6,093 research outputs found

    Designing a training tool for imaging mental models

    Get PDF
    The training process can be conceptualized as the student acquiring an evolutionary sequence of classification-problem solving mental models. For example a physician learns (1) classification systems for patient symptoms, diagnostic procedures, diseases, and therapeutic interventions and (2) interrelationships among these classifications (e.g., how to use diagnostic procedures to collect data about a patient's symptoms in order to identify the disease so that therapeutic measures can be taken. This project developed functional specifications for a computer-based tool, Mental Link, that allows the evaluative imaging of such mental models. The fundamental design approach underlying this representational medium is traversal of virtual cognition space. Typically intangible cognitive entities and links among them are visible as a three-dimensional web that represents a knowledge structure. The tool has a high degree of flexibility and customizability to allow extension to other types of uses, such a front-end to an intelligent tutoring system, knowledge base, hypermedia system, or semantic network

    An Exploration of Digital Sketch Mapping, Interview and Qualitative Analysis to Document a Therapeutic Landscape in Whatcom County

    Get PDF
    Recent literature cites interest toward utilizing new technologies to unify methods within geography. One area showing promise towards fulfilling this goal is qualitative GIS (QGIS), which combines the methods of social/cultural and spatial/analytical geographers. QGIS research combines sketch maps with GIS and qualitative research methods to uncover “hidden geographies” found within the individual geo-narratives of individuals and within groups of individuals. This thesis explores the merits of using newly developed technology for digital sketch maps acquisition, computer assisted qualitative data analysis (CAQDAS) and qualitative geographic information system (QGIS) analysis for the discovery of “hidden geographies”. The case study demonstrates the utility of touchscreen technology to collect sketch maps and the complementary effect of combining social/cultural and spatial/analytical methods to visualize the hidden geography within the therapeutic landscape of student veterans in Whatcom County, Washington. This exploration also suggests direction for further research using digital sketch map acquisition for gaining insights into other socio-spatial processes that are not captured by traditional geographical analysis methods

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Towards Advanced Interactive Visualization for Virtual Atlases

    Get PDF
    Under embargo until: 2020-07-24An atlas is generally defined as a bound collection of tables, charts or illustrations describing a phenomenon. In an anatomical atlas for example, a collection of representative illustrations and text describes anatomy for the purpose of communicating anatomical knowledge. The atlas serves as reference frame for comparing and integrating data from different sources by spatially or semantically relating collections of drawings, imaging data, and/or text. In the field of medical image processing, atlas information is often constructed from a collection of regions of interest, which are based on medical images that are annotated by domain experts. Such an atlas may be employed, for example, for automatic segmentation of medical imaging data. The combination of interactive visualization techniques with atlas information opens up new possibilities for content creation, curation, and navigation in virtual atlases. With interactive visualization of atlas information, students are able to inspect and explore anatomical atlases in ways that were not possible with the traditional method of presenting anatomical atlases in book format, such as viewing the illustrations from other viewpoints. With advanced interaction techniques, it becomes possible to query the data that forms the basis for the atlas, thus empowering researchers to access a wealth of information in new ways. So far, atlas-based visualization has been employed mainly for medical education, as well as biological research. In this survey, we provide an overview of current digital biomedical atlas tasks and applications and summarize relevant visualization techniques. We discuss recent approaches for providing next-generation visual interfaces to navigate atlas data that go beyond common text-based search and hierarchical lists. Finally, we reflect on open challenges and opportunities for the next steps in interactive atlas visualization.acceptedVersio

    SciTech News Volume 71, No. 1 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division Aerospace Section of the Engineering Division 9 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 11 Reviews Sci-Tech Book News Reviews 12 Advertisements IEEE

    Advanced Computer Graphics Aided Molecular Visualization and Manipulation Softwares: The Hierarchy of Research Methodologies

    Get PDF
    In the present day, the huge obstacles, and the major technical problems encountered by the teaching and research faculties, academicians, industrial specialists, laboratory demonstrators and instructors, fellow students and researchers, etc. are to adopt integrative approaches of demonstrating (learning) chemistry and chemical education, and the realistic ways of delivering (grasping) scientific materials articulately with graceful and effortless manner. Towards minimizing these challenges, various audio-visual tools and technologies, advanced computer aided molecular graphics, freely available electronic gadgets assisted chemistry and chemical education apps, human unreadable data reading and accessing softwares, etc. are being incorporated worldwide as the most indispensable physical and electronic means for successful professionalisms. This short article is essentially a collective report underscoring extraordinary approaches, incredible efforts, and innovative skills of the computer based chemical and molecular graphics towards illuminating intrinsic parts of the chemistry and chemical education, and revealing various aspects of the cutting -edge research. As their representatives, herein, the different type computer coding languages based graphical tools such as Molden, GaussView, Jmol, and Visual Molecular Dynamics (VMD) are referred, and elucidated their potential applications and remarkable attempts in the advancement of diverse areas of chemistry and chemical education. Beside this, the most essential graphical features, unique rendering abilities with magnificent views, splendid visualizing skills, awesome data accessing functionalities, etc. of each of them, and their invaluable roles for studying complex molecules, biomolecules, crystals, and the entire material assemblies as well as for investigating global and local molecular physicochemical properties are presented concisely with the special stresses on their relatively better and comparatively more applicable distinctive attributes explicitl

    Advanced Endoscopic Navigation:Surgical Big Data,Methodology,and Applications

    Get PDF
    随着科学技术的飞速发展,健康与环境问题日益成为人类面临的最重大问题之一。信息科学、计算机技术、电子工程与生物医学工程等学科的综合应用交叉前沿课题,研究现代工程技术方法,探索肿瘤癌症等疾病早期诊断、治疗和康复手段。本论文综述了计算机辅助微创外科手术导航、多模态医疗大数据、方法论及其临床应用:从引入微创外科手术导航概念出发,介绍了医疗大数据的术前与术中多模态医学成像方法、阐述了先进微创外科手术导航的核心流程包括计算解剖模型、术中实时导航方案、三维可视化方法及交互式软件技术,归纳了各类微创外科手术方法的临床应用。同时,重点讨论了全球各种手术导航技术在临床应用中的优缺点,分析了目前手术导航领域内的最新技术方法。在此基础上,提出了微创外科手术方法正向数字化、个性化、精准化、诊疗一体化、机器人化以及高度智能化的发展趋势。【Abstract】Interventional endoscopy (e.g., bronchoscopy, colonoscopy, laparoscopy, cystoscopy) is a widely performed procedure that involves either diagnosis of suspicious lesions or guidance for minimally invasive surgery in a variety of organs within the body cavity. Endoscopy may also be used to guide the introduction of certain items (e.g., stents) into the body. Endoscopic navigation systems seek to integrate big data with multimodal information (e.g., computed tomography, magnetic resonance images, endoscopic video sequences, ultrasound images, external trackers) relative to the patient's anatomy, control the movement of medical endoscopes and surgical tools, and guide the surgeon's actions during endoscopic interventions. Nevertheless, it remains challenging to realize the next generation of context-aware navigated endoscopy. This review presents a broad survey of various aspects of endoscopic navigation, particularly with respect to the development of endoscopic navigation techniques. First, we investigate big data with multimodal information involved in endoscopic navigation. Next, we focus on numerous methodologies used for endoscopic navigation. We then review different endoscopic procedures in clinical applications. Finally, we discuss novel techniques and promising directions for the development of endoscopic navigation.X.L. acknowledges funding from the Fundamental Research Funds for the Central Universities. T.M.P. acknowledges funding from the Canadian Foundation for Innovation, the Canadian Institutes for Health Research, the National Sciences and Engineering Research Council of Canada, and a grant from Intuitive Surgical Inc
    corecore