96,159 research outputs found

    Collaborative Training With a More Experienced Partner: Remediating Low Pretraining Self-Efficacy in Complex Skill Acquisition

    Get PDF
    Objective: This study examined the effectiveness of collaborative training for individuals with low pretraining self-efficacy versus individuals with high pretraining selfefficacy regarding the acquisition of a complex skill that involved strong cognitive and psychomotor demands. Background: Despite support for collaborative learning from the educational literature and the similarities between collaborative learning and interventions designed to remediate low self-efficacy, no research has addressed how selfefficacy and collaborative learning interact in contexts concerning complex skills and human-machine interactions. Method: One hundred fifty-five young male adults trained either individually or collaboratively with a more experienced partner on a complex computer task that simulated the demands of a dynamic aviation environment. Participants also completed a task-specific measure of self-efficacy before, during, and after training. Results: Collaborative training enhanced skill acquisition significantly more for individuals with low pretraining self-efficacy than for individuals with high pretraining self-efficacy. However, collaborative training did not bring the skill acquisition levels of those persons with low pretraining self-efficacy to the levels found for persons with high pretraining self-efficacy. Moreover, tests of mediation suggested that collaborative training may have enhanced appropriate skill development strategies without actually raising self-efficacy. Conclusion: Although collaborative training can facilitate the skill acquisition process for trainees with low self-efficacy, future research is needed that examines how the negative effects of low pretraining self-efficacy on complex skill acquisition can be more fully remediated. Application: The differential effects of collaborative training as a function of self-efficacy highlight the importance of person analysis and tailoring training to meet differing trainee needs.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Team Learning: A Theoretical Integration and Review

    Get PDF
    With the increasing emphasis on work teams as the primary architecture of organizational structure, scholars have begun to focus attention on team learning, the processes that support it, and the important outcomes that depend on it. Although the literature addressing learning in teams is broad, it is also messy and fraught with conceptual confusion. This chapter presents a theoretical integration and review. The goal is to organize theory and research on team learning, identify actionable frameworks and findings, and emphasize promising targets for future research. We emphasize three theoretical foci in our examination of team learning, treating it as multilevel (individual and team, not individual or team), dynamic (iterative and progressive; a process not an outcome), and emergent (outcomes of team learning can manifest in different ways over time). The integrative theoretical heuristic distinguishes team learning process theories, supporting emergent states, team knowledge representations, and respective influences on team performance and effectiveness. Promising directions for theory development and research are discussed

    Designing for interaction

    Get PDF
    At present, the design of computer-supported group-based learning (CS)GBL) is often based on subjective decisions regarding tasks, pedagogy and technology, or concepts such as ‘cooperative learning’ and ‘collaborative learning’. Critical review reveals these concepts as insufficiently substantial to serve as a basis for (CS)GBL design. Furthermore, the relationship between outcome and group interaction is rarely specified a priori. Thus, there is a need for a more systematic approach to designing (CS)GBL that focuses on the elicitation of expected interaction processes. A framework for such a process-oriented methodology is proposed. Critical elements that affect interaction are identified: learning objectives, task-type, level of pre-structuring, group size and computer support. The proposed process-oriented method aims to stimulate designers to adopt a more systematic approach to (CS)GBL design according to the interaction expected, while paying attention to critical elements that affect interaction. This approach may bridge the gap between observed quality of interaction and learning outcomes and foster (CS)GBL design that focuses on the heart of the matter: interaction

    Improved computation of individual ZPD in a distance learning system

    Get PDF
    This paper builds upon theoretical studies in the field of social constructivism. Lev Vygotsky is considered one of the greatest representatives of this research line, with his theory of the Zone of Proximal Development (ZPD). Our work aims at integrating this concept in the practice of a computer-assisted learning system. For each learner, the system stores a model summarizing the current Student Knowledge (SK). Each educational activity is specified through the deployed content, the skills required to tackle it, and those acquired, and is further annotated by the effort estimated for the task. The latter may change from one student to another, given the already achieved competence. A suitable weighting of the robustness (certainty) of student’s skills, stored in SK, and their combination are used to verify the inclusion of a learning activity in the student’s ZPD. With respect to our previous work, the algorithm for the calculation of the ZPD of the individual student has been optimized, by enhancing the certainty weighting policy, and a graphical display of the ZPD has been added. Thanks to the latter, the student can get a clear vision of the learning paths that he/she can presently tackle. This both facilitates the educational process, and helps developing the metacognitive ability self-assessment

    Distributed Learning System Design: A New Approach and an Agenda for Future Research

    Get PDF
    This article presents a theoretical framework designed to guide distributed learning design, with the goal of enhancing the effectiveness of distributed learning systems. The authors begin with a review of the extant research on distributed learning design, and themes embedded in this literature are extracted and discussed to identify critical gaps that should be addressed by future work in this area. A conceptual framework that integrates instructional objectives, targeted competencies, instructional design considerations, and technological features is then developed to address the most pressing gaps in current research and practice. The rationale and logic underlying this framework is explicated. The framework is designed to help guide trainers and instructional designers through critical stages of the distributed learning system design process. In addition, it is intended to help researchers identify critical issues that should serve as the focus of future research efforts. Recommendations and future research directions are presented and discussed

    Learning in Strategic Alliances

    Get PDF
    {Excerpt} Strategic alliances that bring organizations together promise unique opportunities for partners. The reality is often otherwise. Successful strategic alliances manage the partnership, not just the agreement,for collaborative advantage. Above all, they also pay attentionto learning priorities in alliance evolution. The resource-based view of the firm that gained currency in the mid-1980s considered that the competitive advantage of an organization rests on the application of the strategic resources at its disposal. These days, orthodoxy recognizes the merits of the dynamic, knowledge-based capabilities underpinning the positions organizations occupy in a sector or market. Strategic alliances—meaning cooperative agreements between two or more organizations—are a means to enhance strategic resources: self-sufficiency is becoming increasingly difficult in a complex, uncertain, and discontinuous external environment that calls for focus and flexibility in equal measure. Everywhere, organizations are discovering that they cannot “go” it alone and must now often turn to others to survive

    Rich environments for active learning in action: Problem‐based learning

    Get PDF
    Rich Environments for Active Learning (REALs) are comprehensive instructional systems that are consistent with constructivist theories. They promote study and investigation within authentic contexts; encourage the growth of student responsibility, initiative, decision making and intentional learning; cultivate collaboration among students and teachers; utilize dynamic, interdisciplinary, generative learning activities that promote higher‐order thinking processes to help students develop rich and complex knowledge structures; and assess student progress in content and learning‐to‐learn within authentic contexts using realistic tasks and performances. Problem‐Based Learning (PBL) is an instructional methodology that can be used to create REALs. PBL's student‐centred approach engages students in a continuous collaborative process of building and reshaping understanding as a natural consequence of their experiences and interactions within learning environments that authentically reflect the world around them. In this way, PBL and REALs are a response to teacher‐centred educational practices that promote the development of inert knowledge, such as conventional teacher‐to‐student knowledge dissemination activities. In this article, we compare existing assumptions underlying teacher‐directed educational practice with new assumptions that promote problem solving and higher‐level thinking by putting students at the centre of learning activities. We also examine the theoretical foundation that supports these new assumptions and the need for REALs. Finally, we describe each REAL characteristic and provide supporting examples of REALs in action using PB

    Toward a script theory of guidance in computer-supported collaborative learning

    Get PDF
    This article presents an outline of a script theory of guidance for computer-supported collaborative learning (CSCL). With its four types of components of internal and external scripts (play, scene, role, and scriptlet) and seven principles, this theory addresses the question how CSCL practices are shaped by dynamically re-configured internal collaboration scripts of the participating learners. Furthermore, it explains how internal collaboration scripts develop through participation in CSCL practices. It emphasizes the importance of active application of subject matter knowledge in CSCL practices, and it prioritizes transactive over non-transactive forms of knowledge application in order to facilitate learning. Further, the theory explains how external collaboration scripts modify CSCL practices and how they influence the development of internal collaboration scripts. The principles specify an optimal scaffolding level for external collaboration scripts and allow for the formulation of hypotheses about the fading of external collaboration scripts. Finally, the article points towards conceptual challenges and future research questions
    • 

    corecore