90 research outputs found

    Comparative study of heuristics algorithms in solving flexible job shop scheduling problem with condition based maintenance

    Get PDF
    Purpose: This paper focuses on a classic optimization problem in operations research, the flexible job shop scheduling problem (FJSP), to discuss the method to deal with uncertainty in a manufacturing system. Design/methodology/approach: In this paper, condition based maintenance (CBM), a kind of preventive maintenance, is suggested to reduce unavailability of machines. Different to the simultaneous scheduling algorithm (SSA) used in the previous article (Neale & Cameron,1979), an inserting algorithm (IA) is applied, in which firstly a pre-schedule is obtained through heuristic algorithm and then maintenance tasks are inserted into the pre-schedule scheme. Findings: It is encouraging that a new better solution for an instance in benchmark of FJSP is obtained in this research. Moreover, factually SSA used in literature for solving normal FJSPPM (FJSP with PM) is not suitable for the dynamic FJSPPM. Through application in the benchmark of normal FJSPPM, it is found that although IA obtains inferior results compared to SSA used in literature, it performs much better in executing speed. Originality/value: Different to traditional scheduling of FJSP, uncertainty of machines is taken into account, which increases the complexity of the problem. An inserting algorithm (IA) is proposed to solve the dynamic scheduling problem. It is stated that the quality of the final result depends much on the quality of the pre-schedule obtained during the procedure of solving a normal FJSP. In order to find the best solution of FJSP, a comparative study of three heuristics is carried out, the integrated GA, ACO and ABC. In the comparative study, we find that GA performs best in the three heuristic algorithms. Meanwhile, a new better solution for an instance in benchmark of FJSP is obtained in this research.Peer Reviewe

    Optimal Ship Maintenance Scheduling Under Restricted Conditions and Constrained Resources

    Get PDF
    The research presented in this dissertation addresses the application of evolution algorithms, i.e. Genetic Algorithm (GA) and Differential Evolution algorithm (DE) to scheduling problems in the presence of restricted conditions and resource limitations. This research is motivated by the scheduling of engineering design tasks in shop scheduling problems and ship maintenance scheduling problems to minimize total completion time. The thesis consists of two major parts; the first corresponds to the first appended paper and deals with the computational complexity of mixed shop scheduling problems. A modified Genetic algorithm is proposed to solve the problem. Computational experiments, conducted to evaluate its performance against known optimal solutions for different sized problems, show its superiority in computation time and the high applicability in practical mixed shop scheduling problems. The second part considers the major theme in the second appended paper and is related to the ship maintenance scheduling problem and the extended research on the multi-mode resource-constrained ship scheduling problem. A heuristic Differential Evolution is developed and applied to solve these problems. A mathematical optimization model is also formulated for the multi-mode resource-constrained ship scheduling problem. Through the computed results, DE proves its effectiveness and efficiency in addressing both single and multi-objective ship maintenance scheduling problem

    Energy Efficient Manufacturing Scheduling: A Systematic Literature Review

    Full text link
    The social context in relation to energy policies, energy supply, and sustainability concerns as well as advances in more energy-efficient technologies is driving a need for a change in the manufacturing sector. The main purpose of this work is to provide a research framework for energy-efficient scheduling (EES) which is a very active research area with more than 500 papers published in the last 10 years. The reason for this interest is mostly due to the economic and environmental impact of considering energy in production scheduling. In this paper, we present a systematic literature review of recent papers in this area, provide a classification of the problems studied, and present an overview of the main aspects and methodologies considered as well as open research challenges

    Dynamic Scheduling for Maintenance Tasks Allocation supported by Genetic Algorithms

    Get PDF
    Since the first factories were created, man has always tried to maximize its production and, consequently, his profits. However, the market demands have changed and nowadays is not so easy to get the maximum yield of it. The production lines are becoming more flexible and dynamic and the amount of information going through the factory is growing more and more. This leads to a scenario where errors in the production scheduling may occur often. Several approaches have been used over the time to plan and schedule the shop-floor’s production. However, some of them do not consider some factors present in real environments, such as the fact that the machines are not available all the time and need maintenance sometimes. This increases the complexity of the system and makes it harder to allocate the tasks competently. So, more dynamic approaches should be used to explore the large search spaces more efficiently. In this work is proposed an architecture and respective implementation to get a schedule including both production and maintenance tasks, which are often ignored on the related works. It considers the maintenance shifts available. The proposed architecture was implemented using genetic algorithms, which already proved to be good solving combinatorial problems such as the Job-Shop Scheduling problem. The architecture considers the precedence order between the tasks of a same product and the maintenance shifts available on the factory. The architecture was tested on a simulated environment to check the algorithm behavior. However, it was used a real data set of production tasks and working stations

    An agent-based genetic algorithm for hybrid flowshops with sequence dependent setup times to minimise makespan

    Full text link
    This paper deals with a variant of flowshop scheduling, namely, the hybrid or flexible flowshop with sequence dependent setup times. This type of flowshop is frequently used in the batch production industry and helps reduce the gap between research and operational use. This scheduling problem is NP-hard and solutions for large problems are based on non-exact methods. An improved genetic algorithm (GA) based on software agent design to minimise the makespan is presented. The paper proposes using an inherent characteristic of software agents to create a new perspective in GA design. To verify the developed metaheuristic, computational experiments are conducted on a well-known benchmark problem dataset. The experimental results show that the proposed metaheuristic outperforms some of the well-known methods and the state-of-art algorithms on the same benchmark problem dataset.The translation of this paper was funded by Universidad Politecnica de Valencia, Spain.Gómez Gasquet, P.; Andrés Romano, C.; Lario Esteban, FC. (2012). An agent-based genetic algorithm for hybrid flowshops with sequence dependent setup times to minimise makespan. Expert Systems with Applications. 39(9):8095-8107. https://doi.org/10.1016/j.eswa.2012.01.158S8095810739

    Utilizing Model Knowledge for Design Developed Genetic Algorithm to Solving Problem

    Get PDF
    One of the discussed topics in scheduling problems is Dynamic Flexible Job Shop with Parallel Machines (FDJSPM). Surveys show that this problem because of its concave and nonlinear nature usually has several local optimums. Some of the scheduling problems researchers think that genetic algorithms (GA) are appropriate approach to solve optimization problems of this kind. But researches show that one of the disadvantages of classical genetic algorithms is premature convergence and the probability of trap into the local optimum. Considering these facts, in present research, represented a developed genetic algorithm that its controlling parameters change during algorithm implementation and optimization process. This approach decreases the probability of premature convergence and trap into the local optimum. The several experiments were done show that the priority of proposed procedure of solving in field of the quality of obtained solution and convergence speed toward other present procedure

    Partial flexible job shop scheduling considering preventive maintenance and priorities

    Full text link
    [EN] In this paper, a new mathematical programming model is proposed for a partial flexible job shop scheduling problem with an integrated solution approach. The purpose of this model is the assignment of production operations to machines with the goal of simultaneously minimizing operating costs and penalties. These penalties include delayed delivery, deviation from a fixed time point for preventive maintenance, and deviation from the priorities of each machine. Considering the priorities for machines in partial flexible job shop scheduling problems can be a contribution in closer to the reality of production systems. For validation and evaluation of the effectiveness of the model, several numerical examples are solved by using the Baron solver in GAMS. Sensitivity analysis is performed for the model parameters. The results further indicate the relationship between scheduling according to priorities of each machine and production scheduling.Farahani, A.; Tohidi, H.; Khalaj, M.; Shoja, A. (2020). Partial flexible job shop scheduling considering preventive maintenance and priorities. WPOM-Working Papers on Operations Management. 11(2):27-48. https://doi.org/10.4995/wpom.v11i2.14187OJS274811

    An efficient genetic method for multi-objective continuous production scheduling in industrial internet of things

    Get PDF
    Continuous manufacturing is playing an increasingly important role in modern industry, while research on production scheduling mainly focuses on traditional batch processing scenarios. This paper provides an efficient genetic method to minimize energy cost, failure cost, conversion cost and tardiness cost involved in the continuous manufacturing. With the help of Industrial Internet of Things, a multi-objective optimization model is built based on acquired production and environment data. Compared with a conventional genetic algorithm, non-random initialization and elitist selection were applied in the proposed algorithm for better convergence speed. Problem specific constraints such as due date and precedence are evaluated in each generation. This method was demonstrated in the plant of a pasta manufacturer. In experiments of 71 jobs in a one-month window, near-optimal schedules were found with significant reductions in costs in comparison to the existing original schedule

    Comparison of new metaheuristics, for the solution of an integrated jobs-maintenance scheduling problem

    Get PDF
    This paper presents and compares new metaheuristics to solve an integrated jobs-maintenance scheduling problem, on a single machine subjected to aging and failures. The problem, introduced by Zammori et al. (2014), was originally solved using the Modified Harmony Search (MHS) metaheuristic. However, an extensive numerical analysis brought to light some structural limits of the MHS, as the analysis revealed that the MHS is outperformed by the simpler Simulated Annealing by Ishibuchi et al. (1995). Aiming to solve the problem in a more effective way, we integrated the MHS with local minima escaping procedures and we also developed a new Cuckoo Search metaheuristic, based on an innovative Levy Flight. A thorough comparison confirmed the superiority of the newly developed Cuckoo Search, which is capable to find better solutions in a smaller amount of time. This an important result, both for academics and practitioners, since the integrated job-maintenance scheduling problem has a high operational relevance, but it is known to be extremely hard to be solved, especially in a reasonable amount of time. Also, the developed Cuckoo Search has been designed in an extremely flexible way and it can be easily readapted and applied to a wide range of combinatorial problems. (C) 2018 Elsevier Ltd. All rights reserved
    • …
    corecore