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ABSTRACT 

 

 3D reconstruction from image pairs relies on finding corresponding points between 

images and using the corresponding points to estimate a dense disparity map.  Today's 

correspondence-finding algorithms primarily use image features or pixel intensities 

common between image pairs. Some 3D computer vision applications, however, don't 

produce the desired results using correspondences derived from image features or pixel 

intensities. Two examples are the multimodal camera rig and the center region of a 

coaxial camera rig. Additionally, traditional stereo correspondence-finding techniques 

which use image features or pixel intensities sometimes produce inaccurate results. This 

thesis presents a novel image correspondence-finding technique that aligns pairs of image 

sequences using the optical flow fields. The optical flow fields provide information about 

the structure and motion of the scene which is not available in still images, but which can 

be used to align images taken from different camera positions.   

 The method applies to applications where there is inherent motion between the 

camera rig and the scene and where the scene has enough visual texture to produce 

optical flow.  We apply the technique to a traditional binocular stereo rig consisting of an 

RGB/IR camera pair and to a coaxial camera rig.  We present results for synthetic flow 

fields and for real images sequences with accuracy metrics and reconstructed depth maps. 
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"If we knew what it was we were doing, it would not be called research, would it?" 
 

Albert Einstein 
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CHAPTER 1 

 

INTRODUCTION 

 

The goal of this dissertation is to develop a methodology to find correspondences between 

optical flow fields derived from pairs of image sequences (Figure 1.1).  These correspondences, 

along with the mathematical relationship between the flow fields at corresponding pixel 

locations, is used to estimate both the dense depth map and the scene flow (dense three-

dimensional motion field).  This estimation is done without directly using intercamera image 

features or pixel intensities, which permits image alignment, dense depth map estimation, and 

scene flow estimation in image pairs where traditional image-feature or pixel-intensity-based 

methods may be inadequate. The method is tested on image sequences from two 

 

 

Figure 1.1. Methodology developed in this dissertation.
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multicamera rigs, a coaxial camera rig with collinear optical axes consisting of two color 

(RGB) cameras (Figure 1.2a), and a multimodal camera rig with parallel optical axes 

consisting of an RGB camera and an infrared (IR) camera (Figure 1.2b).  

Optical flow fields contain information about the scene that is not available in still 

image pairs, namely a representation of the scene motion encoded by the scene shape. 

Unlike traditional image correspondences derived from intercamera image features or 

pixel intensities, in all but the simplest cases, optical flow fields taken from different 

camera positions will be different.  In this dissertation, the mathematical relationship 

between optical flow fields taken from different camera positions is derived with minimal 

assumptions about the structure of the scene.  Correspondences are found between flow 

fields taken from different viewpoints by using an energy-minimization approach based 

on this mathematical relationship.  This process produces dense optical flow field 

matches in image sequence pairs that permit image alignment based on the perceived 

  

   

 (a) (b) 

Figure 1.2.  The two types of camera rigs used in this dissertation.  (a) Coaxial 
(RGB/RGB) camera rig.  (b) Multimodal (RGB/IR) camera rig. 
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motion in the images.   

Optical flow field derived image correspondences have several unique characteristics 

that allow the finding of image correspondences in situations where intercamera image 

correspondences derived from pixel intensities or image features do not produce good 

results.  First, optical flow fields are invariant to the wavelength of light being imaged as 

long as the images have sufficient features visible at each wavelength imaged.  This 

invariance allows flow field alignment taken with pairs of cameras that image different 

wavelengths to produce dense depth maps.  Second, optical flow fields obtained using 

cameras with different focal length optical systems produce a unique relationship 

between the disparity of corresponding points in the two flow fields and the optical flow 

reported in those corresponding pixels.  The disparity allows one image to be warped into 

alignment with the other; however, it is the ratio of the optical flow field values at a given 

disparity that contains the information used to estimate depth.  This unique characteristic 

of flow field alignment allows depth to be estimated where there is no pixel disparity, 

something that is impossible with pixel-intensity or feature-based correspondences. 

While useful as a stand-alone correspondence finding technique where traditional 

intercamera image-feature- or pixel-intensity-based approaches fail, optical flow field 

derived correspondences also have applications when used in combination with intra-

camera image-feature- and/or pixel-intensity-based approaches.  The estimation of scene 

flow typically uses both optical flow and stereo correspondences [1]-[6].  Scene flow 

methods that decouple the depth estimation from the motion estimation are reported to 

have advantages over methods that combine the disparity estimation and motion 

estimation into a single framework [3].  However, the decoupled methods do not take 
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advantage of the additional information that comes from aligning the optical flow fields.  

Instead, decoupled scene flow methods find depth from stereo correspondences and use 

the optical flow to track points over time.  Combining optical flow field derived 

correspondences with intercamera image-feature- or pixel-intensity-based 

correspondences produces a redundant set of correspondences based on different scene 

information (intensities and/or features vs. motion).  Where the two sets of 

correspondences do not match, they provide insight into the error in the decoupled scene 

flow estimation as well as a consistency constraint in the optical flow computation.  One 

could foreseeably use this optical flow consistency constraint to improve the estimation 

of the optical flow, thereby improving the overall accuracy of decoupled scene flow 

estimation. 

 

1.1 Motivation 

The motivation for undertaking the research presented in this dissertation originated 

from the need to measure movement in several situations where no existing technology 

was feasible.  In earlier work of the author, optical flow was used as a measurement tool 

in several specialized devices for real-time analysis of the technique of athletes. These 

devices used commercially available optical flow sensors in several different multisensor 

configurations to estimate three-dimensional (3D) motion.  Optical flow sensors produce 

reasonably accurate estimates of 3D velocity, but due to limitations of the sensor design, 

work only in very selective environments.  The following section briefly describes this 

early work, along with the accuracies achieved and the limitations uncovered.  This work 

suggested that generalizing the methodology to multicamera rigs could result in a system 
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capable of estimating dense depth maps and scene flow in situations where existing 

methods were not feasible. 

 

1.2 Early Work 

The first time optical flow alone was used to make depth estimations was in a system 

designed to provide real-time technique feedback to world-class skiers [7]-[9].  The 

device was called the vLink Racing Computer (Figure 1.3) and consisted of a pair of ski- 

mounted sensor units, each containing a commercial optical flow sensor.  The design 

objective of the system was to measure lateral slippage (which reduces the speed of a ski 

racer) and deliver real-time audible feedback to the athlete.  The feedback was 

proportional to the lateral slippage of the skier, enabling the skier to correct technique 

 

  

Figure 1.3. vLink racing computer. 
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errors in real-time that caused excessive lateral slippage.  Two sensors were required so 

that at any time at least one of the sensors, the one on the edge of the ski being used to 

make the turn, was in contact with the snow surface.  During the development process it 

was recognized that the information from the sensor not in contact with the snow also 

produced velocity information that was scaled by its distance from the snow surface 

(Figure 1.4).  The ratio of the two velocities from the two different optical flow 

measurements produced an estimate of the angle of the ski relative to the plane of the 

snow.  This edge-angle estimate became a valuable component in analyzing skier  

technique.  It also demonstrated that the ratio of the perceived velocity could be used to 

estimate depth. 

In addition to the ability to estimate depth, the work with the vLink revealed that 

under the right conditions, optical flow could be used to accurately measure velocity 

relative to visually textured frontal planar surfaces.  In controlled experiments a standard 

deviation of 9 mm over a 100 m test track during 18 consecutive trials was measured, 

 

 

Figure 1.4. Ski edge angle from optical flow triangulation. 
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which equates to a standard error of 0.009%.  Not only is the accuracy high relative to 

other technologies used to measure skier velocity (GPS, IMUs, and passive marker 

motion capture), but the velocity estimation is done in real-time, making real-time 

feedback possible. 

Based on the insights gained during the development of the vLink training device, 

two other products that involve measuring velocity on snow were developed.  The first 

was a glide test instrument used today in the development of ski waxes.  It produces the 

most accurate velocity and distant estimates of any ski sensor system [10], and when the 

data are fused with data from Hall effect sensors and accelerometers, the instrument is 

capable of estimating the speed-dependent friction coefficient between the ski base and 

the snow surface [11].  The second device is an electronic avalanche probe [12] that 

measures snow-pack density using a force sensor at precise depth intervals.  The depth 

intervals are computed from optical flow data, and the result is a snow-pack density 

profile used to predict avalanches. 

A system similar to the vLink, but intended for analyzing a golf swing, was designed 

for TaylorMade Golf, using three optical flow sensors (Figure 1.5).  Unlike skis, 

however, a golf club has additional degrees of freedom that complicate  the  estimation of 

3D motion.  For example, the difference in perceived velocity between two sensors in a  

stereo  configuration  varies  by  depth  as well as by club head rotation.  This problem 

was resolved using a coaxial sensor arrangement [13], [14], which effectively isolates the 

flow field differences due to depth from other forms of motion.  This coaxial sensor 

arrangement has a number of additional advantages over traditional binocular stereo that 

make it more suitable to certain embedded and space-constrained applications. 
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Figure 1.5. Prototype three-sensor optical flow putter. 

 

Specifically, unlike sensors in a binocular stereo configuration, sensors in a coaxial 

configuration have a minimum working distance that is primarily constrained by the 

ability to focus the image, rather than the intercamera image overlap.  Second, the 

baseline is not constrained by the working distance, allowing large baselines and thus 

higher precision with very small working distances.  Third, the baseline of a coaxial 

sensor configuration can be parallel or perpendicular to the image plane, or even a 

combination of the two, which allows large baselines to be wrapped up inside the camera 

rig, permitting depth estimation through a narrow diameter tube.  Lastly, a coaxial sensor 

arrangement has substantially smaller occlusions than a binocular stereo camera rig. 
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These advantages, however, come at a cost.  As will be seen in detail in Chapter 2, 

depth from a coaxial camera rig cannot be estimated using intercamera image-feature- or 

pixel-intensity-based correspondences in the central region of the image.  Additionally, 

the optical flow sensors used in the work described here produce a single flow value over 

a small field of view.  This single flow value essentially takes advantage of a singularity 

along the optical axis that allows depth to be computed directly from the ratio of the flow 

computed by two sensors.  This singularity does not extend to off-axis computation of 

optical flow, which complicates the estimate of dense depth maps and dense 3D motion 

fields. 

 This early work was intended to solve very specific problems in motion estimation,  

but the accuracy of the velocity estimation combined with the ability to estimate depth 

suggests that if the method could be generalized to work with optical flow fields acquired 

with multicamera rigs, it would provide a valuable tool in situations where existing 

methods do not produce good results.  The initial motivation for this research was 

centered around the coaxial camera rig, but the ability to estimate dense depth maps and 

dense 3D motion fields without using intercamera image-feature- or pixel-intensity-based 

correspondences extends beyond the coaxial camera rig.  

To generalize the method such that it works with optical flow fields computed from 

image sequences acquired by multicamera rigs, several problems need to be overcome.  

First, optical flow fields taken at different distances and through different focal length 

imaging systems need to be aligned, which requires finding optical flow field based 

correspondences. This problem is more difficult than finding image-feature or pixel-

intensity-based correspondences because unlike image features or pixel intensities, 



10 
 

different camera positions produce different optical flow fields.  Solving this problem 

requires finding the mathematical relationship between flow fields taken from different 

camera positions.  Second, once the relationship between flow fields is found, it must be 

incorporated into an intercamera optical flow-field correspondence-finding formulation.  

Third, an efficient numerical solution to the flow-field correspondence-finding 

formulation must be developed.  Fourth, frontal planar surfaces, which are common in 

many scenes, produce constant flow, which for a method that aligns optical flow fields is 

equivalent to a featureless region for methods that align images based on image feature or 

pixel intensities.  A way of aligning constant flow regions is required for the technique to 

have broad applicability. 

 

1.3 Contributions 

The contributions of this dissertation include:  

1) The derivation of the relationship between two optical flow fields taken from 

different camera positions for two multicamera geometry types, a coaxial camera 

rig and a multimodal stereo camera rig.  These derivations provide a model for 

deriving the relationships between flow fields for other multicamera 

configurations. 

2) The derivation of an energy-minimization functional using the mathematical 

relationship between flow fields to align them in such a way that results in 

alignment of the underlying images.     

3) Two numerical solutions to the energy-minimization problem, one using 

variational methods and the second using graph cuts.   
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4) Camera rig and imaging optics considerations required to align frontal planar 

regions—a degenerate case for stereo camera rigs using optical flow for image 

alignment.   

5) The derivation of the equations required to convert the aligned optical flow fields 

into dense depth maps and scene flow.   

6) Results with accuracy metrics for the technique with the two types of camera rigs 

described above on three real-world scenes, including comparisons with the state-

of-the-art multimodal and structure from motion (SfM) algorithms on the same 

three real-world scenes. 

7) A discussion of how the methodology can be applied to solve two real-world 

problems.  The first is 3D reconstruction via an endoscope with a single opening 

for images entering the optical system, and the second is 3D reconstruction from 

image sequences taken with a multimodal RGB/IR stereo camera rig common in 

many surveillance applications.  

 

1.4 Overview 

Chapter 2 describes the coaxial camera rig; presents the literature on depth from 

zooming—the predecessor of the coaxial camera; derives the relationship between the 

optical flow fields acquired by the two cameras; and develops the energy-minimization 

functional that, when solved, results in the alignment of the two flow fields.  Two 

solutions to the energy-minimization problem are presented, a variational methods 

approach and an approach using graph techniques.  The method is demonstrated on three 

real-world scenes, and accuracy metrics are presented and compared with a state-of-the- 
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art scaled SfM algorithm.  

Chapter 3 describes the multimodal stereo camera rig and presents the literature for 

image alignment and depth estimation using images generated by cameras that image 

different light frequencies.  The relationship between the optical flow fields acquired by 

the two cameras with different focal lengths is derived, and the energy-minimization 

functional that, when solved, results in the alignment of the two flow fields is developed.  

Both a variational methods approach and a graph-technique approach are used to solve 

the energy functional, and the technique is demonstrated on a number of real-world 

images.  The accuracy of alignment metrics is presented and compared with the state-of-

the-art multimodal method, which uses a combination of scale-invariant feature transform 

(SIFT) and edge-oriented histograms (EOH) to produce sparse points of interest matches 

in multimodal image pairs. 

Conclusions are presented in Chapter 4 with a discussion of how the methodology 

can be applied to existing scene flow algorithms to add an additional constraint to the 

optical flow computation that could result in more accurate scene flow estimation.  



 
 

 
 
 
 
 

CHAPTER 2 

 

THE COAXIAL CAMERA RIG 

 

2.1 Introduction 

A coaxial camera rig consists of two cameras that image along the same optical axis 

using a beam splitter to create two independent optical paths (Figure 2.1).  The two 

optical paths are imaged via two independent optical systems having different focal 

lengths and different distances to the scene.  The different focal lengths combined with 

the different distances to the scene produce different magnifications of the scene onto the 

image sensor. The different magnifications result in a radial disparity that is a function of 

the depth between the camera rig and the scene.  However, because the images acquired 

by each camera share the same optical axis, the disparity is always zero on the optical 

axis and very small in the center region of the image pairs, which makes it impossible to 

recover depth in the center region of a coaxial camera using pixel disparities. 

If not for the lack of disparity in the center region, coaxial cameras would likely be 

more prevalent as they have a number of advantages over traditional binocular stereo 

camera rigs, including: 

1) There are fewer and smaller occlusions as alluded to by Ma and Olsen [15].   

2) The baseline can be wrapped up inside the camera in such a way that the camera 

rig can acquire images through a small diameter tube [16]. 
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Figure 2.1.  Schematic representation of a coaxial camera rig. 

   

3) A singularity along the optical axis substantially reduces the complexity of depth 

computation when the scene is rigid, and relative motion consists of frontal planar 

translation.  This singularity also provides good values for initialization in other 

configurations.   

4) The center point produces one known correspondence value for all radial epipolar 

lines.   

5) Unlike a binocular stereo camera rig, a coaxial camera rig has no minimum 

working distance other than the ability to focus.   

If it were possible to estimate depth in the center region of a coaxial camera, this type 

of camera rig would have a myriad of uses from embedded applications (such as skiing 

and golf clubs), to space constrained applications that require imaging through a tube 

such as in a borescope or endoscope. 
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2.2 Related Work - Depth from Zooming 

Outside the publications associated with this dissertation [13], [16], [17], there is little 

literature on the coaxial camera.  However, estimating depth from images taken at 

different focal lengths by changing the zoom on a fixed camera imaging a stationary 

scene has been known for many years as depth from zooming.  A coaxial camera rig is 

fundamentally a simultaneous depth from zooming setup. 

Estimating dense depth maps from a depth from zooming setup was first proposed by 

Ma and Olsen [15] in 1990.  Lavest et al. [18], [19] provide a proof for inferring 3D data 

from images taken at multiple focal lengths and model a revolving object.  Asada et al. 

[20] and Baba et al. [21] present a method for doing 3D reconstruction using blur from 

zoom.  Gao et al. [22] present a distance measurement system for mobile robots using 

zooming.  Most recently, Zhang and Qi [23] describe a method for 3D reconstruction by 

finding corresponding contours (using a snake search algorithm) between images taken at 

different focal lengths and then using the camera geometry to estimate depth along the 

contours. 

The primary reason researchers have investigated using a single zoom camera to do 

3D reconstruction is cost.  As noted above, however, depth from zooming has some 

additional advantages if the stationary scene constraint and unrecoverable point problem 

could be overcome.  The coaxial camera rig combined with image correspondences 

derived from perceived motion overcomes these problems.  First, simultaneous images 

taken at two different focal lengths overcome the stationary scene constraint of depth 

from zooming.  Second, using the flow fields to align image pairs overcomes the 

unrecoverable point problem in the center region described by Ma and Olsen [15].  This 
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later advantage is due to the depth estimate being derived from the ratio of the flow fields 

taken at different focal lengths as opposed to the extremely small disparities found in the 

center region of a coaxial camera rig. 

 

2.3 Energy Formulation 

Referring to Figure 2.2, let  𝑥̅𝑓 = (𝑥𝑓 ,𝑦𝑓)𝑇 and 𝑥̅𝑏 = (𝑥𝑏 ,𝑦𝑏)𝑇 represent points in the 

image domain of the front and back cameras.  Let  ℎ�(𝑥̅) be the disparity between 𝑥̅𝑓 and 

𝑥̅𝑏 such that 𝑥̅𝑓 and 𝑥̅𝑏 − ℎ�(𝑥̅𝑓) represent the same point 𝑋��𝑥̅𝑓� = (𝑋,𝑌)  in the scene.  

Let 𝑓𝑓 and  𝑓𝑏 be the focal lengths for the front camera and back cameras and 𝑍(𝑥̅𝑓) be 

the distance between the optical center of the front camera and a point in the scene 

corresponding to 𝑥̅𝑓, the distance being measured along the optical axis.  Let 𝑏 be the 

distance between the optical center of the two cameras.  Let 𝑤�𝑓 and  𝑤�𝑏 be the projection 

of the 3D motion field onto the image planes of the front and back cameras, respectively. 

In Figure 2.2, the Y axis is pointing out of the page.  Because the coaxial camera is 

symmetrical around the Z axis, equations derived for the X-Z plane are identical to those 

derived for the Y-Z plane. 

We first derive equations for the disparity ℎ�(𝑥̅).  We start with the projection 

equations for a pinhole camera 

 

 𝑥̅𝑓 = −𝑓𝑓𝑋�

𝑍
 (2.1)   

 𝑥̅𝑏 = − 𝑓𝑏𝑋�
𝑍+𝑏

 (2.2)   
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Figure 2.2.  Coaxial camera rig geometry.  

 

Solving for the disparity gives 

 

 𝑥̅𝑓 − 𝑥̅𝑏 = ℎ�(𝑥̅𝑓) = 𝑓𝑓𝑋�

𝑍
− 𝑓𝑏𝑋�

𝑍+𝑏
 (2.3)   

 

which, when reduced, results in 

 

  ℎ�(𝑥̅𝑓) =
𝑥̅𝑓�

𝑓𝑏
𝑓𝑓
𝑍−𝑍−𝑏�

𝑍+𝑏
. (2.4)   

 

We next find the relationship between the optical flow perceived by the two cameras.  

Once again, we start with the projection equations and take the derivative with respect to 

time 

 

  𝑑𝑥
𝑑𝑡

= 𝑤𝑥 = −𝑓 𝑑
𝑑𝑡
�𝑋
𝑍
� (2.5)   
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 𝑑𝑦
𝑑𝑡

= 𝑤𝑦 = −𝑓 𝑑
𝑑𝑡
�𝑌
𝑍
� (2.6)   

  𝑤𝑥 = 𝑥𝑍̇−𝑓𝑋̇
𝑍

 (2.7)   

  𝑤𝑦 = 𝑦𝑍̇−𝑓𝑌̇
𝑍

 (2.8)   

 

which can be written in homogeneous coordinates as 

 

  𝑃� = �
1
0
0

 
0
1
0

 
𝑥 𝑓⁄
𝑦 𝑓⁄

0
 

0
0

−𝑍 𝑓⁄
� (2.9)   

  𝑤� = �
1
0
0

 
0
1
0

 
−𝑥 𝑓⁄
−𝑦 𝑓⁄

0
 

0
0

−𝑍 𝑓⁄
� �
𝑋̇
𝑌̇
𝑍̇
1

� =

⎣
⎢
⎢
⎢
⎡𝑋̇ −

𝑥𝑍̇
𝑓

𝑌̇ − 𝑦𝑍̇
𝑓

− 𝑍
𝑓 ⎦
⎥
⎥
⎥
⎤

= −�
𝑓𝑋̇−𝑥𝑍̇

𝑍
𝑓𝑌̇−𝑦𝑍̇

𝑍

� (2.10) 

 
 

Adding image-frame timing and adding the different baseline for the front and back 

cameras, (2.7) and (2.8) become 

 

 𝑤�𝑓 = 𝑥̅𝑓0𝑍̇−𝑓𝑓𝑋�̇

𝑍𝑓1
  (2.11)   

 

 𝑤�𝑏 = 𝑥̅𝑏0𝑍̇−𝑓𝑏𝑋�̇

𝑍𝑏1
.  (2.12)   

 

Solving for 𝑋�̇ and setting the resulting equations equal to each other gives 
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 𝑚�𝑥̅𝑓�𝑤�𝑓�𝑥̅𝑓� = 𝑐�𝑥̅𝑓�𝑤�𝑏 �𝑥̅𝑓 + ℎ��𝑥̅𝑓��  (2.13)   

 

where 

 

 𝑚�𝑥̅𝑓� = �𝑓𝑏
𝑓𝑓
� � 𝑍(𝑥̅𝑓)

(𝑍�𝑥̅𝑓�+𝑏)
� (2.14)  

 

and  

 

    c�(x�f) = � w�f(x�f)

�Z0�x
�f�+b

Z1�x�f�+b
��Z1�x

�f�
Z0�x�f����

�(w�f(x�f)+x�f)−x�f
� (2.15)  

 

for the front and back cameras.  Equation (2.13) can be written as the energy functional 

 

 𝐸𝑚𝑎𝑡𝑐ℎ = ∑ �𝑝��𝑥�𝑓�𝑤�𝑓�𝑥�𝑓� − 𝑐̅�𝑥̅𝑓�𝑤�𝑏 �𝑥�𝑓 + ℎ��𝑥�𝑓���
2

𝓅∈𝒫 . (2.16)   

 

Equation (2.16) has a similar form to the data term in many optical flow algorithms 

(see [24]).  However, instead of assigning a cost penalty based on how well pixel 

intensities match, (2.16) assigns a cost penalty based on how well the optical flow fields 

match.  Perfectly matched optical flow fields produce a zero cost penalty.  Like optical 

flow and many other inverse problems, this problem is ill-posed (e.g., a unique solution 

may not exist).  Ill-posedness is commonly overcome by using a regularization term that 

penalizes some kind variation.  For optical flow the regularization term penalizes 
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variations in the flow field.  The regularization term used here penalizes variations in 

depth and uses the L2 norm 

 

  𝐸𝑠𝑚𝑜𝑜𝑡ℎ_𝑍 = ∑ �∇𝑍𝑓�𝑥̅𝑓��
2

𝓅∈𝒫 . (2.17)   

 

Equation (2.17) is an L2 norm, but there are a variety of commonly used 

regularization functions that have different characteristics, particularly in the region of 

discontinuities.  The L1 norm is used later in this dissertation, and the results of using an 

L2 vs. an L1 norm are compared. 

Combining (2.16) and (2.17) results in the energy functional 

 

 𝐸𝑡𝑜𝑡𝑎𝑙 =  𝛾𝐸𝑚𝑎𝑡𝑐ℎ + 𝛼�𝐸𝑠𝑚𝑜𝑜𝑡ℎ (2.18)  

 

where γ and 𝛼� are tuning constants and 

 

 𝛼� = �𝛼𝑥,𝛼𝑦�
𝑇
 (2.19)  

 

allows tuning the smoothness along a radial epipolar line independently of the 

smoothness between radial epipolar lines.  

Equation (2.13) represents two equations in two unknowns, one in the 𝑥 direction and 

the second in the 𝑦 direction with two unknowns 𝑍 and 𝑍̇.  This equation pair contains 𝑍 

in quadric form in the denominator of 𝑐̅�𝑥̅𝑓�, which has implications for the numerical 

solution. 
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2.4 Numerical Solutions 

Equation (2.18) defines a global energy that can be solved using a variety of 

techniques including variational methods [17], [25], [26], simulated annealing [27]-[29], 

cooperative methods [30], [31], and more recently graph cut techniques [31]-[35].  The 

use of variational methods was one of the first techniques used to solve global energy 

problems in early vision [26], [36], and they are still the most widely used technique for 

computing optical flow from image sequences [37]-[39].  One advantage to the 

variational approach is that the problem is specified in continuous (infinitesimal) terms.   

The graph cuts method has been successfully used in many stereo correspondence- 

finding algorithms [33], [35], [40] that require the optimization of energy functionals 

where the objective of the optimization is to assign a label to each pixel, which results in 

a global cost minimum.  For stereo correspondence finding, the labels are typically 

discrete disparity values.  The energy-minimization problem is formulated as a 3D graph, 

with pixel locations in x and y and discrete disparities (labels) in z.  The minimum cut (or 

maximum flow) of the 3D graph produces a dense disparity map, which is the global 

minimum of the energy functional.  Section 2.6 of this dissertation applies this approach 

to (2.18) to find the global minimum, which results in the alignment of the optical flow 

fields. 

Scharstein et al. [31] showed that for stereo correspondence finding, graph cuts 

produced the lowest error rates in terms of RMS disparity errors, number of bad pixels, 

and accuracy in textureless regions and was the second best global method in terms of 

accuracy in occluded areas.  The graph cuts solution to the global energy-minimization 

problem of  (2.18) is an NP-hard combinatorial problem, but highly efficient approximate 
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solutions [33] are widely used to find approximate solutions to energy functionals of the 

form of (2.18). 

 

2.5 Variational Methods 

Variational methods require that the energy be expressed in a continuous form such 

that the first variation can be found.  Additionally, we want to separate 𝑍 from 𝑍̇ in the 

formulation to allow a gradient descent with respect to 𝑍 while lagging the solution for 𝑍̇. 

 

2.5.1 Euler-Lagrange 

We rewrite (2.16) and (2.17) in continuous form using the L2 norm for the 

regularization 

 

 𝐸𝑚𝑎𝑡𝑐ℎ = 1
2 ∫ �𝑚�𝑥̅𝑓�𝑤�𝑓�𝑥̅𝑓� − 𝑐�𝑥̅𝑓�𝑤�𝑏 �𝑥̅𝑓 + ℎ��𝑥̅𝑓���

2𝑏
𝑎 𝑑𝑥̅ (2.20)   

  𝐸𝑠𝑚𝑜𝑜𝑡ℎ_𝑍 = 1
2 ∫ �∇𝑍𝑓�𝑥̅𝑓��

2𝑏
𝑎 𝑑𝑥̅ (2.21)   

 

where 

 

 𝑚�𝑥̅𝑓� = �𝑓𝑏
𝑓𝑓
� � 𝑍(𝑥̅𝑓)

(𝑍�𝑥̅𝑓�+𝑏)
� (2.22)   

  𝑐̅�𝑥̅𝑓� =  � 𝑤�𝑓(𝑥̅𝑓)

�
𝑍0�𝑥�𝑓�+𝑏

𝑍1�𝑥�𝑓�+𝑏
��

𝑍1�𝑥�𝑓�

𝑍0�𝑥�𝑓�����
��𝑤�𝑓�𝑥̅𝑓�+𝑥̅𝑓�−𝑥̅𝑓

�. (2.23) 

 

We can now take the first variation of equations (2.20) and (2.21) with respect to Z 
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 𝛾𝑤𝑧(𝑝𝑤𝑙 − 𝑤𝑟)(𝑚′𝑤𝑓 + 𝑚𝑤𝑓′ − 𝑐̅′𝑤𝑏 �𝑥�𝑓 + ℎ��𝑥�𝑓�� 

 −𝑐̅𝑤𝑏
′ ℎ�′) − ∇ ∙ �

𝛼𝑥 0
0 𝛼𝑦

� ∇𝑍1 (2.24)  

 

where 

 

 ℎ�(𝑥̅𝑓) =
𝑥̅𝑓�

𝑓𝑏
𝑓𝑓
−1�

𝑍+𝑏
−

𝑥̅𝑓�
𝑓𝑏
𝑓𝑓
𝑍−𝑍−𝑏�

(𝑍+𝑏)2  (2.25)   

 𝑚′ = 𝜕𝑚
𝜕𝑍

= �𝑓𝑏
𝑓𝑓
� � 𝑏

(𝑍1+𝑏)2
� (2.26)   

 𝑤𝑓′ = 𝜕𝑤𝑓

𝜕𝑍
= −𝑤𝑓

𝑍1
 (2.27)   

 𝑤𝑏
′ = 𝜕𝑤𝑏

𝜕𝑍
= − 𝑤𝑏

𝑍1+𝑏
 (2.28)   

 𝑐̅′ = 𝜕𝑐
𝜕𝑍

= � 𝑤�𝑓�𝑍02+𝑏𝑍0��𝑤�𝑓+𝑥̅𝑓�(2𝑍1+𝑏)

��𝑍0
2+𝑏𝑍0

𝑍1
2+𝑏𝑍1

��𝑤�𝑓+𝑥̅𝑓�−𝑥̅𝑓��𝑍12+𝑏𝑍1�
2� (2.29)    

 ∇ ∙ �
𝛼𝑥 0
0 𝛼𝑦

� ∇𝑍1 = 𝛼𝑥
𝜕2𝑍
𝜕𝑥2

+ 𝛼𝑦
𝜕2𝑍
𝜕𝑦2

 (2.30)   

  𝑤𝑧 = 𝑚�𝑥̅𝑓�𝑤𝑓�𝑥̅𝑓� − 𝑐̅�𝑥̅𝑓�𝑤𝑏 �𝑥̅𝑓𝑚�𝑥̅𝑓��   (2.31)  

 

The solutions lie on radial epipolar lines (Figure 2.3).  The Euler-Lagrange equations 

(one in the x direction and the other in the y direction) are solved using the gradient 

descent method.   
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 (a) (b) 

Figure 2.3.  Radial epipolar line for coaxial camera rig.  (a) Back camera.  (b) Front 
camera. 

 
 

2.5.2 Implementation Details 

2.5.2.1 Discrete Laplacian 

The discrete Laplacian is computed using a finite difference scheme. 

 

2.5.2.2 Initialization 

We initialize the value of Z by observing that the optical flow vectors that start and 

end on the optical axis (e.g., 𝑋� + ∆𝑋� = 0 or 𝑋� = 0) result in 𝑐�𝑥̅𝑓� = 0, allowing the 

computation of Z directly on the optical axis 

 

 Z(x�f = (0,0)T) = b
wf(0)fb
wb(0)ff

−1
 . (2.32)   

 

With 𝑍�𝑥̅𝑓 = (0,0)𝑇�, we can compute the velocity 𝑋̇ and then use the projection 

equation and optical flow to estimate Z for all pixels in the images. For rigid scenes 
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with no Z translation, this method results in the initial estimate being a close 

approximation to the depth map if the optical flow fields are a good approximation of the 

projection of the motion field.  Where there is a change in Z between consecutive images 

in the image sequence and/or where the scene is not rigid, this method produces a 

reasonable starting point for the gradient descent iterations. 

 

2.5.2.3 Resampling to a Discrete Grid 

The gradient descent results in a new estimate of Z at 𝑡 = 𝑛 + 1 after each step.  This 

estimate, however, is offset spatially by the optical flow.  Because optical flow 

algorithms produce subpixel flow values, the new Z values are rarely on integer pixel 

locations. This noninteger location requires resampling the newly estimated depth map 

onto an integer pixel grid to obtain the Z value that corresponds to each pixel.  This linear 

interpolation resampling process introduces a slight smoothing to the depth estimation. 

 

2.5.2.4 Stopping Criteria 

We used one of two stopping criteria depending on the quality of the flow fields and 

the value chosen for 𝛼�. When the flow fields closely represent the motion fields and 𝛼� is 

small (minimal Z smoothing), we compute  

 

  𝑒𝑟𝑟𝑜𝑟𝑓𝑙𝑜𝑤 𝑚𝑎𝑡𝑐ℎ =  �𝑚�𝑥̅𝑓�𝑤�𝑓�𝑥̅𝑓� − 𝑐̅�𝑥̅𝑓�𝑤�𝑏 �𝑥̅𝑓 + ℎ��𝑥̅𝑓���
2

 (2.33)  

   

after each step in the gradient descent.  Equation (2.33) is a measure of the mismatch in 

registration of the two flow fields.  We stop iterating when (2.33) falls below a 
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predefined level; for the experiments with camera images, we used 0.01 pixels.  Figure 

2.4 shows the flow field alignment after each iteration of a typical gradient descent.  For 

our experiments the gradient descent always stopped before 25 iterations. 

Where the flow fields are noisy and not as good a representation of the motion field, 

larger 𝛼� values are typically required to get good results. With more substantial 

smoothing, the smoothing term (2.21) appears to pull the Z estimate away from the 

correct value if γ is large and/or if many iterations are performed.  This effect is 

 particularly evident around discontinuities in the scene.  In this case we stopped the 

iterations when the smoothing term (2.21) was approximately equal to, but of opposite 

sign, the matching term (2.20). This latter approach produced larger residual values of 

𝑤𝑧, but the experiments show that it results in more accurate depth estimations near 

discontinuities in the scene. 

 

2.5.2.5 Algorithm 

1) Compute 𝑤�𝑓 and  𝑤�𝑏. 

2) Resample 𝑤�𝑓 and  𝑤�𝑏 along radial lines. 

3) Smooth 𝑤�𝑓 and  𝑤�𝑏. 

4) Initialize 𝑍. 

5) Iterate until stopping condition met. 

a)  For each radial epipolar line: 

i) update 𝑍 estimate for one gradient descent step, 

ii) resample 𝑍 estimate to grid, 

iii) compute 𝑍̇, 
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Figure 2.4.  Typical RMS optical flow alignment error vs. gradient descent iterations. 
 

iv) update 𝑐�𝑥̅𝑓�, 

v) resample Z onto an XY grid. 

 

2.5.3 Experimental Results 

We tested the method on both synthetic optical flow fields as well as on real image 

sequences.  The purpose of using the synthetic optical flow fields was to verify that the 

energy formulation, when solved, resulted in accurate depth estimations.  If the optical 

flow fields are an accurate projection of the motion field and if the two cameras correctly 

perceive the motion field, then in all nonoccluded areas, the reconstructed depth map 

should be within a numerical estimation error of the ground truth.  
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2.5.3.1 Synthetic Optical Flow Fields 

For the synthetic optical flow fields, we defined the geometry of a 3D scene and 

projected the 3D motion of that scene onto a virtual image plane via an ideal pinhole 

camera model (Figures 2.5 and 2.6), which results in a simulated optical flow field that is 

the projection of the 3D motion field.  Additionally, the differences in the flow fields 

perceived by the two cameras are related by the projection equations used to derive the 

energy that we are minimizing.  There is a discretization effect of converting the 

continuous flow field into discrete pixel locations, which results in small interpolation 

errors when resampling onto a pixel grid after each step of the gradient descent.  Thus, 

the simulated flow field experiments provide an estimate of the upper boundary of 

numerical estimation precision for the methodology. We determine the accuracy of the 

resulting image alignment by estimating the depth map along radial epipolar lines and 

compare that to the original scene geometry by computing the RMS depth and disparity 

error.   

For the synthetic flow images ff = 4.8 mm, fb = 4.0 mm, the cameras have .002 mm 

 square pixels, velocity in the XY plane was varied from 0.5 m/s to 3.5 m/s, and velocity 

along the Z-axis ranged from 2.5 m/s toward the camera to 2.5 m/s away from the 

camera.  The camera frame rate was set to 30fps. We set 𝛾 =  1 ∙ 1011 and  

𝛼� = [5 ∙ 10−5, 5 ∙ 10−5].  

Figures 2.7(a) and 2.8(a) show the results for a smooth scene for a horizontal line. 

With the exception of the slowest XY displacement (0.5 m/s) and highest Z 

displacements, the RMS depth error is < 0.15%. The shape of the curves suggests that 

larger displacements in the Z direction produce less accurate results, likely due to lagging 
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Figure 2.5.  Depth map for synthetic image of smooth scene. 
 
 

  

Figure 2.6.  Depth map for synthetic image of scene with occlusions. 
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(a) 
 

 

(b) 

Figure 2.7.  RMS Z error for coaxial camera rig using synthetic flow fields.  (a) Smooth 
surface. (b) Surface with discontinuities and occlusions. 
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(a) 
 

 

(b) 

Figure 2.8.  RMS disparity error for coaxial camera rig using synthetic flow fields.     
(a) Smooth surface. (b) Surface with discontinuities and occlusions. 
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the solution for 𝑍̇, which we later resolved by simultaneously solving for 𝑍 and 𝑍̇ in the 

graph cuts approach (see Section 2.6).   𝑍̇ produces flow along radial lines whereas 𝑋̇ and 

𝑌̇ produce horizontal and vertical flow.  Where flow due to 𝑋̇ and 𝑌̇ is aligned with radial 

lines, lagging the solution for 𝑍̇ combines the flow due to 𝑍̇ with that due to 𝑋̇ and 𝑌̇.  

This issue can be resolved by rotating the flow field into one component along each 

radial line and the other component perpendicular to the radial line.  This method isolates 

the flow due to 𝑋̇ and 𝑌̇ from the flow due to 𝑍̇; however, the more computationally 

efficient solution is to solve simultaneously for 𝑍 and 𝑍̇.  

Figures 2.7 (b) and 2.8 (b) show the results for a synthetic flow scene with a large 

discontinuity that produced occluded areas.  As expected, the RMS errors increase, but 

the increase is modest, and one would expect it to be smaller than the RMS errors from 

comparable binocular stereo camera rig due to the smaller occlusions.  This result is 

confirmed in the experiments with real images when comparing the coaxial camera rig 

results to those of a multimodal stereo camera rig. 

 

2.5.3.2 Flow Fields From Camera Images 

The coaxial camera rig (Figure 2.9) consists of a pair of Point Gray 0.3MP Color 

Firefly MV 1/3" CMOS computer vision cameras with global shutters.  The camera rig 

was mounted on an 8" x 8" optical breadboard with micrometer adjustable rotational 

stages to allow precise alignment of the optical centers. We used a 50/50 plate beam 

splitter from Edmund Optics part number 46-583.  In Figure 2.9 the light baffle on the 

beam splitter has been removed for clarity. 

The camera rig was mounted on a precision ball lead screw XY table with 800 count 
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 . 

Figure 2.9.  Coaxial camera rig on XY table. 

 

per rotation optical encoders.  The X axis of the table has a linear resolution of 0.025mm, 

and the Y axis of the table (which is the Z axis in images) has a resolution of 0.0125mm.  

The XY table allowed the camera rig to be translated a known distance between frames.  

The cameras were calibrated using Cal Tech's Camera Calibration Toolbox [41] 

based on the work of Zhang et al. [42], [43].  Both cameras were calibrated through the 

beam splitter.  The image received by the front camera was mirrored to have the same 

orientation as the back image (which is mirrored due to the beam splitter).  

The scenes are shown in Figures 2.10, 2.11, and 2.12 (a), (b), (d), and (e), and the 

resulting optical flow in (c) and (f).  The first scene (Figure 2.10) consists of a stone 

fountain located about 90 cm from the optical center of the front camera in the camera rig 

and several background objects located between approximately 120 cm and 250 cm from  
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 (a) (b) (c) 

    

 (d) (e) (f)  

  

  (g) 

Figure 2.10.  Fountain image sequence, coaxial camera rig, variational methods: (a) first 
front camera image, (b) second front camera image, (c) optical flow from front camera, 
(d) first back camera image, (e) second back camera image, (f) optical flow from back 

camera, (g) resulting depth map using variational methods.  
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 (a) (b) (c)  

    

 (d) (e) (f)  

  

  (g)  

Figure 2.11.  Flagstone image sequence, coaxial camera rig, variational methods: (a) first 
front camera image, (b) second front camera image, (c) optical flow from front camera 
image pair, (d) first back camera image, (e) second back camera image, (f) optical flow 

from back camera image pair, (g) resulting depth map.  
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 (a) (b) (c)  

    

 (d) (e) (f)  

  

  (g)  

Figure 2.12.  Flagstone with alligator image sequence, coaxial camera rig, variational 
methods: (a) first front camera image, (b) second front camera image, (c) optical flow 

from front camera image pair, (d) first back camera image, (e) second back camera 
image, (f) optical flow from back camera image pair, (g) resulting depth map.  
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the optical center of the front camera.  The purpose of this scene was to see how the 

methodology performed on a scene with significant occlusions.   

The second scene (Figure 2.11) consists of a geometric shape against a frontal planar 

background.  This scene was specifically constructed to avoid occlusions and to contain 

large frontal planar surfaces.   

The third image scene (Figure 2.12) added a small alligator into the previous scene.  

The alligator was intended to explore how the methodology handles fine features, but it 

also adds some smaller occlusions. 

The camera rig was translated 20 mm between image frames, which equates to a 

velocity of 0.6 m/s for a 30 fps frame rate.  The cameras have 0.006 mm square pixels, 

focal lengths of 7.7 mm and 5.8 mm (front and back, respectively), and the baseline b = 

143.3 mm. We set 𝛾 =  2 ∙ 108 and 𝛼 = [.01, .001]. We used the large-scale optical flow 

algorithm from [24].  The flow in the x and y directions was resampled to radial epipolar 

lines at one degree increments, which provides dense reconstruction near the center of the 

image, but leaves some small gaps near the edges of the images, which we approximated 

by interpolation between epipolar lines when converting the depth along epipolar lines 

back to an XY grid.  Some small shark-tooth-like anomalies due to the horizontal line to 

radial line resampling can be seen in the dense depth map.  These are visible in the upper 

left and lower right corners of the reconstructed depth map. 

We compare the results using our method -- image correspondences from perceived 

motion (ICPM) -- with those from a state-of-the-art two-view scaled shape from motion 

(SfM) algorithm.  SfM finds a set of set of common features between image pairs.  We 

detect corners using a minimum eigenvalue algorithm, and then we use the Kanade-
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Lucas-Tomasi (KLT) tracker to track the movement of these features.  From the feature 

matches, we can estimate the fundamental matrix and compute the relative camera poses.  

This method allows us to compute the depth of the matched points using triangulation, 

which gives us a sparse depth map up to scale.  The scale is recovered using a known 

scene dimension.  

Table 2.1 shows the flow field alignment errors in pixels for each scene along with 

the RMS error of the reconstructed camera movement using both ICPM and SfM.  The 

reconstructed camera movement was computed from the estimated 𝑍 and 𝑍̇ and the 

computed optical flow 𝑤𝑥 and 𝑤𝑦 for each nonoccluded pixel using (2.6) and (2.7).  

ICPM produces 2.5% to 73% reduction in the error of the reconstructed camera motion 

vs. SfM as well as fully dense depth maps vs. the sparse depth maps that result from 

using  scaled  SfM.  Additionally,  ICPM  does  not  require  knowledge of a scene 

dimension to obtain scale, but it does require two cameras. 

Figures 2.10(f), 2.11(f), and 2.12(f) show the dense depth maps using ICPM.  In the 

dense depth maps, the closer the object is to the camera, the darker the pixel.   

Several categories of visual anomalies can be seen in the dense depth maps.  The 

 

Table 2.1.  Coaxial variational methods: alignment errors, scene flow errors, and 
computational time. 

 Fountain Flagstone Flagstone + alligator 
ICPM Flow Alignment 
RMS Error 

 <0.01 pixels <0.01 pixels <0.01 pixels 

ICPM Scene flow error 3.9%  3.9% 3.1% 
Scaled SfM Scene flow 
error 

14.4% 4.0% 3.6% 

ICPM Computational 
Time 

 21.1 seconds  19.9 seconds 21.0 seconds 

SfM Computational 
Time 

4.4 seconds 10.1 seconds 5.1 seconds 
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most visible anomaly is the mottled appearance of planar surfaces.  This anomaly comes 

from the estimate of the optical flow, which has the same mottled appearance.  This 

visual anomaly can be eliminated by increasing the weight of the smoothing terms, but at 

the expense of losing finer details.  

The second category of anomalies includes those due to resampling between the 

radial lines and the XY grid.  The most visible are the small shark-tooth-like features in 

the upper left and lower right corners of Figure 2.10(f) and Figure 2.12(f).  These features 

are caused by resampling at one-degree increments, creating a 5-pixel gap between the 

radial lines at the edge of the image.   

The third category of anomalies is related to occlusions.  The occluded areas for the 

coaxial camera rig are very small, but they are still visible in Figure 2.10(f) around the 

edges of the fountain and along the left edge of the frontal planar surface behind the 

fountain to the right.  Sometimes the algorithm estimates a good value for the occlusions, 

but in other areas the depth estimate in the occluded area either shows up too low (e.g., 

darker than the surrounding area) or too high (lighter than the surrounding area).  As we 

will see in the next section, these occluded areas are substantially smaller for the coaxial 

camera rig than for a similar geometry multimodal stereo camera rig, but they still exist. 

 

2.5.4 Discussion 

From the simulated flow experiments we learn two things.  First, the methodology is 

capable of aligning flow fields in such a way that the underlying images are also aligned.  

Second, the aligned flow fields can be used to estimate dense depth maps without using 

intercamera image correspondences.  This method works equally as well in the center 
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region of a coaxial camera where disparity is zero or close to zero, as it does in the outer 

regions of the images.  This result demonstrates that it is possible to resolve the 

unrecoverable point problem first described by Ma and Olsen [15] 25 years ago.   

Errors in the simulated flow field experiments are below those of real-world optical 

flow algorithms, which suggests that the limitation of this methodology, in terms of 

accuracy, will be in the optical flow computation, not in the flow field alignment.   

For the real-world images, we see equally good alignment of the flow fields, but with 

some visual anomalies in the estimated depth maps due to the limited resolution and 

smoothing of the optical flow fields.   

Depending on the scene, our method is slightly more accurate (2.5% reduction in 

scene flow error) to substantially more accurate (73% reduction in scene flow error) 

when compare with scaled SfM.  In addition, scaled SfM is a sparse technique finding 

matches for less than 2% of the pixels in the test images and requiring at least one known 

dimension in the scene in order to scale the depth maps.   

The results of both the simulated optical flow field experiments and experiments 

performed on real images are promising, but several limitations are associated with 

solving the energy functional using variational methods.  First, the number of iterations 

required to come to a good solution is dependent on the quality of the initial estimate.  

The computational time is directly proportional to the number of iterations.  We were 

able to make good initial estimates in the experiments, which kept the number of 

iterations to 25 or fewer, but for poor initial estimates, for which hundreds of iterations 

may be required.   

Second, determining a good stopping condition is problematic.  In image sequences 
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with occlusions, there is contention between the matching term and the smoothness term, 

particularly in the areas of occlusions.  Increasing the number of iterations causes the 

error term (2.31) to approach zero; however, after a certain number of iterations, the 

resulting depth map becomes less accurate in the region around occlusions.  This result 

appears to be due, at least in part, to the interpolation that occurs after each iteration to 

realign the depth map with the pixel grid.  The worst scene flow error was for the 

fountain image, which has large occlusions.  The source of the scene flow error is 

primarily due to how the optical flow algorithm handles the large occlusions, and thus 

one would expect similar errors in decoupled scene flow algorithms when there are large 

occlusions. 

Third, lagging the solution for 𝑍̇ appears to be a source of error in finding the 

disparity and depth, likely due to the effect that motion in the Z direction produces flow 

in the 𝑥 and 𝑦 directions.  Mathematically, the effect of 𝑍̇ can be isolated by resampling 

the x and y components of the optical flow in one component of the optical flow along 

each radial line and the second component of the optical flow perpendicular to each radial 

line.  The component of the optical flow perpendicular to radial lines is due only to scene 

flow in the X and Y directions.  However, this addition further increases the 

computational complexity.  The better approach is to solve simultaneously for 𝑍 and 𝑍̇, 

which as we will see, is done more effectively using an optimization technique based on 

graph cuts. 

Lastly, the initialization procedure can be problematic when 𝑍̇ is large relative to 𝑋̇ 

and 𝑌̇.  As in the case of the problems caused by lagging the solution for 𝑍̇, initialization 

could be improved by rotating the flow field components into radial flow and flow 
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perpendicular to the radial line, but as described above, this increases the computation 

complexity and is better solved using an optimization technique that does not require 

initialization. 

Even with the above-mentioned problems, the reconstructed 3D depth maps are 

visually realistic and the accuracy is better than the current state of the art, which 

suggests that the coaxial camera can be a valuable tool in computer vision applications 

where a binocular stereo rig does not work well.  As we will see in the next section, using 

graph cuts to solve the energy-minimization problem has little effect on the quality and 

accuracy of the resulting depth map; however, graph-cuts-based optimization does not 

require initialization (other than selecting a finite list of labels), solves for 𝑍 and 𝑍̇ 

simultaneously, and is less sensitive to the value of the tuning constants. 

 

2.6 Graph Cuts 

Graph cuts have been effectively used to solve a number of energy-minimization 

problems related to early vision that can be written in the form   

 

 𝐸(ℒ) =  ∑ 𝐷(ℒ)𝑑𝑎𝑡𝑎𝓅∈𝒫 + ∑ 𝑉(ℒ)𝑠𝑚𝑜𝑜𝑡ℎ𝓅∈𝒫  (2.34)  

 

where ℒ is a finite set of labels, 𝐷(ℒ)𝑑𝑎𝑡𝑎 is a data matching energy term, 𝑉(ℒ)𝑠𝑚𝑜𝑜𝑡ℎ is 

a smoothness term, and 𝐸(ℒ) is the total global energy to be minimized.  In this section 

we will give a brief background on using graphs to solve min-cut/max-flow problems in 

early vision.  Next we describe the Boykov-Kolmogorov algorithm that we use to solve 

the energy minimization.  Lastly, we discuss several important implementation details 
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including the computation of data costs, the construction of the labels matrix, and the 

neighborhood structure. 

 

2.6.1 Background on Graphs 

In network flow problems, graph theory is the study of graphs, which consist of a set 

of nodes or vertices, 𝒱, connected by arcs or edges, ℰ.  The graph is an ordered pair of 

vertices, and edges, 𝒢 =  (𝒱, ℰ).  Each edge is an ordered pair of two vertices (𝑝, 𝑞).  

Ordered pairs of vertices are assigned edge costs or edge weights.  If the cost between 

vertices (𝑝, 𝑞) is the same as the cost between (𝑞, 𝑝), then the graph is called undirected.  

If the cost depends on the order of the vertices, then the graph is called directed.  

Graphs typically contain two special vertices (terminals) called the sink, 𝑡, and the 

source, 𝑠.  In computer vision problems the vertices are typically pixels and the edges 

represent the pixel neighborhood. 

 

2.6.2 Min-cut and Max-flow Problems 

In graph theory, a cut partitions the vertices into two subsets, 𝒮 and 𝒯, where 𝒮 

contains the source terminal 𝑠 and 𝒯 contains the sink terminal 𝑡. This partition is called 

an s/t cut, 𝐶 = {𝒮,𝒯}.  The cost of a cut, 𝐶, is the sum of the costs of all the edges that 

link a vertex in 𝒮 to a vertex in 𝒯.  A minimum cut is the partition of vertices into two 

disjoint sets that produce the minimum cost. 

 A min-cut problem can also be formulated as a max-flow problem where each edge 

has a maximum flow capacity that can pass through the edge.  With the exception of the 

source and sink terminals, each vertex must have the same flow into and out of the 



44 
 

vertex.  This restriction is called the conservation of flow constraint.  The source terminal 

only has flow out and the sink terminal only has flow in.  The Max-flow, Min-cut 

theorem of Ford and Fulkerson [44] states that the maximum flow from 𝑠 to 𝑡 saturates a 

set of edges.  This set of saturated edges partitions the vertices in two disjoint sets, 𝒮 and 

𝒯, which is the same partition that produces the minimum cut.   

Min-cuts (or max-flows) can be applied to solve a number of early vision energy- 

minimization problems.  A minimum cut partitions a group of pixels (vertices) into two 

disjoint sets: one containing the source and one containing the sink along some minimum 

global energy.  For stereo correspondence finding, the graph can be thought of as a 3D 

cube with the x and y dimensions being the pixels in the image and the z dimension being 

disparity; thus each vertex represents a pixel at a specific disparity.  An s/t cut is then a 

surface that partitions the pixels/disparity combination along a disparity surface, which 

produces the minimum global energy.   

 

2.6.3 Boykov-Kolmogorov Algorithm 

Numerical solutions to min-cut/max-flow problems fall into one of two main groups: 

augmenting path methods and preflow-push (or push-relabel) methods.  Augmenting path 

algorithms, based on the original Ford-Fulkerson approach, perform a global 

augmentation by pushing flow into paths between the source and sink that are not yet 

saturated.  In push-relabel algorithms the flow is pushed along individual edges.  This 

step violates the conservation of flow constraint during intermediate stages of the 

algorithm, but generally produces a more computationally efficient result. 

The Boykov-Kolmogorov algorithm [33], [40], [45], [46] is based on the augmenting 
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path algorithm, but with three main differences.  Unlike traditional augmenting path 

algorithms, which build a breadth-first search tree from the source to the sink, the 

Boykov-Kolmogorov algorithm builds two search trees, one from the source to the sink 

and a second from the sink to the source.  The second difference is that the Boykov-

Kolmogorov algorithm reuses the search trees instead of rebuilding them after each path 

of a certain length is saturated.  Rebuilding the search trees is a computationally 

expensive component of the algorithm as it involves scanning the majority of pixels in 

the images.  The third difference is that the Boykov-Kolmogorov algorithm uses one of 

two different moves depending on whether the smoothing term is a metric or semimetric.  

If the smoothing term is a semimetric, then an 𝛼-𝛽 swap move is used, whereas if the 

smoothing term is a metric, then an 𝛼 expansion move is used.  These two move types 

allow simultaneously changing labels for a large set of pixels.  According to Boykov and 

Kolmogorov [33], the 𝛼 expansion algorithm finds a labeling within a known factor of 

the global minimum.  Because our smoothing term is a metric, we use the 𝛼 expansion 

algorithm. 

In the Boykov-Kolmogorov algorithm, the two search trees consist of active and 

passive vertices.  Active vertices are those that can grow, but passive vertices cannot 

grow because they are blocked by the surrounding nodes.  The algorithm iterates through 

three stages, the grow stage, the augmentation stage, and the adoption stage.   

In the grow stage of the algorithm, paths are grown from both the source and the sink.  

Growth occurs into all neighboring active vertices using nonsaturated edges.  This stage 

stops when an active vertex from one tree encounters a neighboring vertex in the other 

tree. The result of the grow stage is a path from the source to the sink. 
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In the augmentation stage, we push through the largest flow possible along the path 

between the source and the sink.  This stage generates a certain number of saturated 

edges.  Saturated edges typically result in some vertices becoming "orphans."  An orphan 

has been disconnected from the trees that start from the source and the sink terminals and 

becomes the root of a new tree.  These new trees, however, do not contribute to the flow 

between the source and sink. 

In the adoption stage the two-tree structure (one with the source as its root and one 

with the sink as its root) is restored. This restoration is done either by finding a valid 

parent for the orphans, or if a valid parent cannot be found, by removing the orphans.   

The algorithm repeatedly iterates through the three stages until the two trees can no 

longer grow, and all the edges that connect the two trees are saturated.  The fact that all 

the edges that connect the two trees are saturated implies that this is a maximum flow.  In 

tests performed by Boykov and Kolmogorov, their algorithm performed two to five times 

faster than other methods. 

 

2.6.4 Implementation Details 

2.6.4.1 Veksler-Delong Implementation 

This work relies on a publicly available version of the Boykov-Kolmogorov 

algorithm implemented by Veksler and Delong [47].  This version has a MATLAB 

wrapper, which may explain the slightly slower than expected computational 

performance.  Using Veksler and Delong's notation, and referring to (2.34), 𝒫 is a set of 

observations (e.g., pixels) and ℒ is a finite set of labels (e.g., disparity values in 

traditional binocular stereo correspondence finding).  𝐷 computes the cost of assigning a 
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particular label ℓ to pixel 𝓅, and 𝑉 is a regularization term that favors spatial smoothness.  

The objective is to assign each observation 𝑝 a label ℓ such that the sum over all pixels 𝒫 

minimizes the global energy 𝐸(ℒ). 

ℒ is the finite set of (𝑍, 𝑍̇) pairs defined as 

 

   ℒ = ��𝑍𝑚𝑖𝑛,−𝑍̇𝑚𝑖𝑛�, �𝑍𝑚𝑖𝑛 + 1,−𝑍̇𝑚𝑖𝑛�, �𝑍𝑚𝑖𝑛 + 2,−𝑍̇𝑚𝑖𝑛�, … , �𝑍̇𝑚𝑖𝑛,−𝑍̇𝑚𝑖𝑛 + 1�, �𝑍𝑚𝑖𝑛 +

1,−𝑍̇𝑚𝑖𝑛 + 1), �𝑍𝑚𝑖𝑛 + 2,−𝑍̇𝑚𝑖𝑛 + 1�, … , �𝑍𝑚𝑎𝑥 ,−𝑍̇𝑚𝑎𝑥 + 1��  (2.35) 

 

The matching term in this work (2.16) penalizes the difference between the optical 

flow in the reference image at pixel 𝓅 and the optical flow in the sensed image at 

𝓅 + ℎ�(ℒ) when the optical flow is adjusted for the difference in magnification, which 

depends on the ratio of the focal lengths in the two systems and the ratio of the different 

Z distances of the two cameras. This is a two-component penalty as both components 

�𝑤𝑥,𝑤𝑦� of the optical flow contribute to the cost.  

𝐸(ℒ)𝑠𝑚𝑜𝑜𝑡ℎ is the sum over all pairs of neighboring pixels (𝓅,𝓆) in the reference 

image, where (𝓅,𝓆) are 4-connected.  This cost defines the pixel neighborhood structure 

and assigns a linear penalty (L1) to neighboring pixels that have different labels.   

The global energy has two notable differences when compared to a traditional 

binocular stereo energy: 1) in matching optical flow, each pixel location in the reference 

frame has two values, one for the optical flow in the x direction and a second for the 

optical flow in the y direction, and 2) 𝑍 and 𝑍̇ are solved for directly and simultaneously. 

This methodology can be visualized by computing the energy for a single point in the 

reference image (point 427 in Figure 2.13(a)) for a set of labels and observing the 
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 (a) (b) (c)  

Figure 2.13.  Example energy response for a single pixel location. 

 

response of the components of the energy.  Figure 2.13(a) shows the pixel under 

evaluation in the sampled image (the green '*' on the blue curve labeled 'Flow 1'), the 

flow in the reference image (the green line labeled 'Flow 2'), and a series of straight lines 

that cross the flow from the reference image.  Each of the straight lines represents a 

different value of 𝑍̇, and each point along a given straight line is a different value of Z. 

Notice that there is one minimum for each value of 𝑍̇.  Figure 2.13(b) shows the same 

evaluation for the flow in the y direction and Figure 2.13(c) shows the combined energy  

for  each label  with a  single minimum  value.  In this way  we are able to  solve for  two 

unknowns (𝑍 and 𝑍̇) with two equations (one for flow in the x and one for flow in the y). 

 

2.6.4.2 Algorithm 

1) Compute 𝑤�𝑓 and  𝑤�𝑏. 

2) Resample the optical flow fields along radial epipolar lines. 

3) Construct the cost matrix. 

4) Construct the neighborhood matrix. 

5) Define the smoothness costs. 
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6) Find the minimum cut. 

7) Resample the optical labeling matrix back onto an XY grid. 

 

2.6.5 Experimental Results 

We tested the method on images from the same three scenes that we used with the 

variational methods solution.  The scenes are again shown in Figures 2.14, 2.15, and  

2.16 (a), (b), (d), and (e) and the resulting optical flow  in (c) and (f).  The reconstructed 

depth maps are in (g).  Table 2.2 shows the alignment errors, scene flow errors, and 

computational time.  Visually, the depth maps are equally realistic, but with some 

blockishness, a characteristic that is common when using graph cuts with L1 

regularization.  As with the depth maps from the variational methods approach, there are 

also some anomalies due to the conversion between radial lines and an XY grid.  

Alignment errors are similar to those found using variational methods. 

 

2.6.6 Discussion 

The visual results of using graph cuts to solve the energy-minimization problem are 

similar to the variational methods approach; however, the L1 norm that was used with 

graph cuts combined with the discrete labels results in a somewhat blockish visual 

appearance of the depth maps.  Graph cuts has both advantages and disadvantages that 

make it more or less appropriate depending on the application and the nature of the scene.  

First, the graph cuts algorithm is slower, which is somewhat unexpected.  This result is 

likely due to the variational methods approach using an initial estimate, which 

significantly reduces the number of iterations required to come to a "good-enough" 
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 (a) (b) (c) 

    

 (d) (e) (f)  

  

  (g) 

Figure 2.14.  Fountain image sequence, coaxial camera rig, graph cuts: (a) first front 
camera image, (b) second front camera image, (c) optical flow from front camera image 
pair, (d) first back camera image, (e) second back camera image, (f) optical flow from 

back camera image pair, (g) resulting depth map.  
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 (a) (b) (c)  

    

 (d) (e) (f)  

  

  (g)  

Figure 2.15.  Flagstone image sequence, coaxial camera rig, graph cuts: (a) first front 
camera image, (b) second front camera image, (c) optical flow from front camera image 
pair, (d) first back camera image, (e) second back camera image, (f) optical flow from 

back camera image pair, (g) resulting depth map.  
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 (a) (b) (c)  

    

 (d) (e) (f)  

  

  (g)  

Figure 2.16.  Flagstone with alligator image sequence, coaxial camera rig, graph cuts: (a) 
first front camera image, (b) second front camera image, (c) optical flow from front 

camera image pair, (d) first back camera image, (e) second back camera image, (f) optical 
flow from back camera image pair, (g) resulting depth map. 
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Table 2.2.  Coaxial graph cuts: alignment errors, scene flow errors, and computational 
time. 

 Fountain Flagstone Flagstone + alligator 
ICPM Flow Alignment 
RMS Error 

 0.13 pixels 0.03  pixels 0.08  pixels 

ICPM Scene flow error 3.0%  1.6% 3.6% 
SfM Scene flow error 14.4% 4.0% 3.6% 
ICPM Computational 
Time 

74.6  seconds 59.2 seconds 64.5 seconds 

SfM Computational 
Time 

4.4 seconds 10.1 seconds 5.1 seconds 

 
 

alignment.  If the variational methods approach did not start with a reasonable estimate of 

Z (e.g., if the scene has numerous independently moving objects), the number of 

iterations required to reach a good solution could go up dramatically. 

While initialization is an advantage in terms of computational speed for the 

variational methods solution, not having to do initialization is an advantage for the graph 

cuts solution.  Graph cuts still requires a finite list of labels based on the environment, but 

this list has to cover only the desired working range of the camera rig and at the desired 

resolution of 𝑍 and 𝑍̇.  Reducing the resolution of Z and 𝑍̇ can substantially decrease the 

computational speed. 

Another advantage of the graph cuts solution is that graph cuts has a built-in stopping 

condition, which stops when the optimal solution is found for the given set of finite 

labels.  This characteristic of graph cuts prevents the issues we see with the variational 

methods approach where determining the ideal stopping condition is dependent on the 

scene and the quality of the optical flow fields. 

Another advantage of the graph cuts solution is that we can solve for 𝑍 and 𝑍̇ 

simultaneously.  This advantage reduces errors that may result from lagging the solution 
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for 𝑍̇. 

Graph cuts is a discrete methodology.  This characteristic results in larger flow field 

alignment errors than the variational methods approach.  Where the objective is to align 

the underlying images, variational methods have an advantage.  Also related to the 

discrete approach of graph cuts is that the resolution of the depth map as well as the 

reconstruction of the scene flow will be discrete.  This characteristic suggests that the 

optimal graph cuts label resolution should be selected to match the resolution of the 

optical flow algorithm being used.  



 
 

 

 
 

 
 
 

CHAPTER 3 

 

MULTIMODAL CAMERA RIG 

 

3.1 Introduction 

In computer vision, finding correspondences between rectified stereo image pairs is 

one of the most active research areas.  Corresponding points in image pairs are typically 

found using pixel intensities, image features, or sometimes a combination of the two 

methods.  Dense correspondences produce dense disparity maps, which can be used to 

estimate dense depth maps using the camera rig geometry.  Additionally, corresponding 

points can be used to warp one image, the sensed image, into the second image, the 

reference image.   

There is, however, a particular type of camera rig, the multimodal camera, where 

image-feature or pixel-intensity-based correspondence-finding algorithms do not work 

well or do not work at all.  This result is due to image features or pixel intensities not 

having the same visual appearance when imaged at different wavelengths of light.  In this 

chapter we provide background on the current state of the art in correspondence finding 

for multimodal camera rigs and then present a method of finding correspondences in 

pairs of multimodal image sequences using the perceived motion in the images instead of 

intercamera image features and/or pixel intensities.   

We derive the relationship between the flow fields for a particular type of multimodal 
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camera rig, one where the two optical systems have two different magnifications.  Like 

the binocular stereo rig, the cameras in this system have parallel optical axes, but unlike a 

traditional binocular stereo rig, the two optical system have two different magnifications.  

This difference in magnification produces optical flow fields whose ratio is a function of 

the distance to the scene.  The scaling of the optical flow aids in the correspondence 

finding, allowing the degenerate case of frontal planar regions to be aligned.  The 

equations for a system with different magnification optical systems can be applied to a 

standard binocular stereo rig by using the same focal lengths and same Z distances in the 

left and right cameras.  As long as the scene does not contain frontal planar regions (a 

degenerate case), the method works equally well with rectified images from a standard 

binocular stereo rig. 

Using the relationship between the flow fields for a multimodal camera rig, we 

construct an energy minimization functional that when solved results in aligned flow 

fields.  We present two numerical solutions to the energy minimization problem: a 

variational methods approach and one using graph cuts.  We test the method on synthetic 

optical flow images and on three real-world scenes and present the resulting depth maps 

and accuracy metrics.  We compare the accuracy of our results to that of the state-of-the- 

art multimodal methodology. 

 

3.2 Related Work — Multimodal Camera Rigs 

Aligning images from stereo rigs consisting of cameras with multimodal sensors has 

been an active research area for the last decade and a half.  Initially inspired by the work 

done to match medical images to models [48], it has more recently been motivated by the 
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need for surveillance systems that use a combination of visible light and infrared (IR) 

cameras to detect targets.  As noted by Yaman and Kalkan [49], traditional image 

alignment techniques used in stereo vision are not applicable to multimodal camera rigs 

because the pixel intensities can be substantially different in a visible light image vs. an 

IR image. This characteristic can be seen in Figure 3.1, which is an image pair taken with 

the IR/RGB multimodal camera rig used in our research.   

Solutions to the multimodal problem currently fall into several broad categories.  The 

first uses mutual information (MI).  MI was originally proposed by Viola and Wells [48] 

to match medical images to models.  Egnal [50] is reported to be the first to have used MI 

as a similarity measure to match multimodal stereo images.  Since then, numerous 

improvements have been made including adaptive windowing [51], incorporating prior 

probabilities [52], regions of interest [53]-[55], and extending MI using gradient 

information [56].  According to Krotosky and Trivedi [38] "Due to high differences in 

 

  

 (a) (b) 

Figure 3.1.  Multimodal camera rig image pair: (a) IR and (b) RGB. 
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imaging characteristics, it is very difficult [to] find correspondences for the entire scene."  

No existing MI method has been reported to produce dense depth maps when used with 

RGB-IR image pairs. 

More recently, local self-similarity (LSS), originally used in template matching, was 

proposed for use in a multimodal camera rig [57].  LSS is also a sparse technique. 

The state of the art in multimodal stereo correspondence-finding technique uses a 

combination of scale-invariant feature transform (SIFT) and edge oriented histograms 

(EOH).  In Auguilera et al. [58], points of interest are first found using a SIFT-based 

scale space representation.  EOH descriptors are then used to further characterize the 

points of interest.  Lastly, points of interest between the images in the multimodal image 

pairs are matched using the descriptor information. 

The method we present avoids using visual similarity measures between the images 

from the two sensor types by computing the optical flow fields from the two sensors and 

then aligning the flow fields.  This approach permits images with no common features to 

be aligned as long as there is motion between the camera and the scene, and the scene has 

enough texture at the different light wavelengths being imaged to produce optical flow. 

Verri and Poggio [59] have shown that in many cases optical flow is not equivalent to 

the motion field.  Optical flow algorithms have improved substantially since the Verri 

and Poggio paper (see [24], [31] for summaries of the progression of optical flow 

algorithm development), but optical flow errors caused by the aperture problem, non-

Lambertian surfaces, and nonuniform or changing illumination still exist. 

For finding image correspondences, however, the optical flow fields do not need to be 

equivalent to the motion fields.  For example, errors caused by the aperture problem, 
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where only the motion tangential to edges is detected or errors caused by moving 

shadows, will be perceived by the two sensors identically and alignment is unaffected.  

The primary requirement is that the optical flow computation be invariant to different 

light wavelengths.  To be invariant to different light wavelengths requires that the scene 

have visual texture perceptible under each wavelength of light being imaged.  Given that 

there is sufficient visual texture at each wavelength being imaged and subject to the 

known deficiencies of optical flow computation mentioned above, the equations that 

govern the projection of the 3D scene onto the 2D image plane produce the same optical 

flow fields independent of the wavelength of light being imaged. 

 

3.3 Energy Formulation 

Referring to Figure 3.2, let  𝑥̅𝑙 = (𝑥𝑙,𝑦𝑙)𝑇 and 𝑥̅𝑟 = (𝑥𝑟 ,𝑦𝑟)𝑇 represent points in the 

image domain of the left and right cameras.  Let  ℎ�(𝑥̅) be the disparity between 𝑥̅𝑙 and 𝑥̅𝑟 

such that 𝑥̅𝑙 and 𝑥̅𝑟 + ℎ�(𝑥̅𝑟���) represent the same point 𝑋�(𝑥̅𝑙) = (𝑋,𝑌)  in the scene.  Let 𝑓𝑙 

and 𝑓𝑟  be the focal lengths of the left and right cameras, respectively, and 𝑍𝑙0(𝑥̅𝑙) and 

𝑍𝑙1(𝑥̅𝑙) be the distance between the optical center of the left camera and a point in the 

scene corresponding to 𝑥̅𝑙 at time 𝑡 = 0 and 𝑡 = 1, the distance being measured along the 

optical axis. The difference along the Z axis for each point between 𝑡 = 0 and 𝑡 = 1 is 

∆𝑍(𝑥̅𝑙).  Let 𝑋� be the distance from the optical axis to a point in the scene and ∆𝑋� be the 

change in the distance from the optical axis between time 𝑡 = 0 and 𝑡 = 1.  Let 𝑏 be the 

stereo baseline.  Let 𝑤�𝑙 and 𝑤�𝑟 be the projection of the 3D motion (the ideal optical flow) 

of a point in the scene onto the image planes of the left and right cameras, respectively. 

We first derive equations for ℎ�(𝑥̅𝑙) = �
ℎ𝑥(𝑥𝑙)
ℎ𝑦(𝑦𝑙)

�, which is the disparity in 𝑥 and 𝑦 with  
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Figure 3.2 Multimodal stereo camera rig geometry X-Z view. 

 

the left image being the reference image.  For the 𝑥 direction, we start with the projection 

equations for a pinhole camera 

 

 𝑥𝑙 = −𝑓𝑙𝑋𝑙
𝑍𝑙

 (3.1)  

 𝑥𝑟 = −𝑓𝑟𝑋𝑟
𝑍𝑟

 (3.2)  

 

where 
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 𝑏 = 𝑋𝑟 − 𝑋𝑙 (3.3)  

 

is the stereo baseline.  Solving for the disparity in the 𝑥 direction gives 

 

 𝑥𝑙 − 𝑥𝑟 = ℎ𝑥 = 𝑓𝑟𝑋𝑟
𝑍𝑟

− 𝑓𝑙𝑋𝑙
𝑍𝑙

. (3.4)  

 

Reducing gives 

 

  ℎ𝑥 =
�−𝑓𝑟𝑓𝑙

𝑥𝑙𝑍𝑙�+𝑓𝑟𝑏+𝑥𝑙𝑍𝑙−𝑥𝑙𝑑

𝑍𝑙+𝑑
 (3.5)  

 
 

where 𝑑 = 𝑍𝑙 − 𝑍𝑟 is the difference in Z distance between the optical centers of the left 

camera and the right camera. 

If the focal lengths in the left and right cameras are equal (i.e., 𝑑 = 0 and 𝑓𝑙 = 𝑓𝑟), 

(3.5) reduces to the well-known binocular stereo disparity equation 

 

  ℎ = 𝑓𝑏
𝑍

. (3.6)  

 

Referring to Figure 3.3, we use the same method to derive the disparity in the y 

direction to arrive at  

 

 ℎ𝑦 =
𝑦𝑙�𝑍𝑙+𝑑−

𝑓𝑟
𝑓𝑙
𝑍𝑙�

𝑍𝑙+𝑑
. (3.7)  
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Figure 3.3.  Multimodal stereo camera rig geometry Y-Z view. 

 

This equation reduces to the equation for a traditional stereo epipolar line in a rectified 

image pair for 𝑑 = 0 and 𝑓𝑙 = 𝑓𝑟 

 

 ℎ𝑦�𝑥𝑓� = 0. (3.8)  

 

We now find the relationship between the optical flow, which depends on both 𝑍 and 

∆𝑍.  Because the derivation is done using continuous derivatives, we use 𝑍̇ instead of ∆𝑍, 

but when we move back to a discrete formulation we will replace 𝑍̇ with ∆𝑍.  Once 

again, we start with the projection equations and take the derivative with respect to time 

 

  𝑑𝑥
𝑑𝑡

= 𝑤𝑥 = −𝑓 𝑑
𝑑𝑡
�𝑋
𝑍
� (3.9)  

 𝑑𝑦
𝑑𝑡

= 𝑤𝑦 = −𝑓 𝑑
𝑑𝑡
�𝑌
𝑍
� (3.10)  

  𝑤𝑥 = 𝑥𝑍̇−𝑓𝑋̇
𝑍

 (3.11)  
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  𝑤𝑦 = 𝑦𝑍̇−𝑓𝑌̇
𝑍

 (3.12)  

 

which can be written in homogeneous coordinates as 

 

  𝑃� = �
1
0
0

 
0
1
0

 
𝑥 𝑓⁄
𝑦 𝑓⁄

0
 

0
0

−𝑍 𝑓⁄
� (3.13)  

  𝑤� = �
1
0
0

 
0
1
0

 
−𝑥 𝑓⁄
−𝑦 𝑓⁄

0
 

0
0

−𝑍 𝑓⁄
� �
𝑋̇
𝑌̇
𝑍̇
1

� =

⎣
⎢
⎢
⎢
⎡𝑋̇ −

𝑥𝑍̇
𝑓

𝑌̇ − 𝑦𝑍̇
𝑓

− 𝑍
𝑓 ⎦
⎥
⎥
⎥
⎤

= −�
𝑓𝑋̇−𝑥𝑍̇

𝑍
𝑓𝑌̇−𝑦𝑍̇

𝑍

�. (3.14)  

 

Adding image frame timing to (3.11) and (3.12) gives 

 

 𝑤�𝑙 = 𝑥𝑙0𝑍̇−𝑓𝑙𝑋�̇

𝑍𝑙1
  (3.15)  

 𝑤�𝑟 = 𝑥𝑟0𝑍̇−𝑓𝑟𝑋�̇

𝑍𝑟1
  (3.16)  

 

for the left and right cameras.  Solving for 𝑋�̇ and setting the resulting equations equal to 

each other gives 

 

 𝑝(𝑥̅𝑙)𝑤�𝑙(𝑥̅𝑙) = 𝑔��𝑥�𝑓�𝑤�𝑟 �𝑥̅𝑙 + ℎ�(𝑥̅𝑙)� (3.17)  

 

where 
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 𝑝(𝑥̅𝑙) = �𝑓𝑙𝑓𝑟
� �𝑍𝑟1

𝑍𝑙1
� (3.18)  

 

and 

 

    g�(x�l) = � flZr1w�r
flZr1w� r+flx�r0Z−frx�l0Ż̇ �, (3.19)  

 

which can be written as an energy functional 

 

 𝐸𝑚𝑎𝑡𝑐ℎ = ∑ �𝑝(𝑥̅𝑙)𝑤�𝑙(𝑥̅𝑙) − 𝑔�(𝑥�𝑙)𝑤�𝑟 �𝑥̅𝑙 + ℎ�(𝑥̅𝑙)��
2

𝓅∈𝒫  (3.20)  

  𝐸𝑠𝑚𝑜𝑜𝑡ℎ = ∑ ‖∇𝑍𝑙(𝑥̅𝑙)‖2𝓅∈𝒫  (3.21)  

 𝐸𝑡𝑜𝑡𝑎𝑙 =  𝛾𝐸𝑚𝑎𝑡𝑐ℎ + 𝛼�𝐸𝑠𝑚𝑜𝑜𝑡ℎ (3.22)  

 

where 

 

 𝛼� = �𝛼𝑥,𝛼𝑦�
𝑇
. (3.23)  

 
 

3.4 Numerical Solutions 

Equation (3.22) has the same form as (2.18) and can be solved using variational 

methods or graph cuts in a similar manner to the solutions presented in Sections 2.5 and 

2.6 of this dissertation.  In this section we summarize the differences between the 

solutions for the multimodal stereo vs. the coaxial camera rig.   

 



65 
 

 

3.5 Variational Methods 

The variational methods approach requires that the energy be expressed in a 

continuous form such that the first variation can be found.  Additionally, we separate 

variations in optical flow due to 𝑍 from variations in optical flow due to 𝑍̇ in the 

formulation to streamline the gradient descent computation. 

 

3.5.1 Euler-Lagrange 

We rewrite (3.20) and (3.21) in continuous form and we reexpress the smoothing 

term using an L2 norm 

 

 𝐸𝑚𝑎𝑡𝑐ℎ = 1
2 ∫ �𝑝(𝑥�𝑙)𝑤�𝑙(𝑥�𝑙) − 𝑔̅(𝑥̅𝑙)𝑤�𝑟 �𝑥�𝑙 + ℎ�(𝑥�𝑙)��

2𝑏
𝑎 𝑑𝑥̅ (3.24)   

  𝐸𝑠𝑚𝑜𝑜𝑡ℎ_𝑍 = 1
2 ∫ ‖∇𝑍𝑙(𝑥̅𝑙)‖2

𝑏
𝑎 𝑑𝑥̅ (3.25)   

  

where 

   

 𝑝(𝑥̅𝑙) = �𝑓𝑟𝑓𝑙
� �𝑍𝑙1𝑍𝑟1

� (3.26)   

  𝑔̅(𝑥̅𝑙) = � 𝑓𝑙𝑍𝑟1𝑤�𝑟
𝑓𝑙𝑍𝑟1𝑤�𝑟+𝑓𝑙𝑥�𝑟0𝑍̇−𝑓𝑟𝑥�𝑙0𝑍̇

�. (3.27) 

 

We can now take the first variation of equations (3.24) and (3.25) with respect to Z 

 

 𝛾𝑤𝑧(𝑝′𝑤𝑙 + 𝑝𝑤𝑙
′ − 𝑔̅′𝑤𝑟 �𝑥̅𝑙 + ℎ�(𝑥̅𝑙)� 

 −𝑔̅𝑤𝑟′ �𝑥̅𝑙 + ℎ�(𝑥̅𝑙)� ℎ� ′) − 𝛼�∇2𝑍1 (3.28)  
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where 

 

 ℎ𝑥
′ = 𝜕ℎ𝑥

𝜕𝑍
=

−𝑓𝑟𝑓𝑙
𝑥𝑙+𝑥𝑙

𝑍𝑙+𝑑
−

�−𝑓𝑟𝑓𝑙
𝑥𝑙𝑍𝑙�+𝑓𝑟𝑏+𝑥𝑙𝑍𝑙−𝑥𝑙𝑑

(𝑍𝑙+𝑑)2  (3.29)   

 ℎ𝑦
′ = 𝜕ℎ𝑦

𝜕𝑍
=

𝑦𝑙�1−
𝑓𝑟
𝑓𝑙
�

𝑍𝑙+𝑑
− ℎ𝑦 =

𝑦𝑙�𝑍𝑙+𝑑−
𝑓𝑟
𝑓𝑙
𝑍𝑙�

(𝑍𝑙+𝑑)2  (3.30)   

 𝑝′ = 𝜕𝑝
𝜕𝑍

= �𝑓𝑙
𝑓𝑟
� � 1

𝑍𝑙1
+ 𝑍𝑟1

(𝑍𝑙1)2� (3.31)   

 𝑤𝑙
′ = 𝜕𝑤𝑙

𝜕𝑍
= −𝑤𝑙

𝑍𝑙
 (3.32)   

 𝑤𝑟′ = 𝜕𝑤𝑟
𝜕𝑍

= −𝑤𝑟
𝑍𝑟

 (3.33)   

 𝑔′ = 𝜕𝑔
𝜕𝑍

= 𝑓𝑙𝑤𝑟+𝑓𝑙𝑍𝑟1𝑤𝑟′

𝑓𝑙𝑍𝑟1𝑤𝑟+𝑓𝑙𝑥𝑟0𝑍̇−𝑓𝑟𝑥𝑙0𝑍̇
+ (𝑓𝑙𝑍𝑟1𝑤𝑟)�𝑓𝑙𝑤𝑟+𝑓𝑙𝑍𝑟1𝑤𝑟′�

(𝑓𝑙𝑍𝑟1𝑤𝑟+𝑓𝑙𝑥𝑟0𝑍̇−𝑓𝑟𝑥𝑙0𝑍̇)2 (3.34)   

 𝛼�∇2𝑍𝑙1 = 𝛼𝑥
𝜕2𝑍𝑙1
𝜕𝑥2

+ 𝛼𝑦
𝜕2𝑍𝑙1
𝜕𝑦2

 (3.35)   

  𝑤𝑧 = 𝑝(𝑥̅𝑙)𝑤𝑙(𝑥̅𝑙) − 𝑔̅(𝑥̅𝑙)𝑤𝑙 �𝑥̅𝑙 + ℎ�(𝑥̅𝑙)�. (3.36)  

 

The Euler-Lagrange equations (one for the x direction and the other for the y 

direction) are solved using the gradient descent method.   

 

3.5.2 Implementation Details 

3.5.2.1 Discrete Laplacian 

The discrete Laplacian is computed using a finite difference scheme. 
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3.5.2.2 Initialization 

We initialize the value of Z by taking the optical flow in the center pixel of the left 

(IR) image and estimate the scaled optical flow and disparity for 𝑍 = {1, 2, 3, … } that 

should be perceived by the right camera based on the camera rig geometry.  When the 

estimated disparity and optical flow intersect with the actual disparity and optical flow 

value from the optical flow field computed from images from the right camera, we have 

an estimate of the depth at that point.  Using this estimate of depth at one location, we 

estimate the 𝑋̇ velocity.  We then estimate Z at all points using 𝑋̇.  The Z estimate will 

contain errors in many if not most locations for a number of reasons, but this method 

produces a usable initial estimate. 

 

3.5.2.3 Resampling to a Discrete Grid 

Like the coaxial camera rig, the gradient descent results in a new estimate of Z at 

𝑡 = 𝑛 + 1 after each step.  This estimate, being offset spatially by the optical flow, must 

be resampled onto the pixel grid. 

 

3.5.2.4 Stopping Criteria 

We used the same two stopping criteria as with the coaxial camera formulation, 

depending on the quality of the flow fields and the value chosen for 𝛼�. When the flow 

fields closely represent the motion fields and 𝛼� is small (minimal Z smoothing), we 

compute  

 

  𝑒𝑟𝑟𝑜𝑟𝑓𝑙𝑜𝑤 𝑚𝑎𝑡𝑐ℎ =  �𝑝(𝑥�𝑙)𝑤�𝑙(𝑥�𝑙)− 𝑔̅(𝑥̅𝑙)𝑤�𝑟 �𝑥�𝑙 + ℎ�(𝑥�𝑙)��
2

 (3.37)  
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after each step in the gradient descent.  Equation (3.37) is a measure of the mismatch in 

registration of the two flow fields.  We stop iterating when (3.37) falls below a 

predetermined value.  We used 0.01 pixels as the threshold, the same as with the coaxial 

camera rig. 

Where the flow fields are noisy, it is necessary to increase 𝛼� to get good results. With 

more substantial smoothing, the smoothing term (3.25) appears to pull the Z estimate 

away from the correct value if γ is large and/or if many iterations are performed.  This 

result is particularly evident around discontinuities in the scene, which are worse for the 

multimodal stereo rig, than for the coaxial camera rig.  In this case we stopped the 

iterations when the smoothing term (3.25) was approximately equal to, but of opposite 

sign to, the matching term (3.24). This latter approach produced larger residual values of 

𝑤𝑧, but the experiments show that it results in more accurate depth estimations near 

discontinuities in the scene. 

 

3.5.2.5 Algorithm 

1) Compute 𝑤�𝑙 and  𝑤�𝑟. 

2) Smooth 𝑤�𝑙 and  𝑤�𝑟. 

3) Initialize Z. 

4) Iterate until stopping condition met. 

a)  For each epipolar line: 

i) update Z estimate for one gradient descent step, 

ii) resample Z estimate to grid, 

iii) compute 𝑍̇, 
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iv) update 𝑔(𝑥̅𝑙). 

 

3.5.3 Experimental Results 

As with the coaxial camera rig, we tested the multimodal camera rig method on both 

synthetic optical flow fields and on real image sequences.  The purpose of using the 

synthetic optical flow fields was to verify that the energy formulation, when solved, 

resulted in alignment of the underlying images and in accurate depth estimations.  With 

optical flow fields that are an accurate projection of the motion field, the reconstructed 

depth map in all nonoccluded areas will line up with the ground truth to within the 

numerical estimation error.  

 

3.5.3.1 Synthetic Optical Flow Fields 

For the synthetic optical flow field experiments, we used the same simulated optical 

flow field as for the coaxial camera.  The scene used to generate the synthetic optical 

flow field did not have frontal planar regions in it and thus worked equally well with a 

binocular stereo camera geometry.  To determine the accuracy of the resulting image 

alignment, we reconstructed the depth map along a horizontal epipolar line using the 

results of registration and compared the reconstructed depth map with the original scene 

geometry computing both the RMS disparity error and the resulting RMS depth error.   

Figures 3.4(a) and 3.5(a) show the results for a smooth scene without any occlusions.  

The worst-case RMS depth error is < 0.25% and worst-case RMS disparity errors < 0.01 

pixels.  The accuracy is slightly reduced as 𝑍̇ increases and 𝑋̇ decreases.  As with the 

coaxial camera rig, we believe that the increased error is due to lagging the solution for 𝑍̇. 
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(a) 
 

 

(b) 

Figure 3.4.  RMS Z error for multimodal stereo camera rig using synthetic flow fields.  
(a) Smooth surface. (b) Surface with discontinuities and occlusions. 
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(a) 
 

 

(b) 

 
Figure 3.5.  RMS disparity error error for multimodal stereo camera rig using synthetic 

flow fields.  (a) Smooth surface. (b) Surface with discontinuities and occlusions. 
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Figures 3.4(b) and 3.5(b) show the results for a scene with a large occlusion caused by a 

large (8 m) discontinuity in the simulated scene.  The RMS error increases 

between a smooth scene and an occluded scene is similar to that of the coaxial camera 

rig.   

 

3.5.3.2 Flow Fields From Camera Images 

The multimodal stereo camera rig consists of one camera with an RGB sensor and a 

second camera that is sensitive only to IR light above 700 nm (Figure 3.6).  The RGB 

camera is a Point Gray 0.3MP Color Firefly MV 1/3" CMOS computer vision camera 

with global shutter.  The IR camera is a Point Gray 1.3MP Monochrome Flea3 1/2" 

CMOS computer vision camera with global shutter.  The Flea3 uses an On 

  

 

Figure 3.6.  Multimodal camera rig on XY table. 
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Semiconductor CMOS sensor that is sensitive to light wavelengths from 300 nm to 

approximately 1100 nm.  It does not come with an internal IR filter.  We added an 

Edmund Optics part number 64887 UV/VIS cut-off filter that blocks UV and visible light 

below 700 nm, which effectively converts the Flea3 into a 700 nm to 1100 nm near-IR 

(NIR) camera. 

The camera rig was mounted on the same precision XY table as the coaxial camera 

rig (section 2.5.3.2).  The same scenes were used for the multimodal camera rig as for the 

coaxial camera rig.  The cameras in the multimodal stereo rig had 4.8 micron (IR) and 6 

micron (RGB) square pixels and approximately 3.8 mm (IR) and 8.0 mm (RGB) focal 

lengths.  The cameras were calibrated using Cal Tech's Camera Calibration Toolbox [41] 

based on the work of Zhang et al. [42], [43].  The Flea3 was calibrated with the IR pass 

filter in place. 

The scenes are shown again in Figures 3.7, 3.8, and 3.9 (a), (b), (d), and (e) and the 

resulting optical flow in (c) and (f).  The camera rig was translated 20 mm between image 

frames, which equates to a velocity of 0.6 m/s for a 30 fps frame rate.  We set 𝛾 =  2 ∙

106 and 𝛼 = [.05, .01]. We used the large-scale optical flow algorithm from Brox and 

Malik [24].   

Accuracy of flow field alignment was measured by warping the left camera (IR) flow 

field based on the estimated depth map and taking the RMS error between the warped left 

flow field and the flow field obtained from the right camera.  Figure 3.10 shows how this 

is done along one horizontal line for an RGB/IR image pair of the flagstone scene.  

We compare our method, ICPM, with the state-of-the-art multimodal method, SIFT-

EOH, from Aguilera et al. [58].  Figure 3.11 shows the sparse SIFT-EOH matches for  
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 (a) (b) (c)  

    

 (d) (e) (f)  

  

  (g)  

Figure 3.7.  Fountain image sequence, multimodal stereo rig, variational methods: (a) 
first IR image, (b) second IR image, (c) optical flow from IR image pair, (d) first RGB 

image, (e) second RGB image, (f) optical flow from RGB image pair, (g) resulting depth 
map.  
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 (a) (b) (c)  

    

 (d) (e) (f)  

   

  (g)  

Figure 3.8.  Flagstone image sequence, multimodal stereo rig, variational methods: (a) 
first IR image, (b) second IR image, (c) optical flow from IR image pair, (d) first RGB 

image, (e) second RGB image, (f) optical flow from RGB image pair, (g) resulting depth 
map. 
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 (a) (b) (c)  

    

 (d) (e) (f)  

  

  (g)  

Figure 3.9.  Flagstone with alligator image sequence, multimodal stereo rig, variational 
methods: (a) first IR image, (b) second IR image, (c) optical flow from IR image pair, (d) 

first RGB image, (e) second RGB image, (f) optical flow from RGB image pair, (g) 
resulting depth map. 



77 
 

 

 
Figure 3.10.  IR flow warped to match RGB flow using the estimated  

depth map for an epipolar line. 
 
 

each of the three scenes and Table 3.1 shows the flow field alignment errors in pixels for 

each scene as well as the accuracy of the scene flow using ICPM and SIFT-EOH.  The 

dense ICPM scene flow error includes all nonoccluded pixels, whereas the sparse ICPM 

scene error uses only the correspondences found using the SIFT-EOH method.  To the 

first place after the decimal point, the scene flow error for ICPM is the same whether 

dense estimation or sparse estimation is used.  

Depending on the scene, ICPM shows a reduction in the error in the scene flow by 

77% to 88% compared  to  SIFT-EOH.  Additionally, ICPM produces  dense  depth maps 

and scene flow estimates whereas SIFT-EOH produces matches for less than 0.1% of the 
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(a) 

 

(b) 

 

(c) 

Figure 3.11. SIFT-EOH correspondences. (a) Fountain scene.  (b) Flagstone scene.  (c) 
Flagstone with alligator scene. 
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Table 3.1.  Multimodal variational methods: alignment errors, scene flow errors, and 
computational time. 

 Fountain Flagstone Flagstone + alligator 
ICPM Flow Alignment 
Error 

0.12 pixels 0.09 pixels 0.10 pixels 

ICPM Dense Scene 
flow error 

4.2%  1.9%   1.1% 

ICPM Sparse Scene 
flow error 

4.2% 1.9% 1.1% 

SIFT+EOH Scene Flow 
error 

30.2% 8.6% 8.9% 

ICPM Computational 
Time 

42.1 seconds 45.5 seconds 40.5 seconds 

SIFT+EOH 
Computational Time 

290.4 seconds 323.5 seconds 540.2 seconds 

 

pixels. 

Figures 3.7(f), 3.8(f), and 3.9(f) show the dense depth maps.  In the dense depth 

maps, the closer the object is to the camera, the darker the pixel.  Table 3.1 shows the 

flow field alignment errors, scene flow errors, and computational time. 

 

3.5.4 Discussion 

The depth maps are a reasonably good visual representation of the 3D shape of the 

objects in the scene.  The main difference between the results from the stereo rig and the 

results from the coaxial camera rig is that the occluded areas in the stereo rig are larger.  

For the variational methods approach, this characteristic is not as visually noticeable as 

for the graph cuts approach as we will see in the next section.  This result is due to the 

greater amount of   smoothing in the variational approach.  The error in reconstructing 

occluded areas is not isolated to motion-based correspondence finding, but the same 

reconstruction error occurs for any multicamera rig where one camera cannot see a 
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portion of the image.  For the variational methods algorithm, the result is that the 

smoothing term in the energy functional creates a depth gradient that joins either sides of 

the occluded area. 

As noted previously, depending on the scene our method is substantially (77% to 89% 

reduction in scene error) more accurate than the state-of-the-art SIFT-EOH method.   

Although SIFT-EOH is not directly matching pixel intensities, it does match features 

using visual characteristics.  The greater the difference in visual appearance of detected 

features between the multimodal  image pairs,  the more difficulty  any method based on 

of visual similarity will have.  ICPM will match image pairs that do not have any visual 

similarity as long as both images produce optical that is a reasonable representation of the 

projected scene flow. 

 

3.6 Graph Cuts 

3.6.1 Implementation Details 

The graph cuts implementation for the multimodal stereo rig is nearly identical to that 

of the coaxial camera rig.  The only difference is that the costs for the multimodal camera 

rig are computed using (3.20) and (3.21) instead of (2.20) and (2.21).   

 

3.6.2 Experimental Results 

We tested the method on images from the three scenes used previously.  The scenes 

are shown in Figures 3.12, 3.13, and 3.14(a)–(e) and the optical flow in (c) and (f).  The 

resulting depth maps are shown in Figures 3.12(f), 3.13(f), and 3.14(f).  The alignment 

accuracy, scene flow accuracy, and computational time are reported in Table 3.2. 
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 (a) (b) (c)  

    

 (d) (e) (f)  

   

  (g)  

Figure 3.12.  Fountain image sequence, multimodal stereo rig, graph cuts: (a) first IR 
image, (b) second IR image, (c) optical flow from IR image pair, (d) first RGB image, (e) 

second RGB image, (f) optical flow from RGB image pair, (g) resulting depth map.  
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 (a) (b) (c)  

    

 (d) (e) (f)  

   

  (g)  

Figure 3.13. Flagstone image sequence, multimodal stereo rig, graph cuts: (a) first IR 
image, (b) second IR image, (c) optical flow from IR image pair, (d) first RGB image, (e) 

second RGB image, (f) optical flow from RGB image pair, (g) resulting depth map. 
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 (a) (b) (c)  

    

 (d) (e) (f)  

  

  (g)  

Figure 3.14. Flagstone with alligator image sequence, multimodal stereo rig, graph cuts: 
(a) first IR image, (b) second IR image, (c) optical flow from IR image pair, (d) first RGB 
image, (e) second RGB image, (f) optical flow from RGB image pair, (g) resulting depth 

map. 
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Table 3.2 Multimodal graph cuts methods: alignment errors, scene flow errors, and 
computational time. 

 Fountain Flagstone Flagstone + alligator 
ICPM Flow Alignment 
Error 

0.17 pixels 0.12 pixels 0.13 pixels 

ICPM Scene flow error 1.6%  2.2%   1.7% 
SIFT+EOH scene flow 
error 

30.2% 8.6% 8.9% 

ICPM Computational 
Time 

 48.3 seconds  33.6 seconds 32.4 seconds 

SIFT+EOH 
Computational time 

290.4 seconds 323.5 seconds 540.2 seconds 

 

3.6.3 Discussion 

Visually, the depth maps are similar to those from the variational methods approach, 

but   with   some   blockish   features   that   are   a  common  characteristic of graph cuts, 

particularly when using the L1 norm for regularization.  As with the depth maps from the 

variational methods approach, there are also some visual deformities in the reconstructed 

depth maps due to the occlusions.  However, the graph cuts solution responds to occluded 

areas differently.  This difference is particularly noticeable in the fountain image where 

there is a 76-pixel occlusion between the left edge of the fountain and the background, 

and a 46-pixel occlusion between the right edge of the fountain and the background.  The 

graph cuts solution produces a fairly significant smearing of the fountain in the area of 

the occlusion.  Alignment errors are similar to those found using variational methods. 

In general, the variational methods depth maps are smoother than the depth maps 

from graph cuts.  The smoothness gives them a more visually pleasing look, but at the 

cost of losing some of the finer details.  This visual characteristic is particularly evident 

in the flagstone-alligator image sequence where both the edges of the flagstone structure 

and the alligator’s jaws are blended with the background.  This result suggests that for 
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reconstruction for visualization purposes, variational methods might be the preferred 

methodology, but for reconstruction of fine details, the graph cuts solution might be 

preferable.



 
 

 

 
 
 
 
 

CHAPTER 4 

 

CONCLUSIONS 

 

In computer vision, finding correspondences between image pairs taken from 

different camera perspectives is one of the most active research areas.  Corresponding 

points in image pairs are typically found using pixel intensities, image features, or some 

combination of the two.   

There are, however, two types of camera rigs, the multimodal camera rig and the 

coaxial camera rig, where image-feature- or pixel-intensity-based correspondence-finding 

algorithms do not work well or do not work at all.  For multimodal camera rigs, the 

reason for poor performance of traditional correspondence-finding algorithms is due to 

image features or pixel intensities not having the same visual appearance when imaged at 

different wavelengths of light.  For coaxial camera rigs, failure of traditional 

correspondence-finding algorithms is due to the lack of disparity in the center region of 

image pairs.  Both of these camera rigs have numerous uses if the images from the two 

cameras can be aligned in a way that image registration and 3D reconstruction were 

possible.   

We have addressed the challenge of finding correspondences between pairs of image 

sequences where image features or pixel intensities do not work by finding 

correspondences using the motion in the scene.  We have demonstrated the capability of 
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this technique by doing 3D reconstruction using image sequences taken with both a 

coaxial camera rig as well as a multimodal camera rig.   

Motion-based correspondences provide an alternative to image-feature- or pixel-

intensity-based methods for aligning images, but they produce a redundant set of 

constraints in image sequences that can be aligned using image features or pixel 

intensities for finding correspondences.  Although not explored in this dissertation, this 

additional information could be useful when combined with existing correspondence- 

finding techniques, in particular for improving scene flow estimation as well as for 

improvements to the coaxial camera in the outer regions of the images.  In Section 4.1 we 

hypothesize as to how this might be done. 

Additionally, the research performed for this dissertation confirmed early speculation 

in the computer vision field that a coaxial camera rig might have advantages over a 

comparable stereo rig in terms of reducing the size and frequency of occlusions.  In 

Section 4.2 we take a closer look at the coaxial camera vs. the stereo rig in occluded 

areas. 

We used two numerical methods to solve the energy formulation.  In Section 4.3 we 

compare the two and make some brief observations about the results from each. 

Lastly we provide some suggestions for future work using motion-based 

correspondences. 

 

4.1 Potential for Motion-Based Correspondences in Scene Flow 

Scene flow is the estimation of the 3D scene motion field using a combination of 

disparity estimation and optical flow.  There are two main approaches to scene flow: 
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coupled and decoupled [1]-[6].  In coupled approaches, the depth estimate and temporal 

tracking problems are solved simultaneously.  In the decoupled approach depth from 

disparity is solved independently from the optical flow and then the two are combined. 

Wedel et al. [3] report that decoupled methods of estimating scene flow are more 

effective than coupled methods.  This result is presumably because the most accurate 

optical flow estimation uses variational methods whereas the most accurate disparity 

estimation methods use graphing techniques.  In decoupled methods of estimating scene 

flow, disparity is first computed using intercamera correspondences.  Optical flow is 

computed using intracamera temporal image pairs.  The depth is then combined with the 

optical flow to estimate the 3D motion in the scene.  Optical flow provides the XY 

displacement of points in the scene scaled by the depth estimate, and the Z motion in the 

scene comes from the change in the depth map over time.   

However, decoupled methods do not take advantage of the additional information that 

comes from aligning the optical flow fields.  Combining optical flow field derived 

correspondences with intercamera image-feature- or pixel-intensity-based 

correspondence produces a redundant set of correspondences based on different scene 

information (intensities and/or features vs. motion).  Where the two sets of 

correspondences do not match, they provide insight into the error in the scene flow 

estimation as well as a consistency constraint in the optical flow computation.  One could 

foreseeably use this optical flow consistency constraint to improve the estimation of the 

optical flow, thereby improving the overall accuracy of decoupled scene flow estimation.     
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4.2 Coaxial Camera Rig versus Multimodal Stereo Rig—Occlusions 

The scene flow accuracy is comparable in the nonoccluded areas of the scene, but 

there is a noticeable difference in the size of the occlusions between the coaxial camera 

rig and the multimodal stereo rig.  Ma and Olsen [15] speculated that depth from 

zooming, the predecessor of the coaxial camera rig, would produce fewer occlusions than 

a similar binocular stereo rig, but because they were unable to reconstruct the center 

region of a depth from zooming image pair, they were unable to demonstrate this 

potential advantage.  Doing a side-by-side image comparison between images taken with 

the coaxial camera rig vs. those taken with the stereo rig shows convincingly the 

advantages of the coaxial camera relative to the minimization of occlusions.   

Figures 4.1, 4.2, and 4.3 show the graph-cuts-derived images for the three scenes, 

with a side-by-side comparison of the coaxial camera rig and the multimodal camera rig. 

The overall visual quality of the depth maps is similar between the coaxial camera and 

the stereo camera derived reconstructions, but the anomalies due to occlusions in the 

coaxial camera rig are dramatically smaller.  This difference is most obvious in the 

fountain scene (Figure 4.1) on either side of the fountain.  In the reconstruction from the 

coaxial image sequence (Figure 4.1 (a)) the fountain has the same general size and shape 

as in the source images, whereas in the reconstruction from the stereo rig, the occlusions 

on both sides of the fountain produce significant distortion of fountain width in the 

occluded areas. 

We see similar issues with the stereo image in the upper right back-sloping surface of 

the flagstone image in Figure 4.2 (b), whereas the coaxial camera derived reconstruction 

does not exhibit this distortion.  Lastly, in the flagstone plus alligator image (Figure 4.3 
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 (a) (b) 

Figure 4.1.  Comparison of reconstructed depth maps from images taken with a coaxial 
camera rig vs. images taken with a multimodal stereo camera rig.  Fountain scene.  Graph 

cuts optimization.  (a) Coaxial camera rig and (b) multimodal stereo camera rig. 
 
 
 

  
 (a) (b) 

Figure 4.2.  Comparison of reconstructed depth maps from images taken with a coaxial 
camera rig vs. images taken with a multimodal stereo camera rig.  Flagstone scene.  

Graph cuts optimization.  (a) Coaxial camera rig and (b) multimodal stereo camera rig. 
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 (a) (b) 

Figure 4.3.  Comparison of reconstructed depth maps from images taken with a coaxial 
camera rig vs. images taken with a multimodal stereo camera rig.  Flagstone with 

alligator scene.  Graph cuts optimization.  (a) Coaxial camera rig and (b) multimodal 
stereo camera rig. 

 

 (a) and (b)) the coaxial camera rig produces images that result in a substantially better 

reconstruction of the fine features of the alligator's mouth. 

While not explicitly explored in this dissertation, occlusions and violations of the 

ordering constraint (points in the sensed image being in the same order as the 

corresponding points in the reference image) are connected.  This connection suggests 

that image pairs from a coaxial camera rig would produce fewer violations of the 

ordering constraint than images taken with a traditional binocular stereo camera rig.  

The reduction in occlusions as well as the potential of fewer violations of the ordering 

constraint suggests that a coaxial camera may have advantages over a binocular stereo 

camera rig in applications where occlusions are particularly problematic.  Table 4.1 

summarizes the differences between the coaxial camera rig and the stereo multimodal 

camera rig. 
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Table 4.1 Summary of differences between the coaxial and multimodal camera rigs. 

 Coaxial camera Rig 
 

Multimodal (stereo) 
Camera Rig 

Camera Axes Alignment Collinear Parallel 
Occlusions (Fountain Scene) 3-5 pixels 40-70 pixels 
Minimum Working Distance (50% 
image overlap) 

0 mm 190 mm 

ICPM Flow Alignment Error - VM < 0.01 pixels 0.09 - 0.12 pixels 
ICPM Scene Flow Error - VM 3.1% - 3.9% 1.1% - 4.2% 
ICPM Flow Alignment Error - GC 0.03 - 0.13 pixels 0.12 - 0.17 pixels 
ICPM Scene Flow Error - GC 1.3% - 3.6% 1.6% - 2.2 % 

 
 

 4.3 Variational Methods versus Graph Cuts 

We explored two ways of solving the energy-minimization problem, variational 

methods and graph cuts.  Variational methods form the basis of many if not most optical 

flow computations whereas graph cuts is the most widely used methodology for finding 

stereo correspondences. 

In this dissertation, we solved similar energy-minimization problems for the same 

scenes using both methods.  This two-solution approach produces an interesting 

comparison of the two techniques.  Figures 4.4, 4.5, and 4.6 are a side-by-side 

comparison of the 3D reconstruction from images aligned using variational methods vs. 

3D reconstruction from images aligned using graph cuts.  Graph cuts produces the well-

known "blocky" effect that is clearly visible in the graph cuts depth maps, but the overall 

reconstruction is comparable.  Where visualization of the 3D structure is the objective, 

variational methods clearly have an advantage over graph cuts. 
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 (a) (b) 

Figure 4.4.  Comparison of variational methods and graph cuts, coaxial camera rig,  
fountain scene.  (a) Variational methods and (b) graph cuts. 

 

   
 (a) (b) 

Figure 4.5.  Comparison of variational methods and graph cuts, multimodal stereo camera 
rig,  flagstone scene.  (a) Variational methods and (b) graph cuts. 
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 (a) (b) 

Figure 4.6.  Comparison of variational methods and graph cuts, multimodal stereo camera 
rig,  flagstone plus alligator scene.  (a) Variational methods and (b) graph cuts. 

 

4.4 Future Work 

As we have shown, motion-based correspondences can effectively be used to align 

images and produce realistic depth maps where image-feature- or pixel-intensity-based 

methods do not work.  However, when image features or pixel intensities can be used, 

motion-based correspondences provide a redundant set of correspondences based on 

different information.  As such, they provide an independent "opinion" on image 

alignment.  The availability of this additional information suggests that combining 

motion-based correspondences with image-feature- or pixel-intensity-based 

correspondence-finding techniques might produce overall better results in a wide range of 

computer vision applications.   

We have already discussed the possibility of using motion-based correspondences to 

improve decoupled scene flow estimation.  In addition to scene flow, in the outer region 

of the coaxial camera where the radial disparity is larger than the disparity due to the 

projected motion, image-feature or pixel-intensity-based correspondences might produce 

better depth estimates.  Combining the two methods for a coaxial camera could result in 
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improved overall results.    

One of the more promising devices that motion-based correspondences enable is a 3D 

endoscope.  For a 3D endoscope to be useful, reconstruction needs to be real-time.  The 

second main area for future research would be to improve the computational efficiency 

such that 3D reconstruction could be done in real-time. 
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