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THESIS ABSTRACT

NAME: Muhammad Haris Khalid

TITLE OF STUDY: Distributed Kalman Filtering

MAJOR FIELD: Systems Engineering

DATE OF DEGREE: September 18, 2012

In recent years, a compelling need has arisen to understand the effects of distributed

information structures on estimation and filtering. In this thesis, distributed Kalman fil-

tering has been on focus with various perspectives. Firstly, a bibliographical review on

distributed Kalman filtering (DKF) is provided. A classification of different approaches

and methods involved to DKF has been elaborated, followed by the applications of DKF

are also discussed and explained separately. A comparison of different approaches is

briefly carried out. Focuses on the contemporary research are also addressed with

emphasis on the practical application of the techniques. An exhaustive list of publica-

tions, linked directly or indirectly to DKF in the open literature, is compiled to provide

an overall picture of different developing aspects of this area.
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Secondly, an approximate distributed estimation within distributed networked con-

trol formalism has been proposed. This is made possible by using Bayesian-based

forward-backward (FB) system with generalized versions of Kalman filter. The analyt-

ical treatment is presented for cases with complete, incomplete or no prior information

with bounds and then followed by estimation fusion for all three cases. The proposed

scheme is validated on a rotational drive-based electro-hydraulic system and the ensu-

ing results ensured the effectiveness of the scheme underpinning it.

The thesis proposes distributed expectation maximization (EM)-based reduced-order

singular evolutive extended Kalman (SEEK) smoother. Optimal reduced-order smoothers

complement the computation by doing re-analysis to correct the state of a dynamic

system. The nature of order reduction of the SEEK smoother is fulfilling this phase,

and made more precise by injecting the Kalman-like particle nature of the filter. The

proposed scheme is first evaluated with its distributed full-order EM-based smoother

version, followed by its reduced order version. The EM algorithm plays its role to

identify and improve the estimate of process noise covariance Q in each case. The pro-

posed scheme is then validated on a power quality system with various kinds of loads,

ensuring the effectiveness and applicability of the scheme underpinning it.

An approach for distributed estimation algorithm is proposed using information

matrix filter on a distributed tracking system in which N number of sensors are track-

ing the same target. The approach incorporates proposed engineered versions of in-

formation matrix filter derived from covariance intersection, weighted covariance and

Kalman-like particle filter (KLPF) respectively. The steady performance of these filters

xiii



is evaluated with different feedback strategies, moreover employing them with com-

monly used measurement fusion methods i.e. measurement fusion and state-vector fu-

sion respectively to complete the picture. The proposed filters are then validated on

an industrial utility boiler, ensuring the effectiveness and applicability of the scheme

underpinning it.

Keywords: DKF, Bayesian approach, prior information, distributed estimation, ap-

proximate estimation, electro-hydraulic system, expectation maximization, power sys-

tem quality, EM smoother, information matrix filter, covariance intersection, weighted

covariance, KLPF, industrial utility boiler.
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1 INTRODUCTION

1.1 DISTRIBUTED KALMAN FILTERING

In recent years, a compelling need has arisen to understand the effects of distributed

information structures on estimation and filtering. Technological advances in hardware

and software over the past few decades have enabled cheap and small, yet powerful,

communication and computation devices leading to this field. The distributed system

architecture, on the whole, is very powerful since it allows the design of the individ-

ual units or components to be much simpler, while not compromising too much on the

performance. Additional benefits include increased robustness to component loss, in-

creased flexibility in that the components can be reconfigured for many different tasks

and so on. However, the design of such systems challenges various problems of as-

sumptions, handling, fusing the architecture of such systems.

Distributed Kalman Filtering (DKF) in general shows scheme or class of schemes

which employs Kalman filter either interconnected or spatially distributed. If the system

by definition, employs sensor network, can process to employ Kalman filter, advance-

ments (mass produced), in order to develop for multi-sensor network, multi-sensor data

1



1.1. DISTRIBUTED KALMAN FILTERING

fusion, for this Kalman filter is an old scheme, and we need revised version of Kalman

filters. Therefore in some cases, the conditions of standard Kalman filtering are vio-

lated and the regular recursive formulation can not be derived directly from the Kalman

filtering theory and we have to propose methods for uncertain observations, passive

packet loss, finite-time correlated noises etc.

Many advanced systems now make use of large number of sensors in practical ap-

plications ranging from aerospace and defense, robotics and automation systems, to

the monitoring and control of a process generation plants. For example, an impor-

tant practical problem in the above systems is to find an optimal state estimator given

the observations. Moreover, DKF using applications of sensor fusion filter, federated

square root filter, network of wireless cameras, multi-user detection problems, forma-

tion flying satellites, sparse large-scale systems, estimation on quantized observations

etc. gives the route to DKF with applications.

The idea of distributing the computations involved in estimation problems using

Kalman filters in sensor networks has been a subject of research since the late 1970s

[1]. This section presents some of the recent contributions in this area.

OlfatiSaber [2] presented a distributed Kalman filter wherein a system with an -

dimensional measurement vector is first split into subsystems of -dimensional mea-

surement vectors, then these subsystems are individually processed by micro Kalman

filters in the nodes of the network. In this system, the sensors compute an average in-

verse covariance and average measurements using consensus filters. These averaged

values are then used by each node to individually compute the estimated state of the

2



1.1. DISTRIBUTED KALMAN FILTERING

system using the information form of the Kalman filter. Even though this approach is

effective in an environment monitoring application where the state vector is partially

known by each node in the network, it is not valid for an object tracking application

where, at a given time, each node in a small number of nodes knows the entire state

vector (although possibly not accurately).

Nettleton et al. [3] proposed a tree-based architecture in which each node computes

the update equations of the Kalman filter in its information form and sends the results to

its immediate predecessor in the tree. The predecessor then aggregates the received data

and computes a new update. Node asynchrony is handled by predicting asynchronously

received information to the current time in the receiving node. This approach is scalable

since the information transmitted between any pair of nodes is fixed. However, the

size of the information matrix is proportional to , where is the dimension of the state

vector. In a sensor network setting, this information may be too large to be transmitted

between nodes; therefore, methods to effectively quantize this information may need to

be devised.

Regarding quantization, the work by Ribeiro et al. [4], studied a network envi-

ronment wherein each node transmits a single bit per observation, the sign of innova-

tion (SOI), at every iteration of the filter. The system assumes an underlying sensor-

scheduling mechanism so that only one node transmits the information at a time. It also

assumes the update information (i.e., the signs of innovations) to be available to each

node of the network. They showed that the mean squared error of their SOI Kalman

filter is closely related to the error of a clairvoyant Kalman filter, which has access to

3



1.2. RESEARCH OBJECTIVES AND METHODOLOGY

all of the data in analog form. There is an interesting tradeoff between the works by

Nettleton et al. and Ribeiro et al. The former presents a high level of locality (i.e.,

each node only needs information about its immediate neighbors). On the other hand,

a reasonably large amount of information must be transmitted by each node. The later,

by its turn, requires the transmission of a very small amount of information by each

node; however, the algorithm does not present locality since the information must be

propagated throughout the network. This kind of tradeoff must be carefully considered

when designing an algorithm for real wireless sensor network applications.

To the best of our knowledge, the only work that applies Kalman filtering to a

cluster-based architecture for object tracking using camera networks is that proposed

by Goshorn et al. [5]. Their system assumes that the network is previously partitioned

into clusters of cameras with similar fields of view. As the target moves, information

within a cluster is handed off to a neighboring cluster.

1.2 RESEARCH OBJECTIVES AND METHODOLOGY

From the filtering and estimation perspective that we propose in this dissertation, the

following is the main reason why the distributed filtering and estimation fusion problem

is difficult.

1.2.1 PROBLEM STATEMENT

In distributed estimation problems, parallelism arises naturally due to the data obtained

from different local sensors or subsystems located at various dispersed locations. Un-

4



1.3. DISSERTATION STRUCTURE

fortunately, due to limited communication bandwidth, or to increase survivability of the

system in a poor environment, such as a war situation or in mission critical systems,

every local sensor has to carry out filtering upon its own observations first for local re-

quirement, and then transmit the processed data local state estimate to a fusion center.

Therefore, the fusion center now needs to fuse all received local estimates to yield a

globally optimal state estimate. Moreover, when the fusion takes place, the filtering job

gets more challenging.

1.3 DISSERTATION STRUCTURE

The following is the dissertation structure for the chapters to follow. In chapter 2, we

deal with the bibliographic literature survey of the distributed Kalman filtering, fol-

lowed by chapter 3, which has the approximate distributed estimation of distributed

Kalman filtering, followed by chapter 4, which has distributed EM-Based Kalman

smoother. Chapter 5 contains the distributed estimation via information matrix ap-

proach. In the end is chapter 6 where conclusions and future perspectives are made.

1.4 CONTRIBUTION

The following are the research originalities and contributions of this dissertation.

• A comprehensive bibliographic review has been made where distributed Kalman

filtering has been divided into eight classification.

• Bayesian-Based Forward Backward Kalman Filter has been derived, followed

5



1.4. CONTRIBUTION

by three cases of Prior Information derived for Bayesian-Based Forward Backward

Kalman Filter. Then two Techniques of Upper Bound and Lower Bound have been

applied on three cases of Prior Information. In the simulation, various comparison

simulations for electro-hydraulic system with faults have been made. In the end, time

computation comparison of different techniques applied has been shown.

• Kalman-like particle smoother has been derived, followed by derivation and im-

plementation of full-order Kalman-like particle smoother with EM algorithm, then the

derivation and implementation of reduced-order Kalman-like particle smoother with

EM algorithm has been made. In the simulation, power quality system simulation

with comparison for full-order system and reduced-order system respectively have been

made.

• Derivations and implementations have been made for the covariance intersection-

based information matrix filter, weighted covariance-based information matrix filter

and Kalman-like particle filter-based information matrix filter respectively. In the sim-

ulation, industrial utility boiler simulation with comparison for various feedback strate-

gies and measurement fusion methods has been made.
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2 BIBLIOGRAPHIC REVIEW

2.1 AN OVERVIEW

This chapter presents a bibliographic literature survey and technical review on Dis-

tributed Kalman Filtering.

2.2 INTRODUCTION

In hi-tech environment, a strict surveillance unit is required for an appropriate supervi-

sion. It often utilizes a group of distributed sensors which provide information of the

local targets. Comparing with the centralized Kalman filtering (CKF), which can be

used in mission critical scenarios, where every local sensor is important with its local

information, the distributed fusion architecture has many advantages. There is no sec-

ond thought that in certain scenarios, centralized Kalman filter plays a major role, and

it involves minimum information loss. A general structure for the DKF can be seen in

figure (see Fig. 2.1).

The distributed system architecture, on the whole, is very powerful since it allows

the design of the individual units or components to be much simpler, while not compro-
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2.2. INTRODUCTION

Figure 2.1: A general structure of DKF
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2.2. INTRODUCTION

mising too much on the performance. Additional benefits include increased robustness

to component loss, increased flexibility in that the components can be reconfigured for

many different tasks and so on. However, the design of such systems challenges var-

ious problems of assumptions, handling, fusing the architecture of such systems. Our

purpose is to provide a bibliographic survey on DKF and its architectures, comprising

of distribution, fusion, filtering and estimation. A classification of such an architecture

can be seen in the figure (see Fig. 2.2), which shows the vision of filtering and estima-

tion under the umbrella of DKF. DKF methods have been categorized into eight main

divisions which are then further categorized into other several subdivisions.

Therefore, in this paper, we present a bibliographic literature survey and technical

review of DKF. The remaining part of the paper is organized as follows: Bibliographic

review and technical survey of DKF and its applications are presented in Section II,

diffusion-based DKF in Section III, followed by Distributed OOSM in Section IV,

MSDF systems in section V, followed by DN in section VI, mathematical design in

track-to-track fusion in Section VII, DC-based estimation in Section VIII, DPF in Sec-

tion IX, ST-based distributed fusion Kalman filter in Section X. Finally some conclud-

ing remarks are given in Section XI. It should be noted that remark has been generated

at the end of every section, showing the generic formulation generation explanation of

a particular approach in that specific section.

3* The Fig. 2 is showing the classification of distributed Kalman filter, where KF stands for

Kalman filter, DKF stands for distributed Kalman filter, EKF stands for extended Kalman filter,

DC stands for distributed consensus, MSDF stands for multi-sensor data fusion, OOSM stands

for out-of-sequence measurements, SN stands for sensor network, ST stands for self tuning,

DPF stands for Distributed particle filter, DN stands for distributed networks.
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2.2. INTRODUCTION

Figure 2.2: Classification of Distributed Kalman Filter*
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2.3 DKF METHODS AND THEIR APPLICATIONS

2.3.1 DKF METHODS

DKF can be introduced through different methods promoting to a better filtering ap-

proach, also considering various scenarios. A list of publications focusing on DKF

methods and their applications is summarized in Table 2.1 and Table 2.2. In Table 2.1,

the most recent references are [335] and [31], where in [335], a method is discussed un-

der uncertain observations, including measurement with a false alarm probability as a

special case. Moreover, it is proved that under a mild condition the fused state estimate

is equivalent to the centralized Kalman filtering. In [31], consensus strategies of DKF

are discussed where the problem of estimating the state of a dynamical system from

distributed noisy measurements is considered with the help of a two-stage strategy for

estimation. Other DKF methods and their applications can be seen in [7], [8], [9], [10],

[101], [151], [152], [158], [162], [202], [203], [204], [205], [206], [276], [297], [298]

and [300].

In Table 2.2, the most recent references are [25] and [33], where in [25], the estima-

tion of sparsely connected, large scale systems is reported, moreover full distribution of

Kalman filter is achieved. In [33], a network is modeled as a Bernoulli random topol-

ogy and establish necessary and sufficient conditions for mean square sense and almost

sure convergence of average consensus when network links fail. Other DKF methods

and its applications can be seen in [26], [27], [28], [29], [30], [31], [32], [123], [153],

[218], [219] and [220].
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Remark 2.3.1 In [162], an �-sensor distributed dynamic system is described by:

xk+1 = φkxk + υk, k = 0, 1, .... (2.1)

yik = H i
kxk + wi

k, i = 1, ...., � (2.2)

where φk is a matrix of order r × r, xk, vk ∈ Rr, Hk
i ∈ RNi×r, yik , wk

i ∈ RNi .

The process noise υk and measurement noise wk
i are both zero-mean random variables

independent of each other temporally but wk
i and wk

j may be cross-correlated for i �= j

at the same time instant k.

To compare performances between the centralized and distributed filtering fusion,

the stacked measurement equation is written as:

yk = Hkxk + wk (2.3)

where

yk = (y1
t

k , ......, y
�t

k )
t, Hk = (H1t

k , ......, H
�t

k )
t,

wk = (w1t

k , ......, w
�t

k )
t (2.4)

and the covariance of the noise wk is given by:

Cov(wk) = Rk, R
i
k = Cov(wi

k), i = 1, ...., � (2.5)

where Rk and Ri
k are both invertible for all i. According to the standard results of
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Kalman filtering, the local Kalman filtering at the i-th sensor is expressed as:

K̂i
k = P̂ i

k/kH
it

k R̂
i−1

k (2.6)

x̂ik/k = x̂ik/k−1 + K̂i
k(y

i
k −H i

kx̂
i
k/k−1) (2.7)

P̂ i
k/k = P̂ i

k/k−1 − K̂i
kHkP̂

i
k/k−1 (2.8)

where, the covariance of filtering error can be stated as:

P̂ i−1

k/k = P̂ i−1

k/k−1 +H i
k

t
R̂i−1

k H i
k (2.9)

with

x̂ik/k−1 = Φ̂kx̂
i
k−1/k−1,

P̂ i
k/k = E[(x̂ik/k − x̂k)(x̂

i
k/k−1 − x̂k)

t]

P̂ i
k/k−1 = E[(x̂ik/k−1 − x̂k)(x̂

i
k/k−1 − x̂k)

t] (2.10)

Similarly, the centralized Kalman filtering with all sensor data is given by:

K̂k = P̂k/kH
t
kR̂

−1
k (2.11)

x̂k/k = x̂k/k−1 + K̂k(yk −Hkx̂k/k−1) (2.12)

P̂k/k = P̂k/k−1 − K̂kHkP̂k/k−1 (2.13)
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where, the covariance of filtering error can be described as:

P̂−1k/k = P̂−1k/k−1 +Hk
tR̂−1k Hk (2.14)

with

x̂k/k−1 = Φ̂kx̂k−1/k−1,

P̂k/k = E[(x̂k/k − x̂k)(x̂k/k−1 − x̂k)
t]

P̂k/k−1 = E[(x̂k/k−1 − x̂k)(x̂k/k−1 − x̂k)
t] (2.15)

It is quite clear when the sensor noises are cross-dependent that

H t
kR̂

−1
k Hk =

l∑
i=1

H it

k R̂
i−1

k H i
k (2.16)

Likewise, the centralized filtering and error matrix could be explicitly expressed in

terms of the local filtering and error matrices as follows:

P̂−1k/k = P̂−1k/k−1 +
l∑

i=1

(P̂ i−1

k/k − P̂ i−1

k/k−1) (2.17)

and

P̂−1k/kx̂k/k = P̂−1k/k−1 +
l∑

i=1

(P̂ i−1

k/k x̂
i
k/k − P̂ i−1

k/k−1x̂
i
k/k−1) (2.18)
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Also,

H i′
k R̂

i−1

k yik = P̂ i−1

k/k x̂
i
k/k − P̂ i−1

k/k−1x̂
i
k/k−1 (2.19)

Proposition 2.1 In what follows is the detailed bibliographic review of DKF methods

which have been explained comprehensively in Table 2.1 and Table 2.2 respectively.

The recent references have been explained and others have been cited in the tables. In

the end [162] considering the distributed dynamic systems for DKF has been explained

as a particular case.

2.3.2 DKF WITH APPLICATIONS

This section shows the characterization of DKF with various applications. A list of

publications in some application-oriented research is summarized in Table 2.3 and Ta-

ble 2.4 respectively. As it can be seen, a large amount of research has been carried out

in the framework of modified filters. In Table 2.3, the most recent ones are as follows.

In [186], the synthesis of a distributed algorithm is made to compute weighted least

squares estimates with sensor measurements correlated. In [199], distributed object

tracking system which employs a cluster-based Kalman filter in a network of wireless

cameras is presented. In [211] [212], distributed recursive mean-square error optimal

quantizer-estimator based on the quantized observations is presented. Other DKF ap-

plications can be seen in [335], [336], [338], [339] .[38], [39], [40], [41], [42], [43],

[44], [105], [106], [109], [114], [119], [156], [179], [191], [197], [213], [214], [215],

[216], [221], [233], [237] , [238] and [242].
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2.3. DKF METHODS AND THEIR APPLICATIONS

Table 2.1: DKF Methods I
DKF Design Approaches Used References

• Under uncertain observations, including measurement

with a false alarm probability [335]

• Under uncertain observations, randomly variant dynamic

systems with multiple models [7]

• Optimal centralized and distributed fusers are

algebraically equivalent in this case [8]

• Power systems: mode estimation. A trust-based DKF

approach to estimate the modes of power systems [9]

• Using Standard Kalman filter locally, together with a consensus

step in order to ensure that the local estimates agree [10]

• Frequency-domain characterization of the distributed estimator’s

steady-state performance [101]

• EKF to globally optimal KF for the dynamic systems with finite-time

correlated noises [151]

• Distributed Kalman-type processing scheme essentially makes use of the

fact that the sensor measurements do not enter into the update equation for the

estimation error covariance matrices [152]

• DKF fusion with weighted covariance approach [158]

• DKF fusion with passive packet loss or initiative intermittent

communications from local estimators to a fusion center while the

process noise does exist [162]

• For each Kalman update, an infinite number of consensus steps

to restricted to one [202] [203]

• For each Kalman update, state estimates are additionally exchanged [204]

• Only the estimates at each Kalman update over-head are exchanged [205]

• Analyzes the number of messages to exchange between successive

updates in DKF [206]

• Global Optimality of DKF fusion exactly equal to the corresponding

centralized optimal Kalman filtering fusion [276]

• A parallel and distributed state estimation structure developed

from an hierarchical estimation structure [297]

• A computational procedure to transform an hierarchical Kalman filter

into a partially decentralized estimation structure [298]

• Optimal DKF based on a-priori determination of measurements [300]

16



2.3. DKF METHODS AND THEIR APPLICATIONS

Table 2.2: DKF Methods II
DKF References

• Estimate sparsely connected, large scale systems [25]

• n-th order with multiple sensors [26]

• Data-fusion over arbitrary communication networks [27]

• Iterative consensus protocols [28]

• Using bipartite fusion graphs [29]

• Local average consensus algorithms [30]

• Based on consensus strategies [31]

• Semi-definite programming -based consensus Iterations [32]

• Converge Speed of consensus strategies [33]

• Distributed Kalman filtering, with focus on limiting the

required communication bandwidth [123]

• Distributed Kalman-type processing scheme, which provides

optimal track-to-track fusion results at arbitrarily chosen

instants of time [153]

• Distributed architecture of track-to-track

fusion for computing the fused estimate from multiple filters

tracking a maneuvering target with the simplified maximum

likelihood estimator [218]

• Original batch form of the Maximum Likelihood (ML) estimator [219]

• Modified Probabilistic Neural Network [220]
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2.4. DIFFUSION-BASED DKF

In Table 2.4, the most recent one are as follows. Low-power DKF based on a fast

polynomial filter is shown in [267]. Distributed ’Kriged’ Kalman filtering is addressed

in [272]. Decoupled distributed Kalman fuser presented by using Kalman filtering

method and white noise estimation theory is shown in [281]. Decomposition of a linear

process model into a cascade of simpler subsystems is given in [282]. Other applica-

tions can be seen in [7], [338], [247], [248], [268], [269], [270], [271], [273], [275],

[283], [284], [299], [321], [323], and [324] respectively.

Proposition 2.2 In what follows is the detailed bibliographic review of DKF methods

with applications which have been explained comprehensively in Table 2.3 and Table

2.4 respectively. The recent references have been explained and others have been cited

in the tables.

2.4 DIFFUSION-BASED DKF

The publications of diffusion-based DKF are classified in Table 2.5. Recent ones in

this area are as follows. Diffusion-based distributed expected maximization (EM) al-

gorithm for Gaussian mixtures is shown in [50]. Diffusion-based Kalman filtering and

smoothing algorithm is shown in [51]. Diffusion Kalman filtering for every measure-

ment and for every node, a local state estimate using the data from the neighborhood

is provided in [178]. Other publications classified with diffusion-based DKF are [97],

[99], [173], [174], [175], [176] and [177] respectively.

Remark 2.4.1 In the paper [50], a diffusion scheme of EM (DEM) algorithm for Gaus-

sian mixtures in Wireless Sensor Networks (WSNs) is proposed. At each iteration, the
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2.4. DIFFUSION-BASED DKF

Table 2.3: DKF with Applications I

DKF with Applications References

• Multi-sensor networks amenable to parallel processing [38]

• Two sensors fusion filter [39]

• Federated square root filter [40]

• Fusion filter for LTI systems with correlated noises [41]

• Fusion filter for multichannel ARMA signals [42]

• Fusion de-convolution estimators for the input white noise [43]-[44]

• DKF for cooperative localization by reformulating as a

parameter estimation problem [105]

• DKF techniques for multi-agent localization [106][109]

• Collaborative processing of information, and gathering

scientific data from spatially distributed sources [114]

• Particle filter implementations use Gaussian approximations [119]

• Channel estimation method based on the recent methodology of distributed

compressed sensing (DCS) and frequency domain Kalman filter [156]

• Algorithm for DKF, where global information about the state

covariances is required [179]

• The synthesis of a distributed algorithm to compute weighted least

squares estimates with sensor measurements correlated [186]

• Distributive and efficient computation of linear MMSE for the

multiuser detection problem [191]

• A statistical approach derived, calculating the exact PDF

approximated by EKF [197]

• Distributed object tracking system which employs a cluster-based

Kalman filter in a network of wireless cameras [199]

• Distributed recursive MSE optimal quantizer-estimator based on

the quantized observations [211] [212]

• Design a communication access protocol for wireless sensor networks

tailored to converge rapidly to the desired estimate and provides scalable error

performance [213][214]

• Decentralized versions of the Kalman filter [215]

• DKF estimator based on quantized measurement innovations [216]

• Novel distributed filtering/smoothing approach, flexible to trade-off estimation

delay for MSE reduction, while exhibiting robustness [221]

• Distributed estimation agents designed with a bank of local KFs using

consensus method [233]

• State estimation of dynamical stochastic processes based on severely

quantized observations [237] [238]

• Scheme for approximate DKF based on reaching an average-consensus [242]
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Table 2.4: DKF with Applications II

DKF with Applications References

• When no feedback from the fusion center to local sensors, a distributed Kalman

filtering fusion formula under a mild condition [247]

• Rigorous performance analysis for KF fusion with feedback [248]

• Low-power DKF based on a fast polynomial filter [267]

• Consensus Problem and their special cases [268]

• DKF for sparse large-scale systems monitored by sensor networks [269]

• DKF to estimate actuator faults for deep space formation flying satellites [270]

• Internal model average consensus estimator for DKF [271]

• Distributed Kriged Kalman filtering [272]

• The behavior of the distributed Kalman filter varies smoothly from a

centralized Kalman filter to a local Kalman filter with average consensus update [273]

• Track fusion formulas with feedback are, like the track fusion without feedback [275]

• Decoupled distributed Kalman fuser presented by using Kalman filtering

method and white noise estimation theory [281]

• Decomposition of a linear process model into a cascade of simpler subsystems [282]

• Distributed fusion steady-state Kalman filtering by using the modern time

series analysis method [283]

• Distributed Kalman filtering with weighted covariance transfer function [284]

describing the error behavior of the DKF in the case of stationary noise processes [299]

• DKF approach for distributed parametric systems, for deep space [321][323]

formations, for unreliable information, for false alarms respectively [324][326]
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time-varying communication network is modeled as a random graph. A diffusion-step

(D-step) is implemented between the E-step and the M-step. In the E-step, sensor nodes

compute the local statistics by using local observation data and parameters estimated

at the last iteration. In the D-step, each node exchanges local information only with its

current neighbors and updates the local statistics with exchanged information. In the

M-step, the sensor nodes compute the estimation of parameter using the updated local

statistics by the D-step at this iteration. Compared with the existing distributed EM al-

gorithms, the proposed approach can extensively save communication for each sensor

node while maintain the estimation performance. Different from the linear estimation

methods such as the least-squares and the least-mean squares estimation algorithms,

each iteration of EM algorithm is a nonlinear transform of measurements. The steady-

state performance of the proposed DEM algorithm can not be analyzed by linear way.

Instead, we show that the DEM algorithm can be considered as a stochastic approxima-

tion method to find the maximum likelihood estimation for Gaussian Mixtures. In this

regard, we have in mind a network of M sensor nodes is considered, each of which has

Nm data observations {ym,n}, m= 1, 2, ...., M , n= 1, 2, ....., Nm. These observations

are drawn from a K Gaussian mixtures with mixture probabilities α1, ....., αk.

ym,n ∼
K∑
j=1

αj.N(μj,Σj) (2.20)

where N(μ,Σ) denote the Gaussian density function with mean μ and covariance Σ.

Let z ∈ {1, 2, ...., K} denote the missing data where Gaussian y comes from.

Proposition 2.3 In what follows is the detailed bibliographic review of diffusion-based
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Table 2.5: Diffusion-Based DKF
Diffusion Approaches Used References

• Diffusion-Based Distributed EM algorithm for Gaussian

mixtures [50]

• Diffusion-Based Kalman filtering and smoothing algorithm [51]

• Distributed EM algorithm over sensor networks, consensus

filter used to diffuse local sufficient statistics to neighbors

and estimate global sufficient statistics in each node [97]

• Consensus filter diffusion of local sufficient statistics

over the entire network through communication with

neighbor nodes [99]

• Diffusion Kalman filtering , where nodes communicate

only with their neighbors, and no fusion center is present [173]

• DKF proposed in the context of diffusion estimation [174][175]

• DKF proposed in the context of average consensus [176][177]

• Diffusion Kalman filtering for every measurement

and for every node, a local state estimate using the

data from the neighborhood [178]

DKF methods which have been explained comprehensively in Table 2.5. The recent

references have been explained and others have been cited in the Table. In the end [50]

considering the diffusion scheme for Gaussian mixture in wireless sensor network has

been explained as a particular case.

2.5 DISTRIBUTED OOSM

This section shows the discussion on distributed OOS. Typically OOSM behavior is

caused by deterministic transmission system, where the transmission time of a mes-

sage vary very much. Distributed OOSM-based list of publications are classified in

Table 2.6. The most recent publications in distributed OOSM are [138]-[143], [164],

[194] and [279], where efficient incorporation of OOSMs in Kalman filters is devel-

oped in [138]-[143]. Counterpart of the OOSM update problem, needed to remove an

22



2.6. MSDF SYSTEMS

earlier measurement from the flight path, is analyzed in [164]. Focus on centralized

update problem for multiple local sensor systems with asynchronous OOSMs is treated

in [194]. A globally optimal state trajectory update algorithm for a sequence with ar-

bitrary delayed OOSMs including the case of interlaced OOSMs with less storages is

given in [279]. Other publications classified with distributed OOSM are [61], [62],

[63], [64], [81], [82], [83], [84], [85], [86], [87], [88], [89], [90], [141], [163], [165],

[166], [167], [168], [188], [195], [207], [208], [224], [225], [225]-[229], [230], [231],

[280], [301] and [302].

Proposition 2.4 In what follows is the bibliographic review of OOSM, a subdivision of

DKF which have been explained comprehensively in Table 2.6. The recent references

have been explained and others have been cited in the Table.

2.6 MSDF SYSTEMS

This section shows the discussion on another division of DKF with respect to MSDF

systems. In Tables 2.7, 2.8 and 2.9, MSDF systems-based list of publications are clas-

sified respectively. The most recent of the publications described in these tables are as

follows. Sensor noises of converted system cross-correlated, and also correlated with

the original system is treated in [335]. Centralized fusion center, expressed by a lin-

ear combination of the local estimates is presented in [336]. Bayesian framework for

adaptive quantization, fusion-center feedback, and estimation of a spatial random field

and its parameters are treated in [65]. A framework for alternates to quantile quantizer

and fusion center is provided in [66]. Median fusion and information fusion, not based
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Table 2.6: OOSM
OOSM Approaches References

• Recursive BLUE without prior [61]

• Cases of prior information about the OOSM [62] [208]

• Dating the state estimate globally optimally [63][64]

• Minimum storage at the current time to guarantee a globally optimal update

with three cases of prior information about OOSM [81] [90][141]

• Updating the state estimate globally optimally with an OOSM within one

step time delay for a system [82]

• Multi-step OOSM updating using augmented state smoothing [84][85][86]

• Multi-step update in OOSM [83]

• Multi-sensor OOSM problem in a cluttered environment [85][87][88]

• One-step suboptimal updating algorithms with a nonsingular state

transition matrix [82][89]

• Efficient incorporation of OOSMs in KFs [138]-[143]

• A globally optimal flight path update algorithm with OOSMs [163]

• Counterpart of the OOSM update problem, needed to remove an

earlier measurement from flight path [164]

• One-step solution for the general OOSM problem in tracking

presented independently [165] [166]

• Distributed fusion update for the local sensors with OOSMs [168]

• OOSM with practical applications [167]

• Optimal analysis of one-step OOSM filtering algorithms in target tracking [188]

• Focus on centralized update problem for multiple local sensor systems

with asynchronous OOSMs [194]

• The l step algorithm developed for OOSM [195]

• Optimal distributed estimation fusion with OOSM at local sensors [207]

• Two new algorithms for solving the out-of-sequence data problem for

the case of linear and nonlinear dynamic control systems [224]

• When the delays and the sequence of arrival of all the information are

not fixed, constituting the named Out-Of-Sequence Problem (OOSP) [225]

• Out-Of-Sequence Problem (OOSP) developed for linear systems [225]-[229]

• OOSP developed for non-linear systems [230][231]

• A globally optimal state trajectory update algorithm for a sequence with

arbitrary delayed OOSMs including the case of interlaced OOSMs

with less storages [279]

• OOSM with more applications [280]

• OOSM processing for tracking ground target using particle filters [301]

• Comparison of the KF and particle filter based OOSM filtering algorithms [302]
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on weighted sums of local estimates, are presented in [92]. Optimal distributed estima-

tion fusion algorithm with the transformed data is proposed in [125]. Corresponding

distributed fusion problem, proposed based on a unified data model for linear unbiased

estimator is presented in [128]. An algorithm, fuses one step predictions at both the

fusion center and all current sensor estimates is given in [129]. In multi-sensor linear

dynamic system, several efficient algorithms of centralized sensor fusion, distributed

sensor fusion, and multi-algorithm fusion to minimize the Euclidian estimation error

of the state vector are documented in [130]. Problem of data fusion in a decentral-

ized and distributed network of multi-sensor processing nodes is contained in [193].

Fusion algorithm based on multi-sensor systems and a distributed multi-sensor data

fusion algorithm based on Kalman filtering is presented in [274]. Other related pub-

lications cited in the Table 2.7 are [338]-[339], [337], [332], [333, 334], [37], [46],

[47], [48], [48], [60], [59, 58], [57], [56], [55], [54], [53], [52]. Other related pub-

lications cited in the Table 2.8 are [67], [68], [91], [93, 94], [95], [115], [116], [117],

[124], [125], [127] and [128]. Other related publications cited in the Table 2.9 are [131],

[169, 170], [170, 171, 172], [183], [187], [200], [240], [241], [244], [249], [252], [253],

[254, 255, 256], [257], [259], [275], [277], [278], [304] and [307].

Remark 2.6.1 In [332], using estimators of white measurement noise, an optimal in-

formation fusion distributed Kalman smoother is given for multichannel ARMA signals

with correlated noise. The work on ARMA signal and information fusion is also done in

[333] and [334]. Basically it has a three-layer fusion structure with fault tolerant, and

robust properties. The first fusion layer and the second fusion layer both have nested
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parallel structures to determine the prediction error cross-covariance of the state and

the smoothing error cross-covariance of the ARMA signal between any two faultless

sensors at each time step. And the third fusion layer is the fusion centre to determine the

optimal matrix weights and obtain the optimal fusion distributed smoother for ARMA

signals. The computation formula of smoothing error cross-covariance matrix between

any two sensors is given for white measurement noise. The computation formula of

smoothing error cross-covariance matrix between any two sensors is given for white

measurement noise. The discrete time multi-channel ARMA signal system considered

here with L sensors is:

B(q−1)s(t) = C(q−1)w(t) (2.21)

yi(t) = s(t) + υi(t), i = 1, ...., L (2.22)

where s(t) ∈ �m is the signal to estimate, yi(t) ∈ �m is the measurement of the ith

sensor, w(t) ∈ �r is the process noise, υi(t) ∈ �m is the measurement noise of the

ith sensor, L is the number of sensors, and B(q−1), C(q−1) are polynomial matrices

having the form

X(q−1) = X0 + X1(q
−1) + ..... +Xnxq

−nx

where the argument q−1 is the back shift operator, that is, q−1x(t) = x(t−1), Xi, i =

0, 1, , ....., nx are the coefficient matrices, the degree of X(q−1) is denoted by nx.

In the multi-sensor random parameter matrices case, sometimes, even if the origi-
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nal sensor noises are mutually independent, the sensor noises of the converted system

are still cross-correlated. Hence, such multi-sensor system seems not satisfying the

conditions for the distributed Kalman filtering fusion as given in [338, 339]. In the

paper [335], it was proved that when the sensor noises or the random measurement

matrices of the original system are correlated across sensors, the sensor noises of the

converted system are cross-correlated. Even if so, similarly with [336], centralized

random parameter matrices Kalman filtering, where the fusion center can receive all

sensor measurements, can still be expressed by a linear combination of the local esti-

mates. Therefore, the performance of the distributed filtering fusion is the same as that

of the centralized fusion under the assumption that the expectations of all sensor mea-

surement matrices are of full row rank. Numerical examples are given which support

our analysis and show significant performance loss of ignoring the randomness of the

parameter matrices. The following discrete time dynamic system is considered:

xk+1 = Fkxk + υk (2.23)

yk = Hkxk + ωk, k = 0, 1, 2, 3, .... (2.24)

where xk ∈ �r is the system state, yk ∈ �N is the measurement matrix, υk ∈ �r is

the process noise, and ωk ∈ �N is the measurement noise. The subscript k is the time

index. Fk ∈ �r×r and Hk ∈ �N×r are random matrices.

Proposition 2.5 In what follows is the detailed bibliographic review of MSDF methods

which have been explained comprehensively in Table 2.7, Table 2.8 and Table 2.9 re-
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Table 2.7: MSDF Systems I

MSDF Design Approaches References

• Sensor noises of converted systems cross-correlated, whilst original

system independent [338]-[339]

• Sensor noises of converted system cross-correlated, whilst original

system also correlated [335]

• Centralized fusion center, expressed by a linear combination

of the local estimates [336]

• No centralized fusion center, but algorithm highly resilient

to lose one or more sensing nodes [337]

• Discrete smoothing fusion with ARMA Signals LMV

with information fusion filter [332][333][334]

• Deconvolution estimation of ARMA signal with

multiple sensors [37]

• Fusion criterion weighted by scalars [46]

• Functional equivalence of two measurement fusion methods [47]

• Centralized filter, data processed/communicated centrally [48]

• New performance bound for sensor fusion with model uncertainty [48]

• All prior fusion results with Asynchronous Measurements [60]

• Unified fusion model and unified batch fusion rules [59][58]

• Unified rules by examples [57]

• Computing formulation for cross-covariance of the local estimation [56]

• Conditions for centralized and distributed fusers to be identical [55]

• Relationships among the various fusion rules [54]

• Optimal rules for each sensor to compress its measurements [53]

• Various issues unique to fusion for dynamic systems [52]

• Bayesian framework for adaptive quantization,

fusion-center feedback, and estimation of a spatial random field

and its parameters [65]

• Framework for alternates to quantile quantizer and fusion center [66]
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Table 2.8: MSDF II
MSDF Design Approaches References

• Diagonal weighting matrices [67]

• Different fusion rates for the different states [68]

• Optimal distributed estimation fusion in the LMV estimation [91]

• Median fusion and information fusion, not based on weighted sums

of local estimates [92]

• Distributed filtering algorithms, optimal in mean square sense linear

combinations of the matrix or scalar weights with derivations [93][94]

• Closed form analytical solution of steady fused covariance

of information matrix fusion with arbitrary number of sensor derived [95]

• Focus on various issues unique to fusion for dynamic systems,

present a general data model for discretized asynchronous

multi-sensor systems [115]

• Recursive BLUE fusion without prior information [116]

• Statistical interval estimation fusion [117]

• Fused estimate communicated to a central node

to be used for some task [124]

• Optimal distributed estimation fusion algorithm

with the transformed data is proposed, which is actually equivalent

to the centralized estimation fusion [125]

• State estimation fusion algorithm, optimal in the sense of MAP [127]

• Corresponding distributed fusion problem, proposed based

on a unified data model for linear unbiased estimator [128]

• An algorithm, fuses one step predictions at both

the fusion center and all current sensor estimates [129]

• In multi-sensor linear dynamic system, several efficient algorithms of

centralized sensor fusion, distributed sensor fusion, and multi-algorithm

fusion to minimize the Euclidian estimation error of the

state vector [130]
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Table 2.9: MSDF III
MSDF Design Approaches References

• Derivation of approximation technique for arbitrary probability densities,

providing distributable fusion structure as the linear information filter [131]

• Multi-sensor distributed fusion filters based on three weighted algorithms,

applied to the systems with uncertain observations and correlated noises [169] [170]

• MSDF in state estimation fields, and easy fault detection, isolation

and more reliability [170][171][172]

• CKF algorithm, obtained by combining all measurement data [183]

• Design of general and optimal asynchronous recursive fusion estimator

for a kind of multi-sensor asynchronous sampling system [187]

• Problem of data fusion in a decentralized and DN of multi-sensor

processing nodes [193]

• To assure the validity of data fusion, a centralized trust rating system [200]

• white noise filter weighted by scalars based on Kalman predictor [240]

• White noise de-convolution estimators [241]

• Optimal information fusion distributed Kalman smoother given

for discrete time ARMA signals [244]

• Optimal dimensionality reduction of sensor data by using the matrix

decomposition, pseudo-inverse, and eigenvalue techniques [249]

• Multi-sensor Information fusion distributed KF and applications [252]

• Based on analysis of the fused state estimate covariances of the two

measurement fusion methods [253]

• MSDF approaches to resolve problem of obtaining a joint

state-vector estimate [254][255][256]

• Decentralized multi-sensor EKF which has been divided up into modules [257]

• A distributed reduced-order fusion Kalman filter (DRFKF) [259]

• Fusion algorithm based on multi-sensor systems and a distributed MSDF

algorithm based on KF [274]

• Track fusion formulas with feedback are, like the track fusion

without feedback [275]

• The optimal distributed KF fusion algorithms for the various cases [277]

• General optimal linear fusion [278]

• Information fusion in distributed SN [304]

• Multi-scale Recursive Estimation, Data Fusion, and Regularization [307]
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spectively. The recent references have been explained and others have been cited in the

Tables. In the end [332] considering the optimal information fusion distributed Kalman

smoother has been explained as a particular case.

2.7 DNS

This section describes the area of DNs in DKF. The list of publications on DNs is

classified in Table 2.10. Some recent publications in this area are as follows. Distributed

expectation maximization (EM) algorithm over sensor networks, consensus filter used

to diffuse local sufficient statistics to neighbors and estimate global sufficient statistics

in each node are developed in [97]. Modified adaptive Kalman filter for sensor-less

current control of a three-phase inverter based distributed generation system is proposed

in [196]. Distributed estimation scheme for tracking the state of a Gauss-Markov model

by means of observations at sensors connected in a network is the subject of [201]. A

message-passing version of the Kalman consensus filter (KCF) is considered in [209].

For decentralized tracking applications, DKF and smoothing algorithms are derived

for any-time MMSE optimal consensus-based state estimation using Wireless Sensor

Networks are considered in [217]. Other publications cited in Table 2.10 are [69], [70],

[98, 100], [99], [132], [154], [155], [192], [210], [223], [232], [234], [313]-[319] and

[325].

Remark 2.7.1 In literature, a single plant is usually assumed for an NCS and the links

between the plant and the estimator or controller channel. This notion is extended

by a distributed networked control system (DNCS) in which there are multiple agents
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communicating over a lossy communication channel [69]. A DNCS extends an NCS

to model a distributed multi-agent system such as the Vicsek model. The best exam-

ples of such system include ad-hoc wireless sensor networks and a network of mobile

agents. The exact state estimation method based on the Kalman filter is introduced in

[69]. However, the time complexity of the exact method can be exponential in the num-

ber of communication links.are closed by a common (unreliable) communication In the

paper [70], this issue is addressed by developing two approximate filtering algorithms

for estimating states of a DNCS. The approximate filtering algorithms bound the state

estimation error of the exact filtering algorithm and the time complexity of approxi-

mate methods is not dependent on the number of communication links. The stability

of estimators under a lossy communication channel is studied in [309], [310]. How-

ever, the extension of the result to the general case with an arbitrary number of lossy

communication links is unknown. While computing the exact communication link prob-

abilities required for stable state estimation is non-trivial, the general conditions for

stable state estimation using jump linear system theory are described. The following

first distributed control system consisting of N agents is considered, in which there is

no communication loss. The discrete-time linear dynamic model of the agent j can be

described as following:

xj(k + 1) =
N∑
i=1

Aijxi(k) +Gjwj(k) (2.25)

where k ∈ Z+, xj(k) ∈ Rnx is the state of the agent j at time k, wj(k) ∈ Rnw

is a white noise process, Aij ∈ Rnx×nx , and Gj ∈ Rnx×nW . Hence, the state of the
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agent j is governed by the previous states of all N agents. It can also be considered

that Aijxi(k) as a control input from the agent i to the agent j for i �= j.

Proposition 2.6 In what follows is the detailed bibliographic review of DN methods

which have been explained comprehensively in Table 2.10. The recent references have

been explained and others have been cited in the Table. In the end, [69] has been

considered using distributed networked control system over a lossy communication as

a particular case.

2.8 MATHEMATICAL DESIGN IN TRACK-TO-TRACK FU-

SION

Track fusion (TF)-based list of publications are classified in Table 2.11. Some recent

publications in this area are as follows. Track fusion measurement is given in [18]. Per-

formance of various track-to-track fusion algorithms from aspects of fusion accuracy,

feedback and process noises are treated in [263]. Perform track fusion optimally for a

multiple-sensor system with a specific processing architecture is treated in [295]. Other

work cited in Table 2.11 are [338], [15, 22, 23, 24], [16], [17], [19], [21], [20], [71],

[72], [73]-[74], [75]-[76], [77], [78]-[79], [124], [126], [260], [261, 262], [264, 265],

[266], [296], [303], [305] and [306].

Proposition 2.7 In what follows is the detailed bibliographic review of TF-based meth-

ods which have been explained comprehensively in Table 2.11. The recent references

have been explained and others have been cited in the Table.
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Table 2.10: DNs
Design Approaches Used in DN References

• Distributed networked control system (DNCS) with multiple nodes [69]

• Two approximate filtering algorithms for estimating states of a DNCS [70]

• Distributed EM algorithm over sensor networks, consensus filter used to

diffuse local sufficient statistics to neighbors and estimate global

sufficient statistics [97]

• Density estimation and unsupervised clustering, first step in

exploratory data analysis [98][100]

• Consensus filter diffusion of local sufficient statistics over

the entire network [99]

• Distributed fusion of multiple sensor data to networks [132]

• Robust distributed state estimation against false data injection [154]

• Distributed SN, consisting of a set of spatially scattered sensors [155]

• SN with noisy fading wireless channels [192]

• Modified adaptive KF for sensor-less current control of a three-phase inverter [196]

• Distributed estimation scheme for tracking the state of a Gauss-Markov

model by means of observations at sensors connected in a network [201]

• A message-passing version of the Kalman-Consensus Filter (KCF) [209]

• A peer-to-peer (P2P) architecture of DKF that rely on reaching a consensus

on estimates of local KFs [210]

• For decentralized tracking applications, DKF and smoothing algorithms

are derived for any-time MMSE optimal consensus-based state estimation

using WSN [217]

• Trade-off between the estimation performance and the number

of communicating nodes [223]

• DNCS consisting of multiple agents communicating over a lossy

communication channel [232]

• Impact of the network reliability on the performance of the feedback loop [234]

• SN-based distributed H∞ state estimation, filtering for time-varying class,

state estimation for uncertain Markov, H∞ stochasitc sampled-data approach

and non-linear systems, discrete time, robust fault detection and modeling [313]-[319]

and analysis respectively. [325]

34



2.8. MATHEMATICAL DESIGN IN TRACK-TO-TRACK FUSION

Table 2.11: Mathematical Design in Track-to-Track Fusion

Track-to-Track Fusion Approaches References

• Track fusion with information filter [338]

• Track fusion optimality with ML [15][22][23][24]

• Two track estimates cross-covariance [16]

• Track fusion local estimate dependency [17]

• Track fusion measurement [18]

• Track fusion multi-sensor algorithm [19]

• Track fusion cross-covariance with independent noises [21]

• Steady-state fusing problem [20]

• Steady state fused covariance for hierarchical track fusion architecture

with feedback [71]

• Cross-covariance of the local track [72]

• Weighted covariance state-vector Track fusion [73]-[74]

• Pseudo-measurement state-vector Track fusion [75]-[76]

• Steady state fused covariance matrix [77]

• Various architectures for track association and fusion [78]-[79]

• Fused estimate communicated to a central node to be used for some task [124]

• Track-to-track fusion algorithm, optimal in the sense of ML for more

than 2 sensors [126]

• Measurement Fusion and State vector track fusion [260]

• State vector track fusion with pseudo-measurement [261] [262]

• Performance of various track-to-track fusion algorithms from aspects of

fusion accuracy, feedback and process noises [263]

• Fuse state vectors using Weighted Covariance (WC) [264][265]

• Weighted covariance algorithm turns out to be a ML estimate [266]

• Perform track fusion optimally for a multiple-sensor system with a

specific processing architecture [295]

• Track-to-track fusion for multi-sensor data fusion [296]

• Common process noise on the two-sensor fused-track covariance [303]

• Track association and track fusion with non-deterministic target dynamics [305]

• Comparison of two-sensor tracking methods based on state vector fusion

and measurement fusion [306]
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2.9. DC-BASED ESTIMATION

2.9 DC-BASED ESTIMATION

DC-based estimation list of publications are classified in Table 2.12. Some recent work

in this area is as follows. Recent work [32] is based on consensus Iterations. Dis-

tributed EM algorithm over sensor networks, consensus filter used to diffuse local suf-

ficient statistics to neighbors and estimate global sufficient statistics in each node are

the subject of [97]. A novel state estimation algorithm for linear stochastic systems,

proposed on the basis of overlapping system decomposition, implementation of local

state estimators by intelligent agents, application of a consensus strategy providing the

global state estimates are detailed in [110]. Consensus-based distributed approached

Kalman filters for linear systems [121, 122]. Other publications cited in Table 2.12 are

[28], [30], [31, 180], [33], [80], [10], [99], [102], [103], [104], [111], [112, 113], [118],

[209], [210], [222], [243], [322], [327], [328] and [320] repectively.

Remark 2.9.1 In the paper [97], the number of Gaussian components is given. In

the next step, distributed unsupervised clustering approach is used to select the number

of Gaussian components, or it can use a distributed algorithm to estimate this num-

ber and run EM algorithm simultaneously. A well-fitted approach to this integration is

the one proposed in [311]. The proposed distributed EM algorithm in the paper [97]

handles this difficulty through estimating the global sufficient statistics using local in-

formation and neighbors local information. It calculates the local sufficient statistics

in the E-step as usual first. Then, it estimates the global sufficient statistics. Finally,

it updates the parameters in the M-step using the estimated global sufficient statistics.
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The estimation of global sufficient statistics is achieved by using an average consen-

sus filter. The consensus filter can diffuse the local sufficient statistics over the entire

network through communication with neighbor nodes [27, 28, 312] and estimate the

global sufficient statistics using local information and neighbors local information. By

using the estimated global sufficient statistics, each node updates the parameters in the

M-step in the same way as in the standard EM algorithm. Because the consensus fil-

ter only requires local communication, that is, each node only needs to communicate

with its neighbors and gradually gains global information, this distributed algorithm is

scalable. It is shown that the equations of parameter estimation in this algorithm are

not related to the number of sensor nodes. Thus, it is also robust. Failures of any nodes

do not affect the algorithm performance given the network is still connected. Eventu-

ally, the estimated parameters can be accessed from any nodes in the network. In this

paper, section, we a network of M sensors is considered, each of which has Nm data

observations ym,n(m = 1, .... ,M, n = 1, ....., Nm. The environment is assumed to be

a Gaussian mixture setting with K mixture probabilities αm,k, (k = 1, ....., K). The

unobserved state is denoted as z and zk represents z = k. For each unobserved state

zk, observation ym,n follows a Gaussian distribution with mean μk and variance Σk:

p(ym,n|μk,Σk) =
1√

2π‖Σk‖ 1
2

e−
1
2
(ym,n−μk)

TΣ−1
k (ym,n−μk) (2.26)

The Gaussian mixture distribution for observation ym,n is:

p(ym,n|θ) =
K∑
k=1

αm,kp(ym,n|μk,Σk) (2.27)
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where θ is the set of the distribution parameters to be estimated θ = {αm,k, μk,Σk; k =

1, ...., K,m = 1, ....., M}.

Proposition 2.8 In what follows is the detailed bibliographic review of DC-based esti-

mation methods which have been explained comprehensively in Table 2.12. The recent

references have been explained and others have been cited in the Table. In the end,

[97] has been considered using Gaussian components.

2.10 DPF

A DPF list of publications are classified in Table 2.13. Some recent work in this area

is described as follows. A novel framework for delay-tolerant particle filtering, with

delayed OOSM is treated in [137]. A number of heuristic metrics to estimate the utility

of delayed measurements is proposed in [149]. Other recent publication in this area

cited in Table 2.13 are [118], [133], [134], [135, 136], [144], [145], [146], [146], [148],

[150], [181], [198], [235], [236], [250], [251], [301] and [302].

Proposition 2.9 In what follows is the detailed bibliographic review of DPF methods

which have been explained comprehensively in Table 2.13. The recent references have

been explained and others have been cited in the Table.
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Table 2.12: DC-Based Estimation
Design Approaches used in DC References

• Iterative consensus protocols [28]

• Local average consensus algorithms [30]

• Based on consensus strategies [31][180]

• Based consensus Iterations [32]

• Converge Speed of consensus strategies [33]

• Dynamic consensus problems regarding fusion of the measurements and

covariance information with consensus filters [80]

• Using Standard KF locally with a consensus step [10]

• Distributed EM algorithm over sensor networks, consensus filter used

to diffuse local sufficient statistics to neighbors and estimate global sufficient

statistics in each node [97]

• Distributed EM algorithm over SNs, consensus filter used to diffuse

local sufficient statistics [97]

• Consensus filter diffusion of local sufficient statistics over the entire

network through communication with neighbor nodes [99]

• Consensus-based distributed linear filtering problem [102]

• The interaction between the consensus matrix and the Kalman gain for

scalar systems [103]

• KF with a consensus filter, ensuring estimates asymptotically converge

to the same value [104]

• Novel state estimation algorithm for linear stochastic systems, proposed

on the basis of overlapping system decomposition, implementation of local

state estimators by intelligent agents, application of a consensus

strategy providing the global state estimates [110]

• Average-consensus algorithm for n measurements of noisy signals obtained

from n sensors in the form of a distributed low-pass filter [111]

• Average-consensus algorithm for n constant values [112][113]

• Consensus-Based distributed implementation of the unscented particle filter [118]

• Consensus-based distributed approached KFs for linear systems [121][122]

• A message-passing version of the Kalman-Consensus Filter (KCF) [209]

• A peer-to-peer (P2P) architecture of DKF that rely on reaching a consensus

on estimates of local KFs [210]

• Consensus-based suboptimum KF scheme [222]

• Distributed filter that allows the nodes of a SN to track the average of n
sensor measurements [243]

• DC-Based estimation for networks of agents, uncertain systems, jump [322][327]

Markov Systems and SN with delay [328][320]
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Table 2.13: DPF
Design Approaches used in DPF References

• Consensus-Based distributed implementation of the

unscented particle filter (UPF) [118]

• Particle filtering transformation into continuous representations [133]

• Consensus-based, distributed implementation of the UPF [134]

• Particle filter implementations using Gaussian approximations

for the local posteriors [135][136]

• A novel framework for delay-tolerant particle filtering,

with delayed OOSM [137]

• An approach that stores sets of particles for the last l
time steps, where l is the predetermined maximum delay [144]

• Markov chain Monte Carlo (MCMC) smoothing step for OOSM [145]

• Approximate OOSM particle filter based on retrodiction(predicts backward) [146]

• Also uses retrodiction (predicts backward), but employs the

Gaussian particle filter [146]

• Recent advances in particle smoothing, storage-efficient particle filter [148]

• Proposed a number of heuristic metrics to estimate the utility

of delayed measurements [149]

• Proposed a threshold based procedure to discard uninformative

delayed measurements, calculating their informativeness [150]

• Optimal estimation using quantized innovations, with application

to distributed estimation over SNs using Kalman-like particle filter [181]

• SOl-Particle-Filter (SOI-PF) derived to enhance the performance of the

distributed estimation procedure [198]

• Problem of tracking a moving target in a multi-sensor environment DPFs [235]

• Optimal fusion method, introduced to fuse the collected GMMs

with different number of components [236]

• Two distributed particle filters to estimate and track the moving targets

in a WSN [250]

• Updating the complete particle filter on each individual sensor nodes [251]

• Out-of-sequence measurement processing for tracking ground

target using PFs [301]

• Comparison of the KF and PF based OOSM filtering algorithms [302]
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2.11 ST-BASED DISTRIBUTED FUSION KALMAN FIL-

TER

This section explains the ST-based distributed fusion Kalman filter, another categoriza-

tion for DKF. A list of publications is this regard is classified in Table 2.14. Some of the

recent work in this area is as follows. Self-tuning decoupled fusion Kalman predictor

is proposed in [160] and self-tuning weighted measurement Kalman filter is included

in [161]. Self-tuning measurement system using the correlation method, can be viewed

as the least-squares (LS) fused estimator and found in [285]. Self-tuning distributed

(weighed) measurement fusion Kalman filters is shown in [292, 293, 294]. Other re-

cent publication in this area cited in Table 2.14 are [157], [159], [182], [184, 185],

[189], [190], [239], [245], [246], [258], [286]-[289], [290] and [291].

Remark 2.11.1 For self-tuning decoupled fusion Kalman predictor, the following multi-

sensor linear discrete time-invariant stochastic system is considered in the paper [308]:

x(t+ 1) = Φx(t) + Γw(t) (2.28)

yi(t) = Hix(t) + υi(t) , i = 1, ....., L (2.29)

where x(t) ∈ �n,yi(t) ∈ �mi , w(t) ∈ �r and υi(t) ∈ �mi are the state, measure-

ment, process and measurement noises of the ith sensor subsystem, respectively, and Φ,

Γ and Hi are constant matrices with compatible dimensions.

Proposition 2.10 In what follows is the detailed bibliographic review of ST-based dis-

41



2.11. ST-BASED DISTRIBUTED FUSION KALMAN FILTER

Table 2.14: ST-Based Distributed Fusion Kalman Filter
ST Design Approaches References

• Multi-sensor systems with unknown model parameters

and noise variances, by the information matrix approach,

the ST distributed state fusion information filter is presented [157]

• ST distributed state fusion Kalman filter

with weighted covariance approach [159]

• ST decoupled fusion Kalman predictor [160]

• ST weighted measurement Kalman filter [161]

• Multi-sensor systems with unknown noise variances,

a new ST weighted measurement fusion Kalman filter is presented,

which has asymptotic global optimality [182]

• Weighted ST state fusion filters [184][185]

• Sign of Innovation- Particle Filter (SOI-PF) improves the tracking

performance when the target moves according to a linear and

a gaussian model [189]

• Efficiency of the SOI-PF in a nonlinear and a non gaussian case,

considering a jump-state Markov model for the target trajectory [190]

• ST information fusion reduced-order Kalman predictor with a

two-stage fusion structure based on linear minimum variance [239]

• Optimal ST smoother [245]

• Optimal ST fix-lag smoother [246]

• A new convergence analysis method for ST Kalman Predictor [258]

• ST measurement system using the correlation method,

can be viewed as the least-squares (LS) fused estimator [285]

• ST filtering for systems with unknown model and/or noise variances [286]-[289]

• ST distributed state fusion Kalman estimators [290][291]

• ST distributed (weighed) measurement fusion Kalman filters [292][293][294]
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tributed KF methods which have been explained comprehensively in Table 2.14. The

recent references have been explained and others have been cited in the Table. In the

end, [308] has been considered using decoupled fusion Kalman predictor.
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3 APPROXIMATE DISTRIBUTED ESTI-

MATION

3.1 AN OVERVIEW

In this chapter, we have discussed approximate distributed estimation, where we have

derived the distributed estimation for different prior cases with the help of Bayesian-

based Forward Backward (FB) Kalman filter.

3.2 INTRODUCTION

Distributed and decentralized estimations have been the point of attraction in the past

with a large associated literature. When tackling the distributed structure, problems

do encounter regarding fusion of the data coming from various sensor of the plant or

network. Data fusion techniques combine data from multiple sensors and related infor-

mation to achieve more specific inferences than could be achieved by using a single,

independent sensor. The classic work of Rao and Durrant-Whyte [381]
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presents an approach to decentralized Kalman filtering which accomplishes glob-

ally optimal performance in the case where all sensors can communicate with each

other. Further, this design failed gracefully, as individual sensors are removed from

the network due to its distributed design. Sensor noises of converted systems cross-

correlated, whilst original system independent is shown in [338]-[339]. Sensor noises

of converted system cross-correlated, whilst original system also correlated is presented

in [335]. Centralized fusion center, expressed by a linear combination of the local esti-

mates is pictured in [336]. No centralized fusion center, but algorithm highly resilient

to lose one or more sensing nodes is shown in [337]. Discrete smoothing fusion with

ARMA signals is shown in [332]. Linear minimum variance with information fusion

filter is shown in [333][334]. A dense attention has been devoted to multi-sensor data

fusion for both military and civilian applications. For civilian applications, monitoring

of manufacturing processes, robotics, medical applications/environmental monitoring

are considered. For military applications, target recognition, guidance for autonomous

vehicles and battle field surveillance are considered.

Estimation problem has also been dealt with consensus algorithms. Consensus

problems [340], [341] and their special cases have been the subject of intensive studies

by several researchers [342], [343], [344], [345], [346], [347], [348] in the context of

formation control, self-alignment, and flocking [349] in networked dynamic systems.

In distributed estimation and fusion, Kalman filtering is a fundamental tool, and it

is an essential element to provide functionality particularly in sensor networks. An in-

depth comparison between the distributed Kalman filter and the existing decentralized
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sensor fusion algorithms both with and without fusion centers are presented in [350],

[351], [352], [353] respectively.

In this paper, we have derived an approximate distributed estimation for different

prior cases for dynamic systems, with the help of Bayesian-based FB Kalman filter, The

estimation is derived on a distributed networked control system [330]. Then, to reduce

the time complexity, upper bound and lower bound methods for time complexity reduc-

tion have been derived on all three cases of prior knowledge. After achieving estimates,

we have used a data fusion technique to consider it for a distributed structure. The

proposed scheme is then validated on a network structure of a rotational drive-based

electro-hydraulic system, where various types of faults were introduced, and then dif-

ferent fault profile data are considered for the evaluation of the proposed scheme.

The remainder of this paper is structured as follows. Problem formulation is de-

scribed in Section II. The Bayesian-based FB Kalman filter with complete prior infor-

mation is derived and discussed in Section III, the Bayesian-based FB Kalman filter

without prior information is derived and discussed in Section IV, followed by deriva-

tion of Bayesian-based FB Kalman filter with incomplete prior information in Section

V. Evaluation and testing is made in Section VI. Finally some conclusion is described

in Section VII.

3.3 PROBLEM FORMULATION

Consider a distributed control system as in [330] consisting of N agents, in which there

is no communication loss. The discrete-time linear dynamic model of the agent j can
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be described as:

xj(k + 1) =
N∑
i=1

Aijxi(k) +Gjwj(k) (3.1)

where k ∈ Z+, xj(k) ∈ Rnx is the state of the agent j at time k, wj(k) ∈ Rnw is a

white noise process, Aij ∈ Rnx×nx , and Gj ∈ Rnx×nw . Hence, the state of the agent j

is governed by the previous states of all N agents. We can also consider Aij xi(k) as a

control input from the agent i to the agent j, where i �= j.

Now consider a distributed networked control system (DNCS), in which agents

communicate with each other over a lossy communication channel. We assume an

erasure channel between a pair of agents. At each time k, a packet sent by the agent

i is correctly received by the agent j with probability pij . We form a communication

matrix Pcom = [pij]. Let Zij (k) ∈ {0, 1} be a Bernoulli random variable, such that

Zij(k) = 1 if a packet sent by the agent i is correctly received by the agent j at time

k, otherwise, Zij(k) = 0. Since there is no communication loss within an agent, pii =

1 and Zii(k) = 1 for all i and k. For each (i, j) pair, {Zij(k)} are i.i.d. (independent

identically distributed) random variables such that P (Zij(k) = 1) = pij for all k; and

Zij(k) are independent from Zlm(k) for l �= i or m �= j. Then we can write the dynamic

model of the agent j under lossy links as:

xj(k + 1) =
N∑
i=1

Zij(k)Aijxi(k) +Gjwj(k) (3.2)

where Zij is a random Bernoulli variable.
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Let x(k) = [x1(k)
T , ...., xN(k)

T ]T and w(k) = [w1(k)
T , ...., wN(k)

T ]T , where yT

is a transpose of y. Let Āij be a Nnx × Nnx block matrix. The entries of Āij are all

zeros except the (j, i)− th block is Aij . For example, when N = 2.

Ā12 =

⎡
⎢⎢⎣ 0nx 0nx

A12 0nx

⎤
⎥⎥⎦

where 0nx is a nx × nx zero matrix. Then the discrete-time linear dynamic model of

the DNCS with lossy links can be represented as following:

x(k + 1) = (
N∑
i=1

N∑
j=1

Zij(k)Āij)x(k) +Gw(k) (3.3)

where G is a block diagonal matrix of G1, ..., GN . For notational convenience, we

introduce a new index n ∈ 1, ..., N2 such that ij is indexed by n=N(i−1) + j. With

this new index n, the dynamic model (3.3) can be rewritten as:

x(k + 1) = (
N2∑
n=1

Zn(k)Ān)x(k) +Gw(k) (3.4)

By letting A(k) = (
∑N2

n=1 Zn(k)Ān) we see that (3.4) is a time-varying linear dy-

namic model:

x(k + 1) = A(k)x(k) +Gw(k) (3.5)

Until now we have assumed that Ān is fixed for each n. Now suppose a more
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general case where the matrix A is time-varying and its values are determined by the

communication link configuration Z(k) = [Z1(k), ..., ZN2(k)]T . Hence,A is a function

of Z(k) and this general case can be described as:

x(k + 1) = A(Z(k))x(k) +Gw(k) (3.6)

The dynamic model (3.6) or (3.4) is a special case of the linear hybrid model or a

jump linear system [355] since A(k) takes an element from a set of a finite number of

matrices. We will call the dynamic model (3.4) as the “simple” DNCS dynamic model

and (3.6) as the “general” DNCS dynamic model.

In the following sections, we will derive Kalman filter fusion with cases of prior

information, and their modifications which can bound the covariance matrices [330].

The Bayesian-based FB Kalman filter is expressed as follows (See Equation (3.7-3.15)),

where the simple Bayesian-based optimal Kalman filter is expressed in [329], where

the basic version of Bayesian-based Kalman filter is derived, from which the Bayesian-

based FB Kalman and its versions for different prior knowledge have then been derived
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and formulated here.

Forward Run: For (k = 0; k < T ; +k)

Re,i = Ri +HkPk+1/kH
∗
k (3.7)

K̂f,i = Fk+1/kP̂k+1/kH
T
k (HkP̂k/k−1HT

k +R−1e,i ) (3.8)

x̂MAP
k/k = x̂k+1/k + K̂f,i(yk −Hkx̂k+1/k) (3.9)

x̂k+1/k = Fkx̂k+1/k (3.10)

P̂k+1/k = Fk+1/kPk+1/kF
T
k+1/k +GiQG

∗
i

−K̂p,iRe,iK̂
∗
p,i (3.11)

P̂k/k = P̂k+1/k − Fk/k+1K̂kHkP̂k+1/k (3.12)

Backward Run: For (k = T − 1; t ≥ 0;−k)

Ĵk−1/T = P̂k−1/TF T
k P̂

−1
k−1/T (3.13)

x̂k−1/T = x̂ik−1/k−1 + Ĵk−1(x̂k−1/T − x̂k−1/k) (3.14)

P̂k−1/T = P̂k−1/k−1

+Ĵk−1(Ĵk−1/T − P̂k−1/k)J
′
k−1 (3.15)

where Re,i is the covariance matrix of residual, Pk+1/k is the a-posteriori error covari-

ance matrix, Hk is the observation model, K̂f,i is the system gain, Q is the covariance

of the process noise, and Fk is the state-transition model for each time-step k.

It should be noted that smoother is being employed here to reduce noise effect and
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have more clear results in the approximate estimation of various prior information ver-

sions due to its nature of choosing the most refined covariance error matrix Pk from the

last iteration instant of forward run and considering it as the first iteration in the back-

ward run. Note that it is the designers choice whether to use smoothing equations or

not. For example, during an on-line analysis, the Kalman smoother will give estimates

only after the end of the experiment, which may not be acceptable. But for an off-line

analysis, getting the estimates after the experiment may not matter.

3.4 BAYESIAN-BASED FB KALMAN FILTER FUSION WITH

COMPLETE PRIOR INFORMATION

In this section, generalized version of Kalman filter is presented with complete prior

information. Consider the generalized DNCS dynamic model (3.6) where w(k) is a

Gaussian noise with zero mean and covarianceQ, and measurement model (3.16) where

y(k) ∈Rny is a measurement at time t, C ∈Rny×Nnx and ν(k) is a Gaussian noise with

zero mean and covariance k.

y(k) = Cx(k) + ν(k) (3.16)

The following theorem presents the Bayesian-based FB Kalman filter with complete

prior information:
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Theorem 3.1

Forward Run: For (k = 0; k < T ; +k)

x̂k/k = Fkx̄k +Kp,k[yi −Hkx̄k+1/k − ν̄] (3.17)

x̂k+1/k = Fkx̂k+1/k +Kp,kνk (3.18)

R̂e,k = Rk +HkPk+1/kH
∗
k +HCxv + (HCxv)

′
(3.19)

Kk = (FkPk+1/kH
∗ +GkSk)(HkPk/kH

∗
k +Re,k)

−1 (3.20)

P̂k+1/k = FkPk+1/kF
∗
k +GQiG

∗

−Fk+1/kKp,kRe,kK
∗
p,k (3.21)

P̂k/k = FkPk+1/kF
∗
k −KkHkPk+1/k (3.22)

Backward Run: For (k = 0; k < T ; +k)

Ĵk−1/T = P̂k−1/TF T
k P̂

−1
k−1/T (3.23)

x̂k−1/T = x̂ik−1/k−1 + Ĵk−1(x̂k−1/T − x̂k−1/k) (3.24)

P̂k−1/T = P̂k−1/k−1

+Ĵk−1(Ĵk−1/T − P̂k−1/k)J
′
k−1 (3.25)
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where Sk is the covariance of ỹk. The error covariance and the gain matrices have the

following alternative forms (See Eqns. (3.26) and (3.27)):

P = FPk+1/k+1F
′
+KRe,kK

′ − FPK
′ − (FBK

′
)
′

(3.26)

K = (FkPk+1/kH
∗ + Pk/k)(KRe,kK +HPk/k)

−1 (3.27)

where Bk is the control-input model.

Proof. For linear estimation of x using data y with linear model y =Hx+ν, the prior

information consists of x̄ and ν̄, and Cx = cov(x), Cv = cov(v), and Cxv = cov(x, v).

When we talk about prior information, we mean prior information about x, that is x̄,

Cx, and Cx,v.

For dynamic case, as in Kalman filter,

x̂k/k = E∗[xk|yk] = [x̄k|yk]

= x̄k + Cxk
ykC+yk(yk − ȳk), x̄k = E[xk]

Pk/k = MSE(x̂k/k) =
� E[(xk − x̂k/k)(xk − x̂k/k)

′
]

= Cxk − Cxky
kC+

yk
C
′
xk
yk

With few exceptions, however, it is unrealistic since its computational burden increases

rapidly with time (method for decreasing time computation complexity is applied in the
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next section using modified kalman filter functions of upper bound and lower bound).

x̂k/k = E∗[xk|yk] = E∗[xk|yk, yk−1] = x̂k/k−1 +Kkȳk/k−1

Pk/k = MSE(x̂k/k) = MSE(x̂k/k−1)−KkCȳk/k−1K
′
k

Let A= Pk/k and Fk = ζ . Equation (3.27) follows from the following:

(ζPH ′ + A)(C +HA)−1

= {ζ[Cx − (CxH
′ + A)(HCxH

′ + C +HA+ (HA)′)−1

. (CxH
′ + A)

′
]H

′
+ A}(C +HA)−1

= (ζCx +H ′ + A)[I − (HCxH
′ + C +HA+ (HA)

′
)−1

. (HCxH
′ + (HA)

′
)](C +HA)−1

= (ζCxH
′ + A)(HCxH

′ + C +HA+ (HA)
′
)−1

. (C +HA)(C +HA)−1

= (ζCxH
′ + A)(Cy +HA)−1

3.4.1 MODIFIED FILTER WITH COMPLETE PRIOR INFORMATION

Based on general DNCS dynamic model (3.6), where Z(k) is independent from Z(t)

for t �= k, we derive an optimal linear filter.

The following terms are defined to describe the modified Bayesian-Based FB Kalman

54



3.4. BAYESIAN-BASED FB KALMAN FILTER FUSION WITH COMPLETE PRIOR

INFORMATION

filter.

x̂k/k = E[x(k)|yk]

P (k|k) = E[e(k)e(k)T |yk]

x̂(k + 1|k) = E[x(k + 1)|yk]

P (k + 1|k) = E[e(k + 1|k)e(k + 1|k)T |yk]

J(k − 1|T ) = E[J(k − 1|T )|Pk/k]

x̂(k − 1|T ) = E[e(k − 1|T )|yk]

P (k − 1|T ) = E[e(k − 1|T )e(k − 1|T )T |yk] (3.28)

where yk = {y(t) : 0 ≤ t ≤ k}, e(k|k) = x(k)− x̂(k|k), and e(k+1|k) = x(k+1)−

x̂(k + 1|k).

Suppose that we have estimates x̂(k|k) and P (k|k) from time k. At time k + 1, a

new measurement y(k + 1) is received and our goal is to estimate x̂(k + 1|k + 1) and

P (k + 1|k + 1) from x̂(k|k), P (k|k) and y(k + 1). First, we compute x̂(k + 1|k) and

P (k + 1|k).

x̂(k + 1|k) = E[x(k + 1)|yk]

= E[A(Z)x(k) +Gω(k)|yk]

= Âx̂(k|k) (3.29)
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where

Â =
∑
z ∈ Z

pzA(z) (3.30)

is the expected value of A(Z). Here pz = P (Z = z), and Z is a set of all possible

communication link configurations.

The prediction covariance can be computed as:

P (k + 1|k) = E[e(k + 1|k)e(k + 1|k)T |yk]

= GQGT +
∑
z ∈ Z

pzA(z)P (k|k)A(z)T

−Kp,kRe,kK
∗
p,k +

∑
z ∈Z

pzA(z)x̂(k|k)x̂(k|k)T

×(A(z)− Â)T (3.31)

Given x̂(k+1|k) and P (k+1|k), x̂(k+1|k+1) and P (k+1|k+1) are computed

as in the standard Kalman filter (See Eqn. (3.32) and (3.33)).

x̂(k + 1|k + 1) = Fkx̂(k + 1|k) +K(k + 1)(y(k + 1)

−Hx̂(k + 1|k))− νi (3.32)

P (k + 1|k + 1) = FkP (k + 1|k)F ∗k

−Fk/k−1Kk(k + 1)HP (k + 1|k) (3.33)

where K(k + 1) = (FPk + 1|kHT +GS)(HPk|kHT +R)−1.
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3.4.2 APPROXIMATING THE FILTER FOR COMPLETE PRIOR INFOR-

MATION

The modified KF proposed in Section 3.4.1 for the general DNCS is an optimal linear

filter but the time complexity of the algorithm can be exponential in N since the size

of Z is O(2N(N−1)) in the worst case, i.e., when all agents can communicate with each

other. In this section, we describe two approximate Kalman filtering methods for the

general DNCS dynamic model (6) which are more computationally efficient than the

modified KF by avoiding the enumeration overZ . Since the computation of P (k+1|k)

is the only time-consuming process, we propose two filtering method which can bound

P (k+1|k). We use the notation A ≥ 0 if A is a positive definite matrix and A ≥ 0 if A

is a positive semi-definite matrix.

Lower-Bound KF: Complete Prior Information Case

The lower-bound KF (lb-KF) is the same as the modified KF described in Section III,

except we approximate P (k + 1|k) by P (k + 1|k) and P (k|k) by P (k|k). The covari-

ances are updated as:

P (k + 1|k) = ÂP (k|k)ÂT +GQGT

−Kp,kRe,kKp,k (3.34)

P (k + 1|k + 1) = FkP (k + 1|k)

−Fk/k−1K(k + 1)HkP (k + 1|k) (3.35)
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where Â is the expected value ofA(Z) andK(k+1) = Fk+1/kP (k+1|k)HT (HkP (k+

1|k)H∗
k + R)−1. Notice that Â can be computed in advance and the lb-KF avoids the

enumeration over Z .

Lemma 3.1 If P (k|k) ≤ P (k|k), then P (k + 1|k) ≤ P (k + 1|k).

Proof. Using (3.31), we have

P (k + 1|k)− P (k + 1|k) = E[A(Z)P (k|k)A(Z)T ]

+ E[A(Z)x̂(k|k)x̂(k|k)TA(Z)T ]

− Âx̂(k|k)x̂(k|k)T ÂT − ÂP (k|k)ÂT

− Kp,kRe,kKp,k +Kp,kRe,kKp,k

= P1 + P2 (3.36)

where P1 = E[A(Z)P (k|k)A(Z)T ] − ÂP (k|k)ÂT − Kp,kRe,kKp,k and P2 =

E[A(Z)x̂(k|k)x̂(k|k)TA(Z)T ]− Âx̂(k|k)x̂(k|k)T ÂT +Kp,kRe,kKp,k.

If P1 ≥ 0 and P2 ≥ 0, then P (k + 1|k)− P (k + 1|k) ≥ 0

P1 = E[A(Z)P (k|k)A(Z)T ]− ÂP (k|k)ÂT −Kp,kRe,kK
∗
p,k

− ÂP (k|k)ÂT + ÂP (k|k)ÂT

= E[A(Z)P (k|k)A(Z)T ]− ÂP (k|k)ÂT

+ Â(P (k|k)− P (k|k))ÂT −Kp,kRe,kK
∗
p,k (3.37)

Since P (k|k) is a symmetric matrix, P (k|k) can be decomposed into P (k|k) =
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U1D1U
T
1 , where U1 is a unitary matrix and D1 is a diagonal matrix. Hence,

P1 = E[(A(Z)U1D
1/2
1 )(A(Z)U1D

1/2
1 )T ]

− E[(A(Z)U1D
1/2
1 )]E[(A(Z)U1D

1/2
1 )]T

+ Â(P (k|k)− P (k|k))ÂT −Kp,kRe,kK
∗
p,k

= Cov[(A(Z)U1D
1/2
1 ] + Â(P (k|k)− P (k|k))ÂT

− Kp,kRe,kKp,k (3.38)

where Cov[H] denotes the covariance matrix of H . Since a covariance matrix is pos-

itive definite and P (k|k) − P (k|k) ≥ 0 by assumption, P1 ≥ 0. P2 is a covariance

matrix since x̂(k|k)x̂(k|k)T is symmetric, hence P2 ≥ 0.

Lemma 3.2 If P (k + 1|k) ≤ P (k + 1|k), then P (k + 1|k + 1) ≤ P (k + 1|k + 1).

Proof. Here, we will use matrix inversion lemma which says that (A + UCV )−1 =

A−1−A−1U(C−1+V A−1U)−1V A−1 where A, U , C and V all denote matrices of the

correct size. Applying the matrix inversion lemma to (3.33), we have P (k+1|k+1) =

(P (k + 1|k)−1 + CTR−1C)−1. Let P = P (k + 1|k) and P = P (k + 1|k). Then

P ≥ P ⇒ P−1 ≤ P−1

and

P−1+CTR−1C ≤ P−1+CTR−1C⇒ (P−1+CTR−1C)−1 ≥ (P−1+CTR−1C)−1

and

P (k + 1|k + 1) ≥ P (k + 1|k + 1)

Finally, using Lemma 3.1, Lemma 3.2, and the induction hypothesis, we have the
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following theorem showing that the lb-KF maintains the state error covariance which

is upper-bounded by the state error covariance of the modified KF.

Theorem 3.2 If the lb-KF starts with an initial covariance P (0|0), such that P (0|0) ≤

P (0|0), then P (k|k) ≤ P (k|k) for all k ≥ 0.

Upper-bound KF: Complete Prior Information Case

Similar to the lb-KF, the upper-bound KF (ub-KF) approximates P (k + 1|k) by P (k +

1|k) and P (k|k) by P (k|k). Let λmax = λmax(P (k|k)) + λmax(x̂(k|k)x̂(k|k)T ), where

λmax(S) denotes the maximum eigenvalue of S. The covariances are updated as fol-

lowing:

P (k + 1|k) = λmaxE[A(Z)A(Z)
T ]−KpRe,kK

∗
p

− Âx(k|k)x(k|k)T ÂT +GQGT (3.39)

P (k + 1|k + 1) = FP (k + 1|k)

− FK(k + 1)HP (k + 1|k) (3.40)

where Â is the expected value ofA(Z) andK(k+1) = (FP (k+1|k)HT+GS)(HP (k+

1|k)HT + R)−1. In the ub-KF, E[A(Z)A(Z)T ] can be computed in advance but we

need to compute λmax at each step of the algorithm. But if the size of Z is large, it is

more efficient than the modified KF. (Notice that the computation of λmax requires a

polynomial number of operations in N while the size of Z can be exponential in N .)

Lemma 3.3 If P (k|k) ≥ P (k|k), then P (k + 1|k) ≥ P (k + 1|k).
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Proof. Let M = x̂(k|k)x̂(k|k)T and I be an identity matrix. Then using (3.31), we

have

P (k|k)− P (k|k) = λmaxE[A(Z)A(Z)
T ]

− E[A(Z)P (k|k)A(Z)T ]− E[A(Z)MA(Z)T ]

− KpRe,kK
∗
p +KpRe,kK

∗
p

= E[A(Z)(λmax(P (k|k))I − P (k|k))A(Z)T ]

+ E[A(Z)(λmax(M)I −M)A(Z)T ]

− KpRe,kK
∗
p +KpRe,kK

∗
p (3.41)

Since, P (k|k) ≥ P (k|k) and λmax(S)I −S ≥ 0 for any symmetric matrix S, P (k|k)−

P (k|k) ≥ 0.

Using Lemma 3.3, Lemma 3.2, and the induction hypothesis, we obtain the follow-

ing theorem. The ub-KF maintains the state error covariance which is lower-bounded

by the state error covariance of the modified KF.

Theorem 3.3 If the ub-KF starts with an initial covariance P (0|0), such that P (0|0)

≥ P (0|0), then P (k|k) ≥ P (k|k) for all k ≥ 0.

Convergence

The following theorem shows a simple condition under which the state error covariance

can be unbounded.

Theorem 3.4 If (E[A(Z)]T ,E[A(Z)]TCT ) is not stabilizable, or equivalently, (E[A(Z)], CE[A(Z)])
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is not detectable, then there exists an initial covariance P (0|0) such that P (k|k) di-

verges as k →∞.

Proof. Let us consider the lb-KF. Let P k = P k|k. ψ = GQGT , Â = E[A], and F =

−(CÂP kÂ
TCT + CψCT + R)−1(Cψ + CÂP kÂ

T ).

Then based on Riccati difference equation [356], we can express P k+1 as:

P k+1 = ÂP kÂ
T + ψ

− F T (CÂP kÂ
TCT + CψCT +R)F

= (ÂT + ÂTCTF )TP k(Â
T + ÂTCTF )

+ F T (CψCT +R)F + ψCTF + F TCψ + ψ (3.42)

Hence, if (ÂT + ÂTCTF ) is not a stability matrix, for some P 0 ≤ P (0|0). P k di-

verges as k→∞. Since the state error covariance of the lb-KF diverges and P (k|k) ≤

P (k|k) for all k ≥ 0 (Theorem 3.2), P (k|k) diverges as k →∞. Here P (k|k) can be

FkPk+1/kF
∗
k − KkHkPk+1/k for ‘complete’ prior case and KkHkPk/k−1 for ‘without’

prior and ‘incomplete’ prior cases respectively.

3.5 BAYESIAN-BASED FB KALMAN FILTER FUSION WITH-

OUT PRIOR INFORMATION

The Bayesian-Based FB Kalman filter rule of theorem 3.1 is not applicable if either

there is no prior information about the estimatee, the information is incomplete (e.g.
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the prior covariance is not known or does not exist), or the estimatee is not random. In

these cases, the estimation formulas are not clearly applicable.

The following theorem presents the Bayesian-based FB Kalman filter for without

prior information:

Theorem 3.5

Forward Run: For (k = 0; k < T ; +k)

x̂k/k = Kp,i[yi − ν̄] (3.43)

x̂k+1/k = Fkxk+1/k −KpHkxk+1/k + kpy − kpν (3.44)

P̂k/k = KkHkPk/k−1 (3.45)

Kk = H+
k [I − Pk/k−1((I −HH

′
)(Pk/k−1)

.(I −HH
′
))+] (3.46)

K̃ = K +B′(I −HH ′) (3.47)

Pk+1/k = Kp,kRe,kK
∗
p,k (3.48)

Backward Run: For (k = 0; k < T ; +k)

Ĵk−1/T = P̂k−1/TF T
k P̂

−1
k−1/T (3.49)

x̂k−1/T = x̂ik−1/k−1 + Ĵk−1(x̂k−1/T − x̂k−1/k) (3.50)

P̂k−1/T = P̂k−1/k−1

+Ĵk−1(Ĵk−1/T − P̂k−1/k)J
′
k−1 (3.51)
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where B is any matric of compatible dimensions satisfying P
1
2

′

k/k−1(I −HH+)B = 0,

P
1
2

k/k−1 is any square root matrix of Pk/k−1. The optimal gain matrix K̃ is given uniquely

by:

K̃ = K = H+[I − Pk/k−1(I −HH+)
1
2 ((I −HH+)

1
2

′

Pk/k−1(I −HH+)
1
2 )−1(I −HH+)

1
2

′
] (3.52)

if and only if [H, P
1
2

k/k−1] has full row rank, where (I −HH+)
1
2 is a full-rank square

root of T . Note that in x̂k/k, x̄k is not carried because of no prior information, and all

other variables are derived according with condition of H as full row rank.

3.5.1 MODIFIED KALMAN FILTER WITHOUT PRIOR INFORMATION

In this section, we outline the case without prior information. As Section 3.5 is dis-

cussed for complete prior information, the modification of the kalman filter is focused

towards the prediction covariance computing of that case.

Hence, the prediction covariance in the case of no prior information can be com-

puted as following:

P (k + 1|k) = E[e(k + 1|k)e(k + 1|k)T |yk]

= −KpRe,kK
∗
p

+
∑
z ∈Z

pzA(z)x̂(k|k)x̂(k|k)T (A(z)− Â)T

(3.53)
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And here also, given x̂(k+1|k) and P (k+1|k), x̂(k+1|k+1) and P (k+1|k+1)

are computed as in the standard Kalman filter.

x̂(k + 1|k + 1) = K(k + 1)[y(k + 1)− ν̄] (3.54)

P (k + 1|k + 1) = K(k + 1)H(k + 1)P (k + 1) (3.55)

where K(k + 1) = H(k + 1)+[I − P (k + 1)((I −HHT )(Pk + 1).

3.5.2 APPROXIMATING THE KALMAN FILTER FOR WITHOUT PRIOR

INFORMATION

Likewise in Section 3.4.2, since the computation of P (k + 1|k) is the only time-

consuming process, we propose two filtering method which can bound P (k + 1|k).

The same notations have been followed as in Section 3.4.2.

Lower-Bound KF: Without Prior Information Case

The lower-bound KF (lb-KF) is the same as the modified KF described in Section 3.5.1,

except we approximate P (k + 1|k) by P (k + 1|k) and P (k|k) by P (k|k). The covari-

ances are updated as following:

P (k + 1|k) = K(k + 1)RKT (k + 1) (3.56)

P (k + 1|k + 1) = K(k + 1)HP T (k + 1|k) (3.57)

where K(k + 1) = H+[I − P (k + 1|k)((I −HHT )P (k + 1|k).
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Lemma 3.4 If P (k|k) ≤ P (k|k), then P (k + 1|k) ≤ P (k + 1|k).

Proof. Using (3.53), we have

P (k + 1|k)− P (k + 1|k) = E[A(Z)x̂(k|k)x̂(k|k)TA(Z)T ]

− Kp,kRe,kK
∗
p,k

− Âx̂(k|k)x̂(k|k)T ÂT

− Kp,kRe,kK
∗
p,k

= P1 + P2 (3.58)

where P1 = Kp,kRe,kK
∗
p,k and P2 = E[A(Z)x̂(k|k)x̂(k|k)TA(Z)T ] −

Âx̂(k|k)x̂(k|k)T ÂT −Kp,kRe,kK
∗
p,k.

Since P (k|k) is a symmetric matrix, P (k|k) can be decomposed into P (k|k) =

U1D1U
T
1 , where U1 is a unitary matrix and D1 is a diagonal matrix, but there is no

P (k|k) for P1 here. Hence,

P1 = −Kp,kRe,kK
∗
p,k (3.59)

Upper-bound KF: Without Prior Information Case

Similar to the lb-KF, the upper-bound KF (ub-KF) approximates P (k + 1|k) by P (k +

1|k) and P (k|k) by P (k|k). Let λmax = λmax(P (k|k)) + λmax(x̂(k|k)x̂(k|k)T ), where

λmax(S) denotes the maximum eigenvalue of S. The covariances are updated as fol-
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lowing:

P (k + 1|k) = λmaxE[A(Z)A(Z)
T ]

+ Kp,kRe,kK
∗
p,k (3.60)

P (k + 1|k + 1) = K(k + 1)HP (k + 1|k) (3.61)

where K(k + 1) = H+[I − P (k + 1|k)(I − HH
′
)(P (k + 1|k)). In the ub-KF,

E[A(Z)A(Z)T ] can be computed in advance but we need to compute λmax at each

step of the algorithm.

Lemma 3.5 If P (k|k) ≥ P (k|k), then P (k + 1|k) ≥ P (k + 1|k).

Proof. Let M = x̂(k|k)x̂(k|k)T and I be an identity matrix. Then using (3.53), we

have (See Eqn. (3.62)).

P (k|k)− P (k|k) = λmaxE[A(Z)A(Z)
T ]

− E[A(Z)MA(Z)T ]− E[ÂMÂT ]

= E[A(Z)(λmax(M)I −M)A(Z)T ]

+ E[ÂMÂT ] +Kp,kRe,kK
∗
p,k

− Kp,kRe,kK
∗
p,k (3.62)

Since, P (k|k) ≥ P (k|k) and λmax(S)I −S ≥ 0 for any symmetric matrix S, P (k|k)−

P (k|k) 
 0.

Using Lemma 3.5, Lemma 3.2, and the induction hypothesis, we obtain the follow-
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ing theorem. The ub-KF maintains the state error covariance which is lower-bounded

by the state error covariance of the modified KF.

Theorem 3.6 If the ub-KF starts with an initial covariance P (0|0), such that P (0|0)

≥ P (0|0), then P (k|k) ≥ P (k|k) for all k ≥ 0.

Convergence

The convergence will same as followed in Section 3.4.2 and in Theorem 3.4.

3.6 BAYESIAN-BASED FB KALMAN FILTER FUSION WITH

INCOMPLETE PRIOR INFORMATION

In practice, it is sometimes the case when prior information of some of all the states

of system parameters but not all the components of x̄ are not available. For example,

tracking the positioning of a vehicle, it is easy to determine the prior position vector of

the vehicle (it must be within a certain position range) with certain covariance, but not

the velocity of the vehicle, i.e. at what speed it is traveling. Such an incomplete prior

problem is presented in this section using Bayesian-based FB Kalman filter.

The following theorem presents the Bayesian-Based FB Kalman filter with incom-

plete prior information:
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Theorem 3.7

Forward Run: For (k = 0; k < T ; +k)

x̂k/k = V Kp,iV
′
1 x̄+ V Kp,i[yi − ν̄] (3.63)

x̂k+1/k = V Kp,iV
′
1 x̂k+1/k + V Kp,kyk − V Kp,kV

′
(3.64)

P̂k/k = KkHkPk/k−1 (3.65)

Kk = H+
k [I − Pk/k−1((I −HH

′
)(Pk/k−1)

.(I −HH
′
))+] (3.66)

Pk+1/k = GiQiG
∗
i −Kp,kRe,kK

∗
p,k (3.67)

Backward Run: For (k = 0; k < T ; +k)

Ĵk−1/T = P̂k−1/TF T
k P̂

−1
k−1/T (3.68)

x̂k−1/T = x̂ik−1/k−1 + Ĵk−1(x̂k−1/T − x̂k−1/k) (3.69)

P̂k−1/T = P̂k−1/k−1

+Ĵk−1(Ĵk−1/T − P̂k−1/k)J
′
k−1 (3.70)

Proof. By Theorem 3.5, the problem can be converted to without prior information

with H and C replaced by the H̃ and C̃ respectively, where, from the proof of Theorem

3.5, the estimatee is u = V
′
x, where V is an orthogonal matrix. This means that

Theorem 3.5 is applicable now to u. Therefore, all formulas in this theorem follows
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from Theorem 3.5 and the relationship:

x̂ = V û, P = V MSE(û)V
′

The uniqueness result thus follows from Theorem 3.5.

3.6.1 MODIFIED KALMAN FILTER WITH INCOMPLETE PRIOR IN-

FORMATION

In this section, we outline the case with incomplete prior information. As Section 3.6

is discussed for incomplete prior information, the modification of the kalman filter is

focused towards the prediction covariance computing of that case.

The prediction covariance in the case of incomplete prior information can be com-

puted as following:

P (k + 1|k) = E[e(k + 1|k)e(k + 1|k)T |yk]

= GQGT −KpRe,kK
∗
p

+
∑
z ∈Z

pzA(z)x̂(k|k)x̂(k|k)T (A(z)− Â)T

(3.71)

And here also, given x̂(k+1|k) and P (k+1|k), x̂(k+1|k+1) and P (k+1|k+1)
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are computed as in the standard Kalman filter (See Eqn. (3.72) and (3.72)).

x̂(k + 1|k + 1) = K(k + 1)[y(k + 1)− ν̄] (3.72)

P (k + 1|k + 1) = K(k + 1)H(k + 1)P (k + 1) (3.73)

where K(k + 1) = H̃(k + 1)+[I − P̃ (k + 1|k)((I − H̃H̃T )(Pk + 1|k).

3.6.2 APPROXIMATING THE KALMAN FILTER FOR INCOMPLETE PRIOR

INFORMATION

Likewise in Section 3.4.2, since the computation of P (k + 1|k) is the only time-

consuming process, we propose two filtering methods which can bound P (k + 1|k).

The same notations have been followed as in Section 3.4.2.

Lower-Bound KF: Incomplete Prior Information Case

The lower-bound KF (lb-KF) is the same as the modified KF described in Section 3.6.1,

except we approximate P (k + 1|k) by P (k + 1|k) and P (k|k) by P (k|k). The covari-

ances are updated as following:

P (k + 1|k) = GQGT −Kp,kRe,kK
∗
p,k (3.74)

P (k + 1|k + 1) = V K(k + 1)HkP (k + 1|k)∗V T (3.75)

where K(k + 1) = H̃+
k [I − P̃ (k + 1|k)(I − H̃H̃

′
)(P̃ (k + 1|k)).

Lemma 3.6 If P (k|k) � P (k|k), then P (k + 1|k) � P (k + 1|k).
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Proof. Using (3.71), we have

P (k + 1|k)− P (k + 1|k) = E[A(Z)x̂(k|k)x̂(k|k)TA(Z)T ]

− Kp,kRe,kK
∗
p,k

− Âx̂(k|k)x̂(k|k)T ÂT

+ Kp,kRe,kK
∗
p,k

= P1 + P2 (3.76)

where P1 = −Kp,kRe,kK
∗
p,k and P2 = E[A(Z)x̂(k|k)x̂(k|k)TA(Z)T ] −

Âx̂(k|k)x̂(k|k)T ÂT −Kp,kRe,kK
∗
p,k.

Note: Here we have simply used (3.71), subtract lower bound covariance from the

nominal covariance and assign their names as P1 and P2 respectively. Sections 3.4.1

and 3.4.2 can be seen for more basic details.

Since P (k|k) is a symmetric matrix, P (k|k) can be decomposed into P (k|k) =

U1D1U
T
1 , where U1 is a unitary matrix and D1 is a diagonal matrix, but here there is

no P (k|k) for P1.

Upper-bound KF: Incomplete Prior Information Case

Similar to the lb-KF, the upper-bound KF (ub-KF) approximates P (k + 1|k) by P (k +

1|k) and P (k|k) by P (k|k). Let λmax = λmax(P (k|k)) + λmax(x̂(k|k)x̂(k|k)T ), where

λmax(S) denotes the maximum eigenvalue of S. The covariances are updated as fol-
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lowing:

P (k + 1|k) = λmaxE[A(Z)A(Z)
T ]

+ Kp,kRe,kK
∗
p,k (3.77)

P (k + 1|k + 1) = K(k + 1)HP (k + 1|k) (3.78)

where K(k + 1) = H̃+[I − P̃ (k + 1|k)(I − H̃H̃
′
)(P̃ (k + 1|k)). In the ub-KF,

E[A(Z)A(Z)T ] can be computed in advance but we need to compute λmax at each

step of the algorithm.

Lemma 3.7 If P (k|k) ≥ P (k|k), then P (k + 1|k) ≥ P (k + 1|k).

Proof. Let M = x̂(k|k)x̂(k|k)T and I be an identity matrix. Then using (3.71), we

have

P (k|k)− P (k|k) = E[A(Z)(λmax(M)I −M)A(Z)T ]

+ ÂMÂT +Kp,kRe,kK
∗
p,k

− Kp,kRe,kK
∗
p,k

+ GQGT (3.79)

Since, P (k|k) ≥ P (k|k) and λmax(S)I −S ≥ 0 for any symmetric matrix S, P (k|k)−

P (k|k) ≥ 0.

Using Lemma 3.7, Lemma 3.2, and the induction hypothesis, we obtain the follow-

ing theorem. The ub-KF maintains the state error covariance which is lower-bounded

by the state error covariance of the modified KF.
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..

Figure 3.1: Proposed Data Fusion Design

Theorem 3.8 If the ub-KF starts with an initial covariance P (0|0), such that P (0|0)

≥ P (0|0), then P (k|k) ≥ P (k|k) for all k ≥ 0.

Convergence

The convergence will be the same as followed in Section 3.4.2 and in Theorem 3.4.

3.7 FUSION ALGORITHM

The information captured in each priori cases are designed for a distributed structure.

The idea is taken from [357].

Suppose there is X number of sensors. For every measurement coming from these

sensors that is received in fusion center, there is a corresponding estimation based solely

on one sensors that taken is so called virtual sensor (VS). Every estimation from Single

VS then is processed through the fusion algorithm to get optimal estimation of the state.

Overall diagram of fusion process using multiple sensors can be seen in Fig. 3.1.
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When estimate of the states are available, based on their prior knowledge, now the

problem turn how to combine these different estimations to get the optimal result. Fused

estimation based on the series of particular sensors are computed every sampling time

Ts, where the fused estimation x̂(k|k) is no more than an estimation coming from each

sensor x̂i(k|k) (See Theorem 3.9 where equation no. 3.81–3.84 comprise the fusion

algorithm).

Theorem 3.9 For any k = 1, 2, ...., the estimate and the estimation error covariance

of x(k) based on all the observations before time kT are denoted by x̂(k|k) and P (k|k),

then they can be generated by use of the following formula:

x̂(k|k) =
N∑
i=1

αi(k)x̂N |i(k|k) (3.80)

P (k|k) = (
N∑
i=1

P−1N |i(k|k))−1 (3.81)

where,

αi(k) = P (k|k)P−1N |i(k|k) (3.82)

where x̂N |i(k|k) is state estimation at the highest sample rate based on estimation from

VS i and PN |i(k|k) is it’s error covariance.

From equation (3.82), it can be verified that:

P (k|k) ≤ PN |i(k|k) (3.83)
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which means that the fused estimation error from estimation of different sensors are

always be less or equal to the estimation error of each sensor.

3.8 EVALUATION AND TESTING

The evaluation and testing has been made on an electro-hydraulic system [358]. A

networked control system with wired communication has been developed in a Matlab

environment as can be seen in the Fig. 3.2. In simulation, we study the performance

of the modified Kalman filtering algorithms developed for various types of prior in-

formation against the standard Bayesian-Based Kalman smoother which assumes no

communication errors. Then we provide motivating results showing the effectiveness

of the lb-KF and ub-KF. Our simulation is based on a Matlab environment developed

for multiple fault scenarios in a wired networked control system. For each test case,

we will run the modified Bayesian-Based KF and the standard Bayesian-KF and show

their comparisons for various cases, moreover compute the mean square error (MSE)

of state estimates and show the results in Table I, II, and III respectively.

Fault scenarios are created by using the rotational hydraulic drive in the simulation

program. In these scenarios leakage fault and controller fault are being considered.

Scenario I: Leakage Fault In this scenario, while the system is working in real time,

leakage faults is being introduced in the hydraulic fluid flow linked to the servo-valve

of the system. The leakage fault is considered as ωhCLleakage
x3(t) in state 3.
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Figure 3.2: Architecture of LTIP in distributed control network
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Scenario II: Controller Fault In this scenario, while the system is working in real

time and getting the input for driving the dynamics of the system, a fault has been

introduced by increasing the torque load in the hydraulic drive, then effecting the con-

troller, −ωh

α
tLfault

is considered in state 2 of the system. Following [358] and the fault

scenarios, the fault model of the system can be described in state space form as:

ẋ1(t) = ωmaxx2(t) (3.84)

ẋ2(t) = −γωh

α
x2(t) +

ωh

α
x3(t)−

ωh

α
tL − ωh

α
tLfault

(3.85)

ẋ3(t) = −αωhx2(t)− ωhCLx3(t)

+ αωhx4(t)
√
1− x3(t)sigm(x4(t))

− ωhCLleakage
x3(t) (3.86)

ẋ4(t) = − 1

τv
x4(t) +

i(t)

τv
(3.87)
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where

x1(t) = θ(t), x2(t) =
θ̇(t)

ωmax

,

x3(t) =
PL(t)

Ps

, x4(t) =
Av(t)

Amax
v

,

u1(t) = i(t) =
I(t)

Imax

, u2 = tL =
TL

PsDm

,

γ =
Bωmax

PsDm

,

ωh =

√
2βD2

m

JV
,

α =
(CdA

max
v

√
Psρ)Jωh

PsD2
m

,

cL =
JCLωh

D2
m

and CLleakage
is the leakage fault considered in state 3, tLfault

is the controller fault in

the form of torque load in state 2.

Using the sign convention for Av(t) and the definition of x3(t), it follows that 0 ≤

x3(t)sigm(x4(t)) ≤ 1 . It is also noted here that 0 ≤ x3(t)sigm(x4(t)) ≤ 1, because

P1(t) and P2(t) are both positive and the condition x3(t)sigm(x4(t)) = 1 implies that

P1(t) = Ps and P2(t) = 0 or P2(t) = Ps and P1(t) = 0, indicating zero pressure drop

across the open ports of the servo-valve and thus, no flow to or from the actuator, a

situation that would occur if the rotational motion of the drive is impeded.

3.8.1 EVALUATION OF RESULTS

In what follows, we present simulation results for the proposed distributed approximate

estimation with three cases of prior knowledge. The experiment has been performed on
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the rotational hydraulic drive system. Two sets of faults have been considered here, that

is, the leakage fault in state 3 and controller fault. Firstly, the data collected from the

plant has been initialized and the parameters have been being optimized which com-

prises of the pre-processing and normalization of the data. The comparison of results

for the distributed estimation, and estimation generated from various levels of faults,

and the basic profile of that particular fault has been compared. Moreover, same pat-

tern of comparison has been followed for modified estimation filters with lower bound

and upper bound. Later, computational time comparison has been shown for different

results showing the effectiveness of the modified filter in all cases.

Fault 1 (Leakage): Estimates and covariance comparison of distributed estimation

with complete prior information, with lower and upper bound filter versions

The Bayesian-Based FB Kalman filter has been simulated here for the leakage fault of

the plant. Simulations have been made for the x-estimate and the covariance of each

case. In the simulation, comparison of various levels of leakage, that is, no, small,

and medium intensity of leakage faults, and distributed estimation has been shown. It

can be seen for the estimate profile in Fig. 3.4 that the distributed structure is clearly

performing well as compared to the other profiles for complete prior information, when

it comes to the covariance of modified filter implementation with upper bound, see Fig.

3.6 and lower bound, see Fig. 3.9 for estimate of lower bound scheme, it is performing

equally well for distributed structure. Actually, the advantage of using the modified

upper and lower bound filters can be seen more clearly when we talk about the time

computation as discussed in the next Section.
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Fault 1 (Leakage): Estimates and covariance comparison of distributed estimation

with incomplete prior information, with its lower and upper bound filter versions

In case of incomplete prior information with leakage fault, when it comes to the covari-

ance and estimate of modified filter implementation with upper bound, see Fig. 3.12 it

performs well for distributed structure. Actually, the advantage of using the modified

upper and lower bound filters can be seen more clearly when we talk about the time

computation as discussed in the next Section.

Fault 1 (Leakage): Estimates and covariance comparison of distributed estimation

without prior information, with its lower and upper bound filter versions

In case of estimation without prior information but with leakage fault, it can be seen for

the covariance profile, see Fig. 3.13, that the distributed structure is clearly performing

well as compared to the other profiles for without prior information, which is the worst

scenario case chosen among all three as far as the prior information is concerned. It

is only because of the full rank of the H matrix in the gain Kk that it managed to

show the performance, in particular with distributed case, likewise, when it comes to

the covariance and estimate of modified filter implementation with upper bound, see

Fig. (3.16 for covariance of upper bound scheme and lower bound, see Fig. 3.18

for covariance of lower bound scheme, it appears to be performing equally well for

distributed structure. It is due to this factor of poor prior information that rise in the

y-axis (estimate) can be seen. A comparison of computation time will be reported later.
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Fault 2 (Controller): Estimates and Covariance Comparison of Distributed Esti-

mation with Complete Prior Information, with its lower and upper bound filter

versions

The Bayesian-Based FB Kalman filter has been simulated here for the controller fault

of the plant, which has been introduced by increasing the torque load in the hydraulic

drive, then effecting the controller. Simulations have been made for the x-estimate and

the covariance of each case. In the simulation, comparison of various levels of con-

troller faults, that is, no, small, and medium intensity of faults, and distributed estima-

tion has been shown. It can be seen for the covariance profile, see Fig. 3.3 and estimate,

see Fig. 3.5 that the distributed structure is clearly performing well as compared to the

other profiles for complete prior information, when it comes to the covariance and es-

timate of modified filter implementation with upper bound, see Fig. 3.7 for covariance

of upper bound scheme and lower bound, see Fig. 3.8 for covariance of lower bound

scheme and see Fig. 3.10 for estimate of lower bound scheme, it is performing equally

well for distributed structure.

Fault 2 (Controller): Estimates and Covariance Comparison of Distributed Esti-

mation with Incomplete Prior Information, with its lower and upper bound filter

versions

In case of incomplete prior information with controller fault, it can be seen for the

estimate profile, see Fig. 3.11 that the distributed structure is clearly performing well

as compared to the other profiles even for incomplete prior information. A comparison
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of computation time will be reported later.

Fault 2 (Controller): Estimates and covariance comparison of distributed estima-

tion without prior information, with its lower and upper bound filter versions

In case of estimation without prior knowledge but with controller fault, it can be seen

for the covariance profile, see Fig. 3.14 and estimate, see Fig. 3.15 that the distributed

structure is clearly performing well as compared to the other profiles for without prior

information, which is the worst scenario case chosen among all three as far as the prior

information is concerned. It is only because of the full rank of the H matrix in the gain

Kk that it managed to show the performance, in particular with distributed case, like-

wise, when it comes to the covariance and estimate of modified filter implementation

with upper bound, see Fig. 3.19 for covariance of lower bound scheme and see Fig.

3.21 for estimate of lower bound scheme, it is performing equally well for distributed

structure. The advantage of using the modified upper and lower bound filters can be

seen more clearly when we talk about the time computation as discussed in the next

Section.

3.8.2 TIME COMPUTATION

The time computation of different methods is evaluated using an HP COMPAQ labtop,

n × 7300 INTEL (R) core (TM) 2 CPU T 7200 @ 2 GHz with 2.5 GB ram and 500

Hard disk. An equal number of 5 iterations have been run for achieving each and

every of the estimate. For the case of complete prior information, it can be seen from

Table 3.1, that iteration time of the basic bayesian-based FB Kalman filter, though it
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Figure 3.19: Comparison of Covariance for without prior information for Controller

Fault with Lower Bound Modified Filter
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Figure 3.21: Comparison of Estimates for without prior information for Controller

Fault with Lower Bound Modified Filter

is very much optimal in nature due to its structure than the regular Kalman filter, is

taking the maximum number of time for the computation, whereas both modified filters

of upper bound and lower bound are performing well with less computation time for

leakage fault (fault 1) and controller fault (fault 2) respectively. Likewise are the cases

of incomplete prior information, see Table 3.2 and without prior information in Table

3.3 which are even more crucial and critical because of their structures, and here the

basic Bayesian-based FB Kalman filter is taking comparatively more time than the likes

of modified lower bound and upper bound filters. The performance of the modified

filters was consistent even here for both leakage fault (fault 1) and controller fault (fault

2) respectively. In the tables, Bayesian FB KF+ means with upper bound and Bayesian

FB KF- corresponds to with lower bound
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Table 3.1: Case I: Time Computation Comparison for Complete Prior Information

FILTER LEAKAGE FAULT CONTROLLER FAULT

1- BAYESIAN FB KF 14.81 12.53

2- BAYESIAN FB KF+ 12.23 12.22

3- BAYESIAN FB KF- 12.09 12.26

Table 3.2: Case II: Time Computation Comparison for Incomplete Prior Information

FILTER LEAKAGE FAULT CONTROLLER FAULT

1- BAYESIAN FB KF 13.503922 12.492827

2- BAYESIAN FB KF+ 12.732579 12.191222

3- BAYESIAN FB KF- 12.939255 12.166062

Table 3.3: Case III: Time Computation Comparison for Without Prior Information

FILTER LEAKAGE FAULT CONTROLLER FAULT

1- BAYESIAN FB KF 23.463690 22.445465

2- BAYESIAN FB KF+ 22.926070 12.165139

3- BAYESIAN FB KF- 22.366596 21.970777
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4 A DISTRIBUTED EM-BASED KALMAN

SMOOTHER

4.1 AN OVERVIEW

In this chapter, we have discussed Distributed Expectation Maximization(EM)-Based

Kalman smoother, where distributed EM-based smoother estimation is derived for both

cases of full and reduced-order respectively.

4.2 INTRODUCTION

Estimation in distributed structures of different types often provide complementary and

overlapping coverage on targets. Estimation using filters and their application in dif-

ferent fields is a wide area of research with intense science. Considering the papers of

estimation using filters, [360] presents a procedure for design and tuning of reduced

orders H∞ feed-forward compensators for active vibration control systems subject to

wide band disturbances. The procedure took in account the inherent positive feed-

back coupling between the compensator system and the measurement of the image for
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disturbance. In [361], an open-loop observer is designed that estimates each wheel’s

orientation of the wheel chair based only on the rear wheels’ kinematics. The model

has been validated by propelling the wheelchair on three different floors (vinyl, car-

pet, and concrete) with five different normal forces between the caster wheels and the

ground. In [362], estimator is implemented on a reduced order version i.e. a linear

Kalman filter based on a reduced order electrochemical model is designed to estimate

internal battery potentials, concentration gradients, and state-of-charge from external

current and voltage measurements. A non-linear version of the estimator is used in

[363], where an extended Kalman filter observer is presented to estimate manipula-

tor states and couple these estimates to an adaptive rigid-link flexible-joint controller.

When it comes to application of estimators, fault detection and isolation is one of the

main areas. In [364], investigation is made on the leakage fault diagnosis problem for

a physical internet-based three-tank system. In [365], the problem of designing and

developing a hybrid fault detection and isolation scheme for a network of unmanned

vehicles is dealt, subject to large environmental disturbances.

In essence, the driving force of estimation in dynamical estimation methods is

Kalman filter [366]. Optimal linear smoothers stemming from the estimation theory can

be considered as an extension of the Kalman filter, because they take future observa-

tions into account. Actually, all optimal linear smoother algorithms involve the Kalman

smoother, perhaps because of its property of depending on the a-prior knowledge. A

detailed description of the various types of smoothers based on Kalman’s theory, and

their algorithms can be found in [367] and [368]. For the sequential approach of the
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smoothing, as in [369] and [370], the Kalman filter analysis follows a retrospective ap-

proach, that is done by making corrections of the past state estimates using the Kalman

filter innovation. In this paper, we have derived distributed EM-based smoother esti-

mation for both cases of full and reduced-order respectively. It is done with the help

of Kalman-like particle filter. The estimation is derived on a stochastic singular system

[371]. After achieving a full and reduced-order distributed structure, we have stemmed

EM algorithm in each case. The proposed scheme is then validated on a power quality

system implemented in an experimental laboratory, where different types of loads were

introduced, and then different load profile data were considered for the evaluation of

the proposed scheme.

The main contribution of this paper is Kalman-like particle smoother which has

been derived and implemented as full-order and reduced-order respectively with EM

algorithm tunes for model paramters. The proposed smoothers have been implemented

on a data from power quality system with various comparison of results for three types

of loads.

The remainder of this paper is structured as follows. Problem formulation is de-

scribed in Section II. The distributed full-order EM-based smoother is derived and dis-

cussed in Section III, followed by the distributed reduced-order EM-based smoother,

derived and discussed in Section IV. Evaluation and testing is made in Section V. Fi-

nally some conclusion is described in Section VI.
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4.3 PROBLEM FORMULATION

Consider the discrete-time stochastic singular linear system, as in [371] with multiple

sensors given by:

Mxk+1 = Φxk + Γωk (4.1)

y
(i)
k = H(i)xk + ν

(i)
k , i = 1, 2, ..., l (4.2)

where the state xk ∈ �n, the measurements y
(i)
k ∈ �m(i) , i = 1, 2, ...., l, ωk ∈ �r and

ν
(i)
k ∈ �m(i) , i = 1, 2, ...., l are independent white noises with zero mean and variance

Qω and Qν(i) . M , Φ, Γ, H(i) are the constant matrices with compatible dimensions, l is

the number of sensors, and the superscript (i) denotes the ith sensor.

Assumption 1. M is a singular square matrix, rank M = n1 < n, rank Φ ≥ n2

and n1 + n2 = n.

Assumption 2. System (4.1) is regular, i.e., det(zM − Φ) �= 0 where z is an

arbitrary complex.

Assumption 3. The initial state x(0) with mean μ0 and variance P0 is independent

of w(t) and v(i) (t), i = 1, 2, , l.

Our aim is to find the distributed reduced-order fusion Kalman smoother x̂(0)(t|t)

of the state x(t) based on measurements (y(i)(t), , y(i)(1)), i = 1, 2, , l.
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For system (4.1) and (4.2), there are nonsingular matrices L and R[15], such that:

LMR =

⎡
⎢⎢⎣ M1 0

M2 0

⎤
⎥⎥⎦ , LΦR =

⎡
⎢⎢⎣ Φ1 0

Φ2 Φ3

⎤
⎥⎥⎦ ,

LΓR =

⎡
⎢⎢⎣ Γ1

Γ2

⎤
⎥⎥⎦ , H(i)R =

[
H

(i)
1 H

(i)
2

]
(4.3)

where M1 ∈ �n1×n2 is non-singular lower-triangular, Φ1 ∈ �n1×n1 is quasi-lower-

triangular, Φ3 ∈ �n2×n2 is non-singular lower-triangular. By introducing the trans-

formation x(t) = R [xT1 (t) x
T
2 (t)]

T with x1(t) ∈ �n1 and x2(t) ∈ �n2 , where T denotes

the transpose.

The singular system (4.1) and (4.2) is transferred into the following two reduced-

order subsystems:

⎧⎪⎪⎨
⎪⎪⎩

x1(k+1) = Φ0x1(t) + Γ0ω(t)

y
(i)
k = H̄(i)x1(k) + η

(i)
k

(4.4)

x2(k) = Bx1(k) + Cωk (4.5)

where Φ0 = M−1
1 Φ1, Γ0 = M−1

1 Γ1, H̄
(i) = H

(i)
1 + H

(i)
2 B, ηik = Γ

(i)
3 ωk + ν

(i)
k ,

Γ
(i)
3 = H

(i)
2 C, B = Φ−13 M2M

−1
1 Φ1 − Φ−13 Φ2, C = Φ−13 M2M

−1
1 Γ1 − Φ−13 Γ2.
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Also, we have

E{

⎡
⎢⎢⎣ ω(t)

η(i)(t)

⎤
⎥⎥⎦ ,

[
ωT (k) η(j)

T
(k)

]
} = Q(ij)δtk,

Q(ij) =

⎡
⎢⎢⎣ Qω S(j)

S(i)T Qη(i,j)

⎤
⎥⎥⎦ , (4.6)

where S(i) =Qω Γ
(i)T

3 , Qη(ii) =Qη(i) = Γ
(i)
3 Qω Γ

(i)T

3 +Qν(i) and Qη(ij) = Γ
(i)
3 Qω Γ

(i)T

3 ,

i �= j. E is the expectation, and δtk is the Kronecker delta function.

4.4 FULL-ORDER EM-BASED FUSION SMOOTHERS

In this Section, and the Section coming ahead i.e. Section 4.5, we will derive Kalman-

like particle smoother fusion with full-order and reduced order respectively. The Kalman-

like particle smoother is expressed as follows with ith sensor (See Equation (4.7-4.13)),

where the simple Kalman-like particle filter is expressed in [414]. A question arises

here that why Kalman-like particle smoother has been preferred on a basic Kalman

smoother? The justification for the approach w.r.t filter is given in [414], moreover, it

is preferred here as a smoother on the basic kalman smoother because of the following.

(See Fig. 4.1 for the comparison of estimates of a basic kalman smoother and Kalman-

like particle smoother. See Fig. 4.2 where it can be seen, how the mean square error

is reduced in less number of iterations for particle smoother as compared to a regular

Kalman smoother):
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Initialization: xa0 and P0

Forecast Step:

xfik/k−1 = Φk−1,kx
ai
k−1/k−1, I ∈ Σk (4.7)

P fiai
k,i/k−1 = Φk−1/kP

aiai
k−1,i|k−1, i ∈ Σk, (4.8)

P fi
k/k−1 = Φk−1/k(P

fiai
k,k−1|k−1)

T +Qk−1/k, (4.9)

Smoother Analysis Step:

dk = yk −Hkx
f
k/k−1, i ∈ Σk (4.10)

xaii|k = xaii|k−1 +
P fiai
k (Hk)

iT

H i
kP

fiai
k H iT

k + σ2
ν

dk, i ∈ Σk (4.11)

P aiai
k,i/k = (I − P aiai

k (Hk)
iT

H i
kP

aiai
k H iT

k + σ2
ν

H i
k)

. P fiai
k,i|k−1, i ∈ Σk (4.12)

P ai
i/k = P ai

i|k−1 −
P ai
k (Hk)

iT

H i
kP

ai
k H

iT
k + σ2

ν

H i
kP

fiai
k,i|k−1

, i ∈ Σk (4.13)

Notations: Smoothers are initialized as the Kalman filter is. In this case of fix-lag

smoothers, for example, while k is lower than the lag L, the retrospective analysis

is performed only to the k − 1 previous states. The smoother is initialized with an

analysis state vector xai0 and the associated error covariance matrix P ai
0 . The subscript

and superscript notations are those of [372]. Superscripts f and a mean ‘forecast’ and

102



4.4. FULL-ORDER EM-BASED FUSION SMOOTHERS

‘analysis’ respectively. k−1 and k indicate two consecutive time, tk−1 and tk, at which

observations are available. The subscript notation k/k− 1 is inherited from the estima-

tion theory. xfik/k−1 represents the forecast state for i-th sensor at time tk, i.e. the state

estimate at time tk given the observations up to time tk−1. x
ai
k/k is the analysis state of

i-th sensor at time tk .i.e the state estimate at time tk given the observations up to time

tk. For smoother, the analysis state at tI that includes information of all observations

till time tk is noted xaiI,k, for i-th sensor P fi
k/k−1 and P ai

k/k are the associated state error

covariance matrices at i-th sensor. Equation (4.7), (4.8) and (4.9) perform the prop-

agation between times tk−1 and tk. They involve the linear, dynamical model Φk−1,k

and the model error covariance matrix Qk−1,k. The equations (4.10)-(4.13) perform

the observational updates of the state estimate and error statistics at time tk. They use

the observation vector yk, the observation error covariance matrix σv, the observation

operator Hk. The innovation dk is internally defined. Σk, the set of time, indices at

which the retrospective anaylysis is produced, i.e. the ensemble that I must span when

the observations at tk is considered. The nature of Σk determines the type of smoother.

If Σk is a singleton, it corresponds to the fixed-point smoother. If Σk is a fixed and

homogeneous series, Σk = {0, 1, ....., M − 1,M} for instance, the smoother is of the

fixed-interval type. Note that in the paper i is used for the i-th sensor and k is used for

the span of observations.

For every sensor subsystem of system (4.3) with multiple sensors, using [373], we

can obtain the local Kalman filter x̂
(i)
1 (t|t) for the reduced-order state x1(t), the filter-

ing error covariance P
(i)
1 (t|t), innovation ε(i)(t) with covariance Qε(i)(t) and the white
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noise filter ŵ(t|t), and smoothing P S(i)(i|k). So, from (4.4), we have the filter of the

reduced-order state x2(t) as:

x̂
(i)
2 (k|k) = Bx̂

(i)
1 (k|k) + Cω̂(i)(k|k) (4.14)

4.4.1 COMPUTATION OF CROSS COVARIANCE

From (4.4)-(4.14), we can obtain the Kalman-like particle filter based filtering and

smoothing error equations as follows:

x̃
(i)
1 (k + 1|k) = Φ̄

(i)
0 [In1 −

P i
k(Hk)

iT

H i
kP

i
kH

iT
k + σ2

ν

H̄(i)]x̃
(i)
1 (k|k − 1)

+Γ0ωk − (Φ̄
(i)
0

P i
k(Hk)

iT

H i
kP

i
kH

iT
k + σ2

ν

+ J i)η
(i)
k (4.15)

x̃
(i)
1 (k|k) = [In1 −

P i
k(Hk)

iT

H i
kP

i
kH

iT
k + σ2

ν

H̄(i)]x̃
(i)
1 (k|k − 1)

− P i
k(Hk)

iT

H i
kP

i
kH

iT
k + σ2

ν

)η
(i)
k (4.16)

x̃
(i)
2 (k|k) = Φ

(i)
k x̃

(i)
1 (k|k − 1) +D(i)(k)[ωT

k , η
(i)T

k ]T (4.17)

where x̃
(i)
1 (k|k−1)=x1(k)−x̂(i)1 (k|k−1), x̃(i)1 (k|k)=x1(k)−x̂(i)1 (k|k), x̃(i)2 (k|k)=x2(k)−

x̂
(i)
2 (k|k), Φ̄(i)

0 = Φ0 − J (i)H̄(i), J (i) = Γ0S
(i)Q−1

η(i)
, Φi

k = B(In1 − P i
k(Hk)

iT

Hi
kP

i
kH

iT
k +σ2

ν

H̄ i) −

CS(i)Q−1
ε(i)
(k)H̄(i) and D(i) = [C − B

P i
k(Hk)

iT

Hi
kP

i
kH

iT
k +σ2

ν

− CS(i)Q−1
ε(i)
(k)]. In1 is an n1 × n1

identity matrix. Using (4.15)-(4.17), and projection theory, the following Lemmas 4.1,

4.2 and 4.3 can be obtained for prediction, filtering and smoothing respectively.
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Cross covariance of Prediction and Filtering Errors

Lemma 4.1 For system (4.4) with multiple sensors, the cross-covariance matrices of

prediction and filtering errors for state x1(k) between the ith and the jth sensor sub-

systems are given by (See Eqn. (4.18)-(4.19)):

P ij
1 (k + 1|k) = Φ̄

(i)
0 [In1 −

P i
k(Hk)

iT

H i
kP

i
kH

iT
k + σ2

ν

H̄(i)]P
(ij)
1 (k|k − 1)

[In1 −
P j
k (Hk)

jT

Hj
kP

j
kH

jT

k + σ2
ν

H̄(j)]T + [Γ0 − Φ̄
(i)
0

P i
k(Hk)

iT

H i
kP

i
kH

iT
k + σ2

ν

−J (i)]Q(ij)[Γ0 − Φ̄
(j)
0

P j
k (Hk)

jT

Hj
kP

j
kH

jT

k + σ2
ν

− J (j)]T (4.18)

P ij
1 (k|k) = [In1 −

P i
k(Hk)

iT

H i
kP

i
kH

iT
k + σ2

ν

H̄(i)]P
(ij)
1 (k|k − 1)

[In1 −
P j
k (Hk)

jT

Hj
kP

j
kH

jT

k + σ2
ν

H̄(j)]T +

P i
k(Hk)

iT

H i
kP

i
kH

iT
k + σ2

ν

Qη(i,j)
P j
k (Hk)

jT

Hj
kP

j
kH

jT

k + σ2
ν

(4.19)

with the initial value P i,j
1 (0|−1)=P01 where P01 is the first n1 × n1 block ofR−1P0R

−T .

Lemma 4.2 For system (4.5) with multiple sensors, the covariance matrix of the filter-

ing errors for state x2(k) between the ith and the jth sensor subsystems is given by (See

Eqn. (4.20)):

P
(ij)
2 (k|k) = Φ(i)(k)P

(ij)
1 (k|k − 1)Φ(j)T (k) +D(i)(k)Q(ij)

D(j)T (k) (4.20)

where P (ii)
2 (k|k) is the filtering error covariance of x2(k) based on the i-th sensor i.e.
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P
(i)
2 (k|k).

Cross covariance of Smoothing

Lemma 4.3 For system (4.4)-(4.5) with multiple sensors, the covariance of smoothing

between the i-th and j-th subsystem are given by:

x̂(i|k) = x̂(i|k − 1) + P ij(k|k − 1)rij(i|K) (4.21)

rij(i|K) = Φ̄(i)T

p [In1 −
P ij
k (Hk)

jT

H i
kP

ij
k H

jT

k + σ2
ν

H̄(j)]r(i+ 1|K) +H(j)T

[H(j)P ij(k|k − 1)H(j)T +R(k)]−1(ỹ(j)k+1 − H̃
(j)
k+1x̃

(j)
k+1) (4.22)

P ij(k, i|T ) = P ij(k|k − 1)− P ij(k|k − 1)

P Sij(i|K)P ij(k|k − 1) (4.23)

P Sij(i|K) = Φ̄(i)T

p [In1 −
P ij
k (Hk)

iT

H i
kP

ij
k H

jT

k + σ2
ν

H̄(j)]T

P Sij(i+ 1|K)Φ̄(j)
p [In1 −

P ij
k (Hk)

jT

H i
kP

ij
k H

jT

k + σ2
ν

H̄(i)]

+H(i)T [H(j)P (i|k − 1)H(j)T +Rk]
−1H(j) (4.24)

where k = N − 1, N − 2, ...., 1, and n × n vector r satisfies the backward recursive

equation, and Φp(k + 1, k) = Φ(k + 1, k)[I − K(k)H(k)] and j = N, N − 1, ..., 1

and r(N + 1|N) = 0, also n × n matrix P Sij(i|K), which is the covariance matrix of

r(i|K) satisfying the backward recursive equation. For state xk between i-th and j-th
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sensor, the cross-covariance matrices for smoothing are:

P
(Sij)
1,k = In1P

aij
1,k I

T
n1
+ (H(i)P (j|j − 1)HjT )−1 (4.25)

P
(Sij)
2,k = F (i)(k)P

aij
1,kF

jT (k) +Di(k)(H iP (j|j − 1)HjT )−1

. D(iT ) (4.26)

where P (Sii)
2,k (k|k) is the smoothing error covariance of x2(k) based on the i-th sensor

i.e. P (Si)
2 (k|k).

4.4.2 ESTIMATION OF THE MODEL PARAMETERS USING AN EM

ALGORITHM

In this section, we describe the estimation of model parameters with an EM algorithm.

The objective is to compute an estimate of Θ, where all the model parameters are de-

noted by Θ = {A, σ2
υ, Q, μ0, Σ0}. Note that because of the dependence on the

states, which are not available, direct maximization is not possible. The problem is to

maximize the likelihood with respect to two unknowns: states and model parameters.

The EM algorithm takes an iterative approach by first maximizing the likelihood with

respect to the states in the E-step, and then maximizing with respect to the parameters

in the M -step. The E-step maximum is given by the expected value of the complete

log-likelihood function as follows:

Q = EX|Y [log p(Y1:KX1:K |Θ)] (4.27)
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where p(Y1:K , X1:K |Θ) is the probability density function of the measurement, and Y1:K

is the a sequence of measurements as Y1:K ≡ {y1, ...., yk}. The M -step involves the

direct differentiation of Q to find the values of the parameters. These computations

are done iteratively and convergence of the algorithm is guaranteed [376]. We now

describe an EM algorithm for our case to stem it into the full-order Kalman-like particle

smoother.

E-Step

This step involves the computation of Q given the measurements Y1:K , which is the

future estimation where K is a fixed positive integer. and an estimate of the model

parameter from the previous iteration, Θ̂k. The computation of Q depends on the fol-

lowing three quantities:

x̂aik|K = E(xak|Y1:K) (4.28)

Ξk|K = E(xakx
aT

k |Y1:K) = Pk|K + x̂ak|K x̂
aT

k|K (4.29)

Ξk,k−1|K = E(xakx
aT

k−1|Y1:K) = Pk,k−1|K

+ x̂ak|K x̂
aT

k−1|K (4.30)

where xak is the value from the smoother analysis step. The first two quantities can

be obtained using the Kalman smoother as described in equation (4.11) and (4.13). The

last quantity can be obtained with the following equation:

Pk,k−1|K = Jk−1Pk|K (4.31)
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where Jk = P ai
1,kΦk−1,kP

fiai
−1

k,1/k−1. Q is then obtained using equation (4.33) given in the

next section.

Log-Likelihood derivation and M -Step : Joint probability distribution of X1:K ,

Y1:K can be written as:

p(X1:K , Y1:K|Φ) = p(xa1)
K∏
k=2

p(xak|xk−1)

.
K∏
k=1

p(yk|xak, Hk) (4.32)

Taking log and expectation, we get the expectation of joint log-likelihood with re-

spect to the conditional expectation:

Q = EX|Y [log p(X1:K , Y1:K |Θ)]

= −K
2
lnσ2

υ −
1

2σ2
υ

K∑
k=1

[y2k/K − 2HT
k x̂

ai
i/kyt +HT

k Ξk|KHk]

− 1

2

K∑
k=2

trace[Q−1(Ξk|K − Φk−1,kΞk,k−1|KΦk−1,kT

+ Φk−1,kΞk−1|KΦT
k−1,K)]

− 1

2
trace[V −11 (Pk|K − 2π1x̂

ai
T

1 + π1π
T
1 )]−

1

2
ln|V1|

− K − 1

2
ln|Q| − (p+ 1)K

2
ln 2π (4.33)

where yk is a particular output measurement at instant K. For M -step, we take the

derivative of Q with respect to each model parameter, and set it to zero to get the
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estimate, e.g., an update for Φk−1,k can be found as:

∂Q

∂Φ
= −1

2

K∑
k=2

[−2Ξk,k−1|K + 2ΦΞk−1|K ] = 0 (4.34)

which gives,

Φk+1
k−1,k = (

K∑
k=2

Ξk,k−1|K)(
K∑
k=2

Ξk−1,K)−1 (4.35)

Updates for other parameters can be obtained similarly.

M-Step

By direct differentiation of Q, we get the following expressions of the model parameter

estimates:

Φ̂k+1
k−1,k = (

K∑
k=2

Ξk,k−1|K)(
K∑
k=2

Ξk−1,K)−1 (4.36)

Q̂k+1
k−1,k =

1

K − 1
(

K∑
k=2

Ξk,|K − Φ̂k+1

K∑
k=2

Ξk−1,k|K) (4.37)

σ̂2
v

k+1
=

1

K

K∑
k=1

[y2k − 2HT
k x̂

ai
k yk +HT

k Ξk|KHk] (4.38)

μ̂k+1
1 = x̂a1|K (4.39)

Σ̂k+1
0 = Ξ1 − x̂ai1|K x̂

aT

1|K (4.40)

where k denotes the current iteration. We denote all these estimates together as Θ̂k+1.

BothE andM steps are iterated, and convergence is monitored with the conditional
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likelihood function obtained as follows:

log p(Y1:K |Θ̂k) =
K∑
k=1

log(N(H
′
kx̂k|k−1, H

T
k Pk|k−1Hk

+σ2
v)) (4.41)

The algorithm is said to have converged if the relative increase in the likelihood at

the current time step compared to the previous time is below a certain threshold. The

values of Φ̂k+1
k−1.k and Q̂k+1

k−1,k obtained from M -step is then fed into the Kalman-like

particle smoother resulting in more efficient results.

The above algorithm can be easily extended to multiple measurements. Assuming

trials to be i.i.d., the Kalman smoother estimates need to be averaged over all measure-

ment sequences. Substitution in M -step equations will then give the estimate of the

parameters corresponding to the multiple measurements.

4.4.3 FULL-ORDER FUSION

Theorem 4.1 For singular system (4.1) and (4.2) with multiple sensors, we have the

distributed full-order optimal fusion filter

x̂0(k|k) =
l∑

i=1

Ā(i)(k)x̄(i)(k|k) (4.42)

The optimal matrix weights Ā(i)(k), i = 1, 2, , l are computed by:

Ā(k) = Υ−1(k)e(eTΥ−1(k)e)−1 (4.43)
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where Ā(k) = [Ā(1)(k), , Ā(l)(k)]T and e= [In In]
T are both nl × n matrices. Υ(k) =

(P (ij)(k|k))nl× nl is an nl × nl matrix. Covariance matrix P (ij)(k|k) between x̃(i)(k|k)

and x̃(j)(k|k) is computed by:

P (ij)(k|k) = R

⎡
⎢⎢⎣ P

(ij)
1 (k|k) P

(ij)
12 (k|k)

P
(ij)
21 (k|k) P

(ij)
2 (k|k)

⎤
⎥⎥⎦RT (4.44)

where the correlated matrix P (ij)
12 (k|k) between x̃(i)1 (k|k) and x̃(j)2 (k|k) is computed by:

P ij
12(k|k) = (In1 −K(i)(k)H̄(i))P

(ij)
1 (k|k − 1)F (j)T (k)

+ [0,−K(i)(k)]Q(ij)D(j)T (4.45)

with P (ij)
12 (k|k) = P

(ji)T

21 (k|k) . x̂(i)(k|k) is computed by:

x̂(i)(k|k) = R[x̂
(i)T

1 (k|k), x̂(i)T2 (k|k)T ] (4.46)

and the variance matrix of the optimal fusion filter x̂0(k|k) is computed by:

P 0(k|k) = (eTΥ−1(k)e)−1 (4.47)

and we have P o(k|k) ≤ P (i)(k|k), i = 1, 2, , l.

Proof. Taking projection on x(k) = R[xT1 (k) x
T
2 (k)]

T gives (18). We have the filtering
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error:

x̃(i)(k|k) = R[x̃
(i)T

1 (k|k), x̃(i)T2 (k|k)]T (4.48)

From (4.48) we have the covariance matrix of the filtering errors as (4.44). Using

(4.16) and (4.17) gives (4.45). Using the optimal fusion algorithm[14] , we have (4.42),

(4.43), and (4.44). It should be noted that theorem 4.1 sets for the filter, and the theorem

4.2 sets for the smoother.

Theorem 4.2 For singular system (4.1) and (4.2) with multiple sensors, we have the

distributed full-order optimal fusion smoother

x̂S0(k|k) =
l∑

i=1

Ā(i)(k)x̄(Si)(k|k) (4.49)

In case of the full-order smoother fusion, all the other formulation is same except the

covariance matrix. Covariance matrix P (Sij)(k|k) between x̃(Si)(k|k) and x̃(Sj)(k|k) is

computed by:

P (Sij)(k|k) = R

⎡
⎢⎢⎣ P

(Sij)
1 (k|k) P

(Sij)
12 (k|k)

P
(Sij)
21 (k|k) P

(Sij)
2 (k|k)

⎤
⎥⎥⎦RT (4.50)

where the correlated matrix P (Sij)
12 (k|k) between x̃(Si)

1 (k|k) and x̃(Sj)
2 (k|k) is computed
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by:

P
Sij

12 (k|k) = (In1)P
(Sij)
1 (k|k − 1)F (j)T (k)

+ ([0,−H(i)
k ]P (Sij)D(j)T )−1 (4.51)

with P (Sij)
12 (k|k) = P

(Sji)
T

21 (k|k).

EM-based full-order Kalman smoother is summarized in Table 4.1.

4.5 REDUCED-ORDER EM-BASED SEEK SMOOTHER

Theorem 4.1 gives a distributed full-order optimal fusion Kalman filter. It requires the

inverse of an nl×nl high dimension matrix Υ(t). To reduce the computational burden,

we will give a distributed reduced-order fusion Kalman filter.

4.5.1 SEEK SMOOTHER: A REDUCED-ORDER KALMAN

The SEEK filter is a Kalman filter in which the dimension of the state error space

is reduced. It is designed to be applied to large systems. It was founded by Pham

[377], based on earlier ideas of Cohn and Todling [378][379], and Verlaan and Heemink

[380]. The integration of the matrix P , where P comes from the propagation of error

covariance matrix is made possible by the order reduction. This matrix is real and

symmetric (thus Hermitian), and is therefore diagonalizable, with real eigenvalues and
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Table 4.1: Equations of the EM-Based Kalman-Like Particle Smoother

Initialization :

xa0:
P

fi
k|k−1

(0)Hk(0)
T

Hk(0)P
fi
k|k−1

(0)(Hk(0))T+σ2
v

yk(0) and P a
0

Forecast Step :

xfik/k−1 = Φk−1,kx
ai
k−1/k−1 State Propagation

P fi
k/k−1 = Φk−1/k(P

fiai
k,k−1|k−1)

T +Qk−1/k Error Propagation
Filter Analysis Step :
Gk = Hk(HkP

a
k|k−1)

T +Qk−1,k Innovation Error Covariance Matrix
dk = yk −Hkx

f
k|k−1 Innovation

xaik|k = xaik|k−1 +
P

fiai
k (Hk)

iT

Hi
kP

fiai
k HiT

k +σ2
ν

dk, i ∈ Σk Filter analysis

P ai
k/k = P ai

k|k−1 − P
ai
k (Hk)

iT

Hi
kP

ai
k HiT

k +σ2
ν

H i
kP

fiai
k,I|k−1, i ∈ Σk Filter analysis (cov.)

Smoother Analysis Step :

xaii|k = xaii|k−1 +
P

fiai
k (Hk)

iT

Hi
kP

fiai
k HiT

k +σ2
ν

dk, i ∈ Σk Smoother analysis

Sa
i|k = Sa

i|k−1[I + Γk]
−1/2, i ∈ Σk Smoother analysis (cov.)

E-Step: Computation of Q quantities
x̂k|K = E(xak|Y1:K)
Ξk|K = E(xakx

aT

k |Y1:K) = Pk|K + x̂ak|K x̂
aT

k|K
Ξk,k−1|K = E(xkx

aT

k−1|Y1:K) = Pk,k−1|K + x̂ak|K x̂
aT

k−1|K
M-Step : Direct Differentiation of Q,

model parameters

Φ̂k+1
k,k−1 = (

∑K
k=2 Ξk,k−1|K)(

∑K
k=2 Ξk−1,K)−1

Q̂k+1 = 1
K−1(

∑K
k=2 Ξt,|T − Φ̂k+1

k,k−1
∑K

k=2 Ξk−1,k|K)

σ̂2
v

k+1
= 1

K

∑K
k=1[y

2
k − 2HT

k x̂
a
kyk +HT

k Ξk|KHk]
μ̂k+1
1 = x̂a1|K
Σ̂k+1

0 = Ξ1 − x̂a1|K x̂
aT

1|K
Full-Order Fusion :
P (ij)(k|k) Filtering covariance Matrix
P (Sij)(k|k) Smoothing covariance Matrix
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orthogonal eigen vectors. It can be written as:

P = NBNT (4.52)

where B is a diagonal matrix of order n (n being the dimension of the dynamical

system) containing the eigenvalues of P and N is a matrix containing its eigenvectors.

The reduction of order consists of usually only a small number r of eigenvectors for

expressing P , i.e., using a matrix N of order n × r rather than n × n.

In this section, SEEK-like particle smoother is derived using [372]. To establish

the SEEK smoother equations, we proceed recursively i.e. starting from the outputs

of a Kalman filter analysis at a time tk−1, we apply the smoother forecast and analysis

equations at the observation time tk. We elaborate the generalized SEEK smoother

equations here.

Forecast Step

Introducing the square-root decomposition of the Kalman filter anaylysis covariance

matrix, the smoother forecast equations (4.7)-(4.9) yield:

xfk/k−1 = Φk−1,kxak−1|k−1 (4.53)

P fa
k,k−1|k−1 = Φk−1,kSa

k−1|k−1S
a
k−1|k−1

T

= Sf
k|k−1S

a
k−1|k−1

T , (4.54)

P f
k|k−1 = Φk−1,kSa

k−1|k−1S
f
k|k−1

T

= Sf
k|k−1S

f
k|k−1

T
(4.55)
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where Sf
k|k−1 is defined by Sf

k|k−1 = Φk−1,kSa
k−1|k−1. It should be noted that the cross-

covariance matrix P fa
k,k−1|k−1 is determined only from the outputs of the filter.

Analysis Step

We now focus on the smoother analysis components.

Smoother State: The smoothed state xak−1|k is directly computed using the equation

(4.11).

Analysis covariance: Introducing the decompositions of P a
k−1|k−1 and P fa

k,k−1|k−1,

into the smoother equation (4.13), we compute:

P a
k−1|k = Sa

k−1|k−1(S
a
k−1|k−1)

T

− Pk−1|kHT
k

(HkPk−1|kHT
k + σ2

v)
.HkS

f
k|k−1(S

a
k−1|k−1)

T

= Sa
k−1|k−1(S

a
k−1|k−1)

T

−
Sf
k|k−1S

fT

k|k−1H
T
k HkS

f
k|k−1S

a
k−1|k−1

T

(HkS
f
k|k−1S

fT

k|k−1H
T
k + σ2

v)

= Sa
k−1|k−1(I −

ζ + σ2
v

Γ
)−1Sa

k−1|k−1
T (4.56)

where ζ = HkS
f
k|k−1S

fT

k|k−1H
T
k , and the Sherman-Morrison-Woodbury formula for ma-

trix inversion is used to derive the SEEK smoother, where Sherman-Morrison-Woodbury
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formula states that:

(A+ UDV )−1 = A−1 − A−1U(D−1 + V A−1U)−1

. V A−1 (4.57)

where A ≡ Rk, U ≡ HkS
f
k|k−1, V ≡ UT and D ≡ I , the identity matrix.

and Γk is:

Γk = (HkS
f
k|k−1)

TR−1k (HkS
f
k|k−1) (4.58)

Now defining

Sa
k−1|k = Sa

k−1|k−1[I + Γk]
−1/2 (4.59)

a square-root decomposition of the smoother error covariance is obtained.

Analysis cross-covariances: Introducing again the composition (4.54) of P fa
k,k−1|k−1

from the forecast step, into the smoother expression (4.12) gives:

P aa
k,k−1|k = (I − Pk|kHT

k

HkPk|kHT
k + σ2

v

Hk)S
a
k−1|k−1

T

= Sf
k|k−1[I + Γk]

−1Sa
k−1|k−1

T (4.60)
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and using the definition (4.59), it appears that the cross-covariance matrix P aa
k,k−1|k can

be decomposed using the square roots of P a
k|k and P a

k−1|k:

P aa
k,k−1|k = Sa

k|kS
a
k−1|k

T (4.61)

At the end of the analysis step cycle, the analysis covariance and cross-covariance

matrices of the smoother are fully determined with the square root matrices Sa
k|k and

Sa
k−1|k.

Past states estimates

The smoothed analysis state vector and square root error covariance matrix are deter-

mined for time tk−1 given observations at tk. The strong point is that the square root

matrices not only lead to the covariance matrices, but also provide the cross-covariance

matrix. Proceeding then recursively, the smoother estimates xai|k and Sa
i|k (i < k −

1) from the filter estimate xak−1|k−1, S
a
k−1|k−1, and the smoother estimates xai|k−1 and

Sa
i|k−1 (i < k − 1). The smoother equations may be applied involving the smoother

estimate at time ti. This strictly follows the step of Sections 4.5.1 and 4.5.1. The

forecast/analysis cross-covariance is given by:

P fa
k,i|k−1 = Φk−1,kSa

k−1|k−1S
a
i|k−1

T = Sf
k|k−1S

a
i|k−1

T , (4.62)

and the square root error covariance matrix of the smoothed estimate are computed as:

Sa
i|k = Sa

i|k−1[I + Γk]
−1/2 (4.63)
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Finally, it can be verified that the analysis error covariance and cross-covariance

matrices are decomposed as:

P a
i|k = Sa

i|kS
a
i|k

T (4.64)

P aa
k,i|k = Sa

k|kS
a
i|k

T (4.65)

This finalizes the full set of the SEEK smoother equations with a perfect model

summarized in Table 4.2.

4.5.2 ESTIMATION OF THE MODEL PARAMETERS USING AN EM

ALGORITHM

In this section, we describe the estimation of model parameters for SEEK smother

with an EM algorithm. The problem is to maximize the likelihood with respect to two

unknowns: states and model parameters. We now describe an EM algorithm for the

reduced-order SEEK smoother as follows.

E-Step

This step involves the computation of Q given the measurements Y1:K and an estimate

of the model parameter from the previous iteration, Φ̂k. Q depends on the following
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three quantities:

x̂k|K = E(xak|Y1:K) (4.66)

Ξk|K = E(xakx
aT

k |Y1:K) = Sa
i|K + x̂ak|K x̂

aT

k|K (4.67)

Ξk,k−1|K = E(xakx
aT

k−1|Y1:K) = Sa
k,k−1|K

+ x̂ak|K x̂
aT

k−1|K (4.68)

The first two quantities can be obtained using the smoother analysis equation smoother

analysis (cov.) equation respectively from Table 4.2. The last quantity obtained with

the following equation:

Sf
i,i−1|k = Jk−1Sa

i|k (4.69)

where Jk−1 = Sa
i|kΦ

T
k−1,kS

f
k|k−1

−1
. Q is then obtained using equation (4.71) given in the

next section.

Log-Likelihood derivation and M -Step : Joint probability distribution of X1:K ,

Y1:K can be written as:

p(X1:K , Y1:K|Φ) = p(xa1)
K∏
k=2

p(xak|xak−1)

.

K∏
k=1

p(yk|xak, Hk) (4.70)
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Taking log and expectation, we get the expectation of joint log-likelihood with re-

spect to the conditional expectation:

Q = EX|Y [log p(X1:K , Y1:K |Θ)]

= −K
2
lnσ2

υ −
1

2σ2
υ

K∑
k=1

[y2k − 2HT
k x̂

a
kyk +HT

k Ξk|KHk]

− 1

2

K∑
k=2

trace[Q−1(Ξk|K − Φk−1,kΞk,k−1|TΦT
k−1,k

+ Φk−1,kΞk−1|KΦT
k−1,k)]

− 1

2
trace[V −11 (Sa

1|K − 2π1x̂
aT

1 + π1π
′
1)]−

1

2
ln|V1|

− K − 1

2
ln|Q| − (p+ 1)T

2
ln 2π (4.71)

For M -step, we take the derivative of Q with respect to each model parameter, and

set it to zero to get the estimate, e.g., an update for Φk−1,k can be found as:

∂Q

∂Φ
= −1

2

K∑
k=2

[−2Ξk,k−1|K + 2Φk−1,kΞk−1|K ] = 0 (4.72)

which gives,

Φk+1
k−1,k = (

K∑
k=2

Ξk,k−1|K)(
K∑
k=2

Ξk−1,K)−1 (4.73)

Updates for other parameters can be obtained similarly.
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M-Step

By direct differentiation of Q, we get the following expressions of the model parameter

estimates:

Φ̂k+1
k−1,k = (

K∑
k=2

Ξk,k−1|K)(
K∑
k=2

Ξk−1,K)−1 (4.74)

Q̂k+1 =
1

K − 1
(

K∑
k=2

Ξk|k − Φ̂k+1
k−1,k

K∑
k=2

Ξk−1,k|K) (4.75)

σ̂2
v

k+1
=

1

K

K∑
k=1

[y2k − 2HT
k x̂

a
kyk +HT

k Ξk|KHk] (4.76)

μ̂k+1
1 = x̂a1|K (4.77)

Σ̂k+1
0 = Ξ1 − x̂1|K x̂a

T

1|K (4.78)

where k denotes the current iteration. We denote all these estimates together as Θ̂k+1.

BothE andM steps are iterated, and convergence is monitored with the conditional

likelihood function obtained as in (4.41).

4.5.3 REDUCED-ORDER FUSION

The estimates from SEEK smoother are fed into the E-step for computation of Q and

M -step for direct differentiation of Q and the model estimates. It is an iterative algo-

rithm. Full set of reduced-order EM-based SEEK smoother is summarized in Table 4.2.

Remark 4.5.1 It should be noted that there is no reduced-order fusion step involved in

the formulation of Table 4.2 that is EM-based Kalman-like particle SEEK smoother. It
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Table 4.2: Equations of the EM-Based Kalman-Like Particle SEEK Smoother

Initialization :

xa0:
S
fi
k|k−1

(0)S
fi
k|k−1

(0)
T
Hk(0)

T

Hk(0)S
fi
k|k−1

(0)S
fi
k|k−1

(0)
T
(Hk(0))T+σ2

v

yk(0) and Sa
0

Forecast Step :

xfk/k−1 = Φk−1,kxak−1|k−1 State Propagation
Sf
k/k−1 = Φk−1,kSa

k−1|k−1 Error Propagation
Filter Analysis Step :

Γk = (HkS
f
k|k−1)

TR−1k (HkS
f
k|k−1)

dk = yk −Hkx
f
k|k−1 Innovation

xak|k = xfk|k−1 + Sf
K|k[I + Γk]

−1(HkS
f
k|k)R

−1
k dk, i ∈ Σk Filter analysis

Sa
k|k = Sf

k|k−1[I + Γk]
−1/2, i ∈ Σk Filter analysis (cov.)

Smoother Analysis Step :

xai|k = xai|k−1 + Sf
i|k[I + Γk]

−1(HkS
f
i|k)R

−1
k dk, i ∈ Σk Smoother analysis

Sa
i|k = Sa

i|k−1[I + Γk]
−1/2, i ∈ Σk Smoother analysis (cov.)

E-Step : Computation of Q quantities
x̂ak|K = E(xak|Y1:K)
Ξk|K = E(xakx

aK

k |Y1:K) = Sa
k|K + x̂ak|K x̂

aT

k|K
Ξk,k−1|K = E(xakx

aT

k−1|Y1:K) = Sa
k,k−1|K + x̂ak|K x̂

aT

k−1|K
M-Step : Direct differentiation of Q,

model parameters

Φ̂k+1
k−1,k = (

∑K
k=2 Ξk,k−1|K)(

∑K
k=2 Ξk−1,K)−1

Q̂k+1 = 1
K−1(

∑K
k=2 Ξk,|K − Φ̂k+1

k−1,k
∑K

k=2 Ξk−1,k|K)

σ̂2
v

k+1
= 1

K

∑K
k=1[y

2
k − 2H

′
kx̂

a
kyk +HT

k Ξk|KHk]
μ̂k+1
1 = x̂a1|K
Σ̂k+1

0 = Ξ1 − x̂a1|K x̂
aT

1|K
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is the embedded nature of the SEEK filter that it treates the covariance of the system in

the form of reduced-order, which was not the case when we were dealing with the basic

Kalman smoother as formulated in Table 4.1. In the following section, we will do the

evaluation of the proposed smoother schemes.

4.6 EVALUATION AND TESTING

4.6.1 DESCRIPTION OF THE POWER QUALITY LAB

The evaluation and testing has been made on an power lab designed as a utility plant in

Electrical Engineering department at KFUPM. The layout of the system can be seen in

Fig 4.3. The main idea behind the design of the system is that we have one AC Power

source which is considered as a utility, and different units, which are considered to be

as the consumers. The purpose of the system is to monitor and measure the voltage and

current, and to control the active filter. The following are the units of the set-up:

Programmable AC Source

There is a programmable AC Source of 18 kVA which is supplying a 3 phase of current

and 400 Volts with cycle of 60 Hertz.

Main Panel for Switching

There is a main panel for switching which connects and controls all the transmission

lines, breakers and multiple feeders.
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Active Power Filter

There is an active power filter which is a 3 phase filters. Its function is to mitigate the

harmonics.

Digital Signal Processing(DSP) Filter

There is a DSP filter. Its function is to implement for active filter.

DSP Setup

DSP setup is planned basically in the National Instruments Lab-view to implement

advance signal processing.

Adjustable Speed Drive(ASD)

ASD is used for the motor drive implementation. It gives non-linear current because it

generate harmonics.

Electronic Loads

This is an AC/DC electronic load model. We can build any non-linear/dynamic load to

the capacity of 1.8kW here.

Resistor Bank

This is a resistive bank for the load. It carries linear load, which has no distortion and

harmonics.
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Figure 4.3: Power System Lab

4.6.2 LOAD SCENARIOS

Load scenarios are created by using the power quality laboratory. In these scenarios

DC motor drive load, linear load and non-linear load fault are being considered.

Scenario I: DC Motor Load In this scenario, while the system is working in real

time, DC Motor load is being introduced in the system by using the ASD. With the

help of lab-view, we were able to collect the data of the 3 phases of voltage. The data

is collected at a fixed sampling time 100 milliseconds.

Scenario II: linear load In this scenario, while the system is working in real time,

linear load is being introduced in the system by using the resistor bank. With the help

of lab-view, we were able to collect the data of the 3 phases of voltage. The data is
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collected at a fixed sampling time 100 milliseconds.

Scenario III: non-linear load In this scenario, while the system is working in real

time, linear load is being introduced in the system by using the electronic loads which

is capable of generating dynamic loads. With the help of lab-view, we were able to

collect the data of the 3 phases of voltage. The data is collected at a fixed sampling

time 100 milliseconds.

4.6.3 EVALUATION OF RESULTS

In what follows, we present simulation results for the proposed EM-Based smoother

with versions of full and reduced order respectively. The experiments have been per-

formed on the power quality system. Three sets of loads have been considered here,

that is, the DC-motor drive load, linear load and non-linear load. Firstly, the data col-

lected from the plant has been initialized and the parameters have been being optimized

which comprises of the pre-processing and normalization of the data. The comparison

of results for the distributed smoother estimation, and smoother estimation generated

from various levels of loads, and the basic profile of that particular load has been com-

pared. Moreover, same pattern of comparison has been followed for full-order and

reduced-order showing the effectiveness of the proposed smoother in all cases.
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Load 1 (DC-Motor Drive): Estimates comparison of distributed estimation with

full-order and reduced order EM-Based Smoothers

The Kalman-like particle smoother has been simulated here for the DC-motor drive

load of the plant. Simulations have been made for the estimate of each case. In the

simulation, comparison of various phases of DC-motor drive load i.e. phase 1, phase 2,

and phase 3, and distributed estimation has been shown. It can be seen from the estimate

profile in Fig. 4.4 for full-order EM based smoother that the EM results are trying to

coop well with the estimates and even the original profile of the load. This is due to

the EM implementation made on the Q, σv, and Φ̂k parameters. When it comes to the

reduced-order implementation, it can be seen from Fig. 4.7 for DC motor drive phase 1

load, Fig. 4.8 for DC motor drive phase 2 load and Fig. 4.9 for DC motor drive phase 3

load that reduced-order of the SEEK filter is performing very well as compared to the

full-order version of Fig. 4.4. This is due to the reduced-order nature of the filter that it

is treating the covariances seperately. In the case of reduced order EM implementation,

the estimate is almost over-writing the original profile of the load without estimate,

thus showing the effectiveness of the proposed scheme. The distributed version of the

reduced-order smoother is even more succinct as can be seen from Fig. 4.10.

Load 2 (Linear): Estimates comparison of distributed estimation with full-order

and reduced order EM-Based Smoothers

In case of load 2, it can be seen for the estimate profile in Fig. 4.5 for full-order EM

based smoother that the EM results are trying to coop well with the estimates and even
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the original profile of the load. When it comes to the reduced-order implementation, it

can be seen from Fig. 4.11 for linear phase 1 load, Fig. 4.12 for linear phase 2 load and

Fig. 4.13 for linear phase 3 load that reduced-order of the SEEK filter is performing

very well as compared to the full-order version of Fig. 4.5. The distributed version of

the reduced-order smoother is even more succinct as can be seen from Fig. 4.14.

Load 3 (Non-linear): Estimates comparison of distributed estimation with full-

order and reduced order EM-Based Smoothers

In case of non-linear load 3, it can be seen for the estimate profile in Fig. 4.6 for

full-order EM based smoother that the EM results are trying to coop well with the

estimates and even the original profile of the load. When it comes to the reduced-order

implementation, it can be seen from Fig. 4.15 for non-linear phase 1 load, Fig. 4.16 for

non-linear phase 2 load and Fig. 4.17 for non-linear phase 3 load that reduced-order of

the SEEK filter is performing very well as compared to the full-order version of Fig.

4.6. The distributed version of the reduced-order smoother is even more succinct as can

be seen from Fig. 4.18.

Mean Square Error Comparison

In this section, we have made a comparison of the full versions of both full and reduced-

order respectively. Though both versions are having a mean square error value near to

zero. But when it comes to precision in the performance, it can be seen from the Fig.

4.19 that how the full-order filter has a dead-end for the reduction of error. After 2

iterations, it almost the same level of mean square error. However, the reduced-order
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Table 4.3: Quantitative Error Comparison Table

ITERATIONS DISTRIBUTED FULL ORDER DISTRIBUTED REDUCED ORDER

1 0.00508 0.00525

2 0.00507 0.00521

3 0.00507 0.00491

4 0.00507 0.00489

5 0.00507 0.00488

version has better results at every iteration, thus leading almost to a value near to zero

at 5th iteration. The quantitative error comparison can be seen in the Table 4.3.
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Figure 4.4: Estimates for full-order smoother for Phase 3: DC motor drive Load
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Figure 4.5: Estimates for full-order smoother for Phase 3: Linear Load
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Figure 4.6: Estimates for full-order smoother for Phase 3: Nonlinear Load
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Figure 4.8: Estimates for reduced-order smoother for Phase 2: DC motor drive Load
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Figure 4.9: Estimates for reduced-order smoother for Phase 3: DC motor drive Load
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Figure 4.10: Estimates for various reduced-order smoothers: DC motor Load
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Figure 4.11: Estimates for reduced-order smoother for Phase 1: Linear Load
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Figure 4.12: Estimates for reduced-order smoother for Phase 2: Linear Load
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Figure 4.13: Estimates for reduced-order smoother for Phase 3: Linear Load

136



4.6. EVALUATION AND TESTING

0 100 200 300 400 500 600 700 800 900
−2.5

−2

−1.5

−1

−0.5

0

0.5

1
x 104

Number of Observations

E
st

im
at

e

Comparison of Estimates for Reduced Order: All linear loads

Distributed EM SEEK Smoother All Phases
EM SEEK Smoother Phase 3
EM SEEK Smoother Phase 2
EM SEEK Smoother Phase 1

Figure 4.14: Estimates for various reduced-order smoothers: Linear Load
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Figure 4.15: Estimates for reduced-order smoother for Phase 1: Nonlinear Load
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Figure 4.16: Estimates for reduced-order smoother for Phase 2: Nonlinear Load
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Figure 4.17: Estimates for reduced-order smoother for Phase 3: Nonlinear Load
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Figure 4.18: Estimates for various reduced-order smoothers: Nonlinear Load
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5 DISTRIBUTED ESTIMATION VIA IN-

FORMATION MATRIX APPROACH

5.1 AN OVERVIEW

In this chapter, we have discussed distributed estimation via information matrix ap-

proach, where it is derived with various versions of information matrix filter. The esti-

mation is derived on a distributed tracking system.

5.2 INTRODUCTION

Estimation is one of the precise solution in providing a strict surveillance system for an

appropriate supervision. One of the methods to achieve such sort of estimation often

requires a group of distributed sensors which provide information of the local targets.

The classic work of Rao and Durrant-Whyte [381] presents an approach to decentral-

ized Kalman filtering which accomplishes globally optimal performance in the case

where all sensors can communicate with all other sensors. Other estimation methods

can be a sensor-less approach [382][383], or a derivative-free filtering estimation [384],
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5.2. INTRODUCTION

a least-squares-Kalman technique [386], a robot-based autonomous estimation and de-

tection [385], H∞ filtering-based estimation made for stochastic incomplete measure-

ments [387] etc.

During estimation, the problem of multi-target tracking utilizing information from

multiple sensors employed has been in focus since last many years [388]-[396]. While

achieving this approach, many fusion algorithms and filters were derived to combine

local estimates local estimates [397][398][399][400] to prove better efficiency and ef-

fectiveness. For example, the state vectors can be fused using weighted covariance

[406][407][408], information matrix [401], and covariance intersection [402][403].

The algorithms differ with the method they treat the covariance. As for the performance

of different algorithms, [404] shows that the performance of weighted covariance al-

gorithm is consistently worse as compared to the measurement fusion method. More-

over, it has been pointed out in [405] that results of weighted covariance algorithm are

showing the behavior to be a maximum likelihood estimate. At the same time, Chang

indicates that information matrix approach is optimal when the tracking systems are

deterministic (i.e. process noise is zero) or when full-rate communication (i.e. two sen-

sors exchange information each time when they receive new measurements and update

their respective track files) is employed [405]. Covariance intersection avoids cross-

covariance computation and its fusion result will be a consistent estimate, but its con-

servative estimates reduce performance [403]. However, covariance intersection is also

being used for simultaneous localization and mapping to maintain the full correlation

structure.
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In this chapter, we have derived distributed estimation with various versions of in-

formation matrix filter. The estimation is derived on a distributed tracking system.

After achieving a distributed estimation with various versions, we have stemmed two

methods for measurement fusion. The proposed scheme is then validated on a indus-

trial utility boiler system, where different types of faults were introduced and were

considered for the evaluation of the proposed scheme.

The remainder of this chapter is structured as follows. Problem formulation is de-

scribed in Section II. The information-based covariance intersection filter is derived

and discussed in Section III, followed by the information-based weighted covariance

filter and Kalman-like particle filter derived and discussed in Section IV and Section

V respectively. Measurement fusion algorithm is discussed in Section VI, followed by

some evaluation and testing in Section VII. Finally some conclusion is made in Section

VIII.

5.3 PROBLEM FORMULATION

Consider a distributed tracking system, as in [410] in which N(N ≥ 2) sensors are

tracking the same target. The mathematical model describing target dynamic is as-

sumed to be linear time invariant and of the form:

xk+1 = Fxk +Gvk, k = 0, 1, 2, .... (5.1)
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5.3. PROBLEM FORMULATION

where xk ∈ �n1 is state vector of target at time k and F is state transition matrix, vk ∈

�n2 is zero mean white Gaussian process noise with known covariance Q, and G is the

input matrix. The target is tracked by N sensors, where measurement model of sensor

j = 1, ..., N is described by:

zjk = Hjxk + wj
k (5.2)

where wj
k ∈ �n3 is zero-mean white Gaussian measurement noise with covariance �j

k.

It is assumed that local track estimates, x̂jk|k and P j
k|k, where j = 1, ..., N are ob-

tained by each sensor’s information-based filter based on measurement sequence Zj
k =

{zji , i = 1, 2, ..., k} and are optimal in the sense of minimum variance. At the end of

each n sampling interval, each sensor transmits its local estimate to fusion center where

track association and fusion are performed. For fused estimate, there are two choices:

either be sent back to sensor to improve local estimation performance or to store on

fusion center. For the sake of simplicity, the dimension of the fused track and all local

tracks are assumed to be the same. The distributed track fusion problem is to generate

an “optimal” estimate x̂k|k from all local track information, i.e. x̂jk|k and P j
k|k, and prior

information about local and fused estimation if possible [396]. The following sections

work on the derived versions of information-based filters for the distributed tracking

system.
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5.4. COVARIANCE INTERSECTION

5.4 COVARIANCE INTERSECTION

According to the standard results of covariance intersection in [412], the covariance

intersection at the sensor is:

x̂k|k = Pk|k(ωP i
k|k
−1
x̂ik|k + (1− ω)P i

k|k
−1
x̂jk|k) (5.3)

K1 = ωPk|kP i
k|k
−1

(5.4)

K2 = (1− ω)Pk|kP
j
k|k
−1

(5.5)

where K1 and K2 are the gains and ω ∈ [0, 1] and it manipulates the weights which are

assigned to x̂ik|k and x̂jk|k respectively. The covariance of filtering error is given by:

Pk|k = (ωP i
k|k
−1
+ (1− ω)P j

k|k
−1
)−1 (5.6)

Or

P−1k|k = (ωP i
k|k
−1
+ (1− ω)P j

k|k
−1
) (5.7)

where ω = (K1/Pk|k).P i
k|k and 1 − ω = (K2/Pk|k).P

j
k|k, where P i

k|k and P j
k|k are error

covariance matrices.

Thus substituting (5.4), (5.5), (5.7) into (5.3) yields

P−1k|kxk|k = ωP i
k|k
−1
xik|k + (1− ω)P j

k|k
−1
xjk|k (5.8)
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The main agenda is to bring two equations of inverse covariance and its product with

the state from every covariance technique derived.

Remark 5.4.1 Different choices of ω can be used to optimize the update with respect

to different performance criteria such as minimizing the trace or determinant of Pk|k.

5.4.1 INFORMATION-BASED COVARIANCE INTERSECTION FILTER

ALGORITHM

For the case of deriving information-based covariance intersection filter, the target dy-

namic model of (5.1) and (5.2) will be of the form:

xk+1 = Fxik + Fxjk +Gνk (5.9)

zjk = K1x
i
k +K2x

j
k + wk (5.10)

The key idea of the information matrix filter is to identify the common information

shared by estimates that are to be fused, and then removing the information or de-

correlation is implemented. It will take into consideration the common information but

not the common process noise. Under the assumption of no feedback, the estimation
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5.4. COVARIANCE INTERSECTION

using information-based filter in the case of covariance intersection is as follows:

P−1k|k x̂k|k = P−1k|k−nx̂k|k−n + ωP i
k|k
−1
x̂ik|k

− ωP i
k|k−n

−1
x̂ik|k−n + (1− ω)P j

k|k
−1
x̂jk|k

− (1− ω)P j
k|k−n

−1
x̂jk|kn (5.11)

P−1k|k = P−1k|k−n + ωP i
k|k
−1 − ωP i

k|k−n
−1
+ (1− ω)P j

k|k
−1

− (1− ω)P j
k|k−n

−1
(5.12)

where the n step fusion state prediction is:

xk|k−n = Fxik + Fxjk (5.13)

The associated covariance is explained by the following theorem.

Theorem 5.1 Following [413], since vk is assumed to be m × 1 zero-mean white

noise process, and xk the n × 1 so-called state vector, it can be easily seen from xk+1

= Fxik + Fxjk +Gvk that covariance matrix of xk obeys the recursion,

Πi+1 = FkΠ
i
kF

∗
k + FkΠ

j
kF

∗
k +GiQiG

∗
i (5.14)

where Πi
k = E xikx

i
k
∗ and Πj

k = E xjkx
j
k

∗
.

Likewise, since x̂k|k−n = Fxik + Fxjk, then it satisfies the recursion,

Σi+1 = F i
kΣ

i
kF

i
k

∗
+ F j

kΣ
j
kF

j
k

∗
, (5.15)
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5.4. COVARIANCE INTERSECTION

where Σi
k = Ex̂ik|k−1x̂

i∗
k|k−1 and Σj

k = Ex̂jk|k−1x̂
j∗
k|k−1 with initial condition Σ0 = 0. Now

the orthogonal decomposition xi = x̂k|k−1+ with x̂i|i−1, shows that Πi = Σi
k + Σj

k +

Pk|k−1. It is then immediate to conclude that Pk+1|k = Σk+1−Σi
k+1+Σ

j
k+1 satisfies the

recursion

Pk+1|k = F i
kPk|k−1F i

k

∗
+GiQiG

∗
i (5.16)

As for the distributed tracking system, the communication network is considered to be

large, therefore, the fused state estimate and associated covariance depends upon the

local estimates as:

x̂ik|k−n + x̂jk|k−n = x̂k|k−n (5.17)

P i
k|k−n + P j

k|k−n = Pk|k−n (5.18)

5.4.2 INFORMATION-BASED COVARIANCE INTERSECTION FILTER:

COMPLETE FEEDBACK CASE

For the case of complete feedback, closed form analytical solution of steady fused

covariance of information-based covariance intersection filter withN sensors is derived
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below. From (5.9) and (5.10), it is easy to show that the following two equations hold,

xk = F i
kxk−n + F j

kxk−n +
n∑

i=1

F n−iGvk−n+i (5.19)

zjk = K1F
ixik−n +Kj

2F
jxjk−n + wk−n +K1F

iGvk−n+i

+ K2F
jGvk−n+j (5.20)

For the two local sensors in covariance intersection i.e. i and j, it is possible to

write

xk|k = ωPk|kP i
k|k
−1
Fxik|k + (1− ω)Pk|kP

j
k|k
−1
Fxjk|k (5.21)

Using (5.21) and (5.17), we have

x̂k|k = Anx
i
k|k + Bix

j
k|k (5.22)

where, ∀ i= 1, ..., n, we haveA0 = I ,Ai = ωAi−1Pk|kP i
k|k
−1
F ,Bi = (1−ω)Ai−1Pk|kP

j
k|k
−1
F .

Under the assumption of complete feedback, (5.11) and (5.12) can be re-written as:

P−1k|k x̂k|k = −(N − 1)P−1k|k−nx̂k|k−n + ωP i
k|k
−1
x̂ik|k

+ (1− ω)P j
k|k
−1
x̂jk|k (5.23)

P−1k|k = −(N − 1)P−1k|k−n + ωP i
k|k
−1

+ (1− ω)P j
k|k
−1

(5.24)
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To compute the steady state error covariance of fused state estimate, subtracting

P−1k|kxk, from both sides of (5.23), and substituting (5.22) yields

P−1k|k (x̂k|k − xk) = −P−1k|kxk − (N − 1)P−1k|k−nx̂k|k−n

+ ωP i
k|k
−1
x̂ik|k + (1− ω)P j

k|k
−1
x̂jk|k

= −(N − 1)P−1k|k−nF
n(x̂k|k−n − xk−n)

− P−1k|kxk − (N − 1)P−1k|k−nF
nxk−n

+ P−1k|k [Anx
i
k|k +Bix

j
k|k] (5.25)

Through simple algebra manipulation and substituting (5.20) into (5.25) as:

P−1k|k (x̂k|k − xk) = {−(N − 1)P−1k|k−nF
n + P−1k|kAn}

. (x̂k−n|k−n − xk−n) + Pk|k−1Anx̂k−n

− P−1k|kxk − (N − 1)P−1k|k−nF
nxk−n

+ P−1k|kBix
j
k|k

= {−(N − 1)P−1k|k−nF
n + P−1k|kAn}

. (x̂k−n|k−n − xk−n) + Pk|k−1Anx̂k−n

− (N − 1)P−1k|k−nF
nxk−n

+ P−1k|kBiwk−n+i − P−1k|kxk

+ P−1k|kBi(K1F
ixik−n +K2F

jxjk−n)

+ P−1k|kBi

i∑
h=1

(K1 +K2)

. F i−hGvk−n+h (5.26)
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It has been proven in [394] that An satisfies the following identity

An = −
n∑

i=1

BiKF
′
+ F n (5.27)

Substituting (5.27) and (5.24) into (5.26), we have

P−1k|k (x̂k|k − xk) = {−(N − 1)P−1k|k−nF
n + P−1k|kAn}

. (x̂k−n|k−n − xk−n) + P−1k|kAnxk−n

− (N − 1)P−1k|k−nF
nxk−n + P−1k|kBiwk−n+i

− P−1k|kxk + P−1k|k (F
n − An)xk−n

+ P−1k|kBi

i∑
h=1

F i−hGvk−n+h

= {−(N − 1)P−1k|k−nF
n + P−1k|kAn}

. (x̂k−n|k−n − xk−n) + P−1k|kBiwk−n+i

+ (P−1k|kBi

n∑
h=i

(K1 +K2)F
h−i − P−1k|k

. F n−i)Gvk−n+i (5.28)

Using (5.28), showing a Lyapunov form as follows

Ωx = CfΩxC
′
f + Ωf (5.29)
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where

Cf = lim
k→∞

Pk|k(−(N − 1)P−1k|k−nF
n + P i−1

k|k A
i
n + P j−1

k|k A
j
n),

Ωf = Ws(k)RWs(k)
′
+ Vs(k)GQG

′
Vs(k),

Ws(k) = lim
k→∞

Pk|kP−1k|kBi,

Vs(k) = lim
k→∞

Pk|kP−1k|kBi

n∑
h=1

(K1 +K2)F
h−i

− Pk|kP−1k|kF
n−i (5.30)

5.4.3 INFORMATION-BASED COVARIANCE INTERSECTION FILTER:

PARTIAL FEEDBACK CASE

In the case of partial feedback, (5.11) and (5.12) can be formulated as follows:

P−1k|k x̂k|k = P−1k|k−nx̂k|k−n + ωP i
k|k
−1
x̂ik|k

− ωP i
k|k−n

−1
x̂k|k−n + (1− ω)P j−1

k|k x̂
j
k|k

− (1− ω)P j−1

k|k−nx̂k|k−n (5.31)

P−1k|k = P−1k|k−n + ωP i−1

k|k − ωP i−1

k|k−n + (1− ω)P j−1

k|k

− (1− ω)P j−1

k|k−n (5.32)

Note that changing the value ofN does not alter the forms of (5.31) and (5.32) and only

length of summation item need to be adjusted. Like the case of complete feedback,
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there is also a discrete Lyapunov equation,

Ωx = CpΩxC
′
p + Ωp (5.33)

where

Cp = lim
k→∞

Pk|k[P i−1

k|k A
i
n + P j−1

k|k A
j
n − P i−1

k|k−nF
n

− P j−1

k|k−nF
n + P−1k|k−nF

n] (5.34)

with Ωp has the same definition of Ωf in (5.30).

5.5 WEIGHTED COVARIANCE

According to the standard results of covariance intersection in [412], the weighted co-

variance at the sensor is:

x̂k|k = Ai
kx̂

i
k|k + Aj

kx̂
j
k|k (5.35)

where the weighted matrices of two local estimates are calculated as:

Ai
k = (P j

k|k − Σj,i
k|k)(P

i
k|k + P j

k|k − Σij
k|k − Σji

k|k)
−1 (5.36)

Aj
k = (P i

k|k − Σi,j
k|k)(P

i
k|k + P j

k|k − Σij
k|k − Σji

k|k)
−1 (5.37)
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And covariance of fused estimate is computed as:

Pk|k = P j
k|k − (P j

k|k − Σj,i
k|k)(P

i
k|k + P j

k|k − Σij
k|k − Σji

k|k)
−1

. (P j
k|k − Σji

k|k)
T (5.38)

Or

P−1k|k = (P j
k|k − (P j

k|k − Σj,i
k|k)(P

i
k|k + P j

k|k − Σij
k|k − Σji

k|k)
−1

. (P j
k|k − Σji

k|k)
T )−1 (5.39)

where Σi,j
1|1 = (I −Ki

1H
i
1)Q0(I −Ki

1H
i
1)

T , Σi,j
k|k = (I −Ki

kH
i
k)Fk−1Σ

i,j
k−1|k−1F

T
k−1(I −

Ki
kH

i
k)

T +(I−Ki
kH

i
k)Qk−1(I−Ki

kH
i
k)

T , and Σj,i
k|k = (Σi,j

k|k)
T . Multiplying (5.39) with

(5.35) gives:

P−1k|k x̂k|k = (P j
k|k − (P j

k|k − Σj,i
k|k)(P

i
k|k + P j

k|k − Σij
k|k

− Σji
k|k)

−1.(P j
k|k − Σji

k|k)
T )−1

. (Ai
kx̂

i
k|k + Aj

kx̂
j
k|k) (5.40)
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5.5.1 INFORMATION-BASED WEIGHTED COVARIANCE FILTER AL-

GORITHM

For the case of deriving information-based weighted covariance filter, the target dy-

namic model of (5.1) and (5.2) will be of the form:

xk+1 = Fxk +Gwk (5.41)

zk = H ixk +Hjxk + vi + vj (5.42)

The key idea of the information matrix filter is to identify the common information

shared by estimates that are to be fused, and then removing the information or de-

correlation is implemented. It will take into consideration the common information but

not the common process noise. Under the assumption of no feedback, the estimation
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using information-based filter in the case of weighted covariance is as follows:

P−1k|k x̂k|k = P−1k|k−nx̂k|k−n + (P j
k|k − (P j

k|k − Σj,i
k|k)

. (P i
k|k + P j

k|k − Σij
k|k − Σji

k|k)
−1(P j

k|k

− Σji
k|k)

T )−1.(Ai
kx̂

i
k|k + Aj

kx̂
j
k|k)− (P j

k|k−n

− (P j
k|k−n − Σj,i

k|k−n).(P
i
k|k−n + P j

k|k−n − Σij
k|k−n

− Σji
k|k−n)

−1.(P j
k|k−n − Σji

k|k−n)
T )−1(Ai

kx̂
i
k|k−n

+ Aj
kx̂

j
k|k−n) (5.43)

P−1k|k = P−1k|k−n + (P j
k|k − (P j

k|k − Σj,i
k|k).(P

i
k|k + P j

k|k

− Σij
k|k − Σji

k|k)
−1(P j

k|k − Σji
k|k)

T )−1 − (P j
k|k−n

− (P j
k|k−n − Σj,i

k|k−n).(P
i
k|k−n + P j

k|k−n − Σij
k|k−n

− Σji
k|k−n)

−1.(P j
k|k−n − Σji

k|k−n)
T )−1 (5.44)

The n step fusion state prediction and associated covariance from Theorem 5.1 is shown

as:

x̂k|k−n = F ix̂k−n|k−n + F jx̂k−n|k−n (5.45)

Pk+1|k = F i
kPk|k−1F i

k

∗
+GiQiG

∗
i (5.46)
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The fused state estimate and associated covariance depends upon the local estimates as:

x̂ik|k−n + x̂jk|k−n = x̂k|k−n (5.47)

P i
k|k−n + P j

k|k−n = Pk|k−n (5.48)

5.5.2 INFORMATION-BASED WEIGHTED COVARIANCE FILTER: COM-

PLETE FEEDBACK CASE

For the case of complete feedback, closed form analytical solution of steady fused

covariance of information-based covariance intersection filter withN sensors is derived

below. From (5.41) and (5.42), it is easy to show that the following two equations hold,

xk = F i
kxk−n + F j

kxk−n +
n∑

i=1

F n−iGvk−n+i (5.49)

zk = H iF ixk−n +HjF jxk−n + wi
k−n+i + wj

k−n+j

+ H iF iGvk−n+i +HjF jGvk−n+j (5.50)

For the local sensors, it is possible to write weighted covariance as:

x̂k|k = Pk|k(P
j
k|kFx̂k|k−n + (P j

k|k − Σji
k|k)(P

i
k|k + P j

k|k

− Σij
k|k − Σji

k|k)
−1(P j

k|k − Σji
k|k)

T )−1Pk|k

. (Ai
kFx̂

i
k|k + Aj

kFx̂
j
k|k) (5.51)
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Using (5.51) and (5.49), we have

x̂k|k = AnPk|kAi
kFx

i
k|k + AnPk|kA

j
kFx

j
k|k (5.52)

where, ∀ i= 1, ..., n, we haveA0 = I ,Ai =Ai−1Pk|k(P
j
k|kFx̂k|k−n+(P

j
k|k−Σji

k|k)(P
i
k|k+

P j
k|k − Σij

k|k − Σji
k|k)

−1(P j
k|k − Σji

k|k)
T )−1 Under the assumption of complete feedback,

(5.43) and (5.44) can be re-written as:

P−1k|k x̂k|k = −(N − 1)P−1k|k−nx̂k|k−n + (P j
k|k − (P j

k|k − Σj,i
k|k)

. (P i
k|k + P j

k|k − Σij
k|k − Σji

k|k)
−1.(P j

k|k − Σji
k|k)

T )−1

. (Ai
kx̂

i
k|k + Aj

kx̂
j
k|k) (5.53)

P−1k|k = −(N − 1)P−1k|k−n + (P j
k|k − (P j

k|k − Σj,i
k|k)

. (P i
k|k + P j

k|k − Σij
k|k − Σji

k|k)
−1

. (P j
k|k − Σji

k|k)
T )−1 (5.54)

157



5.5. WEIGHTED COVARIANCE

To compute the steady state error covariance of fused state estimate, subtracting P−1k|kxk

from both sides of (5.53) and substituting (5.52) yields

P−1k|k (x̂k|k − xk) = −P−1k|kxk − (N − 1)P−1k|k−nx̂k|k−n

− (N − 1)P−1k|k−nx̂k|k−n + (P j
k|k − (P j

k|k

− Σj,i
k|k).(P

i
k|k + P j

k|k − Σij
k|k − Σji

k|k)
−1

. (P j
k|k − Σji

k|k)
T )−1.(Ai

kx̂
i
k|k + Aj

kx̂
j
k|k)

= −(N − 1)P−1k|k−nF
n(x̂k−n|k−n − xk−n)

− P−1k|kxk − (N − 1)P−1k|k−nF
nxk−n

+ P−1k|k (AnPk|kAi
kFx

i
k|k

+ AnPk|kA
j
kFx̂

j
k|k) (5.55)

Through simple algebra manipulations and substituting (5.50), we can re-write (5.55)

as

P−1k|k (x̂k|k − xk) = (−(N − 1)P−1k|k−nF
n + P−1k|kAnPk|kAi

kF

+ P−1k|kAnPk|kA
j
kF ).(x̂k−n|k−n − x̂ik|k

− x̂jk|k) + P−1k|kAnPk|kAi
kF x̂

i
k−n + P−1k|k

. AnPk|kA
j
kFx̂

j
k|k−n − P−1k|kxk

− (N − 1)P−1k|k−nF
nxk−n (5.56)
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Using (5.56), showing a Lyapunov form as follows:

Ωx = CfΩxC
′
f + Ωf (5.57)

where

Cf = lim
k→∞

Pk|k(−(N − 1)P−1k|k−nF
n + P−1k|kAn

. Pk|kAi
kF + P−1k|kAnPk|kA

j
kF )

Ωf = Ws(k)RWs(k)
′
,

Ws(k) = lim
k→∞

Pk|kP−1k|kAnPk|k(Ai
k + Aj

k) (5.58)
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5.5.3 INFORMATION-BASED WEIGHTED COVARIANCE FILTER: PAR-

TIAL FEEDBACK CASE

In the case of partial feedback, (5.43) and (5.44) can be formulated as follows:

P−1k|k x̂k|k = P−1k|k−nx̂k|k−n + (P j
k|k − (P j

k|k − Σj,i
k|k)

. (P i
k|k + P j

k|k − Σij
k|k − Σji

k|k)
−1(P j

k|k

− Σji
k|k)

T )−1.(Ai
kx̂

i
k|k + Aj

kx̂
j
k|k)− (P j

k|k−n

− (P j
k|k−n − Σj,i

k|k−n).(P
i
k|k−n + P j

k|k−n − Σij
k|k−n

− Σji
k|k−n)

−1.(P j
k|k−n − Σji

k|k−n)
T )−1(Ai

kx̂k|k−n

+ Aj
kx̂k|k−n) (5.59)

P−1k|k = P−1k|k−n + (P j
k|k − (P j

k|k − Σj,i
k|k).(P

i
k|k + P j

k|k

− Σij
k|k − Σji

k|k)
−1(P j

k|k − Σji
k|k)

T )−1

− (P j
k|k−n − (P j

k|k−n − Σij
k|k−n

− Σji
k|k−n)

−1.(P j
k|k−n − Σji

k|k−n)
T )−1 (5.60)

Note that changing the value ofN does not alter the forms of (5.59) and (5.60) and only

length of summation item need to be adjusted. Like the case of complete feedback,

there is also a discrete Lyapunov equation,

Ωx = CpΩxC
′
p + Ωp (5.61)
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where

Cp = lim
k→∞

Pk|k[P i−1

k|k A
i
nPk|kAi

kF + P j−1

k|k A
j
nPk|kA

j
kF

− P i−1

k|k−nF
n − P j−1

k|k−nF
n + P−1k|k−nF

n] (5.62)

with Ωp has the same definition of Ωf in (5.58).

5.6 KALMAN-LIKE PARTICLE FILTER

In this Section, we will derive information-based Kalman-like particle filter, where the

simple Kalman-like particle filter is expressed in [414]. A question arises here that why

Kalman-like particle filter has been preferred on a basic Kalman filter? The justification

for the approach w.r.t filter is given in [414], moreover, it is preferred here on the basic

Kalman filter because of the following. (See Fig. 5.2 for the comparison of estimates

of a basic Kalman filter and Kalman-like particle filter. See Fig. 5.2 where it can be

seen, how the mean square error is reduced in less number of iterations for particle

filter as compared to a regular Kalman filter): According to the standards results of

Kalman-like particle filter in [414], the Kalman-like particle filter at sensor is:

x̂k|k = x̂k|k−1 +
PkH

T
k

HkPkHT
k + σ2

v

(yk −Hkx̂k|k−1)

= (I − PkH
T
k

HkPkHT
k + σ2

v

Hk)x̂k|k−1 +

+
PkH

T
k

HkPkHT
k + σ2

v

yk (5.63)
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with covariance of filtering error given by

Pk|k = (I − PkH
T
k

HkPkHT
k + σ2

v

Hk)Pk|k−1

P−1k|k−1 = P−1k|k (I −
PkH

T
k

HkPkHT
k + σ2

v

Hk) (5.64)

or

P−1k|k = P−1k|k−1 + P−1k|k
PkH

T
k Hk

HkPkHT
k + σ2

v

(5.65)

Thus substituting (5.64) into (5.63) yields

P−1k|k x̂k|k = P−1k|k−1x̂k|k−1 + P−1k|k

. (
PkH

T
k Hk

HkPkHT
k + σ2

v

)x̂k|k (5.66)

5.6.1 INFORMATION-BASED KALMAN-LIKE PARTICLE FILTER AL-

GORITHM

The key idea of the information matrix filter is to identify the common information

shared by estimates that are to be fused, and then removing the information or de-

correlation is implemented. It will take into consideration the common information but

not the common process noise. Under the assumption of no feedback, the estimation
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using information-based filter in the case of Kalman-like particle filter is as follows:

P−1k|k x̂k|k = P−1k|k−1x̂k|k−1 + P j−1

k|k

. (
P j
kH

jT

k Hj
k

Hj
kP

j
kH

jT

k + σ2
v

)x̂jk|k

− P j−1

k|k−n(
P j
kH

jT

k Hj
k

Hj
kP

j
kH

jT

k + σ2
v

)x̂jk|k−n (5.67)

P−1k|k = P−1k|k−1 + P j−1

k|k

. (
P j
kH

jT

k Hj
k

Hj
kP

j
kH

jT

k + σ2
v

)

− P j−1

k|k−n(
P j
kH

jT

k Hj
k

Hj
kP

j
kH

jT

k + σ2
v

) (5.68)

The n step fusion state prediction and associated covariance from Theorem 5.1 is shown

as:

xk|k−n = F nx̂k−n|k−n (5.69)

Pk|k−n = F nPk−n|k−nF n∗ + F n−iGQG∗F n−i∗ (5.70)

where the n step fusion state prediction and associated covariance is written as:

x̂jk|k−n = x̂k|k−n (5.71)

P j
k|k−n = Pk|k−n (5.72)
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5.6.2 INFORMATION-BASED KALMAN-LIKE PARTICLE FILTER: COM-

PLETE FEEDBACK CASE

For the case of complete feedback, closed form analytical solution of steady fused

covariance of information-based Kalman-like particle filter with N sensors is derived

below. From (5.1) and (5.2), it is easy to show that the following two equations hold,

xk = F i
kxk−n + F n−iGvk−n+i (5.73)

zjk−n+i = HjF jxk−n + wj
k−n+i

+
i∑

h=1

HjF i−hGvk−n+h (5.74)

For the two local sensor in Kalman-like particle filter, it is possible to write as:

x̂jk|k = Pk|kP
j−1

k|k F x̂
j
k|k−1 + P j

k|kP
j−1

k|k

.
P j
kH

jT

k Hj
k

Hj
kP

j
kH

j
k + σ2

v

x̂k|k (5.75)

Utilizing (5.71) and (5.75), we have

x̂jk|k = Aj
nx̂k−n|k−n +

n∑
i=1

Bj
i x̂k|k (5.76)

where, ∀ i = 1, ..., n, we have Aj
0 = I , Aj

i = Pk−i+1|k−i+1P
j−1

k−i+1|k−i+1F , Bj = Aj
i−1

P j
k−i+1|k−i+1 P

j−1

k−i+1|k−i+1 (P
j
kH

jT

k Hj
k/(H

j
kP

j
kH

j
k + σ2

v))F .
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Under the assumption of complete feedback, (5.67) and (5.68) can be re-written as:

P−1k|k x̂k|k = −(N − 1)P−1k|k−nx̂k|k−n

+
N∑
j=1

P j−1

k|k
PkH

T
k Hk

HkPkHT
k + σ2

v

x̂jk|k (5.77)

P−1k|k = −(N − 1)P−1k|k−n

+
N∑
j=1

P j−1

k|k
PkH

T
k Hk

HkPkHT
k + σ2

v

(5.78)

To compute the steady state error covariance of fused state estimate, subtracting

P−1k|kxk from both sides of (5.78) and substituting (5.76) yields

P−1k|k (x̂k|k − xk) = −P−1k|kxk − (N − 1)P−1k|k−nx̂k|k−n

+
N∑
j=1

P j−1

k|k
PkH

T
k Hk

HkPkHT
k + σ2

v

x̂jk|k

= −(N − 1)P−1k|k−nF
n(x̂k|k−n − xk−n)

− P−1k|kxk − (N − 1)P−1k|k−nF
nxk−n

+
N∑
j=1

P j−1

k|k
PkH

T
k Hk

HkPkHT
k + σ2

v

. [Aj
nx̂k−n|k−n +

n∑
i=1

Bj
i xk|k] (5.79)

Through simple algebra manipulation and substituting (5.75), we can re-write (5.79)
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as:

P−1k|k (x̂k|k − xk) = (−(N − 1)P−1k|k−nF
n

+
N∑
j=1

P j−1

k|k (
PkH

T
k Hk

HkPkHT
k + σ2

v

)Aj
n)

. (x̂k−n|k−n − xk−n) +
N∑
j=1

P j−1

k|k

. (
PkH

T
k Hk

HkPkHT
k + σ2

v

)Aj
nxk−n − P−1k|kxk

− (N − 1)P−1k|k−nF
nxk−n

+ (
N∑
j=1

P j−1

k|k

n∑
i=1

Bj
i xk|k) (5.80)

Using (5.80), showing a Lyapunov form as follows:

Ωx = CfΩxC
′
f + Ωf (5.81)

where

Cf = lim
k→∞

Pk|k(−(N − 1)P−1k|k−nF
n +

n∑
j=1

P−1k|k

.
PkH

T
k Hk

HkPkHT
k + σ2

v

Aj
n),

Ωf =
N∑
j=1

n∑
k=1

W j
s (k)R

jW j
s (k)

′
,

W j
s (k) = lim

k→∞
Pk|kP

j−1

k|k B
j
i (5.82)
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5.6.3 INFORMATION-BASED KALMAN-LIKE PARTICLE FILTER: PAR-

TIAL FEEDBACK CASE

In the case of partial feedback, (5.67) and (5.68) can be formulated as follows:

P−1k|k x̂k|k = P−1k|k−nx̂k|k−n

+
N∑
j=1

P j−1

k|k
PkH

T
k Hk

HkPkHT
k + σ2

v

x̂jk|k

− P j−1

k|k−n
P j
kH

jT

k Hj
k

Hj
kP

j
kH

jT

k + σ2
v

x̂jk|k−n (5.83)

P−1k|k = P−1k|k−n +
N∑
j=1

P j−1

k|k (
PkH

T
k Hk

HkPkHT
k + σ2

v

)

− P j−1

k|k−n(
P j
kH

jT

k Hj
k

Hj
kP

j
kH

jT

k + σ2
v

) (5.84)

Note that changing the value ofN does not alter the forms of (5.83) and (5.84) and only

length of summation item need to be adjusted. Like the case of complete feedback,

there is also a discrete Lyapunov equation,

Ωx = CpΩxC
′
p + Ωp (5.85)

where

Cp = lim
k→∞

Pk|k[
n∑

j=1

(P−1k|k .
PkH

T
k Hk

HkPkHT
k + σ2

v

Aj
n − P j−1

k|k−nF
n)

+ P−1k|k−nF
n] (5.86)

168



5.7. MEASUREMENT FUSION ALGORITHM

with Ωp has the same definition of Ωf in (5.82).

5.7 MEASUREMENT FUSION ALGORITHM

The information captured in each of the information-based filter cases are designed for

a distributed structure. The idea is taken from the fusion methods in [411].

Suppose there is X number of sensors. For every measurement coming from these

sensors that is received in fusion center, there is a corresponding estimation based solely

on these individual sensors. The information can be structured as estimated information

or prior estimated information in the following two ways which are measurement fusion

method and state-vector fusion method as shown in the Fig. 5.3 and 5.4 respectively.

Measurement Fusion Method The measurement fusion method integrates the sensor

measurement information by augmenting the observation vector as follows:

y(k) = y(mf)(k) = [y1(k) ... yN(k)]
T (5.87)

C(k) = C(mf)(k) = [C1(k) ... CN(k)]
T (5.88)

R(k) = R(mf)(k) = diag[R1(k) ... RN(k)] (5.89)

where the superscript mf stands for the measurement fusion.
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Figure 5.3: Measurement fusion employed for information-based sensor

Figure 5.4: State vector fusion employed for information-based sensor
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Sate-vector Fusion Method The state-vector fusion method obtains the fused mea-

surement information by weighted observation as follows:

y(k) = y(sf)(k) = [
N∑
j=1

R−1j (k)]−1
N∑
j=1

R−1j (k)yj(k) (5.90)

C(k) = C(sf)(k) = [
N∑
j=1

R−1j (k)]−1
N∑
j=1

R−1j (k)Cj(k) (5.91)

R(k) = R(sf)(k) = [
N∑
j=1

R−1j (k)]−1 (5.92)

where the superscript sf stands for state-vector fusion.

5.8 ON FUNCTIONAL EQUIVALENCE OF TWO MEASURE-

MENT FUSION METHODS

Comparing (5.87)-(5.89) with (5.90)-(5.92), we note that the treatment in the measure-

ment fusion schemes is quite different. With reference to [411], we will show here that

their exists a functional equivalence between the two methods.

Theorem 5.2 If the N sensors used for data fusion with different and independent

noise characteristics, have identical measurement matrices, i.e. C1(k) = C2(k) = ...

= CN(k), then the measurement fusion method is functionally equivalent to the state-

vector fusion.
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Proof. The following formula in linear algebra will be used to cope with the inversion

of matrices:

⎡
⎢⎢⎣ A1 A2

A3 A4

⎤
⎥⎥⎦
−1

=

⎡
⎢⎢⎣ B1 B2

B3 B4

⎤
⎥⎥⎦ (5.93)

(A+HBH t)−1 = A−1 − A−1H(B−1

+ HTA−1H)−1HTA−1 (5.94)

where B1 = (A1 − A2A
−1
4 A3)

−1, B2 = −B1A2A
−1
4 , B3 = −A−14 A3B1, and B4 =

A−14 +A−14 A3B1A2A
−1
4 . If the information-based covariance intersection filter is used,

in order to demonstrate the functional equivalence of the two measurement fusion meth-

ods, we only need to check whether the terms (K1 +K2)Ck and (K1 +K2)(k)y(k) in

measurement fusion method are functionally equivalent to those in state-vector fusion

method. Alternatively, if the information filter is used, then we need to check the func-

tional equivalence between terms CT (k)R−1(k)C(k) and CT (k)R−1(k)y(k) in both

methods.

Consider the case when the information-based covariance intersection filter is ap-

plied, and (K1 +K2)
(mf) is:

(K1+ K2 )(mf)(k) =

ωP (mf)(k|k − 1)(C(sf))T (C(k)P i(k|k − 1)C(k)

+ R(k))−1 + (1− ω)P (mf)(k|k − 1)(C(sf))T

. (C(k)P j(k|k − 1)C(k) +R(k))−1 (5.95)
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where Ξ(mf)
i = (C(k)P i(k|k−1)C(k)+R(k))−1 and Ξ(mf)

j = (C(k)P j(k|k−1)C(k)+

R(k))−1.

(K1+ K2 )(mf)(k) =

ωP (mf)(k|k − 1)(C(sf))T

.

⎡
⎢⎢⎣ R1 + Ξ

(mf)
i Ξ

(mf)
i

Ξ
(mf)
i R2 + Ξ

(mf)
i

⎤
⎥⎥⎦
−1

+ (1− ω)Pmf (k|k − 1)(C(sf))T

.

⎡
⎢⎢⎣ R1 + Ξ

(mf)
j Ξ

(mf)
j

Ξ
(mf)
j R2 + Ξ

(mf)
j

⎤
⎥⎥⎦
−1

(5.96)
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(K1+ K2 )(mf)(k) =

ωP (mf)(k|k − 1)(C)T [(R2 + Ξ
(mf)
i )−1 ×R2

. [

B1︷ ︸︸ ︷
R1 + Ξ

(mf)
i − Ξmf

i (R2+Ξ
(mf)
i )(mf)]−1,

× (

A4︷ ︸︸ ︷
R2 + Ξ

(mf)
i )−1 − (

A4︷ ︸︸ ︷
R2 + Ξ

(mf)
i )−1

×
A3︷︸︸︷
R2 [

B1︷ ︸︸ ︷
R1 + Ξ

(mf)
i − Ξ

(mf)
i (R2 + Ξ

(mf)
i )−1Ξ(mf)

i ]−1

×
A2︷ ︸︸ ︷

Ξ
(mf)
i (

A4︷ ︸︸ ︷
R2 + Ξ

(mf)
i )−1 + (1− ω)P (mf)(k|k − 1)CT

. [(R2 + Ξ
(mf)
j )−1 ×R2[

B1︷ ︸︸ ︷
R1 + Ξ

(mf)
j ]− Ξ

(mf)
j (R2

+ Ξ
(mf)
j )−1Ξ(mf)

j ]−1 × (

A4︷ ︸︸ ︷
R2 + Ξ

(mf)
j )−1

− (

A4︷ ︸︸ ︷
R2 + Ξ

(mf)
j )−1

×
A3︷︸︸︷
R2 [

B1︷ ︸︸ ︷
R1 + Ξ

(mf)
j − Ξ

(mf)
i (R2 + Ξ

(mf)
j )−1Ξ(mf)

j ]−1

×
A2︷ ︸︸ ︷

Ξ
(mf)
j (

A4︷ ︸︸ ︷
R2 + Ξ

(mf)
j )−1 (5.97)

where as proved in [411],

(R2 + Ξ
(mf)
i )−1R2[R1 + Ξ(mf)

− Ξ
(mf)
i (R2 + Ξ

(mf)
i )−1Ξ(mf)

i ]−1

= [Ξ
(mf)
i +R1(R1 +R2)

−1R2]
−1R2(R1 +R2)

−1 (5.98)
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and

(R2 + Ξ
(mf)
i )−1 − (R2 + Ξ

(mf)
i )−1R2 × [R1 + Ξ

(mf)
i − Ξ(mf)

× (R2 + Ξ
(mf)
i )−1Ξ(mf)

i ]−1Ξ(mf)
i (R2 + Ξ

(mf)
i )−1

= [Ξ
(mf)
i +R1(R1 +R2)

−1R2]
−1R1(R1 +R2)

−1 (5.99)

likewise for Ξ(mf)
j from equation (5.98) and (5.99). Based on (5.97)-(5.99), we have

(K1+ K2 )(mf)(k) =

ωP (mf)(k|k − 1)CT × [CP i(mf)

(k|k − 1)CT

+ R1(R1 +R2)
−1R2]

−1 × [R2(R1 +R2)
−1,

R1(R1 +R2)
−1] + (1− ω)P (mf)(k|k − 1)CT

× [CP j(mf)

(k|k − 1)CT

+ R1(R1 +R2)
−1R2]

−1 × [R2(R1 +R2)
−1,

R1(R1 +R2)
−1] (5.100)

175



5.8. ON FUNCTIONAL EQUIVALENCE OF TWO MEASUREMENT FUSION METHODS

(K1+ K2 )(mf)(k)C(mf)(k) =

ωP (mf)(k|k − 1)CT × [CP i(mf)

(k|k − 1)

. CT +R1(R1 +R2)
−1R2]

−1C

+ (1− ω)P (mf)(k|k − 1)CT

× [CP j(mf)

(k|k − 1)CT

+ R1(R1 +R2)
−1R2]

−1C (5.101)

(K1+ K2 )(mf)(k)y(mf)(k) =

ωP (mf)(k|k − 1)CT × [CP i(mf)

(k|k − 1)

. CT +R1(R1 +R2)
−1R2]

−1

× [R2(R1 +R2)
−1

. y1(t) +R1(R1 +R2)
−1y2(t)] + (1− ω)

. P (mf)(k|k − 1)CT × [CP j(mf)

(k|k − 1)CT

+ R1(R1 +R2)
−1R2]

−1 × [R2(R1 +R2)
−1

. y1(t) +R1(R1 +R2)
−1y2(t)] (5.102)

If C1 = C2 = C, then C(II) = C, and we obtain the Kalman gain in state-vector method
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as follows:

(K1+ K2 )(sf)(k) =

ωP (sf)(k|k − 1)CT × [CP i(sf)(k|k − 1)CT

+ R1(R1 +R2)
−1R2]

−1 + (1− ω)P (sf)(k|k − 1)CT

× [CP j(sf)(k|k − 1)CT

+ R1(R1 +R2)
−1R2]

−1 (5.103)
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and we can derive the terms K(sf)(k)C(sf)(k) and K(sf)(k)y(sf)(k):

(K1+ K2 )(sf)(k)C(sf)(k) =

ωP (sf)(k|k − 1)CT × [CP i(sf)(k|k − 1)

. CT +R1(R1 +R2)
−1R2]

−1C + (1− ω)

. P (sf)(k|k − 1)CT × [CP j(sf)(k|k − 1)CT

+ R1(R1 +R2)
−1R2]

−1C (5.104)

(K1+ K2 )(sf)(k)y(sf)(k) =

ωP (sf)(k|k − 1)CT × [CP i(sf)(k|k − 1)CT

+ R1(R1 +R2)
−1R2]

−1 × [R2(R1 +R2)
−1

. y1(t) +R1(R1 +R2)
−1y2(t)] + (1− ω)

. P (sf)(k|k − 1)CT × [CP j(sf)(k|k − 1)CT

+ R1(R1 +R2)
−1R2]

−1 × [R2(R1 +R2)
−1

. y1(t) +R1(R1 +R2)
−1y2(t)] (5.105)

Note that (5.101) and (5.104) are in the same form and that (5.102) and (5.105) are

also in the same form. Therefore, with the same initial conditions, i.e., P (mf)(0|0)

= P (sf)(0|0) and x̂(mf)(0|0) = x̂(sf)(0|0), the Kalman filters based on the observation

information generated by (5.87-5.89) and (5.90–5.92), irrespectively, will result in the

same state estimate x̂(k|k). This means that the two measurement fusion methods are

functionally equivalent in the sensor-to-sensor case.
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Now, consider the case when the information filter is applied. From (5.87)(5.92), it

is easy to prove the following equalities:

[C(mf)(k)]T [R(mf)(k)]−1C(mf)(k)

=
N∑
j=1

CT
j R

−1
j Cj (5.106)

[C(mf)(k)]T [R(mf)(k)]−1y(mf)(k)

=
N∑
j=1

CT
j R

−1
j yj (5.107)

[C(sf)(k)]T [R(sf)(k)]−1C(sf)(k) = [(
N∑
j=1

R−1j )−1

×
N∑
j=1

R−1j Cj]
T

N∑
j=1

R−1j Cj (5.108)

[C(sf)(k)]T [R(sf)(k)]−1y(sf)(k) = [(
N∑
j=1

R−1j )−1

×
N∑
j=1

R−1j Cj]
T

N∑
j=1

R−1j yj (5.109)

If Cj = C, j = 1, 2, ..., N , then we have

[C(mf)(k)]T [R(mf)(k)]−1C(mf)(k)

= [C(sf)(k)]T [R(sf)(k)]−1C(sf)(k) (5.110)

[C(mf)(k)]T [R(mf)(k)]−1y(mf)(k)

= [C(sf)(k)]T [R(sf)(k)]−1y(sf)(k) (5.111)

Remark 5.8.1 The functional equivalence is proved here with considering the gain K

as the center of existence for all the calculations, which can be the case for information-
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based weighted covariance filter too, but not for information-based Kalman-like parti-

cle filter where the gain K is not present.

5.9 EVALUATION AND TESTING

5.9.1 UTILITY BOILER

The evaluation and testing has been made on an industrial utility boiler [415]. In the

system, the principal input variables are u1, feedwater flow rate (kg/s); u2, fuel flow

rate (kg/s); and u3, attemperator spray flow rate (kg/s), the states are x1, fluid density,

x2, drum pressure, x3, water flow input, x4, fuel flow input, x5, spray flow input. The

principal output variables are y1, drum level (m); y2, drum pressure kPa; and y3, steam

temperature C0. The schematic diagram of the utility boiler can be seen in Fig. 5.5.

Fault model for utility boiler

Fault model for the utility boiler is being developed. The mathematical model of the

faulty utility boiler can be given as follows where fault of steam pressure are there

in state 4 (fuel flow input) and 5 (spray flow input) respectively (See Eqns. (5.112)-

(5.116)).

In the utility boiler, the steam temperature must be kept at a certain level to avoid

overheating of the super-heaters. By applying a step to the water flow input (state 3),

steam temperature increases and the steam temperature dynamics behaves like a fist

order system. Applying a step to the fuel flow input (state 4), the steam temperature

increases and the system behaves like a second order system. Applying a step to the
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Figure 5.5: Schematic Diagram of an Industrial Utility Boiler

spray flow input (state 5), steam temperature decreases and the system behaves like

a first order system. Then, a third order system is selected for the steam temperature

model. Steam pressure is added there in state 4 and 5 resulting in a more uncontrolled

non-linear system. Following [415] and the proposed fault scenarios, the fault model
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of the system can be described as:

ẋ1(t) =
u1 − 0.03

√
x22 − (6306)2

155.1411
(5.112)

ẋ2(t) = (−1.8506× 10−7x2 − 0.0024)
√
x22 − (6306)2

−0.0404u1 + 3.025u2 (5.113)

ẋ3(t) = −0.0211
√
x22 − (6306)2 + x4 − 0.0010967u1

+0.0475u2 + 3.1846u3 (5.114)

ẋ4(t) = 0.0015
√
x22 − (6306)2 + x5 − 0.001u1

+0.32u2 − 2.9461u3

+(ast pr)
√
x22 − (6306)2 (5.115)

ẋ5(t) = −1.278× 10−3
√
x22 − (6306)2

−0.00025831 x3 − 0.29747 x4

−0.8787621548 x5 − 0.00082 u1 − 0.2652778

u2 + 2.491 u3

+(ast pr)
√
x22 − (6306)2 (5.116)

5.9.2 EVALUATION OF RESULTS

In what follows, we present simulation results for the proposed information-based ver-

sions of filters. The simulations have been performed on the utility boiler system where

the faults due to steam pressure have been introduced in state 4 and 5 respectively.

Firstly, the data generated from the simulation of the plant has been initialized and the
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parameters have been being optimized which comprises of the pre-processing and nor-

malization of the data. The comparison of results for the distributed estimation, and

normal estimation with different feedbacks generated from faults, and the basic profile

of that particular state has been compared. Moreover, same pattern of comparison has

been followed for all the versions of information-based filters.

Information-Based Covariance Intersection filter

The information-based covariance intersection filter has been simulated here for the

utility boiler steam pressure fault of state 4. Simulations have been made for the esti-

mate of each case using state-vector fusion method. In the simulation, comparison of

various profiles have been made i.e. profile of normal fault-free state, estimate of nor-

mal fault-free state, estimate of faulty state, distributed estimate based on state-vector

fusion for different feedback strategies. The comparison of profiles mentioned above

for complete feedback, partial feedback and no feedback profile can be seen in Fig.

5.6-5.8 respectively. Moreover, the one on one full comparison for all the feedback

strategies can be seen in Fig. 5.9. It can be seen that here in case of information-based

covariance intersection, the complete feedback case is performing better than the partial

and no feedback case.

Information-Based Weighted Covariance filter

The information-based weighted covariance filter has been simulated here for the utility

boiler steam pressure fault of state 4. Simulations have been made for the estimate of

each case using state-vector fusion method. In the simulation, comparison of various
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profiles have been made i.e. profile of normal fault-free state, estimate of normal fault-

free state, estimate of faulty state, distributed estimate based on state-vector fusion for

different feedback strategies. The comparison of profiles mentioned above for complete

feedback and partial feedback profile can be seen in Fig. 5.10 and 5.11 respectively.

Moreover, the one on one full comparison for all the feedback strategies can be seen in

Fig. 5.12. It can be seen that here in case of information-based weighted covariance, the

no feedback case is performing better than the partial feedback, and complete feedback

has the lowest performance.

Information-Based Kalman-like Particle filter

The information-based Kalman-like particle filter has been simulated here for the utility

boiler steam pressure fault of state 4. Simulations have been made for the estimate of

each case using state-vector fusion method. In the simulation, comparison of various

profiles have been made i.e. profile of normal fault-free state, estimate of normal fault-

free state, estimate of faulty state, distributed estimate based on state-vector fusion for

different feedback strategies. The comparison of profiles mentioned above for complete

feedback and partial feedback profile can be seen in Fig. 5.13 and 5.14 respectively.

Moreover, the one on one full comparison for all the feedback strategies can be seen in

Fig. 5.15. It can be seen that here in case of information-based Kalman-like particle

filter, the partial feedback case is performing better than the complete feedback, and no

feedback has the lowest performance. Also, a profile comparison for the measurement

fusion method can be seen in Fig. 5.16 for a complete feedback case.
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Table 5.1: MSE Comparison for All Information-Based Filters*

FILTER COMPLETE FB PARTIAL FB NO FB

CI 6.424 8.2759 8.411

WC 1.031 × 10−3 1.0273 × 10−3 1.0275 × 10−3

KLPF 0.565 0.703 0.6223

Mean Square Error Comparison

In this section, we have made a comparison of the all versions of information-based

filters with complete, partial and no feedback respectively. It can be seen from Table

5.1 that how the feedback versions are performing differently for a particular case of

information-based filter. The mean square error value of complete feedback is the min-

imum in the case of information-based covariance intersection filter and Kalman-like

particle filter respectively, whereas partial feedback is performing well in the case of

information-based weighted covariance filter.

11* The table is showing the comparison of all the versions of information-based filters,

where MSE stands for mean square error, FB stands for feedback, CI stands for covariance

intersection, WC stands for weighted covariance and KLPF stands for Kalman-like Particle

filter
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Figure 5.6: Covariance Intersection: Complete Feedback Comparison
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Figure 5.8: Covariance Intersection: No Feedback Comparison
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Figure 5.10: Weighted Covariance: Complete Feedback Comparison
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Figure 5.11: Weighted Covariance: Partial Feedback Comparison
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Figure 5.14: Kalman-like Particle Filter: Partial Feedback Comparison
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6 CONCLUSIONS AND PERSPECTIVES

6.1 RESEARCH CONCLUSIONS

This dissertation proposes a different perspective for distributed Kalman filtering. It

has the following conclusion.

Firstly, the distributed system architecture, on the whole, is very powerful since it

allows the design of the individual units or components to be much simpler, while not

compromising too much on the performance. A brief technical review and bibliography

listing on the advances in DKF have been presented in the chapter 2. The current and

previous approaches have been reported in this chapter. DKF comprising of OOSM

approaches, Diffusion-Based approaches, Consensus Based Estimation, Self-Tuning

designs and various applications of DKF have been classified. Some open problems

and current research activities have been discussed and around 300 references have

been categorized. We apologize in advance for any omission of publications, in spite

of our best effort.

Secondly, approximate distributed estimation has been proposed in explicit forms

using Bayesian-based FB Kalman filter for estimating states of a network control sys-
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tem for an arbitrary number of sensors with complete, incomplete, or no prior infor-

mation. The approximate estimation presents all the prior cases with an effort to min-

imize time complexity and cases showing dependency of prior knowledge. Then, the

algorithms were being made effective by data fusion of all the knowledge in a dis-

tributed filtering architecture. The proposed scheme has been evaluated on a rotational

drive-based electro-hydraulic system using various fault scenarios, thus ensuring the

effectiveness of the approach with different prior cases.

Thirdly, smoother extension to the SEEK filter with Kalman-like particle filter

and EM implementation has been presented. The iterative process of EM helps the

smoother to improve the covariance. The results show that the distributed filter of such

kind has performed even better. Due to the EM implementation, the estimate almost

mimics the original profile of the loads. The results have been then compared with the

full-order version of such kind, thus ensuring its effectiveness.

Finally in the end, distributed estimation has been proposed using various versions

of information matrix filter. Different feedback strategies were evaluated and the focal

point is relation of performance and number of sensors. It is shown that for algorithms,

the feedback strategies are performing differently i.e. information-based covariance

intersection and Kalman-like particle filter is performing better with complete feedback

case, whereas information-based weighted covariance is performing better with partial

feedback case. The proposed scheme has been evaluated on a industrial boiler using

fault scenarios, thus ensuring a thorough performance evaluation of the proposed filters

with measurement fusion.

193



6.2. FUTURE RESEARCH WORK

6.2 FUTURE RESEARCH WORK

The following are the possible future research work which can be extended from this

dissertation.

• DEVELOPMENT OF TEST BED SHOWING APPROXIMATE ESTIMATION BASED

ON PRIOR INFORMATION - A test bed to be designed based on real time prototype

system for approximate estimation (using Bayesian-based Kalman filter), and the pro-

posed approximate estimation filters with upper and lower bounds should be applied

based on situations of complete, incomplete and no prior knowledge respectively. This

estimation is to be extended to ensemble Kalman filtering presenting the case of large

number of variables in interconnected system or multi-sensor data fusion.

• DEVELOPMENT OF SMOOTHERS USING VARIOUS TYPE OF SIGNALS SUCH AS

ARMA SIGNALS - A robust smoother based on the a-priori knowledge of different

signal types such as auto-regressive moving average (ARMA) and auto-regressive (AR)

signals proposed to handle the smoothing process for every signal type.

• DEVELOPMENT OF A FAULT TOLERANT CONTROL SCHEME CONSIDERING

DISTRIBUTED ESTIMATION - Design of a fault tolerant control scheme which com-

prises of two steps, where the first step estimates and detects the error using a heavy

non-linear a-priori knowledge-based filter, and the second step designs a reconfigurable

controller which can control the plant with an error scenario being calculated from the

filter in the first step. These type of systems are employed in mission critical situations,

aircrafts etc. For example, during a flight of an aircraft, if one of the engine fails, how
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the second engine of the aircraft maneuvers itself to sustain a full load capacity of the

plane and make a safe landing.
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