3,880 research outputs found

    Extreme Scale De Novo Metagenome Assembly

    Get PDF
    Metagenome assembly is the process of transforming a set of short, overlapping, and potentially erroneous DNA segments from environmental samples into the accurate representation of the underlying microbiomes's genomes. State-of-the-art tools require big shared memory machines and cannot handle contemporary metagenome datasets that exceed Terabytes in size. In this paper, we introduce the MetaHipMer pipeline, a high-quality and high-performance metagenome assembler that employs an iterative de Bruijn graph approach. MetaHipMer leverages a specialized scaffolding algorithm that produces long scaffolds and accommodates the idiosyncrasies of metagenomes. MetaHipMer is end-to-end parallelized using the Unified Parallel C language and therefore can run seamlessly on shared and distributed-memory systems. Experimental results show that MetaHipMer matches or outperforms the state-of-the-art tools in terms of accuracy. Moreover, MetaHipMer scales efficiently to large concurrencies and is able to assemble previously intractable grand challenge metagenomes. We demonstrate the unprecedented capability of MetaHipMer by computing the first full assembly of the Twitchell Wetlands dataset, consisting of 7.5 billion reads - size 2.6 TBytes.Comment: Accepted to SC1

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    © 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care

    Embodied Evolution in Collective Robotics: A Review

    Get PDF
    This paper provides an overview of evolutionary robotics techniques applied to on-line distributed evolution for robot collectives -- namely, embodied evolution. It provides a definition of embodied evolution as well as a thorough description of the underlying concepts and mechanisms. The paper also presents a comprehensive summary of research published in the field since its inception (1999-2017), providing various perspectives to identify the major trends. In particular, we identify a shift from considering embodied evolution as a parallel search method within small robot collectives (fewer than 10 robots) to embodied evolution as an on-line distributed learning method for designing collective behaviours in swarm-like collectives. The paper concludes with a discussion of applications and open questions, providing a milestone for past and an inspiration for future research.Comment: 23 pages, 1 figure, 1 tabl

    Pregelix: Big(ger) Graph Analytics on A Dataflow Engine

    Full text link
    There is a growing need for distributed graph processing systems that are capable of gracefully scaling to very large graph datasets. Unfortunately, this challenge has not been easily met due to the intense memory pressure imposed by process-centric, message passing designs that many graph processing systems follow. Pregelix is a new open source distributed graph processing system that is based on an iterative dataflow design that is better tuned to handle both in-memory and out-of-core workloads. As such, Pregelix offers improved performance characteristics and scaling properties over current open source systems (e.g., we have seen up to 15x speedup compared to Apache Giraph and up to 35x speedup compared to distributed GraphLab), and makes more effective use of available machine resources to support Big(ger) Graph Analytics

    Proceedings, MSVSCC 2018

    Get PDF
    Proceedings of the 12th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 19, 2018 at VMASC in Suffolk, Virginia. 155 pp

    High-Performance Computing Frameworks for Large-Scale Genome Assembly

    Get PDF
    Genome sequencing technology has witnessed tremendous progress in terms of throughput and cost per base pair, resulting in an explosion in the size of data. Typical de Bruijn graph-based assembly tools demand a lot of processing power and memory and cannot assemble big datasets unless running on a scaled-up server with terabytes of RAMs or scaled-out cluster with several dozens of nodes. In the first part of this work, we present a distributed next-generation sequence (NGS) assembler called Lazer, that achieves both scalability and memory efficiency by using partitioned de Bruijn graphs. By enhancing the memory-to-disk swapping and reducing the network communication in the cluster, we can assemble large sequences such as human genomes (~400 GB) on just two nodes in 14.5 hours, and also scale up to 128 nodes in 23 minutes. We also assemble a synthetic wheat genome with 1.1 TB of raw reads on 8 nodes in 18.5 hours and on 128 nodes in 1.25 hours. In the second part, we present a new distributed GPU-accelerated NGS assembler called LaSAGNA, which can assemble large-scale sequence datasets using a single GPU by building string graphs from approximate all-pair overlaps in quasi-linear time. To use the limited memory on GPUs efficiently, LaSAGNA uses a two-level semi-streaming approach from disk through host memory to device memory with restricted access patterns on both disk and host memory. Using LaSAGNA, we can assemble the human genome dataset on a single NVIDIA K40 GPU in 17 hours, and in a little over 5 hours on an 8-node cluster of NVIDIA K20s. In the third part, we present the first distributed 3rd generation sequence (3GS) assembler which uses a map-reduce computing paradigm and a distributed hash-map, both built on a high-performance networking middleware. Using this assembler, we assembled an Oxford Nanopore human genome dataset (~150 GB) in just over half an hour using 128 nodes whereas existing 3GS assemblers could not assemble it because of memory and/or time limitations

    The use of chloroplast genome sequences to solve phylogenetic incongruences in Polystachya Hook (Orchidaceae Juss)

    Get PDF
    Background: Current evidence suggests that for more robust estimates of species tree and divergence times, several unlinked genes are required. However, most phylogenetic trees for non-model organisms are based on single sequences or just a few regions, using traditional sequencing methods. Techniques for massive parallel sequencing or next generation sequencing (NGS) are an alternative to traditional methods that allow access to hundreds of DNA regions. Here we use this approach to resolve the phylogenetic incongruence found in Polystachya Hook. (Orchidaceae), a genus that stands out due to several interesting aspects, including cytological (polyploid and diploid species), evolutionary (reticulate evolution) and biogeographical (species widely distributed in the tropics and high endemism in Brazil). The genus has a notoriously complicated taxonomy, with several sections that are widely used but probably not monophyletic. Methods: We generated the complete plastid genome of 40 individuals from one clade within the genus. The method consisted in construction of genomic libraries, hybridization to RNA probes designed from available sequences of a related species, and subsequent sequencing of the product. We also tested how well a smaller sample of the plastid genome would perform in phylogenetic inference in two ways: by duplicating a fast region and analyzing multiple copies of this dataset, and by sampling without replacement from all non-coding regions in our alignment. We further examined the phylogenetic implications of non-coding sequences that appear to have undergone hairpin inversions (reverse complemented sequences associated with small loops). Results: We retrieved 131,214 bp, including coding and non-coding regions of the plastid genome. The phylogeny was able to fully resolve the relationships among all species in the targeted clade with high support values. The first divergent species are represented by African accessions and the most recent ones are among Neotropical species. Discussion: Our results indicate that using the entire plastid genome is a better option than screening highly variable markers, especially when the expected tree is likely to contain many short branches. The phylogeny inferred is consistent with the proposed origin of the genus, showing a probable origin in Africa, with later dispersal into the Neotropics, as evidenced by a clade containing all Neotropical individuals. The multiple positions of Polystachya concreta (Jacq.) Garay & Sweet in the phylogeny are explained by allotetraploidy. Polystachya estrellensis Rchb.f. can be considered a genetically distinct species from P. concreta and P. foliosa (Lindl.) Rchb.f., but the delimitation of P. concreta remains uncertain. Our study shows that NGS provides a powerful tool for inferring relationships at low taxonomic levels, even in taxonomically challenging groups with short branches and intricate morphology.Swedish Research Council [B0569601]; European Research Council under the European Union's Seventh Framework Programme (ERC) [331024]; Swedish Foundation for Strategic Research; Knut and Alice Wallenberg Foundation; Biodiversity and Ecosystems in a Changing Climate programme; Wenner-Gren Foundations; David Rockefeller Center for Latin American Studies at Harvard University; Faculty of Science at the University of Gothenbur
    • …
    corecore