94 research outputs found

    Leadership Development, Identity, Culture and Context: A Qualitative Case Study

    Get PDF
    This thesis explores the impact and effects of a leadership development programme in-depth and over time. There has been a lack of attention given to understanding the impact of such interventions in the academic literature. Where studies do investigate the impact (s) of leadership development they tend to focus almost exclusively on positive outcomes or the achievement of pre-determined targets and tend to be short-term in focus. This research finds that there is also a shadow side of leadership development, defined as the unintended effects of leadership development programmes which can be counter-productive and dysfunctional. A longitudinal case study approach was adopted comprising documentary analysis, observation and interviews, the latter of which were conducted with multiple stakeholders at three different junctures in time during and beyond the length of the leadership development programme. Three conceptual dimensions of identity, organisational culture and organisational context were identified which together facilitated a multi-faceted understanding of the changing impact and effects of the leadership development programme over time. In conclusion this thesis makes both a theoretical and methodological contribution by adding a longitudinal, multi-level analysis and evaluation of leadership development, evidencing both positive and shadow impacts and effects

    Ranking diffusion-MRI models with in-vivo human brain data

    Get PDF
    Diffusion MRI microstructure imaging provides a unique non-invasive probe into the microstructure of biological tissue. Its analysis relies on mathematical models relating microscopic tissue features to the MR signal. This work aims to determine which compartment models of diffusion MRI are best at describing the signal from in-vivo brain white matter. Recent work shows that three compartment models, including restricted intra-axonal, glial compartments and hindered extra-cellular diffusion, explain best multi b-value data sets from fixed rat brain tissue. Here, we perform a similar experiment using in-vivo human data. We compare one, two and three compartment models, ranking them with standard model selection criteria. Results show that, as with fixed tissue, three compartment models explain the data best, although simpler models emerge for the in-vivo data. We also find that splitting the scanning into shorter sessions has little effect on the models fitting and that the results are reproducible. The full ranking assists the choice of model and imaging protocol for future microstructure imaging applications in the brain

    Countering the Zika epidemic in Latin America

    Get PDF
    No description supplie

    The role of rapid diagnostics in managing Ebola epidemics

    Get PDF
    Ebola emerged in West Africa around December 2013 and swept through Guinea, Sierra Leone and Liberia, giving rise to 27,748 confirmed, probable and suspected cases reported by 29 July 2015. Case diagnoses during the epidemic have relied on polymerase chain reaction-based tests. Owing to limited laboratory capacity and local transport infrastructure, the delays from sample collection to test results being available have often been 2 days or more. Point-of-care rapid diagnostic tests offer the potential to substantially reduce these delays. We review Ebola rapid diagnostic tests approved by the World Health Organization and those currently in development. Such rapid diagnostic tests could allow early triaging of patients, thereby reducing the potential for nosocomial transmission. In addition, despite the lower test accuracy, rapid diagnostic test-based diagnosis may be beneficial in some contexts because of the reduced time spent by uninfected individuals in health-care settings where they may be at increased risk of infection; this also frees up hospital beds. We use mathematical modelling to explore the potential benefits of diagnostic testing strategies involving rapid diagnostic tests alone and in combination with polymerase chain reaction testing. Our analysis indicates that the use of rapid diagnostic tests with sensitivity and specificity comparable with those currently under development always enhances control, whether evaluated at a health-care-unit or population level. If such tests had been available throughout the recent epidemic, we estimate, for Sierra Leone, that their use in combination with confirmatory polymerase chain-reaction testing might have reduced the scale of the epidemic by over a third

    Report 8: Symptom progression of COVID-19

    Get PDF
    The COVID-19 epidemic was declared a Public Health Emergency of International Concern (PHEIC) by WHO on 30th January 2020 [1]. As of 8 March 2020, over 107,000 cases had been reported. Here, we use published and preprint studies of clinical characteristics of cases in mainland China as well as case studies of individuals from Hong Kong, Japan, Singapore and South Korea to examine the proportional occurrence of symptoms and the progression of symptoms through time. We find that in mainland China, where specific symptoms or disease presentation are reported, pneumonia is the most frequently mentioned, see figure 1. We found a more varied spectrum of severity in cases outside mainland China. In Hong Kong, Japan, Singapore and South Korea, fever was the most frequently reported symptom. In this latter group, presentation with pneumonia is not reported as frequently although it is more common in individuals over 60 years old. The average time from reported onset of first symptoms to the occurrence of specific symptoms or disease presentation, such as pneumonia or the use of mechanical ventilation, varied substantially. The average time to presentation with pneumonia is 5.88 days, and may be linked to testing at hospitalisation; fever is often reported at onset (where the mean time to develop fever is 0.77 days)

    Ball and rackets: inferring fiber fanning from diffusion-weighted MRI

    Get PDF
    A number of methods have been proposed for resolving crossing fibers from diffusion-weighted (DW) MRI. However, other complex fiber geometries have drawn minimal attention. In this study, we focus on fiber orientation dispersion induced by within-voxel fanning. We use a multi-compartment, model-based approach to estimate fiber dispersion. Bingham distributions are employed to represent continuous distributions of fiber orientations, centered around a main orientation, and capturing anisotropic dispersion. We evaluate the accuracy of the model for different simulated fanning geometries, under different acquisition protocols and we illustrate the high SNR and angular resolution needs. We also perform a qualitative comparison between our parametric approach and five popular non-parametric techniques that are based on orientation distribution functions (ODFs). This comparison illustrates how the same underlying geometry can be depicted by different methods. We apply the proposed model on high-quality, post-mortem macaque data and present whole-brain maps of fiber dispersion, as well as exquisite details on the local anatomy of fiber distributions in various white matter regions

    A simple approach to measure transmissibility and forecast incidence

    Get PDF
    Outbreaks of novel pathogens such as SARS, pandemic influenza and Ebola require substantial investments in reactive interventions, with consequent implementation plans sometimes revised on a weekly basis. Therefore, short-term forecasts of incidence are often of high priority. In light of the recent Ebola epidemic in West Africa, a forecasting exercise was convened by a network of infectious disease modellers. The challenge was to forecast unseen “future” simulated data for four different scenarios at five different time points. In a similar method to that used during the recent Ebola epidemic, we estimated current levels of transmissibility, over variable time-windows chosen in an ad hoc way. Current estimated transmissibility was then used to forecast near-future incidence. We performed well within the challenge and often produced accurate forecasts. A retrospective analysis showed that our subjective method for deciding on the window of time with which to estimate transmissibility often resulted in the optimal choice. However, when near-future trends deviated substantially from exponential patterns, the accuracy of our forecasts was reduced. This exercise highlights the urgent need for infectious disease modellers to develop more robust descriptions of processes – other than the widespread depletion of susceptible individuals – that produce non-exponential patterns of incidence
    • …
    corecore