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Sweden
2Museu Nacional, Universidade Federal do Rio de Janeiro, São Cristóvão, Rio de Janeiro, Brasil
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ABSTRACT
Background: Current evidence suggests that for more robust estimates of species

tree and divergence times, several unlinked genes are required. However, most

phylogenetic trees for non-model organisms are based on single sequences or just a

few regions, using traditional sequencing methods. Techniques for massive parallel

sequencing or next generation sequencing (NGS) are an alternative to traditional

methods that allow access to hundreds of DNA regions. Here we use this approach to

resolve the phylogenetic incongruence found in Polystachya Hook. (Orchidaceae), a

genus that stands out due to several interesting aspects, including cytological

(polyploid and diploid species), evolutionary (reticulate evolution) and

biogeographical (species widely distributed in the tropics and high endemism in

Brazil). The genus has a notoriously complicated taxonomy, with several sections

that are widely used but probably not monophyletic.

Methods: We generated the complete plastid genome of 40 individuals from one

clade within the genus. The method consisted in construction of genomic libraries,

hybridization to RNA probes designed from available sequences of a related species,

and subsequent sequencing of the product. We also tested how well a smaller sample

of the plastid genome would perform in phylogenetic inference in two ways: by

duplicating a fast region and analyzing multiple copies of this dataset, and by

sampling without replacement from all non-coding regions in our alignment. We

further examined the phylogenetic implications of non-coding sequences that

appear to have undergone hairpin inversions (reverse complemented sequences

associated with small loops).

Results: We retrieved 131,214 bp, including coding and non-coding regions

of the plastid genome. The phylogeny was able to fully resolve the relationships

among all species in the targeted clade with high support values. The first divergent
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species are represented by African accessions and the most recent ones are among

Neotropical species.

Discussion: Our results indicate that using the entire plastid genome is a better

option than screening highly variable markers, especially when the expected tree is

likely to contain many short branches. The phylogeny inferred is consistent with the

proposed origin of the genus, showing a probable origin in Africa, with later

dispersal into the Neotropics, as evidenced by a clade containing all Neotropical

individuals. The multiple positions of Polystachya concreta (Jacq.) Garay & Sweet in

the phylogeny are explained by allotetraploidy. Polystachya estrellensis Rchb.f. can be

considered a genetically distinct species from P. concreta and P. foliosa (Lindl.) Rchb.f.,

but the delimitation of P. concreta remains uncertain. Our study shows that NGS

provides a powerful tool for inferring relationships at low taxonomic levels, even in

taxonomically challenging groups with short branches and intricate morphology.

Subjects Biodiversity, Evolutionary Studies, Genomics, Plant Science, Taxonomy

Keywords Next generation sequencing, Phylogenetics, Hybridization, Polystachya, Orchids,

Complete genome, Chloroplast

INTRODUCTION
Orchidaceae is considered the largest family of flowering plants, with over 25,000 species

(Dressler, 1990; Christenhusz & Byng, 2016). The family probably dates back to the Late

Cretaceous, as indicated by fossil-calibrated molecular phylogenies (Gustafsson, Verola &

Antonelli, 2010; Ramı́rez et al., 2007, 2011). Polystachya Hook. is an orchid genus

containing 240 species, with most species found in Africa (Dressler, 1993). A total of 13

species are reported from the Neotropical region (Mytnik-Ejsmont, 2011), but this number

may increase when considering the endemic species from Brazil that were not accounted

for in Mytnik-Ejsmont (2011) or were considered synonymous (Barros et al., 2010).

Recent studies have shown a number of peculiar cytological, evolutionary and

biogeographic aspects of Polystachya. The genus has diploid and polyploid species; the

latter recently formed in the Neotropics and Madagascar (Rupp et al., 2010; Russell et al.,

2010b). Unlike most genera of Orchidaceae, Polystachya has a wide geographical

distribution range (Pridgeon et al., 2005; Fig. 1), having species that are Pantropical or

have a transatlantic distribution. On the other hand, the Neotropics presents a high level

of endemism. Brazil, as an example, has 12 species of which 10 are endemic (Barros et al.,

2010). In addition, there is evidence of reticulate evolution in the genus and hybridization

with independent origins (Russell et al., 2010a).

The monophyly of the genus has been reported in the latest studies (Russell et al., 2010b;

Mytnik-Ejsmont, 2011), which contrasts starkly with the low level of monophyly

observed in the taxonomic sections described within the genus. Those 15 sections

(Kraenzlin, 1926; Summerhayes, 1942, 1947 apud Russell et al., 2011; Brenan, 1954; Cribb,

1978) are based on morphological characters and have been useful for field identification

and inventories, but do not find support as natural groupings in the molecular studies

currently available (Russell et al., 2010b; Mytnik-Ejsmont, 2011). According to those
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molecular studies, all sections are polyphyletic or paraphyletic, except sect. Isochiloides

(Russell et al., 2010b).

Section Polystachya has been described as comprising 32 species worldwide and is the

only section with species of pantropical distribution (Mytnik-Ejsmont, 2011). However,

according to molecular analyses, some species of this section appear to be more related to

species of other sections (Russell et al., 2010b; Mytnik-Ejsmont, 2011). These studies

highlight the need for new infrageneric divisions based on robust molecular evidence.

Russell et al. (2010b), using chloroplast markers, defined five different clades that could be

used as the basis for a revised classification of new sections within the genus. Clade III

(sensu Russell et al., 2010b) includes species from five different sections (sects. Polystachya,

Eurychilae, Caulescentes, Superpositae, Polychaete) and is divided into distinct subclades of

morphologically diverse plants. These species are Pantropical (such as P. concreta),

Neotropical (such as P. foliosa), Malagasy endemics (such as P. henrici) or African (such as

P. odorata). The relationships among Clade III species remain unresolved because

Figure 1 Distribution of Polystachya and the location of samples used in this study. Gray shading

shows the distribution of the genus. Colored symbols show the location of samples used here, with the

species determination of each sample as per Table 1. Full-size DOI: 10.7717/peerj.4916/fig-1
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specimens of P. concreta, P. foliosa, P. henrici and P. modesta form a large polytomy, due to

low levels of divergence between sequences. In addition, several distinct subclades are

unresolved at the base. The molecular phylogenetic studies produced so far have included

about 35% of the recognized species within the genus, and used only a small number

of nuclear (PgiC between exons 11 and 15, PhyC exon 1, Rpb2 intron 23 and ITS in

Russell et al., 2010a; only ITS in Mytnik-Ejsmont, 2011) and chloroplast markers

(rps16 intron, rps16 exon 2, rps16-trnK spacer, trnK intron excluding matK, matK and

psbD-trnT spacer in Russell et al., 2010b; rps16-trnK, rps16 and rpl32-trnL in Mytnik-

Ejsmont, 2011).

New methods of DNA sequencing as well as the development of more powerful

algorithms are propelling the replacement of trees generated from one or a few genes

to those constructed from hundreds of them (Edwards, 2009). The improvement of

massively parallel sequencing techniques—or next generation sequencing (NGS)—has

increased the amount of data available for biological research, whether the fully annotated

reference genomes of species under study have been sequenced or not (Bräutigam &

Gowik, 2010). However, despite its obvious potential, NGS technology is underused in

most studies of plant systematics (Cronn et al., 2012; Carstens et al., 2013; Eaton & Ree,

2013), probably as a result of a prevailing focus on non-model organisms (which require

de novo genomic sequencing and its inherent challenges), the need to sample many

individuals per species and the absence of well-established protocols (McCormack et al.,

2013). One method that increases the efficiency of NGS for non-model species compared

to other genomic partitioning strategies is sequence capture (or hybridization-based

enrichment), which is based on the prior selection of loci of interest (Lemmon & Lemmon,

2013). The main benefit of this technique is that the number of specific sequences

obtained can be very high, which makes it an advantageous method compared to PCR-

based approaches if the objective is to sequence several individuals and multiple loci.

Furthermore, sequence capture when combined with NGS platforms, such as Illumina,

also reduces the costs of the process (Lemmon, Emme & Lemmon, 2012). Sequence capture

methods have successfully been used in other plant genera to generate large amounts of

useful data for phylogenetic inference (Kamneva et al., 2017; Sousa et al., 2014; Stephens

et al., 2015; Weitemier et al., 2014).

The necessity of a molecular phylogenetic framework for (and a morphological

taxonomic revision of) Polystachya is clear. It requires a well-resolved phylogenetic

hypothesis in order to clarify the relationships between species and also to redefine new

infrageneric sections. In this paper, we explore the use of nearly complete plastid genomes

(note that we use chloroplast and plastid interchangeably when referring to these

genomes), obtained by sequence capture and massively parallel sequencing, to solve the

phylogenetic inconsistencies found within Clade III of Polystachya (sensu Russell et al.,

2010b). We also explore whether sequencing the entire chloroplast genome using NGS was

worthwhile, compared to PCR and Sanger sequencing of a few fast-evolving loci. We

hope that the results generated here can be extended to the rest of the genus and thus

result in new interpretations of the evolutionary and biogeographic history of the group.
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MATERIALS AND METHODS
Sampling and DNA extraction
We sampled 19 species and 48 individuals (Table 1; Fig. 1), of which 15 were collected in

different locations in continental Brazil and three were collected on Trindade Island in the

South Atlantic. The DNA of the 15 Brazilian samples was extracted from 10 mg of

tissue dried with silica gel and using the DNeasy Plant Mini Kit (Qiagen, Valencia, CA,

USA). DNA samples for the remaining 33 individuals were provided by the University of

Vienna and the DNA bank of the Royal Botanic Gardens, Kew. To this sample of

individuals, selected because they cluster in Clade III (as defined in Russell et al., 2010b),

we added Polystachya tessellata Lindl., supposedly synonymous of P. concreta. We also

included multiple samples of P. concreta, because previous studies have reported a lack of

monophyly for this species and several synonymous species. Permits to collect were

provided by the Ministério do Meio Ambiente (MMA), Instituto Chico Mendes de

Conservação da Biodiversidade (ICMBio) and Sistema de Autorização e Informação em

Biodiversidade (SISBIO), with registration number 29478-1.

Polystachya bicolor Rolfe and P. melanantha Schltr. were chosen as possible more distant

relatives of the species in focus, in order to provide additional context for the phylogenetic

inference. All studies conducted to date resolve P. melanantha as an outgroup with respect

to the Clade III species. Polystachya bicolor has already been treated as a synonym of

P. rosea (Mytnik-Ejsmont, 2011), with an uncertain position in the phylogenetic trees

generated thus far, being sometimes closely related to P. concreta and other associated

species (Mytnik-Ejsmont, 2011) and sometimes closely related to species from other clades

(Russell et al., 2010b; Mytnik-Ejsmont, 2011).

Probe design for DNA capture
We used complete chloroplast genome of Phalaenopsis aphrodite subsp. formosana

(NC_007499.1) (Chang et al., 2006) as the reference for the design of capture probes,

because there is no completely sequenced chloroplast genome of a Polystachya. According

to molecular analyses, Polystachya and Phalaenopsis belong to different sub-tribes but

are closely related within the Vandeae tribe (Van Den Berg et al., 2005; Górniak, Paun &

Chase, 2010; Freudenstein & Chase, 2015). The use of a quite distantly related species is

made possible by the DNA capture kit (MYcroarray, Ann Arbor, MI, USA), which is able

to support differences larger than 5% between probe sequences and target sequences

(Li et al., 2013). The complete sequence of the chloroplast genome of Phalaenopsis

aphrodite subsp. formosana was divided into blocks of 360 bp. Every second block was

used as the template for probe design; the probes consisting of 120 bp sequences, three to

each block without overlap. Given the genomic DNA fragment sizes of between 300 and

400 bp (below) and that fragments can contain complementary sequence anywhere on

their length to attach to a probe, fragments can contain up to 200–300 bp of genomic

sequence into the flanking regions beyond the probes, or cover the probes with little extent

into the flanking sequence, or somewhere in between. In this way, captured sequences

produce a series of tiled overlapping sequence for high quality genomic assembly.
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Table 1 Species and sample information of the accessions used in the study.

Species Location Voucher ENA reference Before genomic library assembly After genomic library assembly

Concentration

(ng/uL)

Purity

260/280

Volume Concentration

(ng/uL)

Purity

260/280

P. bicolor (=P. rosea) – Kew 25884 ERS2203588 20.1 1.51 50 31.7 1.93

P. concreta (1) Brazil, Distrito

Federal

N.L.Abreu 254 ERS2203559 39.2 1.92 75 17.2 1.92

P. concreta (2) Brazil, Distrito

Federal

N.L.Abreu 254 ERS2203560 33.6 1.96 75 31.9 1.9

P. concreta (3) Brazil, Bahia

State

N.L.Abreu 251 ERS2203564 18 1.78 70 29.9 1.97

P. concreta (4) Brazil, Bahia

State

N.L.Abreu 251 ERS2203565 8.5 1.52 130 38.3 1.9

P. concreta (5) Cameroon A. Russell 40 (YA) ERS2203570 35 1.82 8 15 1.75

P. concreta (6) Brazil HBV ORCH

066004

ERS2203572 21.9 1.53 6 9.8 1.9

P. concreta (7) Mauritius HBV ORCH 07278 ERS2203575 26 1.78 13 32.4 1.85

P. concreta (8) Réunion HBV “Chase &

Samuel 1”

ERS2203576 34 1.82 13 30 1.85

P. concreta (9) Comoros HBV ORCH 07417 ERS2203577 23.7 1.83 13 30.4 1.86

*P. concreta (10) Madagascar Fischer&Sieder

FS3210 (WU)

– 21 1.81 13 9.4 1.63

*P. concreta (11) Madagascar Kew 17854 – 70 1.65 67 9.6 1.6

*P. cornigera Madagascar Fischer&Sieder

FS3208 (WU)

– 22.2 1.76 11 7.7 1.58

P. dolichophylla Cameroon Kew 25886 ERS2203589 108.9 1.05 55 30.3 1.89

P. estrellensis (1) Brazil, Minas

Gerais State

N.L.Abreu 255 ERS2203551 29.8 1.81 65 33.7 1.9

P. estrellensis (2) Brazil, Minas

Gerais State

N.L.Abreu 255 ERS2203552 17.8 2.06 90 26 1.54

P. estrellensis (3) Brazil, Minas

Gerais State

N.L.Abreu 255 ERS2203553 11.9 1.82 75 35 1.86

P. estrellensis (4) Brazil, Espı́rito

Santo State

N.L.Abreu 253 ERS2203554 12.8 1.77 65 18.7 1.84

P. estrellensis (5) Brazil, Espı́rito

Santo State

N.L.Abreu 253 ERS2203555 22.4 1.87 70 21 1.96

P. estrellensis (6) Brazil, Espı́rito

Santo State

N.L.Abreu 253 ERS2203556 28.2 1.79 70 26.3 1.96

P. estrellensis (7) Brazil, Bahia

State

N.L.Abreu 252 ERS2203557 25.4 1.91 70 29.3 1.98

P. estrellensis (8) Brazil, Bahia

State

N.L.Abreu 252 ERS2203558 14.6 1.79 70 22.4 2.02

P. estrellensis (9) Brazil, São

Paula State

N.L.Abreu 256 ERS2203561 27.8 1.61 90 20.4 2.05

P. estrellensis (10) Brazil, São

Paula State

N.L.Abreu 256 ERS2203562 23.8 1.81 75 23.1 1.93

P. estrellensis (11) Brazil, São

Paula State

N.L.Abreu 256 ERS2203563 22.3 1.68 90 28 1.97
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Additionally, fragments with a base repeated more than seven times in a row were avoided

to reduce the capture of repetitive sequences present in many places in the genome.

Finally, the reference sequences in blocks used for probe design totaled 63,720 bp and were

brought together into a single FASTA file and sent to (MYcroarray, Ann Arbor, MI, USA)

to produce the probes.

Table 1 (continued).

Species Location Voucher ENA reference Before genomic library assembly After genomic library assembly

Concentration

(ng/uL)

Purity

260/280

Volume Concentration

(ng/uL)

Purity

260/280

P. estrellensis (12) Brazil,

Trindade’s Island

– ERS2203566 10.1 1.64 130 30 1.88

P. estrellensis (13) Brazil,

Trindade’s Island

– ERS2203567 12.5 1.64 130 30 1.83

P. estrellensis (14) Brazil,

Trindade’s Island

– ERS2203568 10.3 1.48 130 34.7 1.84

P. eurychila Kenya Kew 17963 ERS2203586 207.6 0.94 85 13.7 1.98

P. foliosa (1) Dominica Kew 25887 ERS2203590 14.7 1.58 56 31.8 1.96

P. foliosa (2) Venezuela HBV ORCH

07082

ERS2203574 30.2 1.73 8 18.6 1.79

P. golungensis Kenya Kew 17966 ERS2203587 104.7 1.14 115 26.1 1.88

*P. henrici Madagascar Kew 17856 – 22 1.52 56 7.7 2.04

P. humbertii (1) Madagascar Fischer&Sieder

FS2079 (WU)

ERS2203578 116.3 1.82 13 29.4 1.77

P. humbertii (2) Madagascar Fischer&Sieder

FS3017 (WU)

ERS2203580 35.1 1.93 11 34.2 1.89

P. melanantha Kenya Kew 17954 ERS2203584 207.2 0.94 50 12.2 1.8

P. modesta – HBV ORCH

05165

ERS2203573 56.8 1.35 13 31.7 1.93

P. odorata (1) Nigeria Kew 17857 ERS2203581 33.7 1.56 58 46.8 1.8

P. odorata (2) Cameroon A. Russell 42 (YA) ERS2203571 36.9 1.91 13 26.2 1.91

P. oreocharis (1) Madagascar Fischer&Sieder

FS2082 (WU)

ERS2203579 58 1.74 13 30.2 1.87

*P. oreocharis (2) Madagascar Fischer&Sieder

FS3152 (WU)

– 20.2 1.82 13 10.5 1.8

*P. paniculata (2) Cameroon L. Pearce 27 (YA) – 56.1 1.4 8 8.1 1.98

*P. pinicola Barzil HBV ORCH 06606 – 31 1.11 7 9.2 1.98

P. steudneri Kenya Kew 17956 ERS2203585 10.6 1.45 58 33.5 1.87

P. tessellata (1)

(=P.concreta)

Madagascar Kew 17859 ERS2203582 176.2 1.1 58 32.7 1.89

P. tessellata (2)

(=P.concreta)

Madagascar Kew 17860 ERS2203583 216.1 1.1 49 33.3 1.93

*P. tsinjoarivensis (1) Madagascar Fischer&Sieder

FS3209 (WU)

– 19.3 1.83 13 9.3 1.79

P. tsinjoarivensis (2) Madagascar HBV FS4182 ERS2203569 22.2 1.75 13 17.2 1.64

Notes:
Species analyzed; location of the collection and voucher; DNA concentration and purity before and after genomic library assembly.
* Species excluded due to low quality sequencing.
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Data generation
Sonication and genomic library preparation
Extracted DNAwas randomly fragmented by sonication using a Covaris S220 instrument

(Covaris, Woburn, MA, USA), in order to evenly cover the full genome. Adapters were

incorporated into the fragmented DNA using NEXTflexTM DNA Sequencing Kit and

NEXflexTM Barcodes kit (BIOO Scientific, Austin, TX, USA). Uniquely indexed adapters

were used for each sample. We selected fragments between 300 and 400 bp using

Agencourt AMPure XP magnetic beads kit (Beckman Coulter, Brea, CA, USA). The

genomic library was amplified following the program: 98 ºC for 2 min; 14 cycles (98 ºC for

30 s; 65 ºC for 30 s; 72 ºC for 60 s); 72 ºC for 4 min. The products were purified using a

QIAquick PCR Purification Kit (Qiagen, Valencia, CA, USA). The genomic DNA

concentrations before and after sonication and the amplification of the library were

measured in a NanoDrop 2000c instrument (Thermo Fisher Scientific, Waltham, MA,

USA) (Table 1) to ensure that the final concentration exceeded 400 ng/mL.

Enrichment and sequencing
Before the enrichment, equimolar amounts (400 ng/mL) of each amplified library were

pooled into six reactions, each one containing eight indexed samples. The enrichment

method involves the selection of genomic regions and capture of DNA samples before

sequencing (Mamanova et al., 2010). The enrichment was performed with MYBaits target

enrichment system (MYcroarray, Ann Arbor, MI, USA), following the manufacturer’s

instructions. The probes were recovered using Dynabeads� MyOneTM Streptavidin C1

(Invitrogen Dynal AS, Oslo, Norway).

To increase DNA concentration, 14 cycles of PCR were performed for each

hybridization reaction using Herculase II Fusion DNA Polymerase (Agilent, Waldbronn,

Germany) and the following program: 98 ºC for 30 s; 14 cycles (98 ºC for 20 s; 60 ºC for

30 s; 72 ºC for 60 s), 72 ºC for 5 min. Sequencing was performed on the Illumina MiSeq

platform (San Diego, CA, USA) by the Genomics Core Facility (University of

Gothenburg, Sweden).

Sequence editing
Illumina reads were processed using the program CLC assembly cell (CLC Bio, Aarhus,

Denmark). Firstly, the Illumina adapter sequences were removed and low-quality reads

were excluded. Reads were then mapped against the reference sequence used for probe

design (P. aphrodite). Consensus sequences generated for each sample were converted into

FASTA format using the SAMTools software (Li et al., 2009) using the mpileup tool with

reference sequence option, allowing for the inclusion of indels in the consensus sequences.

These sequences were used as a new individual reference sequences for each sample in a

second round of mapping. Final consensus sequences were generated using mpileup,

without the reference sequence option, to avoid erroneous base calling in low read-depth

portions of the read alignment. Sequence alignment was performed using the auto

strategy in MAFFT—Multiple Sequence Alignment Software Version 7 (Katoh & Standley,

2013) and later manually refined using Geneious Pro (Biomatters Ltd., Auckland,
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New Zealand). In the last step we aligned the sequenced samples with the Phalaenopsis

aphrodite subsp. formosana (NC_007499.1) chloroplast genome to obtain the sequenced

region annotation.

Alignment and phylogenetic analysis
Hairpin inversions
Micro-structural features of chloroplast non-coding sequences can have a profound

influence on the multiple sequence alignment, and hence also the phylogeny. Hairpins

(short stem-loop structures in single stranded DNA or RNA), for example, can create sites

that allow small inversions to occur at a high enough frequency that homoplasious

inversions can be observed among sequences from closely related species (Kelchner &

Wendel, 1996). Sometimes the inverted sequence is not so short and can disrupt

phylogenetic analysis, leading to strongly supported but spurious groupings (Joly et al.,

2010). Non-coding sequences, such as group II chloroplast introns, contain many such

stem-loop structures (Kelchner, 2002).

We examined the non-coding sequences in our alignment for inverted (reverse

complemented) sequences and tested for their effect on the phylogenetic inference.

This was done by excluding all but one character of the inversion (to down-weight the

inversion to a single event) and rerunning the analysis. The selected character to represent

the inversion was arbitrarily chosen. This was done to avoid recoding the inversions as

indel characters and creating a new, small partition (with only eight characters) that

would have required many additional parameters, in comparison to our approach.

Site exclusions

The alignment process can sometimes be confronted with small regions that are difficult

to align, probably most often due to overlapping indel events. We identified several such

regions and excluded them using the nexus block commands from the Bayesian analysis.

Poor alignment excluded sites: 54459-54465, 55220-55224, 55484-55489, 67162-67167,

67426-67431, 68186-68192, 118838-118843, 119266-119364, 119493-119726, 120012-

120019, 120867-120872, 121295-121393, 121522-121755, 122041-122048. Inverted

loop-associated excluded sites: 74668-74669, 88120-88128, 90474-90481, 94193-94205,

94696-94699, 97241-97245, 104712-104716, 106631-106635.

The aligned sequences were partitioned based on the chloroplast annotation of 116

functional genes, seven pseudogenes and two partitions that concatenated untranslated

regions—one partition containing introns with secondary structure and the other

concatenating all intergenic sequences. The files that contained the introns were

submitted to trimAl v1.2 (Capella-Gutiérrez, Silla-Martı́nez & Gabaldón, 2009) to test

different gap deletion settings.

Faster region assessment
We used the sequences from one sample on GenBank (FS1045) of Polystachya

cultriformis and examined two published markers, psbD-trnT (870 length aligned to our

samples) andmatK (1,521 length aligned to our samples). We compared these sequences

pairwise to one of our samples, P. estrelensis8, to check which was the faster-evolving
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region. We then ran a MrBayes v.3.2.4 (Ronquist et al., 2012) analysis on the faster

region, as a representative of a fast part of the chloroplast genome (fast cpDNA

hereafter), with one copy of our dataset trimmed to this region alone plus the

GenBank sequence.

We then ran successive analyses, using additional copies of the dataset interleaved in

the same file, to explore the increase in support with an increase of characters evolving

under the same model. This was to discover how much of the fast cpDNA data would be

needed to achieve high support on most nodes in the phylogeny (i.e., among species

but not necessarily within species). An important assumption we made at this stage was

that the single fast region would contain mutations spread across most/all branches of

the phylogeny. If this assumption was true, then a single region could carry changes

representative of the entire phylogenetic history that we were exploring. The assumption

is essentially one of i.i.d. (independently and identically distributed sites)—in that the

sites would be representative of many unsampled sites and that double mutations would

be rare—coupled with a sufficient dataset size to contain enough changes overall to reflect

the history. Although the i.i.d. assumption is rarely true across sites, model-based

analysis methods can cope with this, because the frequency of site patterns can be

modelled by an i.i.d. process (Steel & Penny, 2000). So we are in effect mainly testing

whether the original data set size was sufficient to carry changes reflective of the entire

phylogeny under investigation.

Random sample from all non-coding regions
A single region copied many times proved ineffective in recovering most nodes with

support (see Results). We therefore explored using random samples of characters without

replacement from among all of the non-coding regions in our dataset to test how

much data from faster regions would yield supported trees across most nodes. We

expected this approach to be less subject to the limitations caused by the stochastic nature

of mutations coupled with the limited size of any one region. By sampling across many

regions (over 58 kb in this case), even those few characters that have changed on short

branches might be sampled occasionally. In contrast, a single region, by chance, may

simply not contain any characters changing on a specific short branch.

We sampled without replacement 4%, 8% and 16% of the non-coding data using

delete-fraction jackknifing in the seqboot program v3.69 (from http://evolution.genetics.

washington.edu/phylip.html), excluding the poorly aligned parts and with down-

weighting of the inverted loops (by excluding all but one character of each loop), in

20 replicates each. The approximate average (and range) of posterior probabilities (PP)

per clade was taken across the 20 replicates to get an indication of the likely support for

selected clades that a non-coding dataset of these sizes would generate. These values

were plotted on the whole alignment analysis to compare to the support received when

using the whole dataset. Given that the largest dataset we used here (hereafter the “16%

dataset,” or ∼9.2 kb) failed to recover support for all nodes found in the whole genome

analysis (see Results), we did not end up analyzing the smaller replicates.
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Phylogenetic analysis
MrBayes v.3.2.4 analyses were used for phylogenetic inference. These analyses were run for

five million generations (two million for the random sample replicates), using a mixed

substitution model (plus gamma and invariant sites) to account for among-site rate

variation. Priors on branch lengths were set to unconstrained: exponential (100) to

minimize the chance of inferring incorrectly long branches (Marshall, 2010), otherwise

with default settings. The paired runs were checked for convergence and high effective

samples sizes in the MrBayes output and Tracer v.1.6 (Rambaut et al., 2014), respectively.

Burn-in generations were removed by discarding 10% of the samples of parameters and

trees, while summarizing in TreeAnnotator v.1.8 (Rambaut & Drummond, 2010) to

ascertain clade PP. Trees were rooted using the Phalaenopsis sequence. Analyses using the

character partitions were also done, returning nearly identical results to the analysis

described above, so they are not reported further.

RESULTS
Our NGS approach allowed the capture of coding and non-coding regions throughout

the chloroplast genome. We recovered approximately 132 kb, after the exclusion of

gaps, representing 116 genes, seven pseudogenes, as well as regions with intergenic

sequences and introns with secondary structure. Compared to the reference annotation,

seven genes contained frameshifts that are usually associated with pseudogenization and

corresponded to previously reported pseudogenized genes in orchids (Luo et al., 2014).

We excluded eight of the 48 samples due to the low quality of the sequencing results

(Table 1). These eight samples showed lower DNA concentrations after the genomic

library construction assembly, which may be the cause of low quality sequencing. The

remaining 40 samples were submitted to the EMBL/ENA database under accession

numbers ERS2203551–ERS2203590. The coding regions have 48,308 polymorphic sites

(38.4%). Introns with secondary structure and regions with intergenic sequences have

21,264 (16.9%) and 56,226 (44.7%) polymorphic sites, respectively. The alignment of

the concatenated data showed an unbalanced (but fairly typical) mean nucleotide

composition of A = 29.9%, C = 19.9%, G = 19.4% e T = 30.8%.

Analysis results
Hairpin inversions
In the non-coding part of alignment, we found evidence for eight putative small

inversions (Table 2), based on the presence of inverted repeated motifs that could form

stems at least 4 bp long. Stems of this length or longer are part of models of group II

structures (Michel, Kazuhiko & Haruo, 1989; Toor, Hausner & Zimmerly, 2001; Kelchner,

2002) and are consistent with sequence patterns observed by one of us in the rpL16 intron

sequences in other taxa (Pfeil et al., 2002).

Faster region assessment

The pairwise identity between Polystachya concreta5 and P. concreta8 (whose common

ancestor is relatively old and near the crown of Polystachya) for psbD-trnT was 98.7%.
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The pairwise identity for these samples formatKwas 99.2%. PsbD-trnTwas therefore used

as the representative fast cpDNA region. The analysis with a single copy of this dataset

(870 bp) yielded a MCC tree (Fig. 2A) with only five nodes with high support (>0.95 PP).

Increasing the number of copies did not result in much improvement. The analysis

using 16 copies of psbD-trnT (∼14 kb) produced a MCC tree (Fig. 2B) containing only

eight highly supported nodes.

Random sample from all non-coding regions
The pairwise identity between Polystachya concreta5 and P. concreta8 was 98.7% across

58 236 bp of non-coding region contained in our alignment. This compares to 98.8%

identity between the same samples across the coding regions in our alignment.

The replicate datasets that sampled 16% of the original non-coding alignment

(excluding poorly aligned parts and down-weighting the inverted loops) failed to return

all nodes/clades found in the whole genome analysis. Of 13 selected nodes found in the

tree from the whole genome (four subtended by relatively long branches, four by medium

length branches, and five by short branches), only five were found with high support

across most or all replicates (i.e., at least 16 of 20 replicates had �0.95 PP). Three of the

selected nodes instead had five or fewer replicates with high support (�0.95 PP), but only

one or no replicates that contained highly supported contradictory nodes (thus the

support for the expected node was �0.05). Finally, five of the nodes had generally poor

support among replicates (i.e., five or fewer replicates had �0.95 PP along with six or

more replicates with�0.05 PP for these nodes). Sixteen percent of datasets (∼9.2 kb) were
recovered from seven to 21 highly supported nodes among replicates (mean = 14.8), with

more nodes recovered in 19 of 20 replicates than was the case with the larger repeated

psbD-trnT dataset (∼14 kb and eight supported nodes). This character sampling strategy

was probably more reflective of the underlying support for various nodes than using

repeated copies of a single small dataset.

The mutually exclusive foliosa1/concreta2 versus foliosa1/foliosa2 clades (see below)

were also examined in the 16% datasets. In the first case (foliosa1/concreta2), just four

replicates contained this clade with high or moderate support (�0.90 PP). The

contradictory second grouping (foliosa1/foliosa2) was found with a similar level of

support (�0.90 PP) in only two replicates. The fact that both groupings could be

recovered, with high support, in at least some replicates suggests that the original dataset

contains the signal of both clades. A NeighborNet analysis (Fig. 3B) confirmed that a

mixture of patterns exists in the original dataset involving foliosa1, foliosa2, concreta1 and

concreta2.

Phylogenetic analyses
Analyses with and without the inverted loops (the latter by down-weighting to a single

character) returned almost identical trees. The results of only the latter analysis is

presented in this section. The tree we recovered was able to resolve the phylogenetic

relationships among the groups of the large clade selected for this study, with high support

values on almost every node (Fig. 3). The tree was characterized by a large clade with
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Figure 2 Phylogeny of the psbD-trnT region estimated using Bayesian analysis and rooted using

P. aphrodite. Posterior probabilities are show above branches. Scale bar is in substitutions per site.

The two branches leading to the root have been foreshortened to reduce space and are thus not to scale.

(A) Phylogeny based on a single copy of psbD-trnT. (B) Phylogeny based on 16 identical copies of the

psbD-trnT data set. Full-size DOI: 10.7717/peerj.4916/fig-2
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relatively short branches containing only sequences from the Neotropics, with a grade of a

few small clades and single sequences containing the remaining sequences (Fig. 3).

The large clade contained 21 sequences from Brazil, Dominica and Venezuela, whereas

the grade included 19 sequences from tropical central and eastern Africa, as well as

Madagascar and the nearby islands (Fig. 3).

The grade recovered include a few geographically identifiable clades (Fig. 3). One of

these, attaching fairly deeply within the crown, consists of four Malagasy sequences

(Polystachya humbertii1, P. humbertii2, P. oreocharis and P. tsinjoarivensis2) that are sister

to a Kenyan sequence (P. eurychila). Another clade comprises a Kenyan sequence

(P. golungensis) and one from Reunion (P. concreta8). A third clade contains a pair of

central African sequences, one from Cameroon (P. odorata2) and one from Nigeria

(P. odorata1). A fourth clade contains sequences from central Africa (P. concreta5 from

Cameroon), Madagascar (P. tesselata1), the Comoros (P. concreta9) and two sequences

without certain provenance. Finally, a fifth pair of sequences were from samples collected

from Mauritius (P. concreta7) and Madagascar (P. tesselata2). Lineages containing only

a single sequence in this grade included samples from Kenya (P. melanantha and

P. steudneri) and Cameroon (P. dolichophylla).

Sequences from the widely sampled and widely distributed P. concreta did not form a

monophyletic group and occurred on different branches of the tree, separated by

Figure 3 Plastid phylogeny from Bayesian analysis rooted using P. aphrodite. Posterior probabilities

are show above branches. The Polystachya estrelensis group has been collapsed to reduce detail. Scale bar

is in substitutions per site. The two branches leading to the root have been foreshortened to reduce space

and are thus not to scale. The two insets are not at the same scale as the main figure. Main Figure:

phylogeny based on the data set with poorly aligned regions excluded and loops down-weighted. (A) (in

gray) Phylogeny of the foliosa/concreta group based on the full inclusion of loops. (B) (in black)

NeighborNet network of the foliosa/concreta group based on the down-weighted loops. P. estrelensis

photo credit: N. Lopes de Abreu. Full-size DOI: 10.7717/peerj.4916/fig-3
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several well supported nodes (Fig. 3). Similarly, the two P. tessellata sequences from

Madagascar did not form a clade. Polystachya estrellensis sequences form a clade with

P. concreta sequences collected in Brazil. Although the sequences of P. estrellensis are thus

paraphyletic, whether the taxon itself is paraphyletic cannot be established for certain

here. The identification of this P. concreta sample could be wrong, given that the

identification of these species is confused in Brazil and sometimes they are considered

synonymous (see also Discussion).

With versus without loops
The down weighting of the inversions we identified (by excluding all but one character per

inversion) resulted in a similar, but not identical, phylogenetic inference. The differences

among the maximum clade credibility (MCC) trees involved P. foliosa1, P. foliosa2,

P. concreta1, P. concreta2, P. concreta3 and P. concreta4. The analysis with the inversions

included returned this tree (Figs. 3A and 4A):

((concreta3,concreta4):1,((foliosa1,foliosa2):0.98,(concreta1,concreta2):0.98):0.97)

Figure 4 Parsimonious gains and losses of non-coding loop inversions in Polystachya relative to the

outgroup sequence, P. aphrodite, mapped on to the plastid phylogeny. The letter codes designate

loops as per Table 2. Main Figure: phylogeny estimated using down-weighted loops (from the main

panel, Fig. 1). Where equally parsimonious interpretations were possible, accelerated transformation

has been used. (A) Part of the phylogeny estimated using entire loops for the foliosa/concreta group.

The mapping of gains of two loop inversions shared by foliosa1 and foliosa2 on this topology is in

contrast to the mapping on the topology using down-weighted loops (main figure). (B) A diagrammatic

representation of the stem-loop structure with the majority form of the loop sequence (in black).

(C) The stem-loop structure with the proposed inversion of the loop sequence (in red). (D) The

consequence on the alignment before down-weighting of the loop sequence (loop sequence in bold—

majority form; loop sequence with back colors—inverted form).

Full-size DOI: 10.7717/peerj.4916/fig-4
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with clade PP listed after each node. In contrast, the inference resulting from down-

weighted inversions returned this tree (Fig. 3 main panel and Fig. 4 main panel):

((foliosa1,concreta2):1,((concreta3,concreta4):1,(foliosa2,concreta1):0.76):1)

There are several supported differences between these trees, with at least one

corresponding to the way the inverted loops are weighted. When the entire loops are

analyzed, P. foliosa1 and P. foliosa2 are supported as sisters, with these two sequences

appearing to share two loop inversions (if this topology is correct; Fig. 4A). However,

down-weighting the inversions produces a tree consistent instead with two independent

inversions (Fig. 4 main panel).

DISCUSSION
Chloroplast genome sequence provides a robust phylogeny
In this work we used the nearly complete chloroplast sequences of 40 Polystachya samples

to infer a robust plastid phylogeny. The dataset significantly increased the phylogenetic

resolution within the genus. Thus, our results suggest that increasing the number of

molecular markers has the potential to solve not only the relationships among species, but

also to identify new Polystachya clades and define new sections. The delimitation of new

sections will, however, depend upon the inclusion of more taxa than was done by this

study—in other words a higher coverage of the genus. Below we highlight some of the

clades recovered, their morphological and/or geographical characterization, and a

comparison with previous studies.

Polystachya bicolor/rosea position contradicts Russell’s Clade III
Of the two species selected as possible distant relatives to provide more context in the

phylogenetic inference, one of them, P. bicolor (=P. rosea), appears in a clade together with

samples of P. concreta (from Cameroon and from the Comoros), P. tesselata (= P. concreta)

and P. modesta. Not surprisingly, the clade that includes P. bicolor/rosea is deeply nested

within the ingroup, thus contradicting the monophyletic Clade III presented by Russell

et al. (2010b).

In prior studies, Polystachya bicolor/rosea has an uncertain position in the

phylogenetic trees. In an analysis using plastid markers and Bayesian inference, this

species appears in a large polytomy with P. concreta and other related species (Mytnik-

Ejsmont, 2011), or related to species of other clades (Russell et al., 2010b) depending

on the marker used. A phylogeny using nuclear data (ITS sequences) highlighted the

lack of monophyly of this species (Mytnik-Ejsmont, 2011), which may be connected to

the difficulty in identifying it. Polystachya bicolor/rosea is often mistaken for P. concreta,

since differentiation between these is made by subtle differences in the shapes of leaves,

and the size and color of the flowers. Unlike P. concreta, which has a pantropical

distribution, P. bicolor/rosea is restricted to Madagascar, Comoros and the Seychelles

(Mytnik-Ejsmont, 2011).
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Brazilian sequences form a clade
The monophyletic nature of the group formed by the Brazilian accessions, contrasting

with the paraphyletic group made up of African accessions, is consistent with the

hypothesis that Africa is the center of origin with a subsequent (i.e., more recent) dispersal

into the Neotropics (Russell et al., 2010a, 2010b).

Hybrid origins of some taxa suggested
The hybrid origin of P. concreta is a possible explanation for this species being found in

different positions in the tree (Russell et al., 2010b). P. concreta individuals that have

dispersed out of Africa are tetraploid, whereas plants found in continental Africa can be

diploid or tetraploid. The sister taxa of African P. concreta are diploid (Russell et al.,

2010b), indicating that tetraploidy is a derived state in P. concreta. Allotetraploidy in

P. concreta has been confirmed by analysis of low copy nuclear genes (Russell et al., 2010a).

Interspecific hybridization events, as in P. concreta, are considered a source of

chloroplast genome exchange via introgression. Chloroplast genome exchange among

species is sometimes suggested as an explanation for the inconsistencies between

phylogenetic trees based on nuclear and plastid markers in, e.g., Populus (Salicaceae)

(Smith & Sytsma, 1990; Tsitrone, Kirkpatrick & Levin, 2003), Nothofagus (Nothofagaceae)

and Crassulaceae (Mort et al., 2002; Acosta & Premoli, 2010). In Nothofagus, chloroplast

capture results in the association of chloroplast genomes with geographic locations, rather

than taxonomic relationships (Acosta & Premoli, 2010). Relationships based on

geographic location could be explored as a possible explanation for the proximity of

P. concreta (accesses from Brazil) with P. estrellensis (also from Brazil) and not with

non-Brazilian accessions of P. concreta. In this case a study of nuclear markers of these

taxa would be needed.

Neotropical species
Relationships in the group that includes P. concreta, P. foliosa, P. estrellensis and other

species are not well resolved due to the low sequence divergence levels between species

found in both plastid and nuclear genes (Russell et al., 2010a, 2010b, 2011; Mytnik-

Ejsmont, 2011). Generally, the morphological variation observed in this group is identified

as P. concreta. Although P. estrellensis is considered a valid species on the official plant

list of Brazil (Barros et al., 2010), there is no consensus on synonymy with P. concreta.

This can be seen in the herbarium identifications that sometimes consider them as two

distinct species, but sometimes as the same species. The same occurs with P. foliosa, a

name which would only be correctly applied to plants from the Amazon basin, the Guyana

Shield and the West Indies (Peraza-Flores, Fernández-Concha & Romero-González, 2011).

This circumscription is not accepted by Mytnik-Ejsmont (2011), who considers

P. estrellensis and P. foliosa to be synonymous.

Genetic dissimilarity between African and Neotropical tetraploids was reported by

Russell et al. (2010a) and Russell et al. (2011), but the delimitation P. estrellensis, P. concreta

and P. foliosa remained uncertain. According to our results, under a molecular perspective,

P. estrellensis should be considered distinct from P. concreta. Moreover, our results do not
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corroborate the placement in synonymy of P. estrellensis and P. foliosa as proposed by

Mytnik-Ejsmont (2011). In our tree P. foliosa forms a highly supported group with some

P. concreta sequences (from samples collected in Brazil). Finally, although our results

indicate a possible separation of Brazilian and African P. concreta, the delimitation of this

species remains uncertain, considering that there is no generic taxonomic revision that

has rigorously analyzed the morphological variation in this species. Moreover, considering

the reticulated evolution by Russell et al. (2010a), further investigation with nuclear

markers would be necessary.

Taken together, our analysis suggests that P. estrellensis can be considered a distinct

species from P. concreta and P. foliosa, and that Brazilian and African P. concreta should

probably be treated as different species. Evidence of hybridization influencing the

evolution of P. concreta (Russell et al., 2010a, 2010b) highlights how importance it will be

to also consider bi-parentally inherited nuclear DNA when inferring of phylogenetic

relationships between this species and other species of the genus. The placement in

synonymy of P. estrellensis and P. foliosa proposed by Mytnik-Ejsmont (2011) was not

confirmed by this study. In our results, P. foliosa forms a highly supported clade including

Brazilian samples of P. concreta.

Implications for data requirements
The entire chloroplast is more useful than a fast subset
By using a relatively large number of chloroplast sequences we were able to resolve the

polytomy involving the Neotropical species. But, if on one hand this dataset is promising

in the formulation of more robust phylogenetic hypotheses, on the other hand, the

complete chloroplast genome sequencing may be costly for systematic projects that

consider genera with many species (Särkinen & George, 2013), such as Polystachya, which

has about 250 species. This was the main motivation for testing how well a smaller

sample of the chloroplast genome would perform in phylogenetic inference. This was

done in two ways: by duplicating a fast region and analyzing multiple copies of this

dataset, and by sampling without replacement from all non-coding regions in our

alignment.

We found that sampling without replacement up to ∼9 kb of non-coding sequence

(16% of our alignment) was not sufficient to return a robust inference across all nodes.

This was in contrast to the analysis of the entire chloroplast and showed that in the case of

these samples of Polystachya, more data were needed to resolve their relationships. The

cost of primers, amplification and Sanger sequencing of only three or four regions begins

to exceed that of gene capture of the entire chloroplast. It is therefore more cost effective

and produces a more robust result to undertake the collection of the entire chloroplast

genome. That said, our 16% sample did resolve some nodes with high support, and other

nodes obtained moderate to high support from a few of the replicates. This suggests that

these data are on the way to resolving most nodes, but a gradual increase in resolving

power occurs as characters are added.

Duplicating a single fast region even 16 times, in this case psbD-trnT copies totaling

∼14 kb, failed to achieve a robustly resolved phylogeny. The results for the psbD-trnT
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duplicated analysis was poorer even than that of sampling fewer but more representative

characters across the non-coding region (above). It appears that a small sample size

(only 870 bp of independent sequence sites) is a serious source of stochastic error in this

case. Sampling one versus 16 copies of the same dataset only slightly increased the

number of resolved nodes (but still falling short of the number of nodes usually

resolved with support by the smaller 16% sample), confirming the limitations of the

original dataset. It is likely that the original dataset simply did not contain sites that

changed on most branches of the phylogeny during the span of history that we

investigated.

Numerous previous studies have also examined which regions of the plastid

genome are typically evolving faster than others (Small et al., 1998; Shaw et al., 2005,

2007, 2014). Prior to NGS methods, the aim was to identify the “best” regions, when

sequencing only a limited number could be afforded in most projects. However, given

current technology, we should shift our focus to whether a few of the “best” regions are

cost effective compared to using the entire genome, as the latter has become affordable

for even small phylogenetic projects.

Homoplastic hairpin inversions affect phylogenetic analysis
One issue raised here that is rarely taken into account in analyses of whole chloroplasts is

that sequence patterns at the small scale, namely hairpin inversions of loops, can still

have an effect on phylogenetic inference, despite using very large data sets. Our results

indicate that at least some of the differences between the trees inferred using entire loops

versus down-weighted loops were driven by these hairpin loop inversions. This kind of

phylogenetic effect has been observed in other cases, although with smaller data sets

(Kim & Lee, 2005; Joly et al., 2010). If loops invert in a single molecular event (as is

currently believed: Kelchner & Wendel, 1996; Kim & Lee, 2005), such as an intra-molecular

recombination, then there is no good reason to use each character state difference

found between sequences in the entire loop in an analysis. This simply inflates the

phylogenetic impact of a single event, treating it instead as many independent events

(corresponding to the number of character state differences in the inversion), as also

noted by Kim & Lee (2005). As shown here, a larger data set simply does not give license

to ignore known analytical pitfalls.

Together, these findings show that sampling the entire chloroplast, analyzed carefully,

is a better option than sampling a few (even a dozen or more) fast regions. This is true,

at least in Polystachya, but a similar result has also found by other studies, such as

Parks, Cronn & Liston (2009) for Pinus. Based on cost alone, it seems there is no benefit

to be gained by screening the chloroplast for faster markers when there are many short

branches in the particular tree, as there are here. Whole chloroplast analyses are likely

to be a better way forward than sampling individual chloroplast markers in addressing

many phylogenetic questions. If gene capture is used, as it was here, it is also very easy to

add probes to unlinked nuclear regions, further increasing the power of this approach as a

general solution to the issue of data sampling.
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CONCLUSION
Our results show that significantly increasing the number of nucleotides can be an

effective option in the phylogenetic inference of taxonomic challenging taxa, such

as the orchid genus Polystachya. We generated complete chloroplast sequences of

40 Polystachya specimens using a combination of Illumina NGS sequencing and a

sequence capture, which solved a notorious polytomy for Neotropical species. Our tests

on how well a smaller sample of the chloroplast genome would perform in phylogenetic

inference shows that the whole chloroplast is a better option than selecting just a few

highly variable markers. Full plastid genomes appear particularly powerful when the

expected tree is likely to contain many short branches, but nonetheless need to be

analyzed with care.
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Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) and Sistema de

Autorização e Informação em Biodiversidade (SISBIO) (29478-1).

DNA Deposition
The following information was supplied regarding the deposition of DNA sequences:

DNA Sequences have been deposited at EMBL/ENA under accession numbers

ERS2203551–ERS2203590.

Data Availability
The following information was supplied regarding data availability:

The sequence alignment files are provided as Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/

10.7717/peerj.4916#supplemental-information.

Abreu et al. (2018), PeerJ, DOI 10.7717/peerj.4916 22/26

https://www.ebi.ac.uk/ena/data/view/ERS2203551
https://www.ebi.ac.uk/ena/data/view/ERS2203590
http://dx.doi.org/10.7717/peerj.4916#supplemental-information
http://dx.doi.org/10.7717/peerj.4916#supplemental-information
http://dx.doi.org/10.7717/peerj.4916#supplemental-information
http://dx.doi.org/10.7717/peerj.4916
https://peerj.com/


REFERENCES
Acosta MC, Premoli AC. 2010. Evidence of chloroplast capture in South American Nothofagus

(subgenus Nothofagus, Nothofagaceae). Molecular Phylogenetics and Evolution 54(1):235–242

DOI 10.1016/j.ympev.2009.08.008.

Barros F, Vinhos F, Rodrigues VT, Barberena FFVA, Fraga CN. 2010. Orchidaceae in Flora do

Brasil. Jardim Botânico do Rio de Janeiro. Available at http://floradobrasil.jbrj.gov.br/reflora/

floradobrasil/FB179.
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Górniak M, Paun O, Chase MW. 2010. Phylogenetic relationships within Orchidaceae based on a

low-copy nuclear coding gene, Xdh: congruence with organellar and nuclear ribosomal DNA

results.Molecular Phylogenetics and Evolution 56(2):784–795 DOI 10.1016/j.ympev.2010.03.003.

Gustafsson AL, Verola CF, Antonelli A. 2010. Reassessing the temporal evolution of orchids with

new fossil and a Bayesian relaxed clock, with implications for the diversification of the rare

Abreu et al. (2018), PeerJ, DOI 10.7717/peerj.4916 23/26

http://dx.doi.org/10.1016/j.ympev.2009.08.008
http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB179
http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB179
http://dx.doi.org/10.1111/j.1438-8677.2010.00373.x
http://dx.doi.org/10.1093/bioinformatics/btp348
http://dx.doi.org/10.1111/mec.12413
http://dx.doi.org/10.1093/molbev/msj029
http://dx.doi.org/10.11646/phytotaxa.261.3.1
http://dx.doi.org/10.2307/4109769
http://dx.doi.org/10.3732/ajb.1100356
http://dx.doi.org/10.1093/sysbio/syt032
http://dx.doi.org/10.1111/j.1558-5646.2008.00549.x
http://dx.doi.org/10.1093/aob/mcu253
http://dx.doi.org/10.1016/j.ympev.2010.03.003
http://dx.doi.org/10.7717/peerj.4916
https://peerj.com/


South American genus Hoffmanseggella (Orchidaceae: Epidendroideae). Evolutionary Biology

10(1):177 DOI 10.1186/1471-2148-10-177.

Joly S, Pfeil BE, Oxelman B, McLenachan PA, Lockhart PJ. 2010. A statistical approach for

distinguishing hybridisation and incomplete lineage sorting: correction. American Naturalist

175:621–622.

Kamneva OK, Syring J, Liston A, Rosenberg NA. 2017. Evaluating allopolyploid origins in

strawberries (Fragaria) using haplotypes generated from target capture sequencing.

BMC Evolutionary Biology 17(1):180 DOI 10.1186/s12862-017-1019-7.

Katoh K, Standley DM. 2013. MAFFTmultiple sequence alignment software version 7:

improvements in performance and usability. Molecular Biology and Evolution 30(4):772–780

DOI 10.1093/molbev/mst010.

Kelchner SA. 2002. Group II introns as phylogenetic tools: structure, function, and evolutionary

constraints. American Journal of Botany 89(10):1651–1669 DOI 10.3732/ajb.89.10.1651.

Kelchner SA, Wendel JF. 1996. Hairpins create minute inversions in non-coding regions of

chloroplast DNA. Current Genetics 30(3):259–262 DOI 10.1007/s002940050130.

Kim K-J, Lee H-L. 2005.Widespread occurrence of small inversions in the chloroplast genomes of

land plants. Molecules & Cells 19:104–113.

Kraenzlin F. 1926.Monographie der Gattung Polystachya Hook. Repertorium Specierum Novarum

Regni Vegetabilis, Beihefte 39:1–136.

Lemmon A, Emme S, Lemmon E. 2012. Anchored hybrid enrichment for massively high-

throughput phylogenomics. Systematic Biology 61(5):727–744 DOI 10.1093/sysbio/sys049.

Lemmon EM, Lemmon AR. 2013. High-throughput genomic data in systematics and

phylogenetics. Annual Review of Ecology Evolution and Systematics 44(1):99–121

DOI 10.1146/annurev-ecolsys-110512-135822.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R.

2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25(16):2078–2079

DOI 10.1093/bioinformatics/btp352.

Li C, Hofreiter M, Straube N, Corrigan S, Naylor GJP. 2013. Capturing protein-coding genes

across highly divergente species. BioTechniques 54(6):321–326 DOI 10.2144/000114039.

Luo J, Hou BW, Niu ZT, Liu W, Xue QY, Ding XY. 2014. Comparative chloroplast genomes of

photosynthetic orchids: insights into evolution of the Orchidaceae and development of

molecular markers for phylogenetic applications. PLOS ONE 9(6):e99016

DOI 10.1371/journal.pone.0099016.

Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, Howard E, Shendure J,

Turner DJ. 2010. Target-enrichment strategies for next generation sequencing. Nature Methods

7(2):111–118 DOI 10.1038/nmeth.1419.

Marshall DC. 2010. Cryptic failure of partitioned Bayesian phylogenetic analyses: lost in the land

of long trees. Systematic Biology 59(1):108–117 DOI 10.1093/sysbio/syp080.

McCormack JE, Hird SM, Zellmer AJ, Carstens BC, Brumfield RT. 2013. Applications of next-

generation sequencing to phylogeography and phylogenetics. Molecular Phylogenetics and

Evolution 66(2):526–538 DOI 10.1016/j.ympev.2011.12.007.

Michel F, Kazuhiko U, Haruo O. 1989. Comparative and functional anatomy of group II catalytic

introns-a review. Gene 82(1):5–30 DOI 10.1016/0378-1119(89)90026-7.

Mort ME, Soltis DE, Soltis PS, Francisco-Ortega J, Santos-Guerra A. 2002. Phylogenetics and

evolution of the Macaronesian clade of Crassulaceae inferred from nuclear and chloroplast

sequence data. Systematic Botany 27:271–288.

Abreu et al. (2018), PeerJ, DOI 10.7717/peerj.4916 24/26

http://dx.doi.org/10.1186/1471-2148-10-177
http://dx.doi.org/10.1186/s12862-017-1019-7
http://dx.doi.org/10.1093/molbev/mst010
http://dx.doi.org/10.3732/ajb.89.10.1651
http://dx.doi.org/10.1007/s002940050130
http://dx.doi.org/10.1093/sysbio/sys049
http://dx.doi.org/10.1146/annurev-ecolsys-110512-135822
http://dx.doi.org/10.1093/bioinformatics/btp352
http://dx.doi.org/10.2144/000114039
http://dx.doi.org/10.1371/journal.pone.0099016
http://dx.doi.org/10.1038/nmeth.1419
http://dx.doi.org/10.1093/sysbio/syp080
http://dx.doi.org/10.1016/j.ympev.2011.12.007
http://dx.doi.org/10.1016/0378-1119(89)90026-7
http://dx.doi.org/10.7717/peerj.4916
https://peerj.com/


Mytnik-Ejsmont J. 2011. A Monograph of the subtribe Polystachyinae Schltr. (Orchidaceae).

Koenigstein: Koeltz Scientific Books.

Parks M, Cronn R, Liston A. 2009. Increasing phylogenetic resolution at low taxonomic levels

using massively parallel sequencing of chloroplast genomes. BMC Biology 7(1):84

DOI 10.1186/1741-7007-7-84.

Peraza-Flores LN, Fernández-Concha GC, Romero-González GA. 2011. Taxonomic notes in
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Phylogenetics and cytology of a pantropical orchid genus Polystachya (Polystachyinae; Vandeae;

Orchidaceae): evidence from plastid DNA sequence data. Taxon 59:389–404.

Särkinen T, George M. 2013. Predicting plastid marker variation: can complete plastid genomes

from closely related species help? PLOS ONE 8(11):e82266 DOI 10.1371/journal.pone.0082266.

Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE,

Small RL. 2005. The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA

sequences for phylogenetic analysis. American Journal of Botany 92(1):142–166

DOI 10.3732/ajb.92.1.142.

Abreu et al. (2018), PeerJ, DOI 10.7717/peerj.4916 25/26

http://dx.doi.org/10.1186/1741-7007-7-84
http://dx.doi.org/10.3159/torrey-d-11-00029.1
http://beast.community/treeannotator
http://tree.bio.ed.ac.uk/software/tracer/
http://dx.doi.org/10.1126/science.1209175
http://dx.doi.org/10.1038/nature06039
http://dx.doi.org/10.1093/sysbio/sys029
http://dx.doi.org/10.1111/j.1095-8339.2010.01054.x
http://dx.doi.org/10.1111/j.1095-8339.2010.01108.x
http://dx.doi.org/10.1093/aob/mcq092
http://dx.doi.org/10.1371/journal.pone.0082266
http://dx.doi.org/10.3732/ajb.92.1.142
http://dx.doi.org/10.7717/peerj.4916
https://peerj.com/


Shaw J, Lickey EB, Schilling EE, Small RL. 2007. Comparison of whole chloroplast genome

sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise

and the hare III. American Journal of Botany 94(3):275–288 DOI 10.3732/ajb.94.3.275.

Shaw J, Shafer HL, Leonard OR, Kovach MJ, Schorr M, Morris AB. 2014. Chloroplast DNA

sequence utility for the lowest phylogenetic and phylogeographic inferences in angiosperms: the

tortoise and the hare IV. American Journal of Botany 101(11):1987–2004

DOI 10.3732/ajb.1400398.

Small RL, Ryburn JA, Cronn RC, Seelanan T, Wendel JF. 1998. The tortoise and the hare:

choosing between noncoding plastome and nuclear Adh sequences for phylogeny

reconstruction in a recently diverged plant group. American Journal of Botany 85(9):1301–1315

DOI 10.2307/2446640.

Smith RL, Sytsma KJ. 1990. Evolution of Populusnigra (sect. Aigeiros): introgressive hybridisation

and the chloroplast contribution of Populusalba (sect. Populus). American Journal of Botany

77(9):1176–1187 DOI 10.2307/2444628.

Sousa F, Bertrand YKJ, Nylinder S, Oxelman B, Eriksson JS, Pfeil BE. 2014. Phylogenetic

properties of 50 nuclear loci inMedicago (Leguminosae) generated using multiplexed sequence

capture and next-generation sequencing. PLOS ONE 9(10):e109704

DOI 10.1371/journal.pone.0109704.

Steel M, Penny D. 2000. Parsimony, likelihood, and the role of models in molecular phylogenetics.

Molecular Biology and Evolution 17(6):839–850 DOI 10.1093/oxfordjournals.molbev.a026364.

Stephens JD, RogersWL, Heyduk K, Cruse-Sanders JM, Determann RO, Glenn TC,Malmberg RL.

2015. Resolving phylogenetic relationships of the recently radiated carnivorous plant genus

Sarracenia using target enrichment. Molecular Phylogenetics and Evolution 85:76–87

DOI 10.1016/j.ympev.2015.01.015.

Summerhayes VS. 1942. African orchids: XII. Botanical Museum Leaflets 10:257–299.

Summerhayes VS. 1947. African orchids: XVII. Kew Bulletin 2(2):123–133 DOI 10.2307/4109211.

Toor N, Hausner G, Zimmerly S. 2001. Coevolution of group II intron RNA structures with their

intron-encoded reverse transcriptases. RNA 7(8):1142–1152 DOI 10.1017/s1355838201010251.

Tsitrone A, Kirkpatrick M, Levin DA. 2003. A model for chloroplast capture. Evolution

57(8):1776–1782 DOI 10.1554/02-746.

Van den Berg C, Goldman DH, Freudenstein JV, Pridgeon AM, Cameron KM, Chase MW. 2005.

An overview of the phylogenetic relationships within Epidendroideae inferred from multiple

DNA regions and recircumscription of Epidendreae and Arethuseae (Orchidaceae). American

Journal of Botany 92(4):613–624 DOI 10.3732/ajb.92.4.613.

Weitemier K, Straub SCK, Cronn RC, Fishbein M, Schmickl R, McDonnell A, Liston A. 2014.

Hyb-Seq: Combining target enrichment and genome skimming for plant phylogenomics.

Applications in Plant Sciences 2(9):1400042 DOI 10.3732/apps.1400042.

Abreu et al. (2018), PeerJ, DOI 10.7717/peerj.4916 26/26

http://dx.doi.org/10.3732/ajb.94.3.275
http://dx.doi.org/10.3732/ajb.1400398
http://dx.doi.org/10.2307/2446640
http://dx.doi.org/10.2307/2444628
http://dx.doi.org/10.1371/journal.pone.0109704
http://dx.doi.org/10.1093/oxfordjournals.molbev.a026364
http://dx.doi.org/10.1016/j.ympev.2015.01.015
http://dx.doi.org/10.2307/4109211
http://dx.doi.org/10.1017/s1355838201010251
http://dx.doi.org/10.1554/02-746
http://dx.doi.org/10.3732/ajb.92.4.613
http://dx.doi.org/10.3732/apps.1400042
http://dx.doi.org/10.7717/peerj.4916
https://peerj.com/

	The use of chloroplast genome sequences to solve phylogenetic incongruences in Polystachya Hook (Orchidaceae Juss)
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusion
	flink6
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


