular Violation

In the third set of experiments, the performances of the methods mentioned in Section

5.5.1 have been evaluated when both diffuse shading and specular flows contribute to

the brightness constancy violation. In the combined violation, although different values

of the NBC can be used for multiplicative and additive functions, we have used same

values of the NBC for both brightness change functions. In these experiments, a value

of NBC = 0.5 represents that both diffuse shading and specular flows are contributing

equally to the violation of brightness constancy.

Figure 5.11 presents the mean end point error as a function of the NBC. In this figure

log10 (MEPE) is plotted for a better display. A rapid rise in the MEPE can be seen for

increasing values of the NBC by the method of Ayvaci et al. Results by PreFilt Ayvaci

et al. also show an increase in the MEPE which is much lesser than the increase in the

MEPE observed by Ayvaci et al. The MEPE by the proposed method, on the other

hand, remains almost constant. Moreover, optical flow estimation error performance by
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Figure 5.11: Optical flow estimation results computed on eight training sequences of Middlebury
under brightness constancy violation caused by combined diffuse shading and specular flows. The
log10 (MEPE) is given as a function of the NBC for all methods.

the proposed method is slightly better than the proposed w/o PARA for higher values of

the NBC.

The estimated optical flows by the evaluated methods have been presented in Figure

5.12. The first and second rows show results on Urban2 and Grove3 sequences, respec-

tively. These result have been reported for a value of NBC = 0.5. The method of Ayvaci

et al. produces wrong optical flow estimates especially in highlighted parts of video se-

quences as shown in Figure 5.12 (b). These parts of videos undergo severe brightness

constancy violation. Highlighted parts of both video sequences in Figure 5.12 (c) show

erroneous flow vectors by PreFilt Ayvaci et al. The quality of estimated optical flows,

produced by the proposed method and the proposed w/o PARA in Figure 5.12 (d) and

(e), respectively, is better than other methods.

Figure 5.13 shows PR curves against different values of the NBC by evaluated methods.

A rapid decrease in the precision can be noticed by Ayvaci et al. in Figure 5.13 (a). The

precision of PreFilt Ayvaci et al. also decreases when the value of the NBC increases as

shown in Figure 5.13 (b). Again, the proposed method demonstrates the capability to

detect occlusion in video regions significantly violating the brightness constancy as shown
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Multadd (May 2013)

     (a) Ground-truth        (b) Ayvaci et al.    (c) PreFilt Ayvaci et al.         (d) Proposed           (e) Proposed w/o PARA 

Figure 5.12: Estimated optical flows in Urban2 (top) and Grove3 (bottom) sequences, dis-
played in color. (a) The ground-truth flow and results by methods: (b) Ayvaci et al. [5], (c)
PreFilt Ayvaci et al., (d) the proposed method and (e) the proposed w/o PARA. These results
have been reported for a combined diffuse shading and specular flows violation corresponding
to NBC = 0.5.

in Figure 5.13 (c). However, a small degradation in the occlusion detection performance

by the proposed w/o PARA can also be observed in Figure 5.13 (d) for large values of

the NBC.

Figure 5.14 shows detected occlusions by all four methods. Video regions violating the

brightness constancy have been wrongly detected as occluded regions by the method of

Ayvaci et al., as shown in Figure 5.14 (b). Moreover, the erroneous optical flow estimates

result in the wrong occlusion detection in PreFilt Ayvaci et al. as shown in the highlighted

part of Figure 5.14 (c). The quality of the detected occlusion is better by the proposed

method than other methods as shown in Figure 5.14 (d).

5.5.5 Results on Real Sequences

In these experiments, aforementioned methods have been applied to real video sequences

for the comparison of their performances. Real sequences have been taken from the

occlusion boundary detection dataset developed by Stein and Hebert [6]. Here, the results

have been reported on an indoor sequence Mugs2 and an outdoor sequence Fencepost.

Mugs2 sequence has been captured by a moving camera. This sequence does not undergo

brightness change. In Fencepost sequence, shadows of tree leaves on the fencepost cause
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(a)  Ayvaci et al.                 (b) PreFilt Ayvaci et al.     

   (c) Proposed          (d) Proposed w/o PARA                 

Figure 5.13: Occlusion detection results computed on eight training sequences of Middlebury
under brightness constancy violation caused by combined diffuse shading and specular flows.
PR curves as functions of the NBC for methods: (a) Ayvaci et al. [5], (b) PreFilt Ayvaci et al.,
(c) the proposed method and (d) the proposed w/o PARA.

    (a) Ground-truth       (b) Ayvaci et al.   (c) PreFilt Ayvaci et al.        (d) Proposed          (e) Proposed w/o PARA 

Figure 5.14: Occlusion detection in Urban2 (top) and Grove3 (bottom) sequences. (a) The
ground-truth occlusion and results by methods: (b) Ayvaci et al. [5], (c) PreFilt Ayvaci et al.,
(d) the proposed method and (e) the proposed w/o PARA. These results have been reported
for a combined diffuse shading and specular flows violation corresponding to the NBC = 0.5.
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the violation of the brightness constancy assumption. It is worth mentioning that, in

these experiments, the controlled magnitude of violation is not added to the sequences.

Since this dataset provides the ground-truth for occlusion boundaries only, the quality

of the estimated optical flow is assessed by reconstructing the target video frame using

estimated optical flow. The mean square error (MSE) between the original target frame

and the reconstructed target frame is then reported. The reference video frame is warped

using the estimated optical flow to reconstruct the target video frame.

Figure 5.15 shows estimated optical flows in aforementioned video sequences. The

method of Ayvaci et al. produces wrong optical flow estimates in the highlighted part of

Fencepost sequence as shown in Figure 5.15 (a). The MSE between the original target

and the reconstructed target video frames has been presented in Figure 5.16. Results on

Fencepost sequence in Figure 5.16 (a) show that the proposed method performs better

than Ayvaci et al. and PreFilt Ayvaci et al. in terms of the MSE. Mugs2 sequence does

not show the violation of the brightness constancy assumption; therefore, the performance

of the method of Ayvaci et al. is comparable to all other methods in terms of the MSE

as shown in Figure 5.16 (b).

Figure 5.17 shows detected occlusions for all four methods computed on Fencepost (top

row) and Mugs2 (bottom row) sequences. The highlighted part of Figure 5.17 (b) shows

a lot of false positives produced by the method of Ayvaci et al. in Fencepost sequence.

PreFilt Ayvaci et al. performs slightly better than the method without pre-filtering. The

proposed w/o PARA results in some true negatives in the right half of Fencepost sequence

as shown in Figure 5.17 (e). However, the proposed method performs comparatively better

than all other methods as shown in Figure 5.17 (d). Results on Mugs2 sequence have

been presented in the bottom row of Figure 5.17. Ayvaci et al. and PreFilt Ayvaci et al.

in Figure 5.17 (b) and (c), respectively, fail to detect a lot of occluded pixels in Mugs2

sequence. The proposed w/o PARA introduces some false positives specially in the upper

right portion of the video as shown in the highlighted part of Figure 5.17 (e). This is

because the gradient of the GDIM highlights the edges in the scene, which could result
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Figure 5.15: Optical flow estimation on video sequences Fencepost (top) and Mugs2 (bottom)
by (a) Ayvaci et al. [5], (b) PreFilt Ayvaci et al., (c) the proposed method and (d) the proposed
w/o PARA. The estimated optical flow is shown in the 1st row while the 2nd row shows the target
video frame which is reconstructed by warping the reference video frame using the estimated
optical flow, and the visualization of the reconstruction error (3rd row).
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                                                    (a)                                                      (b) 

Figure 5.16: The mean square reconstruction error between the original target video frame and
the reconstructed target frame computed on real sequences (a) Fencepost and (b) Mugs2 taken
from [6].

    

}

       (a)          (b)           (c)         (d)                 (e)

Ayvaci,    PreFilt Ayvaci,         Proposed  Proposed w/o PARA 
Figure 5.17: Occlusion detection results on Fencepost (top) and Mugs2 (bottom) sequences,
(a) ground-truth occlusion, occlusions detected by (b) Ayvaci et al. [5], (c) PreFilt Ayvaci et al.
[5], (d) the proposed method and (e) the proposed w/o PARA.
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Figure 5.18: The precision recall curves for the detected occlusions by methods: Ayvaci et al.
[5], PreFilt Ayvaci et al., the proposed method and the proposed w/o PARA. These results are
reported on (a) Fencepost and (b) Mugs2 sequences.

in false positives when the image boundaries do not coincide with motion boundaries.

Figure 5.17 (d) shows that the performance of the proposed method is better than other

methods.

Figure 5.18 shows precision recall (PR) curves on both of the sequences. PR curves

for Fencepost sequence in Figure 5.18 (a) show that the occlusion detection performance

of the method of Ayvaci et al. and PreFilt Ayvaci et al. is lower than both the proposed

method and its modified version. Moreover, when compared to the proposed method,

there is a decrease in the performance of these two methods for Mugs2 sequence as shown

in Figure 5.18 (b).

It is found that the occlusion detection performance of the proposed optical flow based

method decreases for slowly moving objects in these sequences. Therefore, the proposed

method performs poor on video sequences which contain slowly moving objects. One of

the examples is Hand3 sequence, where a human hand moves abruptly in front of a slowly

moving cloth. Figure 5.19 shows estimated optical flows by aforementioned methods on

this sequence. A lot of outliers in the estimated optical flow can be observed around fast

movement of the fingers. This problem is inherent to coarse-to-fine optical flow estimation

116



5.5. Experimental Results and Analysis

            
              (a)               (b)             (c)                  (d)        

Figure 5.19: The estimated optical flow on real sequence Hand3 taken from [6]. (a) The
reference video frame, estimated optical flows by (b) the method of Ayvaci et al., (c) PreFilt
Ayvaci et al. and (d) the proposed method. Note that all methods produce erroneous flow
vectors across swiftly moving fingers.

                 (a)               (b)             (c)                  (d)     

Figure 5.20: The detected occlusion on real sequence Hand3 taken from [6]. (a) The ground-
truth occlusion, the detected occlusions by the methods: (b) Ayvaci et al., (c) PreFilt Ayvaci et
al. and (d) the proposed method. Note that all methods are unable to detect occluded pixels
associated with the slowly moving cloth behind abruptly moving human hand.

methods; thus, these methods produce erroneous flow vectors at the boundaries of fast

moving hand. This, in turn, results in wrong detection of occluded pixels. Observe that

all methods are unable to detect occluded pixels associated with the slowly moving cloth

as shown in Figure 5.20 (b)-(d). This degradation in the occlusion detection performance

is attributed to the image smoothing in the construction of image pyramid. Since the

proposed sparse occlusion detection method uses the residual of its data term, a very

small movement looks even smaller on a coarser level of the pyramid. Therefore, the

smoothing of video sequences in coarse-to-fine image pyramid construction blurs sharp

image boundaries. The data term wrongly matches occluded pixels to visible pixels when

motion boundaries correspond to image boundaries. Due to this wrong matching of

occluded pixels, the method of Ayvaci et al. and the proposed method detect these pixels

as visible.

117



5.6. Discussion and Conclusions

Finally, the run time of the proposed method is compared with its modified version.

It can be seen in Figure 5.21 that there is not much difference between the time taken by

the proposed method and the proposed w/o PARA for small-sized video frames. However,

this difference grows as the size of the video frame increases.

64 x 64 128 x 128 256 x 256 512 x 5120

200

400

600

800

Video frame size (pixels)

Ti
m

e 
(s

ec
on

ds
)

 

 

Proposed 
Proposed w/o PARA

Figure 5.21: The run time of the proposed method and its modified version, proposed w/o
PARA, as a function of the size of the video frame.

5.6 Discussion and Conclusions

This chapter proposes methods to detect sparse occlusion in digital videos using optical

flow under brightness constancy violation. Occluded video regions and varying illumi-

nation of the scene are modeled separately. Occluded video regions are generally sparse

in any digital video; therefore, a sparsity constraint is imposed on the occlusion term in

a variational energy minimization framework. Moreover, a generalized dynamic image

model (GDIM) is used to model the brightness constancy violation. This model captures

the brightness constancy violation caused by diffuse shading and specular flows. A modi-

fication of the proposed method is also presented, which does not require the estimation of

brightness change parameters of the GDIM under certain circumstances. These circum-

stances have also been discussed, under which the modification of the proposed method

is applicable.

The presented method uses cues from the residual of the intensity matching term to

detect sparse occlusion. This residual is usually small when the motion of objects is small.
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It is found that the proposed method can successfully detect occlusion when there is a

sufficient interframe motion of objects. However, the precision of this method, to detect

occluded video regions, decreases in case of very small interframe motion. This degrada-

tion in the occlusion detection performance is attributed to coarse-to-fine image pyramid

construction in optical flow estimation. Static occlusion cues, for instance, brightness,

color and texture have been found to work better in this case. These cues can be in-

tegrated with dynamic cues to enhance occlusion detection capabilities of optical flow

estimation methods as proposed in [170].

119



Chapter 6
Summary and Future Directions
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This thesis has been dedicated to the design of sparse variational regularization for

visual motion estimation in digital videos. The work presented in the thesis aims to im-

prove the accuracy of variational motion estimation methods. The research intends to

solve common problems in motion estimation such as motion discontinuities, low-textured

regions and occlusions by their efficient characterization. To this end, a novel sparse vari-

ational regularization technique was developed for variational methods. First, to evaluate

the performance of the proposed regularization under noise and from unreliable measure-

ments, it was applied to the problems of image denoising and image reconstruction from

highly incomplete measurements. Second, utilizing this novel regularization, a method

was proposed to estimate optical flow from noisy and unreliable image intensity measure-

ments. The results demonstrate that a reliable optical flow can be obtained from highly

incomplete measurements without much decrease in the accuracy. This is in contrast to

the existing variational methods which use all of the measurements for the estimation of a

dense optical flow. Third, the proposed method was extended to employ sparse variational

regularization for the detection of sparse occlusion using optical flow in video sequences.
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Extensive experimental results were presented to show the effectiveness of methods pro-

posed in this work. This chapter summarizes main contributions of the thesis in Section

6.1, and suggests some improvements and future research directions in Section 6.2.

6.1 Summary

This thesis explores the methods to estimate visual motion by mapping the co-visible

scene points and occlusion detection across video frames. We have estimated optical flow

between two consecutive video frames for the movement of visible pixels. Commonly

encountered problems of motion discontinuities, occlusions, low-textured regions and illu-

mination change are addressed by using variational methods. These methods are chosen

mainly because of their ability to integrate application specific information in a consis-

tent mathematical framework. The availability of efficient energy minimization methods

is also a key factor for their selection.

Chapter 2 reviews literature on optical flow estimation methods. Variational methods

are focussed because proposed methods utilize variational framework. Existing methods

are discussed according to their capabilities to solve problems inherent to optical flow

estimation. Different techniques are gradually introduced to the reader which can be

combined together to improve the estimation quality of optical flow.

Chapter 3 presents a novel sparse variational regularizer HVD which is based on

robust ℓ1 norm. The proposed regularizer is able to preserve sharp horizontal, vertical

and diagonal edges. This regularizer has been shown to reduce undesirable staircase

artefacts in low-textured regions as produced by other edge preserving regularizers. The

HVD regularizer has been applied to problems of image denoising and image restoration

from incomplete measurements. Experimental results presented in this chapter show the

superiority of the proposed regularizer over existing TV based regularizers.

Chapter 4 employs the proposed sparsity enhancing variational regularizer of Chapter

3 for optical flow estimation. Motion discontinuities are problematic for optical flow

methods. To improve the quality of the estimated optical flow, the preservation of the
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boundaries of the moving objects is essential. The HVD regularizer addresses this issue

by exploiting the sparsity of the motion vectors in the gradient domain. Since HVD is

convex, the energy of the regularization term is also convex. A first order, fast and efficient

algorithm, which is suitable for large-scale convex optimization problems, has also been

presented to minimize the variational energy. The efficacy of the proposed method to

estimate optical flow is demonstrated by extensive experimental results. Our experiments

show that optical flow can be estimated from as low as 10% of measurements by exploiting

the sparsity of partial flow derivatives. Thus, a decrease in the computational complexity

and memory requirements is achieved.

Chapter 5 solves the problem of joint optical flow estimation and sparse occlusion

detection under changing lighting conditions of the scene. Illumination change is one of

the main problems in motion estimation. The mapping of pixels may be wrong or not

possible at all under varying illumination. If the brightness change is not handled prop-

erly, methods for occlusion detection using optical flow can incorrectly detect occlusion

in those co-visible video regions where the brightness of the scene points is changing. To

the contrary, under brightness change scenarios, these methods may fail to detect true

occluded regions. Since occluded regions are generally small in any frame of a video se-

quence, the proposed method presented in this chapter imposes a sparsity constraint on

these occluded regions. Moreover, the optical flow constraint is replaced by a generalized

dynamic image model (GDIM) to form the pixel matching data term. The brightness

change is thus captured in parameters of the GDIM, and these parameters are also esti-

mated along with optical flow and occlusion. A computationally less expensive version of

the proposed method is also presented which does not require the estimation of bright-

ness change parameters under certain conditions. Experiments on both synthetic and

real video sequences have demonstrated that the proposed method show robustness to

brightness constancy violations while detecting the occluded video regions.
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6.2 Future Directions

Though methods proposed in this work are able to obtain promising optical flow estima-

tion and occlusion detection results by utilizing concepts from sparse signal techniques,

there is still room for the improvement. The research in this thesis can be broadened in

the following ways.

• The proposed HVD regularizer minimizes the ℓ1 norm of derivatives of an unknown

image to be restored. It promotes more sparsity than total variation regularizer by

enforcing the continuity of partial image derivatives at each pixel, and minimizing

their ℓ1 norm separately. The HVD regularizer also avoids undesirable staircase

artefacts as produced by total variation; therefore, it can be applied to other vision

problems which use TV, and suffer from shortcomings of TV. Some examples include

super resolution, three-dimensional motion estimation, structure from motion and

multi-view scene reconstruction.

• A linear convex method, presented in [150], has been modified and then used for

problems addressed in Chapter 3, 4 and 5. Numerous other methods, for example,

split Bregman method [171], gradient projection for sparse reconstruction (GPSR)

[149], and Bayesian compressive sensing [172] have been proposed for the recovery of

sparse signals. These methods have not been used in this thesis. Their performances

for problems dealt in this thesis are yet to be explored.

• Several strategies have been used for the measurement of intensity derivatives in

Chapter 4. It is found that a combination of significant and random measure-

ments work well. Significant derivative measurements, which lie on intensity edges,

are needed to preserve motion discontinuities because usually image and motion

boundaries coincide in a video frame. Random measurements are also needed espe-

cially in low-textured video regions so that the algorithm does not trap there due to

insufficient measurements. Since the proposed method uses a coarse-to-fine strategy

to handle large displacements, details of tiny objects may get lost at coarser levels
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of the pyramid. Special care has to be taken for measurements related to these

objects. Measurements can be made adaptive to the size of small objects or some

sophisticated technique, for example, an extended coarse-to-fine refinement frame-

work can be used to address this issue [82]. This framework reduces the trust of

coarser level optical flow estimates propagated to finer levels of the pyramid; thus,

it enables the recovery of motion details at each level of the pyramid.

• The proposed method uses cues from the residual of the brightness matching term

to estimate optical flow in Chapter 5. This residual is usually small when the motion

of moving objects is small. Our experiments show that the proposed method can

successfully detect occlusion when a sufficient interframe motion of objects is present

in the scene. However, the occlusion detection precision of this method decreases

in case of very small motion of objects. Static occlusion cues, for example, bright-

ness, color and texture have been found to work better in this case. These static

image cues have not been embedded into the proposed method for the detection of

occluded video regions. The integration of these cues with dynamic cues is found

to enhance occlusion detection capabilities of optical flow estimation methods [170].

The learning of occlusion boundaries based on static cues has also been found to be

useful [173]. It remains to be explored that how machine learning techniques and

static image cues can be combined with dynamic cues to improve the performance of

the proposed sparse occlusion detection method. Some occlusion detection methods

use a number of video frames to detect occlusion. The accuracy of the proposed

method can be increased by using static and dynamic occlusion cues over multiple

video frames.

• Parameters to weight the occlusion and regularization terms have been selected

by hit and trial in the sparse occlusion detection method proposed in Chapter 5.

Such a practice is rather cumbersome; thus, optical flow and occlusion detection

results are affected by the choice of these parameters. Parameters to control the

tradeoff between the sparse occlusion, the regularization and data fidelity terms can
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be chosen adaptively. The method, presented in [174], utilizes a Bayesian framework

to estimate regularization parameters in optical flow estimation. This method can

be useful in the proposed sparse occlusion detection method for the estimation of

regularization parameters.

• This thesis does not consider the implementation of proposed methods on the hard-

ware. Bidirectional multi-grid methods have been successfully used for the hardware

implementation of variational optical flow methods in real time [175]. It is still to

be researched that how proposed methods can get benefit from such hardware im-

plementations.
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