589,692 research outputs found

    A Renormalization Group Approach to the Chiral Transition

    Get PDF
    A methodology is given to test the QCD NfN_f=2 chiral transition, presently conjectured to be second order. Scaling forms for the correlation length, susceptibilities and equation of state are given which account for finite lattice spacing. Confirmation by lattice simulation would provide a large set of consistency checks for establishing that the transition is second order. Further corrections from finite volume effects and higher dimensional operator mixing are given. The implications of scaling corrections in finite temperature lattice QCD studies are examined with emphasis on tests for the believed second order chiral transition within the realistic setting of finite lattice spacing effects.Comment: AZPH-TH 93-07, latex, Ann. Phys. (in press 94

    Measuring cluster peculiar velocities with the Sunyaev-Zeldovich effects: scaling relations and systematics

    Full text link
    The fluctuations in the Cosmic Microwave Background (CMB) intensity due to the Sunyaev-Zeldovich (SZ) effect are the sum of a thermal and a kinetic contribution. Separating the two components to measure the peculiar velocity of galaxy clusters requires radio and microwave observations at three or more frequencies, and knowledge of the temperature T_e of the intracluster medium weighted by the electron number density. To quantify the systematics of this procedure, we extract a sample of 117 massive clusters at redshift z=0 from an N-body hydrodynamical simulation, with 2x480^3 particles, of a cosmological volume 192 Mpc/h on a side of a flat Cold Dark Matter model with Omega_0=0.3 and Lambda=0.7. Our simulation includes radiative cooling, star formation and the effect of feedback and galactic winds from supernovae. We find that (1) our simulated clusters reproduce the observed scaling relations between X-ray and SZ properties; (2) bulk flows internal to the intracluster medium affect the velocity estimate by less than 200 km/s in 93 per cent of the cases; (3) using the X-ray emission weighted temperature, as an estimate of T_e, can overestimate the peculiar velocity by 20-50 per cent, if the microwave observations do not spatially resolve the cluster. For spatially resolved clusters, the assumptions on the spatial distribution of the ICM, required to separate the two SZ components, still produce a velocity overestimate of 10-20 per cent, even with an unbiased measure of T_e. Thanks to the large size of our cluster samples, these results set a robust lower limit of 200 km/s to the systematic errors that will affect upcoming measures of cluster peculiar velocities with the SZ effect.Comment: 14 pages, 12 figures, MNRAS, in press. Figures 3 and 4 now contain more recent observational data. Other minor revisions according to referee's comment

    Discrimination of Cherenkov light in Liquid Scintillator for Neutrinoless Double Beta Decay Experiment

    Get PDF
     A liquid scintillator containing a tetrakis(isopropyl acetoacetato)zirconium has been developed for ZICOS experiment. We will use 180 tons of liquid scintillator containing 75 kg of 96Zr in the inner balloon(45 kg in fiducial volume)surrounding 64 % photo coverage of 20 inch photomultiplier. In order to reach the sensitivity ≥1027 years, we have to reduce 95 % of 208Tl decay backgrounds at least. Using Monte Carlo simulation, we could demonstrate new method using the hit pattern of PMT which received Cherenkov light, and could reduce 93 % of 208Tl background with 78 % efficiency for 0νββ signal. For the discrimination of Cherenkov light, we measured the timing pulse shape of Zr loaded liquid scintillator using FADC digitizer, and we found an inconsistent pulse shape at the rise timing with the template of scintillation. Also the event with an inconsistent pulse shape seems to have a directionality

    Caracterização quantitativa do volume de cavidades em um dispositivo de cavitação hidrodinâmica usando dinâmica de fluidos computacional

    Get PDF
    Hydrodynamic cavitation has been extensively studied for its potential to remove emerging pollutants. Despite the advance of the experimental studies involving this phenomenon, computational studies that evaluate the influence of the geometry of the cavitation devices on the flow parameters are still necessary. The purpose of this article was to evaluate the influence of the change in the geometry of a Venturi device on the volume of cavities formed in its divergent section using Computational Fluid Dynamics (CFD). The geometric parameters modified in the Venturi were: the diffuser angle and the relation between the height and the width of the throat (h/w). The volume of cavities is an important parameter because it influences the cavitation intensity. A cavitational bench system was constructed in order to obtain input data for simulation. The results showed that the increase in the diffuser angle from 6.5° to 18.5° gradually reduced the volume of cavities from 93 mm3to 10 mm3. Between the relations h/w = 0.05 and h/w = 0.45 was observed the formation of cavities between 106 mm3 and 77 mm3, however between h/w = 0.45 and h/w = 1.0 there was the formation of 213 mm3. Therefore, Venturi’s with diffuser angle less than 6.5º and relation h/w greater than 0.45 produce greater volume of cavities. The greater volume of cavities will not necessarily produce greater cavitational intensity, since cavitation clouds can be formed and reduce the implosion intensity of the cavitation bubbles

    Estimate of average freeze-out volume in multifragmentation events

    Get PDF
    An estimate of the average freeze-out volume for multifragmentation events is presented. Values of volumes are obtained by means of a simulation using the experimental charged product partitions measured by the 4pi multidetector INDRA for 129Xe central collisions on Sn at 32 AMeV incident energy. The input parameters of the simulation are tuned by means of the comparison between the experimental and simulated velocity (or energy) spectra of particles and fragments.Comment: To be published in Phys. Lett. B 12 pages, 5 figure

    Exploring modality switching effects in negated sentences: further evidence for grounded representations

    Get PDF
    Theories of embodied cognition (e.g., Perceptual Symbol Systems Theory; Barsalou, 1999, 2009) suggest that modality specific simulations underlie the representation of concepts. Supporting evidence comes from modality switch costs: participants are slower to verify a property in one modality (e.g., auditory, BLENDER-loud) after verifying a property in a different modality (e.g., gustatory, CRANBERRIES-tart) compared to the same modality (e.g., LEAVES-rustling, Pecher et al., 2003). Similarly, modality switching costs lead to a modulation of the N400 effect in event-related potentials (ERPs; Collins et al., 2011; Hald et al., 2011). This effect of modality switching has also been shown to interact with the veracity of the sentence (Hald et al., 2011). The current ERP study further explores the role of modality match/mismatch on the processing of veracity as well as negation (sentences containing “not”). Our results indicate a modulation in the ERP based on modality and veracity, plus an interaction. The evidence supports the idea that modality specific simulations occur during language processing, and furthermore suggest that these simulations alter the processing of negation

    Caracterização quantitativa do volume de cavidades em um dispositivo de cavitação hidrodinâmica usando dinâmica de fluidos computacional

    Get PDF
    Hydrodynamic cavitation has been extensively studied for its potential to remove emerging pollutants. Despite the advance of the experimental studies involving this phenomenon, computational studies that evaluate the influence of the geometry of the cavitation devices on the flow parameters are still necessary. The purpose of this article was to evaluate the influence of the change in the geometry of a Venturi device on the volume of cavities formed in its divergent section using Computational Fluid Dynamics (CFD). The geometric parameters modified in the Venturi were: the diffuser angle and the relation between the height and the width of the throat (h/w). The volume of cavities is an important parameter because it influences the cavitation intensity. A cavitational bench system was constructed in order to obtain input data for simulation. The results showed that the increase in the diffuser angle from 6.5° to 18.5° gradually reduced the volume of cavities from 93 mm3 to 10 mm3. Between the relations h/w = 0.05 and h/w = 0.45 was observed the formation of cavities between 106 mm3 and 77 mm3, however between h/w = 0.45 and h/w = 1.0 there was the formation of 213 mm3. Therefore, Venturi’s with diffuser angle less than 6.5º and relation h/w greater than 0.45 produce greater volume of cavities. The greater volume of cavities will not necessarily produce greater cavitational intensity, since cavitation clouds can be formed and reduce the implosion intensity of the cavitation bubbles.A cavitação hidrodinâmica tem sido amplamente estudada por seu potencial em remover poluentes emergentes. Apesar do avanço dos estudos experimentais envolvendo este fenômeno, ainda são necessários estudos computacionais que avaliem a influência da geometria dos dispositivos de cavitação nos parâmetros de escoamento. O objetivo deste artigo foi avaliar, por meio da Dinâmica de Fluidos Computacional (CFD), a influência da mudança da geometria de um dispositivo de Venturi sobre o volume de cavidades formadas em sua seção divergente. Os parâmetros geométricos modificados no Venturi foram: o ângulo divergente e a relação entre a altura e a largura da garganta (h/w). O volume das cavidades é um parâmetro importante porque influencia a intensidade da cavitação. Um sistema de bancada cavitacional foi construído a fim de obter dados de entrada para simulação. Os resultados mostraram que o aumento do ângulo divergente de 6,5° para 18,5° reduziu gradativamente o volume das cavidades de 93 mm3 para 10 mm3. Entre as relações h/w = 0,05 e h/w = 0,45 observou-se a formação de cavidades entre 106 mm3 e 77 mm3, porém entre h/w = 0,45 e h/w = 1,0 ocorreu a formação de 213 mm3. Portanto, Venturi's com ângulo divergente menor que 6,5º e relação h/w maior que 0,45 produzem maior volume de cavidades. O maior volume de cavidades não necessariamente produzirá maior intensidade cavitacional, uma vez que nuvens de cavitação podem se formar e reduzir a intensidade de implosão das bolhas de cavitação

    Ion Pair Potentials-of-Mean-Force in Water

    Full text link
    Recent molecular simulation and integral equation results alkali-halide ion pair potentials-of-mean-force in water are discussed. Dielectric model calculations are implemented to check that these models produce that characteristic structure of contact and solvent-separated minima for oppositely charged ions in water under physiological thermodynamic conditions. Comparison of the dielectric model results with the most current molecular level information indicates that the dielectric model does not, however, provide an accurate description of these potentials-of-mean-force. We note that linear dielectric models correspond to modelistic implementations of second-order thermodynamic perturbation theory for the excess chemical potential of a distinguished solute molecule. Therefore, the molecular theory corresponding to the dielectric models is second-order thermodynamic perturbation theory for that excess chemical potential. The second-order, or fluctuation, term raises a technical computational issue of treatment of long-ranged interactions similar to the one which arises in calculation of the dielectric constant of the solvent. It is contended that the most important step for further development of dielectric models would be a separate assessment of the first-order perturbative term (equivalently the {\it potential at zero charge} ) which vanishes in the dielectric models but is generally nonzero. Parameterization of radii and molecular volumes should then be based of the second-order perturbative term alone. Illustrative initial calculations are presented and discussed.Comment: 37 pages and 8 figures. LA-UR-93-420
    corecore