991 research outputs found

    3D Vehicle Extraction and Tracking from Multiple Viewpoints for Traffic Monitoring by using Probability Fusion Map

    Get PDF
    This paper presents a novel solution of vehicle occlusion and 3D measurement for traffic monitoring by data fusion from multiple stationary cameras. Comparing with single camera based conventional methods in traffic monitoring, our approach fuses video data from different viewpoints into a common probability fusion map (PFM) and extracts targets. The proposed PFM concept is efficient to handle and fuse data in order to estimate the probability of vehicle appearance, which is verified to be more reliable than single camera solution by real outdoor experiments. An AMF based shadowing modeling algorithm is also proposed in this paper in order to remove shadows on the road area and extract the proper vehicle regions

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    A Small-Scale 3D Imaging Platform for Algorithm Performance Evaluation

    Get PDF
    In recent years, world events have expedited the need for the design and application of rapidly deployable airborne surveillance systems in urban environments. Fast and effective use of the surveillance images requires accurate modeling of the terrain being surveyed. The process of accurately modeling buildings, landmarks, or other items of interest on the surface of the earth, within a short lead time, has proven to be a challenging task. One approach of high importance for countering this challenge and accurately reconstructing 3D objects is through the employment of airborne 3D image acquisition platforms. While developments in this arena have significantly risen, there remains a wide gap in the verification of accuracy between the acquired data and the actual ground-truth data. In addition, the time and cost of verifying the accuracy of the acquired data on airborne imaging platforms has also increased. This thesis investigation proposes to design and test a small-scale 3D imaging platform to aid in the verification of current image acquisition, registration and processing algorithms at a lower cost in a controlled lab environment. A rich data set of images will be acquired and the use of such data will be explored

    Autocalibrating vision guided navigation of unmanned air vehicles via tactical monocular cameras in GPS denied environments

    Get PDF
    This thesis presents a novel robotic navigation strategy by using a conventional tactical monocular camera, proving the feasibility of using a monocular camera as the sole proximity sensing, object avoidance, mapping, and path-planning mechanism to fly and navigate small to medium scale unmanned rotary-wing aircraft in an autonomous manner. The range measurement strategy is scalable, self-calibrating, indoor-outdoor capable, and has been biologically inspired by the key adaptive mechanisms for depth perception and pattern recognition found in humans and intelligent animals (particularly bats), designed to assume operations in previously unknown, GPS-denied environments. It proposes novel electronics, aircraft, aircraft systems, systems, and procedures and algorithms that come together to form airborne systems which measure absolute ranges from a monocular camera via passive photometry, mimicking that of a human-pilot like judgement. The research is intended to bridge the gap between practical GPS coverage and precision localization and mapping problem in a small aircraft. In the context of this study, several robotic platforms, airborne and ground alike, have been developed, some of which have been integrated in real-life field trials, for experimental validation. Albeit the emphasis on miniature robotic aircraft this research has been tested and found compatible with tactical vests and helmets, and it can be used to augment the reliability of many other types of proximity sensors

    Doctor of Philosophy

    Get PDF
    dissertation3D reconstruction from image pairs relies on finding corresponding points between images and using the corresponding points to estimate a dense disparity map. Today's correspondence-finding algorithms primarily use image features or pixel intensities common between image pairs. Some 3D computer vision applications, however, don't produce the desired results using correspondences derived from image features or pixel intensities. Two examples are the multimodal camera rig and the center region of a coaxial camera rig. Additionally, traditional stereo correspondence-finding techniques which use image features or pixel intensities sometimes produce inaccurate results. This thesis presents a novel image correspondence-finding technique that aligns pairs of image sequences using the optical flow fields. The optical flow fields provide information about the structure and motion of the scene which is not available in still images, but which can be used to align images taken from different camera positions. The method applies to applications where there is inherent motion between the camera rig and the scene and where the scene has enough visual texture to produce optical flow. We apply the technique to a traditional binocular stereo rig consisting of an RGB/IR camera pair and to a coaxial camera rig. We present results for synthetic flow fields and for real images sequences with accuracy metrics and reconstructed depth maps

    Learning for Coordination of Vision and Action

    Get PDF
    We define the problem of visuomotor coordination and identify bottleneck problems in the implementation of general purpose vision and action systems. We conjecture that machine learning methods provide a general purpose mechanism for combining specific visual and action modules in a task-independent way. We also maintain that successful learning systems reflect realities of the environment, exploit context information, and identify limitations in perceptual algorithms which cannot be captured by the designer. We then propose a multi-step find-and-fetch mobile robot search and retrieval task. This task illustrates where current learning approaches provide solutions and where future research opportunities exist

    Automatic Plant Annotation Using 3D Computer Vision

    Get PDF

    Vision Sensors and Edge Detection

    Get PDF
    Vision Sensors and Edge Detection book reflects a selection of recent developments within the area of vision sensors and edge detection. There are two sections in this book. The first section presents vision sensors with applications to panoramic vision sensors, wireless vision sensors, and automated vision sensor inspection, and the second one shows image processing techniques, such as, image measurements, image transformations, filtering, and parallel computing
    corecore