2,504 research outputs found

    Estimability and regulability of linear systems

    Get PDF
    A linear state-space system will be said to be estimable if in estimating its state from its output the posterior error covariance matrix is strictly smaller than the prior covariance matrix. It will be said to be regulable if the quadratic cost of state feedback control is strictly smaller than the cost when no feedback is used. These properties, which are shown to be dual, are different from the well known observability and controllability properties of linear systems. Necessary and sufficient conditions for estimability and regulability are derived for time variant and time invariant systems, in discrete and continuous time

    Iterative decoding for MIMO channels via modified sphere decoding

    Get PDF
    In recent years, soft iterative decoding techniques have been shown to greatly improve the bit error rate performance of various communication systems. For multiantenna systems employing space-time codes, however, it is not clear what is the best way to obtain the soft information required of the iterative scheme with low complexity. In this paper, we propose a modification of the Fincke-Pohst (sphere decoding) algorithm to estimate the maximum a posteriori probability of the received symbol sequence. The new algorithm solves a nonlinear integer least squares problem and, over a wide range of rates and signal-to-noise ratios, has polynomial-time complexity. Performance of the algorithm, combined with convolutional, turbo, and low-density parity check codes, is demonstrated on several multiantenna channels. The results for systems that employ space-time modulation schemes seem to indicate that the best performing schemes are those that support the highest mutual information between the transmitted and received signals, rather than the best diversity gain

    Inertia properties of indefinite quadratic forms

    Get PDF
    We study the relation between the solutions of two estimation problems with indefinite quadratic forms. We show that a complete link between both solutions can be established by invoking a fundamental set of inertia conditions. While these inertia conditions are automatically satisfied in a standard Hilbert space setting, they nevertheless turn out to mark the differences between the two estimation problems in indefinite metric spaces. They also include, as special cases, the well-known conditions for the existence of H-infinity-filters and controlers

    MIMO decision feedback equalization from an H∞ perspective

    Get PDF
    We approach the multiple input multiple output (MIMO) decision feedback equalization (DFE) problem in digital communications from an H∞ estimation point of view. Using the standard (and simplifying) assumption that all previous decisions are correct, we obtain an explicit parameterization of all H∞ optimal DFEs. In particular, we show that, under the above assumption, minimum mean square error (MMSE) DFEs are H∞ optimal. The H∞ approach also suggests a method for dealing with errors in previous decisions

    On linear H∞ equalization of communication channels

    Get PDF
    As an alternative to existing techniques and algorithms, we investigate the merit of the H∞ approach to the linear equalization of communication channels. We first give the formulation of all causal H∞ equalizers using the results of and then look at the finite delay case. We compare the risk-sensitive H∞ equalizer with the MMSE equalizer with respect to both the average and the worst-case BER performances and illustrate the improvement due to the use of the H∞ equalizer

    Efficient algorithms for reconfiguration in VLSI/WSI arrays

    Get PDF
    The issue of developing efficient algorithms for reconfiguring processor arrays in the presence of faulty processors and fixed hardware resources is discussed. The models discussed consist of a set of identical processors embedded in a flexible interconnection structure that is configured in the form of a rectangular grid. An array grid model based on single-track switches is considered. An efficient polynomial time algorithm is proposed for determining feasible reconfigurations for an array with a given distribution of faulty processors. In the process, it is shown that the set of conditions in the reconfigurability theorem is not necessary. A polynomial time algorithm is developed for finding feasible reconfigurations in an augmented single-track model and in array grid models with multiple-track switche

    Array algorithms for H-infinity estimation

    Get PDF
    In this paper we develop array algorithms for H-infinity filtering. These algorithms can be regarded as the Krein space generalizations of H-2 array algorithms, which are currently the preferred method for implementing H-2 biters, The array algorithms considered include typo main families: square-root array algorithms, which are typically numerically more stable than conventional ones, and fast array algorithms which, when the system is time-invariant, typically offer an order of magnitude reduction in the computational effort. Both have the interesting feature that one does not need to explicitly check for the positivity conditions required for the existence of H-infinity filters, as these conditions are built into the algorithms themselves. However, since H-infinity square-root algorithms predominantly use J-unitary transformations, rather than the unitary transformations required in the H-2 case, further investigation is needed to determine the numerical behavior of such algorithms

    Linear estimation in Krein spaces. Part II. Applications

    Get PDF
    We have shown that several interesting problems in H∞-filtering, quadratic game theory, and risk sensitive control and estimation follow as special cases of the Krein-space linear estimation theory developed in Part I. We show that all these problems can be cast into the problem of calculating the stationary point of certain second-order forms, and that by considering the appropriate state space models and error Gramians, we can use the Krein-space estimation theory to calculate the stationary points and study their properties. The approach discussed here allows for interesting generalizations, such as finite memory adaptive filtering with varying sliding patterns
    corecore