509 research outputs found

    Bibliographic Review on Distributed Kalman Filtering

    Get PDF
    In recent years, a compelling need has arisen to understand the effects of distributed information structures on estimation and filtering. In this paper, a bibliographical review on distributed Kalman filtering (DKF) is provided.\ud The paper contains a classification of different approaches and methods involved to DKF. The applications of DKF are also discussed and explained separately. A comparison of different approaches is briefly carried out. Focuses on the contemporary research are also addressed with emphasis on the practical applications of the techniques. An exhaustive list of publications, linked directly or indirectly to DKF in the open literature, is compiled to provide an overall picture of different developing aspects of this area

    Collaborative patch-based super-resolution for diffusion-weighted images

    Full text link
    In this paper, a new single image acquisition super-resolution method is proposed to increase image resolution of diffusion weighted (DW) images. Based on a nonlocal patch-based strategy, the proposed method uses a non-diffusion image (b0) to constrain the reconstruction of DW images. An extensive validation is presented with a gold standard built on averaging 10 high-resolution DW acquis itions. A comparison with classical interpo- lation methods such as trilinear and B-spline demonstrates the competitive results of our proposed approach in termsofimprovementsonimagereconstruction,fractiona lanisotropy(FA)estimation,generalizedFAandangular reconstruction for tensor and high angular resolut ion diffusion imaging (HARDI) models. Besides, fi rst results of reconstructed ultra high resolution DW images are presented at 0.6 × 0.6 × 0.6 mm 3 and0.4×0.4×0.4mm 3 using our gold standard based on the average of 10 acquisitions, and on a single acquisition. Finally, fi ber tracking results show the potential of the proposed super-resolution approach to accurately analyze white matter brain architecture.We thank the reviewers for their useful comments that helped improve the paper. We also want to thank the Pr Louis Collins for proofreading this paper and his fruitful comments. Finally, we want to thank Martine Bordessoules for her help during image acquisition of DWI used to build the phantom. This work has been supported by the French grant "HR-DTI" ANR-10-LABX-57 funded by the TRAIL from the French Agence Nationale de la Recherche within the context of the Investments for the Future program. This work has been also partially supported by the French National Agency for Research (Project MultImAD; ANR-09-MNPS-015-01) and by the Spanish grant TIN2011-26727 from the Ministerio de Ciencia e Innovacion. This work benefited from the use of FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), FiberNavigator (code.google.com/p/fibernavigator/), MRtrix software (http://www. brain.org.au/software/mrtrix/) and ITKsnap (www.itk.org).Coupé, P.; Manjón Herrera, JV.; Chamberland, M.; Descoteaux, M.; Hiba, B. (2013). Collaborative patch-based super-resolution for diffusion-weighted images. NeuroImage. 83:245-261. https://doi.org/10.1016/j.neuroimage.2013.06.030S2452618

    Distributed Kalman Filtering

    Get PDF

    Distributed Kalman Filtering

    Get PDF

    A robust deconvolution method to disentangle multiple water pools in diffusion MRI

    Get PDF
    The diffusion-weighted magnetic resonance imaging (dMRI) signal measured in vivo arises from multiple diffusion domains, including hindered and restricted water pools, free water and blood pseudo-diffusion. Not accounting for the correct number of components can bias metrics obtained from model fitting because of partial volume effects that are present in, for instance, diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI). Approaches that aim to overcome this shortcoming generally make assumptions about the number of considered components, which are not likely to hold for all voxels. The spectral analysis of the dMRI signal has been proposed to relax assumptions on the number of components. However, it currently requires a clinically challenging signal-to-noise ratio (SNR) and accounts only for two diffusion processes defined by hard thresholds. In this work, we developed a method to automatically identify the number of components in the spectral analysis, and enforced its robustness to noise, including outlier rejection and a data-driven regularization term. Furthermore, we showed how this method can be used to take into account partial volume effects in DTI and DKI fitting. The proof of concept and performance of the method were evaluated through numerical simulations and in vivo MRI data acquired at 3 T. With simulations our method reliably decomposed three diffusion components from SNR = 30. Biases in metrics derived from DTI and DKI were considerably reduced when components beyond hindered diffusion were taken into account. With the in vivo data our method determined three macro-compartments, which were consistent with hindered diffusion, free water and pseudo-diffusion. Taking free water and pseudo-diffusion into account in DKI resulted in lower mean diffusivity and higher fractional anisotropy values in both gray and white matter. In conclusion, the proposed method allows one to determine co-existing diffusion compartments without prior assumptions on their number, and to account for undesired signal contaminations within clinically achievable SNR levels

    Advanced Image Acquisition, Processing Techniques and Applications

    Get PDF
    "Advanced Image Acquisition, Processing Techniques and Applications" is the first book of a series that provides image processing principles and practical software implementation on a broad range of applications. The book integrates material from leading researchers on Applied Digital Image Acquisition and Processing. An important feature of the book is its emphasis on software tools and scientific computing in order to enhance results and arrive at problem solution

    Multiresolution models in image restoration and reconstruction with medical and other applications

    Get PDF
    corecore