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Resumo 

Desde que surgiram as primeiras fábricas, o homem sempre tentou maximizar a sua produção de 

forma a aumentar os seus lucros. Contudo, as exigências do mercado têm-se alterado e, hoje em 

dia, não é tão fácil obter o máximo rendimento dos sistemas de produção. As linhas de produção 

estão a tornar-se cada vez mais flexíveis e dinâmicas e a quantidade de informação disponível e 

processada nas fábricas tem aumentado a um grande ritmo. Isto leva a um cenário onde os erros 

no escalonamento da produção ocorrem com mais frequência. 

Diferentes abordagens têm sido usadas ao longo do tempo para fazer o planeamento e alocação 

das tarefas na linha de produção da fábrica. Porém, muitas delas não consideram alguns fatores 

que estão presentes em ambientes reais, como é o caso de as máquinas de produção não estarem 

sempre disponíveis e necessitarem de intervenções regulares ou não. Isto leva a que os sistemas 

se tornem mais complexos e difíceis de planear. Deste modo, devem ser usadas abordagens mais 

dinâmicas que consigam explorar mais eficientemente os grandes espaços de busca que este tipo 

de problemas proporciona. 

Neste trabalho é proposta uma arquitetura para obter um escalonador que inclui tarefas de 

produção e manutenção, que são frequentemente ignoradas na literatura. São, também, tidos em 

consideração os turnos de manutenção disponíveis para alocar essas tarefas. 

A arquitetura proposta foi implementada recorrendo a algoritmos genéticos, que já demonstraram 

que conseguem resolver problemas de análise combinatória, como é o caso do problema de Job-

Shop Scheduling. A arquitetura considera a ordem de precedência das tarefas do mesmo produto, 

assim como os turnos de manutenção disponíveis na fábrica. 
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A arquitetura foi testada num ambiente simulado de modo a analisar o comportamento do 

algoritmo. Contudo, foram usados conjuntos de dados de tarefas de produção e estações de 

trabalho reais. 

Palavras-Chave: Job-Shop Scheduling, Alocação de Tarefas, Algoritmos Genéticos, Sistemas de 

Manufatura 
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Abstract 

Since the first factories were created, man has always tried to maximize its production and, 

consequently, his profits. However, the market demands have changed and nowadays is not so 

easy to get the maximum yield of it. The production lines are becoming more flexible and dynamic 

and the amount of information going through the factory is growing more and more. This leads 

to a scenario where errors in the production scheduling may occur often. 

Several approaches have been used over the time to plan and schedule the shop-floor’s production. 

However, some of them do not consider some factors present in real environments, such as the 

fact that the machines are not available all the time and need maintenance sometimes. This 

increases the complexity of the system and makes it harder to allocate the tasks competently. So, 

more dynamic approaches should be used to explore the large search spaces more efficiently. 

In this work is proposed an architecture and respective implementation to get a schedule including 

both production and maintenance tasks, which are often ignored on the related works. It considers 

the maintenance shifts available. 

The proposed architecture was implemented using genetic algorithms, which already proved to 

be good solving combinatorial problems such as the Job-Shop Scheduling problem. The 

architecture considers the precedence order between the tasks of a same product and the 

maintenance shifts available on the factory. 

The architecture was tested on a simulated environment to check the algorithm behavior. 

However, it was used a real data set of production tasks and working stations. 

Keywords: Job-Shop Scheduling, Task Allocation, Genetic Algorithms, Manufacturing Systems 
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Chapter 1.  Introduction 

 Scope & Motivation 

One of the greatest challenges for man in the most distinct areas has always been to maximize his 

work efficiently and effectively. To do so, it is important to plan a well-structured schedule with 

detailed description of the tasks to execute, mainly when and where they should be performed. This 

is applicable to areas like transportation services, staff distribution and production systems, among 

others. 

As the demand for more diversified and customized products grew a lot, the factories needed to 

change their production systems, since the old ones were not capable to deal with this huge demand. 

Thus, in medium or large shops it is not easy to schedule this large number of products. This problem 

is further complicated when it is not possible to know exactly how much time a product will take to 

get finished by some machine. Even more, when new products arrive, to the factory during a day of 

work or if a machine unexpectedly breaks down and it becomes necessary to route products to another 

one. 
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However, the stations present in the shop-floor are not available all the time. They are frequently 

subject to maintenance operations. Sometimes, those maintenance interventions are previously 

defined and can be included in the task allocation process to get more realistic schedules. 

This work presents a suggestion to solve this problem, which involves scheduling and task allocation 

in a job-shop. It deals with production and maintenance tasks allocation simultaneously, in order to 

minimize stations’ total execution time. 

In the next section, a research question and a possible hypothesis to solve this problem are presented. 

 Research Question and Hypothesis 

Considering the problem addressed in section 1.1, it should be cleared that the maintenance tasks are 

an important element that need to be considered in the shop-floor’s scheduling process. So, they 

should be considered in the task allocation process. Therefore, it comes the next research question: 

A summary of the work carried out in this thesis is presented in the next section. 

 Accomplished Work 

In this study case is proposed a job-shop scheduling architecture capable to generate a schedule that 

efficiently incorporates maintenance and production tasks. A task is a process where some working 

station performs an operation in a product. To do so, it is considered a part of a shop floor with a 

non-defined number of non-identical stations, yet the rest of the factory is not known in this work.  

Those tasks should be allocated only to a station capable to execute the required operation. At the 

end, the start and end times of each task will be set, being thus possible to know which operations 

should be performed at any time. 

How is it possible to develop a dynamic job-shop scheduling integrated solution, including both 

production and maintenance tasks? 

By developing a tool based on artificial intelligence, namely, genetic algorithms, the 

maintenance and production tasks can be merged into only one schedule in order to optimize 

the production allocation in the shop-floor. Genetic algorithms provide a good solution in a 

reasonable amount of time which is essential to plan the production in the shop-floor. 
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The communication between the algorithm and the shop-floor is done through a middleware that get 

and send information to the factory. This middleware is a layer which guarantees the interaction 

between the hardware devices and the software applications present in the system.  

Since this is a dynamic environment, new products could arrive to the factory and new maintenance 

tasks could be necessary to perform. Which means that the algorithm needs to be fast enough to 

generate new schedules when required. 

The proposed architecture gets a set of tasks to perform as well as the stations available in the shop-

floor from the middleware. Then, with all the needed information acquired, the algorithm is executed. 

When the algorithm stops, a legible schedule is sent back to the middleware. 

A Genetic Algorithm (GA) was implemented to solve this problem. GAs already proved to solve 

scheduling problems efficiently, even in large scale (Balin, 2011; Werner, 2011). Although they do 

not always get an optimal solution, a near optimal solution is reached quickly most of the times, due 

to their search capability based on natural evolution. 

After design the architecture, this one was implemented using the Java language and the Jenetics 

library, which allows to implement a GA using the concept of stream for executing the evolution 

steps. This implementation was validated in a simulated environment. 

With this work, the author expects to contribute with an efficient algorithm to solve a flexible and 

dynamic job-shop scheduling problem, based on algorithms found in literature. 

The major contributions of this work are presented next. 

 Main Contributions 

The accomplished work proposes a solution which allows the system to plan and schedule the 

production and maintenance tasks on the shop-floor. 

This job-shop scheduling problem deals with production tasks as well as maintenance tasks which 

need to be scheduled in specific time slots according to the factory requirements. The presented 

architecture does not ignore the maintenance operations which are a constant in manufacturing 

environments. Thus, it portrays a more reliable scenario from the real factories, providing more 

realistic schedules. 

Furthermore, the implementation of the proposed architecture was integrated in the Production 

harmonizEd Reconfiguration of Flexible Robots and Machinery (PERFoRM) H2020 project. In the 

PERFoRM project the tools are capable to communicate with each other through a central 
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middleware, where they can exchange information in real-time. So, the scheduling tool can provide 

the obtained schedules for the other tools. 

Finally, in the next section, is presented and defined the structure of this thesis. 

 Dissertation Structure 

In the chapter 1 is introduced an overview of the presented document. Mainly, it is identified the 

problem to solve and how it will be solved. It is also presented the important contributions provided 

by this work. 

Chapter 2 is dedicated to the state of the art. It is an introduction to the problem addressed in this 

thesis, how it works and how the author wants to solve it. It includes some examples in the literature 

about similar problems and several ways to solve them. This is a walk-through by scheduling, JSSP, 

GAs and how they are involved. 

In chapter 3 it is presented the scheduling architecture, with the intention to clarify how this 

scheduling problem will be approached and solved. 

The implementation of the algorithm used in this thesis will be presented in chapter 4. Here, the 

architecture will be put into practice. There will be a deep explanation about how the algorithm works 

and how it is integrated with the middleware. 

Chapter 5 will be dedicated to the tests of the algorithm, presentation and discussion of the obtained 

results. 

In chapter 6 are presented the conclusions got after analyzing the obtained results as well as some 

suggestions about the further work needed to improve this work. 
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Chapter 2.  State of the Art 

Industrial systems have, drastically, evolved over the past decades. First, they were constructed 

to carry out mass production, where the products’ variety was minimal and the systems were 

relatively simple. But, the market changes imposed an adaptation of the manufacturing systems 

in order to produce a wide variety of products and their variants to satisfy a large number of 

consumers and their unique demands (Rocha et al., 2014). 

Due to those changes, factories now need to quickly adapt their systems to give a fast response to 

the market demand. So, these changes in the production industry led to an increased demand for 

more agile systems as well as it brings more complexity to those systems themselves. However, 

this agility entails a new problem: now the products do not all follow a single path in the shop-

floor but they can be allocated to different stations, which implies developing a plan to achieve 

the best solution possible to improve the production process. 

That plan consists in allocate a set of operations, to perform in some products, to the stations 

which are capable to accomplish that operation. This process is known as job-shop scheduling 

problem (JSSP) (Buzatu & Bancila, 2008). However, it is important to consider that the stations 
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are not available all the time. Sometimes they need to be repaired or maintained. So, the 

maintenance operations should be considered when a production process is scheduled. 

 Agile Manufacturing Systems 

Once technology has evolved, and so has manufacturing systems, factories have started to adapt 

their shop-floors in order to become more agile, reconfigurable and flexible to face new market 

requirements that are constantly changing. Agile Manufacturing Systems (AMSs) were developed 

to give firms those flexibility and agility (Rocha et al., 2014). 

There is no consensual definition for agile manufacturing. Nevertheless, many authors define it 

as the ability of a factory to keep up and respond quickly and efficiently to the unpredictable 

market changes, both in terms of product models and product lines (Chalfoun, Kouiss, Huyet, 

Bouton, & Ray, 2013; Dionisio Rocha, Peres, & Barata, 2015; Gunasekaran, 1999; Kretschmer, 

Pfouga, Rulhoff, & Stjepandić, 2017). For (Yusuf, Sarhadi, & Gunasekaran, 1999), “the main 

driving force behind agility is change”. Thus, an agile factory needs to change and adapt very 

quickly to the necessities. 

In AMSs there a large range of different stations used to perform specific tasks, so it is important 

to keep those stations working and avoid unpredictable breakdowns. Therefore, it is necessary to 

perform some regular maintenance operations on the shop-floor to keep the work flowing well. 

That is why the maintenance tasks need to be considered in scheduling problems. However, there 

are different maintenance processes that can be used, mainly to prevent breakdowns or to repair 

them. 

2.1.1. Flexible Manufacturing Systems 

A Flexible Manufacturing System (FMS) is defined as the possibility of the system to share tools 

between different machines, so the ability to produce multiple types of products is improved (Lei, 

Xing, Han, & Gao, 2017). In this way, the number of combinations performed between tools and 

machines is increased and, also, increases the number of performed services provided by the 

system. All the machines are linked through a material handling system that moves parts to the 

next machine. Both are controlled by a central system (Elkins, Huang, & Alden, 2004; 

ElMaraghy, 2005; Lei et al., 2017). 
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2.1.2. Reconfigurable Manufacturing Systems 

The Reconfigurable Manufacturing Systems (RMS) paradigm focus on the machine-tool 

reconfiguration (Galan, Racero, Eguia, & Garcia, 2007). In the literature, a system is classified as 

reconfigurable if its physical structure can be easily changed and if it was designed for a part 

family (Y. Koren et al., 1999). Besides the similarities with the FMS paradigm, RMS have the 

capacity to facilitate the systems’ reconfiguration by adding, removing or updating new 

components to the system (Galan et al., 2007; Yoram Koren & Shpitalni, 2010). 

 The Process of Maintenance to Agile Manufacturing 

Systems 

The maintenance process is essential in the AMSs, where there are a large variety of stations with 

specific requisites which need to keep working the maximum time possible to maximize the 

production. So, sometimes they need to be subject to maintenance operations. 

There are many different types of maintenance such as preventive maintenance, also known as 

Time-Based Maintenance (TBM), Predictive Maintenance (PdM), Corrective Maintenance (CM), 

among others, which work in different ways (Aissani, Beldjilali, & Trentesaux, 2009; Raza & 

Ulansky, 2017).  

CM is only applicable after some failure occur, for instance a breakdown, trying to recover a 

resource to a functional state (Aissani et al., 2009; Froger, Gendreau, Mendoza, Pinson, & 

Rousseau, 2015). This type of maintenance implies that occurs repair and/or replacement of 

resources (Y. Chen, Cowling, Polack, Remde, & Mourdjis, 2017). To reduce the risk of 

unexpected breakdowns and resource’s downtime due to failures, another maintenance types 

should be applied. (Kenné & Gharbi, 2004) proposed a corrective maintenance strategy to 

improve the machines’ availability. The production and the machine repair rates are decisive to 

execute the algorithm successfully, which was model using a Markov process. 

TBM is done to prevent, in advance, potential faults resulting in malfunctions (Aissani et al., 

2009; Ruiz, Carlos García-Díaz, & Maroto, 2007; Yoo & Lee, 2016). It is taken while the system 

is still working and consists in perform the operations in resources before the failure happens and 

minimize the failure’s probability. The main advantage is that the system is in good conditions 

the most of the time and maintains the resource’s performance over the time (Aissani et al., 2009; 

Ruiz et al., 2007). This type of maintenance is normally done at predefined time intervals, based 

on experience (Y. Chen et al., 2017; Froger et al., 2015), but it can also be done by finding the 
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optimal time to apply the maintenance (Ruiz et al., 2007). TBM reduces failures on the machines, 

which leads to an increase of the machines’ availability and a reduction in costs, improves the 

production planning and management and improves safety (Ruiz et al., 2007). Include TBM into 

the production schedule has attracted the researcher’s attention in last years although it continues 

being a quite unexplored subject (Ángel-Bello, Álvarez, Pacheco, & Martínez, 2011). (Ruiz et al., 

2007) proposed a preventive maintenance solution for a flow shop problem with different policies. 

They considered preventive maintenance at predefined intervals aiming to maximize machines’ 

availability or keeping a minimum level of reliability after the production period. Evolutionary 

algorithms were used and they found that those algorithms provide good solutions to their study 

case. (Gao, Gen, & Sun, 2006) studied a flexible job-shop scheduling problem where each 

machine was subject to an arbitrary number of preventive tasks and observed that after certain 

planning horizons one or more maintenance tasks may have to be scheduled, although it is 

possible to have no maintenance processes in some time intervals. 

PdM, on the other hand, can be applied to prevent future failures “if there is a deteriorating 

physical parameter like vibration, pressure, voltage, or current that can be measured” (Raza & 

Ulansky, 2017), instead of doing it in predefined time intervals. It not only prevents from failures 

but also improve the production performance (Selcuk, 2016). PdM is performed based on the 

Remaining Maintenance Life metric, which was proposed to set a security threshold before the 

machines reach the remaining useful life. That remaining time is based on a prognostic. It infers 

the current state and predicts the future progression  to estimate the time before a failure occur 

(Ladj, Varnier, & Tayeb, 2016). (Aissani et al., 2009) proposed multi-agent model to solve 

dynamic scheduling of maintenance tasks in a petroleum production system. Their solution can 

generate schedules for both predictive and corrective maintenance and improve the quality of the 

system. (Ladj et al., 2016) proposed a genetic algorithm with the objective of minimize the total 

interventions cost on a single machine subjected to predictive maintenance. 

 Scheduling of Agile Manufacturing Systems 

Scheduling is a process of time optimization, where a set of jobs (products with one or more 

operations that will be processed by the stations) is assigned, reasonably, to a group of resources 

(Chung & Kim, 2016; Jose & Pratihar, 2015). It is defined in which sequence they are executed, 

by each resource, during each day of work in a predefined time horizon, trying to avoid conflicts 

and to optimize the objectives (Cardon, Galinho, & Vacher, 2000). Scheduling determines what 

is going to be made, when, where and with what resources (Cardon et al., 2000; W. Zhang, Gen, 

& Jo, 2014). 
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(Csaji & Monostori, 2006) have classified task allocation techniques in three categories: 

predictive, proactive and reactive. Predictive solutions assume a deterministic situation, which 

means that all the information is known in advance. If there are uncertainties and some data will 

be available only during the scheduling execution, like tasks’ duration, this is called a proactive 

solution. This solution assigns the jobs to resources with a certain order, but doesn’t determine 

starting times of each operation. Finally, when a solution makes decisions while more information 

becomes available, this is a scenario of reactive task allocation. 

Most of the scheduling problems are Non-deterministic Polynomial-time Hard (NP-Hard) 

problems (Lenstra & Rinnooy Kan, 1978; Ullman, 1975), which are quite difficult to reach an 

optimal solution with traditional optimization techniques, because a solution is searched in a large 

search space (Petrović, Vuković, Mitić, & Miljković, 2016). For a deeper explanation of NP 

problems the reader is invited to see (Ullman, 1975). Although Mathematical optimization 

methods can achieve optimal solutions for relatively small problems, in a larger scale they are 

very limited (Balin, 2011). 

Even though most researchers assume some constraints like all resources are always available 

(W. Zhang et al., 2014) or that the processing time of a job is known in advance and remains 

constant during the whole process, in real situations this is not always true. For example, jobs’ 

duration is not always constant but increases over time, depending on the sequence of jobs or their 

starting times. Such case is generally known as the deterioration of resources in scheduling 

problems (Chung & Kim, 2016). On the other hand, resources are not always available during the 

scheduling process. In real environments, sometimes, they need maintenance or can broke and 

stay unavailable for some periods of time (Gao et al., 2006; Yoo & Lee, 2016). Maintenance 

scheduling is used to try to minimize the effect of machine’s breakdowns and to maximize the 

capacity’s availability at a minimum cost. Also, improve maintenance tasks can provide financial 

gains and safety enhancements (Aissani et al., 2009). For those reasons, and once maintenance 

charges cover a large percentage of the total operation costs (Ángel-Bello et al., 2011), 

maintenance tasks should be considered in the production plan to obtain a more representative 

schedule. However, most of the scheduling problems considered in literature are deterministic, 

this means that all data is known and given in advance and remains constant during the whole 

process, like the processing times of a job (Chung & Kim, 2016; Werner, 2011). 

Scheduling has been largely applied to many different areas like energy consumption (Lu, Gao, 

Li, Pan, & Wang, 2017; J. Wang, Tang, Xue, & Yang, 2016), transportation , staff distribution 

(Ernst, Jiang, Krishnamoorthy, & Sier, 2004) and production (Balin, 2011; X. Li & Gao, 2016), 
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to help the industries to plan their activities. Specific algorithms and mathematical models should 

be developed for scheduling solutions in different areas of application (Ernst et al., 2004). 

In agile manufacturing environments, products can have several different feasible process plans 

and most of the times is very hard to find a good one for all the products. Production scheduling 

is a very important decision making in a factory and it can be a difficult problem depending on 

the number of calculations necessary to obtain a schedule that gives an optimal solution for the 

given objectives (Balin, 2011). In this way, it is necessary to have an efficient schedule generator 

accordingly to the type of the factories and their constraints. 

There are several job scheduling environments depending on the stations’ layout and the flow of 

the products. A flow shop (Lu et al., 2017) is a shop in which the machines are disposed in series, 

each job has exactly n operations and the route travelled by each one through the machines is the 

same to every job. They all start processes in the same initial machine and conclude in the same 

final machine (Balin, 2011; Werner, 2011). In a job-shop (Buzatu & Bancila, 2008) scenario, 

products can be processed on machines in any order. A specific route is given to each job and 

they can start the process in different machines, accordingly to operations that need to be 

performed in each one (Werner, 2011). However, the operation sequence of each task should be 

respected. Jobs can visit the same machine several times and there is only one machine capable 

to perform a given operation. In fact, there are often several replicas of the same machine (parallel 

machine), so, there are numerous machines that can process the jobs. In the end, the schedule 

provides the order in which operations are to be done (Balin, 2011). When products do not have 

precedence constrains, the processing routes have to be chosen, this is known as open shop. It is 

assumed that each job has to be processed on any machine and it can visit the same machine 

several times (Strusevich, 1999; Werner, 2011). 

 Job-Shop Scheduling Problem 

The JSSP is one of the most famous scheduling problems and is a part of production scheduling. 

The traditional JSSP can be described as a set of m stations {M1, …, Mm} that should process a 

set of n different jobs {J1, …, Jn}. Each job has a set of operations to be processed in a given order 

in the different stations. An operation OJM of a job J requires the use of the station M for an 

uninterrupted duration, dominated processing time, and each station can only operate a job at a 

time. In Figure 2-1 is represented a schedule for a JSSP with three jobs, each one with three 

different operations, and three different stations. 

A full list of restrictions of the basic JSSP is presented in (Mattfeld, 1996): 
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• No two operations of one job may be processed simultaneously. 

• No preemption (i.e. process interruption) of operations is allowed. 

• No job is processed twice on the same machine. 

• Jobs may be started at any time. 

• Jobs may be finished at any time. 

• Jobs must wait for the next machine to be available. 

• No machine may process more than one operation at a time. 

• Machine setup times are negligible. 

• There is only one of each type of machine. 

• Machines may be idle within the schedule period. 

• Machines are available at any time. 

• The technological constrains are known in advance and are immutable. 

A schedule is a set of completion time of each operation that satisfies the necessary 

constraints, mainly the precedence between operations. The aim of JSSP is to find a job sequence 

on each station considering a given objective function. Frequently, the objective function used in 

JSSP is to minimize the maximum completion time of all jobs (from here referred as makespan) 

(Karimi, Ardalan, Naderi, & Mohammadi, 2016; Noor, Ikramullah Lali, & Saqib Nawaz, 2015; 

Yamada & Nakano, 1997). 

 

Figure 2-1 - Gantt Chart representation for a 3x3 problem. Image taken from (Yamada & Nakano, 1997) 

The JSSP is one of the most important combinatorial optimization problems. It is not only 

NP-Hard but is one of the worst members in the class. This means that it is maybe impossible to 

find an optimal solution in the whole search space (Kundakcı & Kulak, 2016; J. Li, Huang, & 

Niu, 2016; Yamada & Nakano, 1997). Such complexity is due to larger product variety and 

constraints and because there is a factorial number of solutions that can result in a feasible 

schedule. This problem is even trickier when operations can be processed by more than one 
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machine or if machines can execute more than one type of operation (Balin, 2011; Y. Liu, Dong, 

Lohse, & Petrovic, 2014). 

Once technology has evolved over past decades, factories have started to use flexible machines, 

able to perform more than one type of operation, this is known as Flexible Job-Shop Scheduling 

Problem (FJSSP). This is very important in actual factory systems. However, there is an additional 

problem, since it is not only needed to get the sequence of operations on machines but it is also  

needed to assign operations to those machines that are able to change their operation mode 

(Karimi et al., 2016; X. Li & Gao, 2016). 

Another case, very common in factories nowadays, is when both stations and workers are 

necessary to execute the jobs and those cannot be processed if stations, workers or both are not 

available. This scenario is known as Dual Resource Constrained Job-Shop Scheduling Problem 

(DRCJSP). This situation presents additional challenges that must be considered on scheduling, 

such as the interaction between workers and resources (J. Li et al., 2016; Xu, Xu, & Xie, 2011). 

The basic JSSP and most scheduling problems considered are deterministic (static) ones, which 

means that all information, like processing time of each operation and some constraints, is fixed 

and known in advance and there is no machine breakdown (Bierwirth & Mattfeld, 1999; Mattfeld, 

1996; Werner, 2011). In (Y. Liu, Dong, Lohse, Petrovic, & Gindy, 2014) a deterministic job-shop 

model is used, where the number of jobs is a fixed value and all of them are available at the 

beginning of the process.  

However, in real world, jobs arrive unexpectedly and duration times are not known in advance 

and can change during the process, these are non-deterministic problems (Bierwirth & Mattfeld, 

1999; Kundakcı & Kulak, 2016). 

To solve this kind of scheduling problems, traditional approaches are not enough. It is necessary 

to have more dynamic approaches where the changes are performed during the process. It is 

needed to consider a lot of constraints, like happens in real cases, that sometimes are not 

considered in classic JSSP approaches, for instance the arrival of new jobs constantly during the 

time horizon defined in the schedule, station breakdowns, problems with maintenance teams, 

changes of execution times, insertion or removal of stations among others. Such approach is called 

Dynamic Job-Shop Scheduling Problem (DJSSP) (Kundakcı & Kulak, 2016; Sharma & Jain, 

2015; Xiong, Fan, Jiang, & Li, 2017). In dynamic scheduling changes are made while the system 

is running and are included in the current schedule (Scrimieri, Antzoulatos, Castro, & Ratchev, 

2015). 
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It is possible to find a lot of approaches in literature that can be applied in order to solve JSSP and 

its extensions. They are mainly divided into exact method and approximation method (heuristic 

and meta-heuristic techniques). Exact methods contain mathematical programming models, while 

the second one is based in dispatching rules and Artificial Intelligence (AI), which includes 

Swarm Intelligence (SI), Local Search (LS) and Evolutionary Algorithm (EA) (X. Li & Gao, 

2016).  

In (Choi & Choi, 2002) a mixed integer program model is presented, along with a local search 

scheme, to solve a JSSP considering alternative operation sequences and sequence-dependent 

setups. (Lee, Wang, & Lin, 2016) developed a branch-and-bound algorithm to solve a parallel-

machine scheduling problem optimally with fewer jobs. However, exact algorithms are not 

effective for solving large scale FJSP instances (X. Li & Gao, 2016; Pezzella, Morganti, & 

Ciaschetti, 2008). 

(Tay & Ho, 2008) solved a multi-objective flexible job-shop problem using dispatching rules 

discovered through genetic programming. (Baykasoǧlu & Özbakir, 2010) used dispatching rules 

to evaluate the effect on the scheduling performance of job-shops with different levels of 

flexibility. Dispatching rules are simple and can solve large scale problems, however the quality 

of the results is not very good (X. Li & Gao, 2016). 

(Sobeyko & Mönch, 2016) deal with flexible job-shops with parallel machines, where the 

objective function is given by total weighted tardiness. A shifting bottleneck heuristic is proposed, 

hybridized with a local search and a variable neighborhood search approach. 

SI is a meta-heuristic method that include, among others, Ant Colony Optimization (ACO), 

Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) (Karimi et al., 2016; X. Li 

& Gao, 2016). (Singh & Mahapatra, 2015) developed a hybrid Particle Swarm Optimization 

(PSO) algorithm where mutation, a used operator in GAs, has been introduced, to solve a FJSSP. 

(Zhao, Tang, Wang, & Jonrinaldi, 2014) also have used a based PSO for solving a multi-objective 

JSSP. An ABC approach is presented to solve a JSSP in (Madureira, Pereira, & Abraham, 2013). 

In (Saidi-Mehrabad, Dehnavi-Arani, Evazabadian, & Mahmoodian, 2015) an ACO algorithm is 

proposed to minimize the makespan of a JSSP. (J. Q. Li & Pan, 2012) proposed a chemical-

reaction optimization for solving the FJSSP with three minimization objectives. Each solution is 

represented by a molecule and a LS method was embedded in algorithm to perform exploitation 

process. SI techniques are global search methods and should be improved with local search 

algorithm to get better results. SI methods have proved to be efficient in solving scheduling 

problems (Madureira et al., 2013). 
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 EA is an effective type of meta-heuristic method based on the principals of natural evolution. EA 

includes GA, genetic programming, evolution strategies and evolution programming (Werner, 

2011). (Kundakcı & Kulak, 2016) developed a GA for minimizing makespan in a DJSSP where 

a new heuristic and well-known dispatching rules where integrated in the algorithm. GAs are one 

of the most preferred algorithms to solve hard combinatorial optimization problems, because of 

its adaptability, near optimization and they are not difficult to implement (Balin, 2011). EAs are 

effective for the scheduling problems because of their powerful global search ability. Even 

though, they do not have good local search ability, EAs can be combined with other local search 

algorithms to improve their performance (X. Li & Gao, 2016). 

LS is often used to improve the performance of other algorithms, searching for a locally optimal 

solution (Gonçalves, De Magalhães Mendes, & Resende, 2005). It includes Tabu Search (TS), 

Simulated Annealing (SA) and so on (X. Li & Gao, 2016). LS is a common technique of 

hybridization to improve the performance of another algorithms like PSO, ACO or GA 

algorithms. (Asadzadeh, 2015) presented a local search GA to solve a JSSP with intelligent agents 

and showed that the algorithm improved the efficiency. A TS method to solve a dynamic shop 

scheduling problem was developed successfully by (S. Q. Liu, Ong, & Ng, 2005). Once LS are 

based in the neighborhood, they lack in global search capacity, so they should be combined with 

other global search algorithms (X. Li & Gao, 2016). 

Since GAs proved to be very efficient to solve JSSP, due to its capability of adaptation (Kundakcı 

& Kulak, 2016) and the good ability to search for a global optimum (T. Wang, Liu, Chen, Xu, & 

Dai, 2014), and they also proved to be good solving preventive maintenance problems (Ladj et 

al., 2016) and once they are easy to implement (Balin, 2011), a GA approach will be used to solve 

the DJSSP in this study. 

 Genetic Algorithms 

First proposed by Holland (Holland, 1975) in the 1970s, GAs are stochastic searching adaptive 

approaches to solve optimization problems based on the natural selection mechanisms where only 

the best individuals can survive (Chung & Kim, 2016; Gonçalves et al., 2005). They work by 

evolving a population of chromosomes of possible solutions using genetic operators, such as 

selection (survival of the fittest), crossover and mutation, that are inspired by the natural 

evolution, first settled by Darwin in The Origin of Species (Balin, 2011; Gonçalves et al., 2005; 

J. Li et al., 2016). 

Once GAs are heuristic methods, they have powerful search ability. They are known to be good 

solving optimization problems since they don’t need to evaluate all the search space to extract a 
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good solution (Joo & Kim, 2015; T. Wang et al., 2014). In each generation, the fitness of each 

individual is evaluated. GAs instead of focus in a specific solution and try to improve it, they use 

a population where all individuals are evolving in different directions. They not always can find 

an optimal solution but most of the times they can find a near-optimal solution and can easily 

handle the occurrence of new events (Joo & Kim, 2015; J. Li et al., 2016). Each individual has its 

own fitness value, that is the value given by an objective function to calculate how good the 

individual is in the population. In each generation, the fitness of each individual is evaluated and 

the best individuals are randomly selected to perform crossover and create a new generation (Jose 

& Pratihar, 2015). The crossover and mutation’s probabilities affect significantly how good the 

solution is and the convergence speed in GA. Usually, values of crossover probability between 

0.5 and 1 and mutation probability between 0.001 and 0.05, are used in GA problems (T. Wang 

et al., 2014). In dynamic environments, convergence becomes a big problem. Yang (Yang, 2008) 

affirms that this is the main reason why traditional GAs do not perform well in dynamic 

environments, once convergence deprives the population of diversity. So, when a change in the 

system occurs, it is hard for GA to adapt to the new environment. 

GAs are global search methods using to perform exploration, so they may not be able to find a 

locally optimal solution. But they can be hybridized with another algorithm, like TS algorithm 

that has good local search ability and can perform exploitation, to have a better performance 

(Gonçalves et al., 2005; X. Li & Gao, 2016; D. Wang, Xiong, & Fang, 2016). 

They can be applied to real world problems, if the solution in the population is properly encoded 

(represented), by mimicking the process of natural evolution (Gonçalves et al., 2005; Noor et al., 

2015).  

GAs are also one of the most attractive techniques to the researchers. They have solved 

successfully a variety of combinatorial and numerical optimization problems, in the past decades, 

in many different areas (Ting, Su, & Lee, 2010; Werner, 2011). (Y.-H. Zhang, Gong, Gu, Li, & 

Zhang, 2017) developed a GA in order to solve node placement problems, such as the deployment 

of radio-frequency identification or wireless sensor networks. (Ordóñez Galán, Sánchez Lasheras, 

de Cos Juez, & Bernardo Sánchez, 2017) used a method based on GA for completion of missing 

data in knowledge and skills tests. (Apolinar & Rodríguez, 2017) proposed a microscope vision 

system based on micro laser line scanning and a GA to retrieve metallic surface. The GA 

calibrates the microscope vision parameters with precision to avoid errors. (J. Li et al., 2016) 

developed a meta-heuristic algorithm named Branch Population Genetic Algorithm, based on 

GAs, to solve a dual resource constrained job-shop scheduling problem. GA was used with 
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success in a wafer factory (J. C. Chen, Chen, & Liang, 2016) to solve the capacity allocation 

problem in order to minimize the difference in loading between machines. 

GAs have been applied, in the past decades, to many types of job-shops and a lot of considerations 

were made. (Çakar, Köker, & Demir, 2008) used a GA to minimize the mean tardiness of a 

schedule with jobs that have precedence constraints, in an identical parallel robots’ system. They 

found that GA was very successful in large-scale problems. (Balin, 2011) proposed a new 

algorithm in order to adapt GA to non-identical parallel machine scheduling problem, 

implementing a new crossover operator and a new optimality criterion. The algorithm proposed 

proved to be good for non-identical parallel machine scheduling problem to minimize the 

makespan, however (like in the most of the cases) setup times and due dates are not considered. 

(Costa, Cappadonna, & Fichera, 2016) developed a hybrid meta-heuristic method based on GA 

to deal with large-scale identical parallel machine environment with periodic maintenance 

management under the makespan minimization objective. (Jia, Fuh, Nee, & Zhang, 2007) 

proposed a GA integrated with Gantt chart to get good factory combinations to produce the jobs. 

A schedule is obtained with several sub-schedules for all the factories available. There is the 

possibility to get multiple objectives, such as minimizing makespan, job tardiness and 

manufacturing cost. (Gao et al., 2006) proposed a hybrid GA to solve the FJSSP that includes 

maintenances tasks, with the purpose of minimize the makespan, the maximal machine workload 

and the total working time over all machines. The completion time of maintenance tasks is not 

fixed and need to be determined during the scheduling process. Complementarily, they used a 

local search method in order to improve the algorithm. (L. Zhang, Gao, & Li, 2013) developed a 

hybrid GA and TS for DJSSP.  They considered random job arrivals and machine breakdowns in 

a multi-objective problem, namely efficiency and stability of the schedule. The proposed method 

demonstrated to have good performance solving DJSSP on both sparse and dense job arrival 

conditions. Kundakcı (Kundakcı & Kulak, 2016) introduced a hybrid GA to minimizing 

makespan in DJSSP. In their work, they considered arbitrary job arrivals, machine breakdowns 

and changes in processing times. They demonstrate that hybrid GA techniques are better than 

conventional GAs and TS algorithms. Although most of the literature concentrates on static 

FJSSP or DJSSP independently, (Fattahi & Fallahi, 2010) developed a GA to solve dynamic 

scheduling on a FJSSP. Their algorithm achieved optimal solutions for small problems and near 

optimal solutions for medium size problems. 

Since GAs are inspired on the natural selection, they follow the natural selection techniques to 

evolve. After establish the chromosome representation and the fitness function, the GA initializes 

a population and improves it through the selection, crossover, mutation and elitism operators. 
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2.5.1. Encoding 

For JSSP, the situation is a bit different from other scheduling problems. Here, several encoding 

strategies exist, and it is not clear in advance which is the best. Many authors distinguish between 

a direct and an indirect representation. In the first case, a solution is directly encoded into the 

genotype, but in the second case not (this means that an indirect representation encodes the 

instructions to a schedule builder) (Werner, 2011). Normally, each chromosome represents a 

solution (schedule) in JSSP. Each gene contains some information about a task, such as the job 

that it belongs to, the resource that it is assigned to, duration of the operation and so on. Often, 

the order of the operation in the chromosome represents the operations sequence (Kundakcı & 

Kulak, 2016). 

Werner (Werner, 2011) observed in his study (about GAs applied to shop scheduling problems) 

that different solution’s representations exist for job-shops problems and the best one may not be 

clear a priori, unlike flow shop problems where a solution is often represented as a permutation.  

In this case, each chromosome is composed by a set of genes where each one represents a different 

task to execute. Each gene holds the information relative to that task, such as the identification, 

processing time, associated station and product and start and end times. 

2.5.2. Selection 

Some individuals, designated as parents, of the population are selected randomly to perform 

crossover between each other and create a new individual, designated by child, which will be 

present in the next generation (Kundakcı & Kulak, 2016). There are several techniques to choose 

the parents. Two of the most used selection methods are roulette wheel selection and tournament 

selection. For the first approach, to each individual is assigned a probability according to its fitness 

value, where higher fitness means higher probability to be selected, since it is attributed a larger 

percentage to be selected, as it is demonstrated in Figure 2-2. In the second one, n individuals are 

chosen from the population and the one with higher fitness (the strongest) is selected. In this case, 

several tournaments need to be run to get several individuals (X. Li & Gao, 2016; Page, Keane, 

& Naughton, 2010; Werner, 2011). 
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Figure 2-2 - Roulette wheel selection. Image taken from (Casas, Taheri, Ranjan, Wang, & Zomaya, 2016) 

2.5.3. Crossover 

Crossover is the main factor to create new improved generations since the characteristics of the 

parents are preserved to the children. In this JSSP, the crossover will be used to create a 

chromosome with a new operations sequence trying to minimize the total makespan. Crossover 

is applied over two individuals with a given probability creating one or two new individuals (Noor 

et al., 2015). Some crossover techniques are single-point crossover, which swap all data beyond 

that point of parent one with parent two, and two-point crossover that selects two points and 

everything between that two points is swapped between the parents. Each one produces two 

children individuals. In task allocation problems, the crossover should preserve the chromosome 

information and not duplicate it. To do that, some different crossover techniques should be used. 

Some examples are order crossover (Noor et al., 2015), position based crossover (Kundakcı & 

Kulak, 2016) or partially-matched crossover (Ting et al., 2010). 

In Figure 2-3, partially-matched crossover is performed by cut chromosome in two random points 

and the segment between them is taken from one parent to another. To repair an infeasible 

chromosome, the parents should be mapped. From parent 1 to parent 2, 4 is mapped to 7 and 7 is 

mapped to 2. So, in second gene, the final value is 2 (Werner, 2011). 
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Figure 2-3 - Partially-Matched Crossover. After perform crossover, normally an invalid chromosome is 

obtained (proto-offspring). To repair chromosome, it is needed to apply an exchange outside the crossing 

region. At the end a valid chromosome is obtained (offspring). Image taken from (Werner, 2011) 

2.5.4. Mutation 

After crossover, mutation is applied to a small number of individuals with the purpose to replace 

genetic material lost during reproduction and crossover (Gonçalves et al., 2005; Jia et al., 2007). 

A mutation technique could be assign a random gene with a random value or swap two random 

genes in a chromosome. Mutation is also used to prevent population to get stuck (to converge too 

fast) due to super chromosomes (Jia et al., 2007; Kundakcı & Kulak, 2016).  

In the case of JSSP the mutation operator needs to be a swap mutator or another one that changes 

the genes’ positions and does not duplicate them, since the chromosome is a sequence and each 

gene represents a task (Noor et al., 2015; Page et al., 2010). 

In Figure 2-4 is represented a swap mutation where two genes of the chromosome are randomly 

selected and their position are exchanged with one another. 

 

Figure 2-4 - Swap mutation. Image taken from (Chung & Kim, 2016) 
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2.5.5. Elitism 

Even though, to improve the results obtained by the fitness function, the elitism component could 

be used. It allows to use a fraction of the population (the best individuals of the population) which 

survive to the next generation. This means that, those individuals are copied to the next generation 

without being subjected to the reproduction techniques (Ordóñez Galán et al., 2017). 

2.5.6. Fitness Function 

The fitness function is where chromosomes are evaluated. Each individual has its own fitness 

value that evaluates how strong it is in population and indicates the survival probability (Casas et 

al., 2016; El-Abbasy, Elazouni, & Zayed, 2016; Page et al., 2010).  They have better values of 

fitness accordingly to how good they are in population. In the end of the algorithm the best 

solution(s) found will be available. To obtain good solutions it is necessary to try the algorithm 

with different probability values on both crossover and mutation and find the better ones. 

Normally, this function evaluates the maximum completion time of the schedule and the one with 

smallest value is considered the fittest one (Balin, 2011; El-Abbasy et al., 2016; Kundakcı & 

Kulak, 2016). However, other evaluations can be used. In this study case, fitness function will 

focus in get the lowest total makespan, with the constraint that the maintenance tasks should be 

allocated to the begin or the end of the time window defined before initialize the schedule. Also, 

is available a third method that allocates the maintenance tasks the same way as the production 

tasks, not considering if they are allocated to the begin or the end of the schedule time window. 

 Summary 

GAs are a great solution to solve combinatorial optimization problems, such as scheduling 

problems, due to their capacity to achieve good solutions in large search spaces. Besides, 

generally, GAs require more process power and consume more time than other algorithms, such 

as dispatching rules, they are more flexible and achieve better solutions most of the times, like it 

is possible to verify by references above. GAs are very efficient and easy to implement, so they 

will effortlessly solve a dynamic flexible job-shop scheduling problem. How was possible to 

verify above, there are some solutions in literature that try to solve dynamic task allocation in a 

flexible job-shop. The author will try to get the best solution possible for this exact problem, based 

on the presented literature.
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3 
Chapter 3.  Scheduling Architecture 

As described in Chapter 2, in the last years the market changes are leading to a rearrangement of 

the manufacturing industry. To face the new trends, manufacturing systems need to quickly adapt 

in order to give fast responses to the market changes. Consequently, the shop-floor needs to be 

more agile and flexible. 

In that way, the PERFoRM H2020 project is looking to a smarter and pluggable system, where 

resources are able to communicate with each other more efficiently, in a distributed system.  

The proposed architecture was integrated in the PERFoRM project and it aims to develop a 

scheduling tool capable to plan schedules with both production and maintenance tasks in different 

production stations. However, to better understand how the system works and the interaction 

between tools, the architecture of PERFoRM is presented in this chapter. 

The scheduling architecture developed allows to generate new schedules and add or remove 

operations to the system. It can interact with other tools through a common middleware, this way 

it can get the information about the operations to allocate and the stations available in the shop-



Scheduling Architecture Chapter 3 

22 Dynamic Scheduling for Maintenance Tasks Allocation supported by Genetic Algorithms 

floor. This information needs to be PERFoRM-compliant, i.e. it should respect the PERFoRM 

data model, so all the tools can communicate by a common data format. 

Along with the scheduling tool itself, it was developed a Graphical User Interface (GUI), where 

a human operator can interact with the tool to generate schedules or add new tasks to the list. 

 PERFoRM Architecture 

The architecture presented here was developed as part of the PERFoRM project. The system 

architecture, illustrated in Figure 3-1, for the production system is based on a network of hardware 

devices and software applications which are connected by an industrial middleware. The work 

carried out in this thesis focused on one of the tools of the PERFoRM, namely the scheduling 

tool. 

 

Figure 3-1 - Overview of the PERFoRM system architecture (PERFoRM, 2016) 

The middleware is a distributed service-based integration layer and its main goal is to guarantee 

a transparent, secure and reliable interconnection of the different hardware devices (such as 

robotic cells and Programable Logic Controllers) and software applications (such as monitoring 

tools) presented at the PERFoRM ecosystem. The middleware allows each application to interact 
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with each other, without the need to know about their inner structure, from low level sensors and 

actuators to management systems. Legacy production systems need to use adapters, which 

translate their own data model into the standard interfaces defined in PERFoRM, to be compliant 

to this approach. The middleware provides a service registry which stores the different services 

available in the system. Furthermore, it takes care of connecting components which need to 

communicate and translating the data in a transparent manner (PERFoRM, 2016). 

The PERFoRM architecture adopts the standard interfaces as the main drivers for pluggability 

and interoperability, to allow the connection between hardware devices, such as robots and 

controllers, and software applications, such as databases and management or analytics tools, in a 

transparent way. Such interfaces should support the devices, tools and applications that fully 

expose and describes their services in a unique, standardized and transparent way to improve the 

seamless interoperability and pluggability, fully specifying the semantics and data flow involved 

in terms of inputs and outputs required to interact with these elements. To expose the system 

functionalities as services, a common data model is adopted, serving as the data exchange format 

shared between the PERFoRM-compliant architectural elements. This data model covers the 

semantic needs associated to each entity. In this context, two data abstraction levels are taken into 

account, more specifically the machinery level, covering mainly the automation control   and 

supervisory control layers, and the data backbone level, which covers manufacturing operations 

management and business planning and logistics layers (PERFoRM, 2016). 

Interoperability and harmonization of data at a system of systems level is achieved by connecting 

the standard interfaces with the data model for a common representation of data and system 

semantics. Even though, considering the integration of legacy devices and their own individual 

data models and semantic requirements it is necessary to add technology adapters, in order to 

enable the translation and mapping of legacy data into the common PERFoRM representation 

(PERFoRM, 2016). 

The technology adapters are the crucial elements to connect legacy systems to the PERFoRM 

middleware and to transform the legacy data model into the standard interface data model 

described in section 3.2. Thus, the technological adapters are only necessary when there is the 

need to connect a legacy component (e.g., an existing DB or robot) to the PERFoRM system 

(PERFoRM, 2016). 

The human integration is a crucial aspect in PERFoRM project to improve flexibility. Human-

machine and human-human interfaces support decision-makers to take strategic decisions and 

operators or maintenance engineers, at operational level, to perform their tasks. Those interfaces 

allow to share the view, the screen, the information, among other options, between colleagues 
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even if they are not physically present on the shop-floor. It is also possible to alert the operator if 

some abnormal event occurs or provide a mobile turn-by-turn guidance to navigate through the 

factory to retrieve tools or equipment (PERFoRM, 2016). 

Once machines are becoming to be smarter and the number of data being generated in shop-floor 

is increasing at a very high rate, robots and automation machinery need to be empowered with 

intelligence and higher processing capabilities to run more complex algorithms. Thus, machines 

are being equipped with a large number of sensors which generate huge streams of raw data. By 

analyzing this data locally instead of overloading the network with non-meaningful data, 

communication latency times can be reduced, enabling faster reaction to events or trend 

deviations (PERFoRM, 2016). 

Tools designed with advanced algorithms and technologies to support the production planning, 

scheduling and simulation may improve the system performance and reconfigurability. These 

tools should be PERFoRM compliant. Thus, they should follow or be translated to the PERFoRM 

data model. 

 System Data Model 

Despite being outside of the scope of the work developed, it is important to give a brief 

explanation of the data model system, to understand which ones and how the classes of the system 

are used by the scheduling algorithm. 

In the next sections are described the classes from the data model proposed in PERFoRM project, 

presented in (PERFoRM Project, 2017), which have some interaction with the developed 

scheduling algorithm. This data model was developed to allow the PERFoRM-compliant 

elements to share the same data exchange format, using the PERFoRM Markup Language (PML). 

This way, it is possible to interact between the scheduling tool and the middleware, allowing to 

access classes such as PMLEntity, PMLSkill, PMLConfiguration, PMLProduct, PMLOperation 

and PMLSchedule. 

Using this PERFoRM-compliant data model, the proposed scheduling architecture can access the 

information provided by other tools through the middleware, with only one data exchange format 

used by all PERFoRM elements. 
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3.2.1. PMLEntity 

The PMLEntity class is the generic representation of shop-floor entities, which encapsulates all 

the necessary information associated to both components and subsystems. PMLComponent and 

PMLSubsystem classes extend the characteristics of a PMLEntity, Figure 3-2. 

 

Figure 3-2 - PMLEntity, PMLComponent and PMLSubsystem classes 

Thus, PMLEntity class allows the existence of generic collections of elements that can be either 

components or subsystems. The PMLComponent is basically a single entity that can perform 

skills and present relevant data regarding its state and operation. On the other hand, the 

PMLSubsystem is a recursive element once it can contain other PMLEntities within. 

This generic design allows that for example a robot could be the lowest entity of a system, being 

treated as a simple component, and the same robot can be seen as a subsystem inside the system, 

involving different sensors as its components, using the same data model. 

3.2.2. PMLSkill 

The PMLSkill class represents the tasks that a PMLComponent or PMLSubsystem can perform. 

A certain skill is characterized by a unique identifier, as well as by series of associated 

configurations and parameters. Like PMLEntity, the PMLSkill is not directly used, enabling 
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instead the creation of generic collections of PMLAtomicSkill and PMLComplexSkill, Figure 

3-3. 

 

Figure 3-3 - PMLSkill, PMLAtomicSkill and PMLComplexSkill 

The PMLAtomicSkill represents the simplest form of a skill, a single action performed by a given 

entity. On the other hand, the PMLComplexSkill specifies a skill which consists in the 

combination of multiple skills, which can be atomic or complex. 

3.2.3. PMLConfiguration 

The PMLConfiguration class provides a high-level description of a possible configuration to 

execute a given skill, according to a set of specified parameters. Is this class which provides the 

duration time of a task. Its composition is represented in Figure 3-4. 
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Figure 3-4 - PMLConfiguration 

3.2.4. PMLProduct 

The PMLProduct class provides an abstraction of a given product variant, along with its core-

defining characteristics to enable a process-oriented description of the product, as represented in 

Figure 3-5. The product is defined by a unique identifier and contains a collection of skills, 

representing the skills by which it can be produced. It can contain a link to an external description 

of its geometric characteristics, using for this purpose the COLLAborative Design Activity 

(COLLADA) interchange format, an opened standard XML schema for the exchange of 3D assets 

among software applications. 

 

Figure 3-5 - PMLProduct 

3.2.5. PMLSchedule and PMLOperation 

The PMLSchedule class represents a unique schedule, associated to a certain PMLEntity. It 

contains the start and end times and a collection of the corresponding associated PMLOperations, 

as demonstrated in Figure 3-6. 
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The PMLOperation class is characterized by a unique identifier and contains all the information 

related to a task. Namely, the product to which that task is associated, the start and end times, the 

associated skill used to perform the task and the operation type, indicating if it is a production or 

maintenance task. 

 

Figure 3-6 - PMLSchedule and PMLOperation 

In the next section is presented the dynamic scheduling tool developed in this work. 

 Dynamic Scheduling Architecture 

The scheduling architecture proposed here is integrated in a more complex environment as 

demonstrated in section 3.1. The tool can interact directly with the middleware to send and receive 

information from the resources operating on the shop-floor. Thus, it is possible to know which 

working stations are available to operate, the operations that need to be allocated and the 

maintenance shifts available. The scheduling tool is composed by two modules. The first one is 

the scheduling itself, which processes the information and generates the schedules. The second 

module is the GUI, which is an interface where is possible to add and remove tasks to the tool 

and to request new schedules. The interaction with the tool is done through a human operator. 
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This operator does not need to be present in the factory, since the tool can be controlled remotely, 

through the GUI. The human operator can add or remove operations to the tool using his 

experience or using the information provided by the other tools. Those interactions are 

represented in Figure 3-7. 

 

Figure 3-7 - Overview of architecture interactions 

More specifically, the interaction between the scheduling tool and the human operator is done 

through a graphical interface. The interfaces communicates with the scheduling tool through a 

web service which allows computers to communicate through the Internet. Through the interface, 

it is possible to insert new maintenance tasks and remove them if necessary. Each time the 

operator chooses to add a task the information about that task, such as the ID, associated station 

and task duration, is sent to the tool and the task is inserted. To remove a task is sent the task ID 

to the tool so that task is removed from the set of tasks to allocate. Then, if it has been successful, 

the information is sent back to the graphical interface which is, at that time, updated, as shown in 

Figure 3-8. 

When the operator chooses to generate a new schedule, the interface accesses the middleware in 

order to get the information about the production tasks to allocate and the stations available to 

operate those tasks. Then, it sends all that information to the scheduling tool. The scheduling tool 

receives the production tasks, the available stations and accesses the stored maintenance tasks to 

generate a schedule for each station. After executing the GA and obtaining the schedules, the 

scheduling tool sends it to the GUI which in turn sends it to the middleware. So, any other tool 

can access the available generated schedules. This process is represented in Figure 3-8. 
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Figure 3-8 – Scheduling tool architecture 

The scheduling tool architecture proposed here consists, mainly, in acquire the information 

needed to execute the GA, execute it, which generates a collection of schedules, and, finally, send 

that collection to the middleware. The workflow of the developed tool is represented in Figure 

3-9. 

 

Figure 3-9 - Scheduling tool workflow 
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First, it is necessary to know which resources are available in the shop-floor before executing the 

algorithm. That data is obtained from the middleware, which contains the information of each 

station. That information includes the station ID, the skills it can perform, the configurations used 

for each skill (which contains the task duration) and if it is available or not. 

Another initial requisite that should be known is the information about the maintenance execution, 

i.e., the number and type of maintenance teams that are available, to thereby the maintenance 

operations could be properly allocated. 

Finally, but not least, a crucial part is to obtain the list of operations to allocate. The production 

operations are available in a file stored in the middleware that contain all the information about 

them, for example the ID, expected duration of the operation and in which station it will be 

performed. The list of maintenance operations can be available in the same file as production 

operations or it can be added a single operation through the GUI. There are some mandatory fields 

which each operation should contain, such as the operation ID, the associated skill ID, the 

associated product ID and the operation’s number and type. Without them the schedule to the 

corresponding operation is not performed. Operation ID represents the identification (unique) of 

each operation. The associated skill ID refers to the skill identification associated to that 

operation, whereby is possible to obtain the configuration to that skill and finally the duration of 

each one. The associated product ID is the identification of the product to which that operation 

corresponds. With the operation number, it is possible to know the production order of the 

operation of each product, lowest is the first and highest the last. Finally, the operation type 

specifies if that operation is a production or maintenance operation. In the case of maintenance 

tasks, Associated Product ID and Operation Number are not necessary, once they do not have a 

product associated and is considered that each one only corresponds to one operation. It is 

important to note that, in this case, maintenance tasks should be both predictive and time-based. 

If a corrective intervention is needed then a reschedule should be done, which can include or not 

a CM operation. 

Then, with all necessary data collected, the algorithm should be executed and a collection of 

schedules obtained. In this collection is present a schedule for each work station present (and 

available to perform operations) in the shop-floor. Each one contains all the operations to be 

executed in that station. To each of those operations, start and end times are assigned, so it is 

possible to know when a given operation will be performed. As a final note, the schedules need 

to be translated to be PERFoRM-compliant before the collection of schedules be sent to the 

middleware, where is submitted to simulation tests, to verify its feasibility. 
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To generate a new schedule, it is necessary to allocate the tasks efficiently to obtain a feasible and 

valid schedule, i.e. avoiding that a station is operating more than one task at the same time or 

preventing a product from being present in different stations at the same time. Since this is a 

combinatorial problem, it is presented a GA architecture to solve this JSSP. The description of 

GA’s architecture proposed is described in section 3.4. 

 Genetic Algorithm 

In this chapter is presented the GA’s approach used to perform the tasks’ allocation in the 

scheduling tool. 

As mentioned in section 2.5, to create new individuals for the new generations, GAs use three 

genetic operators: selection, crossover and mutation. However, first, the chromosome needs to be 

encoded, which means that the structure of the chromosome needs to be defined.  

Then, the fitness function needs to be defined. The fitness function will evaluate each individual 

in the population and attribute it a value, the better the value the stronger it is. The fitness value 

of a chromosome is represented by the higher makespan value between all the stations present in 

the chromosome multiplied by a value which represent the number of errors on that schedule. 

There is an error when some task is allocated before its precedent task. At the end, the 

chromosome with the lowest fitness value represent the best solution found in each generation. 

Before starting the GA’s engine, a random population with a predefined size, based on the 

encoded chromosome, was generated. To do so, it was set the population size. After generating 

the initial population, the fitness value of each individual is calculated. Then, the genetic operators 

are applied until the termination criteria is reached, as it is demonstrated in Figure 3-10. The 

termination criteria can be reached, for example, by a predefined number of iterations or if the 

best fitness value doesn’t change for a certain number of successive iterations. 

In scheduling problems, each individual of a population represents a schedule. From generation 

to generation, some percentage of the fittest individuals (or only the fittest one) are maintained 

(survive) and new ones are created. This way, it is ensured that the best schedule found will be in 

the final solution. Each individual has its own fitness value that evaluates how strong it is in the 

population and indicates the survival probability. 
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Figure 3-10 - Genetic algorithms flowchart 

The GA’s architecture proposed in this work consists mainly in four steps: 

• The most important but also most difficult step is to transform the problem into an 

appropriate genotype representation. In this case, the goal is to obtain a chromosome 

representing a valid schedule. To initialize the chromosome a sequence of elements 

was created. Each of those elements represents a gene and each task to allocate is 

assigned to a different gene. Then was created a genotype with the previous 

chromosome, where a fitness function can be applied to evaluate the individuals. Since 

it is needed to change the genes’ position keeping the exactly same genes in the 
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chromosome, it was used a genotype containing a permutation chromosome. This 

chromosome generates a random sequence of those genes and allows to model 

permutations between them; 

• The next step was to define the fitness function. To obtain the solution with the shortest 

execution time, this function was minimized. This means that the schedule with the 

lowest fitness value will be selected. The fitness function is described in detail in 

section 3.4.6. 

• The third step was to create the evolution engine. This engine is responsible for 

evolving the given population. Here, it is possible to control the parameters of the 

evolutionary environment. To alter the behavior of the environment, different alterers 

and selectors can be used, as well as the population size, the offspring fraction and 

many other parameters. 

• Finally, the evolution process from the previous engine was created. It allows to limit 

the process evolution or to peek the statistics of the procedure. The stream needs to be 

limited in order to do not run forever. Then, the final solution, in this case the best 

phenotype, which is composed by the genotype and the corresponding fitness value, is 

collected. 

So, the first step is to translate the problem from the real world to a genotype, denoting what 

means a chromosome and its genes in the real problem. This way, is possible to improve the 

solution to a feasible one. 

3.4.1. Encoding 

The first step of the GA was to define what is a chromosome and how it is composed, so that it 

portrays the real problem. 

A chromosome is a schedule solution for the entire shop-floor, where each gene represents an 

operation to perform. So, each different chromosome represents a different schedule. Assuming 

that Station j, Mj only performs one type of tasks on a Product Pi. In Figure 3-11 is an example of 

the chromosome representation. Each gene results from the merge of a product associated to a 

station, represented as PiMj. The first operation of product 1 will be performed in station 2, then 

comes the first operation of product 2 to be performed on station 3, etc. 

P1M2 P2M3 P1M1 P3M1 … P2M2 

Figure 3-11 - Chromosome encoding 
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Each gene is composed by a task which contains the following information: 

• Task ID; 

• Task duration; 

• Associated station; 

• Task type; 

• Associated product; 

• Task priority. 

When the best solution is obtained, that chromosome is split into several schedules. So, the 

schedule for the entire shop-floor is divided into a schedule for each station present on it. Then, 

it is translated to be PERFoRM-compliant and is ready to be sent to the middleware. 

After defining the chromosome, it is necessary to choose the number of generations which the 

process should evolve before stops and the size of the population. 

3.4.2. Generations and Population 

The number of generations and the population size are both crucial parameters in GA and should 

be chosen cautiously to have enough flexibility to let the algorithm evolve and do not waste too 

many time and processing power. 

The number of generations in the algorithm is the simplest way for terminating the evolution 

process. It should be tested several times with different values to find a good one to each situation. 

A small value may not be enough for the algorithm to evolve into a good solution but on the other 

hand, a high value could be consuming processing time unnecessarily because a good solution 

could be found too soon. 

In the proposed architecture, it was also defined another limit for the number of generations. This 

limit truncates the evolution process by a steady fitness value, this means that, if the fitness value 

remains constant for a given number of generations, the evolution process stops. It could help to 

stop the process earlier, since, if it does not evolve for a while it may be stagnant. 

At the same time, the population size should be large enough to have diversity among the 

individuals, but not too large that processing power and time are being consumed pointlessly. A 

small population could be very difficult to evolve into a feasible solution since the mating between 

individuals may not lead to a good offspring when the search space is too large. 
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So, both the number of generations and the population size should be defined depending on the 

problem size and complexity. Different values for these parameters used in different problems are 

present in section 5.2. 

After choosing the right parametrizations for the number of generations and the population size, 

the selection process needs to be defined. This decides how the population for the next generation 

is selected. 

3.4.3. Selection 

The selection process could be chosen independently for both the survivor and the offspring 

populations. Several selector types are available to choose the individuals which will be selected 

to the reproduction process. In the proposed GA, the selector used for both cases was the 

tournament selector with size three. 

As shown in section 2.5.5, first it is necessary to calculate the probability, p, of selection for each 

chromosome, using the equation 

𝑝𝑖 =
𝑓𝑖

∑ 𝑓𝑖
3
𝑖=1

 

where f is its fitness value and i is the individual. 

After spin the roulette wheel, a chromosome is chosen according to its probability. The one with 

a best fitness value has a higher chance to be chosen. In Figure 3-12 is presented an example, 

merely illustrative, of this method. Three individuals from the population are chosen randomly to 

dispute the tournament. Assuming that individual A has a selection probability of 64%, individual 

B has 25% and individual C has 11%. When the wheel is turn, the individual with higher 

probability, i.e. with the best fitness value, has higher chances to be subject to the genetic 

operators. 
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Figure 3-12 - Roulette wheel selection with size three 

The next step is to define the elitism, the fraction of the population which will be directly present 

in the next generation, without being submitted to the genetic processes. 

3.4.4. Elitism 

To choose which portion of the population survives to the next generation and which part is 

created (offspring) it is needed to select the elite population. Different values of the elite fraction 

could be used in different situations. In this work was used an elitism value of 4%, left that way 

a value of 96% to the offspring population. Tests with different values were executed and the 

probability of 4% proved to get better fitness values with small processing times than others. 

Using a small value to select the elite population, it is possible to ensure that only the best 

individuals are preserved to next generations and the rest of the population is created, allowing to 

explore a larger search space. 

After selecting the elitism fraction, it is necessary to choose the genetic operators to use, namely 

crossover and mutation. 

3.4.5. Crossover and Mutation 

Crossover and mutation determine how the search space can be crossed and are responsible for 

the genetic diversity of the evolution process. 

Mutation allows the population to explore the search space by making small moves. This is 

normally lower than crossover but can be a great help in problems where crossover is disruptive. 

Mutation can also be crucial to provide the diversity which crossover needs. 

64%

25%

11%

Selection Probability

Ind A

Ind B

Ind C
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Crossover creates a new chromosome by recombining parts of two individuals, exploring most of 

the search space. Crossover probability should also be optimized accordingly to the problem 

characteristics. 

In section 5.1 are presented experiments with different genetic values applied to JSSP with 

different sizes. 

Finally, it is necessary to define the fitness function, which evaluates how good is each individual 

present in the population. 

3.4.6. Fitness Function 

The fitness function is, also, a very important part in the GA’s modelling. It evaluates each 

chromosome and sets the fitness value of each one. This value allows the evolution engine to 

select the offspring and survivor population. 

To face this scheduling problem, the fitness function was implemented taking into account some 

important rules. The best fitness value is calculated by finding the minimum total makespan in all 

generations, where the total makespan is given by the station with the maximum execution time 

in each generation. The fitness value also considers the order by each operation is performed, i.e. 

if operation 2 is performed before the operation 1 it leads to an invalid solution which is 

represented by a fitness value which is multiplied by 10, this way is possible to identify invalid 

solutions. 

Scheduling rules: 

• Only one operation of each job may be processed at a time; 

• No pre-emption is allowed, which means that is not possible to interrupt a task and 

resume it later; 

• Each job must be processed to completion; 

• Jobs may be started at any time, no release times exist; 

• Jobs may be finished at any time, no due dates exist (within the time window defined); 

• No station may process more than one operation at a time; 

• Station setup times are not considered; 

• Stations may be idle within the schedule period; 

• Stations are available at any time, since they are considered available; 

• An operation can only be performed once; 

• Operations precedence within a product should be respected; 
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• Maintenance tasks must be executed during the maintenance shift. 

To obtain the fitness value of each individual, it is necessary to go through the genes of each 

chromosome. The start and end times are set to the first task present in the chromosome, then to 

the second one and so on. The way those times are calculated is defined below, in equations (4) 

to (7). 

A mathematical explanation is presented here to clarify how the fitness value of each individual 

is reached. 

The equation (1) describes the fitness function. The fitness value f is given by the minimum of 

the maximum completion time (makespan) of each generation times a weight which is increased 

if some task is not allocated in the right order. 

 𝑓 =  𝑀𝑖𝑛[ 𝐶𝑚𝑎𝑥 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡 ] (1) 

The total makespan of the job-shop, Cmax, denotes the execution end time of the last station and is 

represented in equation (2). It represents the total time to process all the operations in the shop-

floor, including idle time between operations. 

 𝐶𝑚𝑎𝑥 = 𝑀𝑎𝑥[𝑓𝑠𝑗]   ,   𝑗 = 1, … , 𝑛 (2) 

The total execution time of each station j, fsj, is set by the later final time of the operations 

allocated to that station, fih, calculated in (3), since the operation h is allocated to station j. 

 
𝑓𝑠𝑗 = {

𝑓𝑖ℎ , 𝑓𝑠𝑗 < 𝑓𝑖ℎ ; ℎ ∈ 𝑗

𝑓𝑠𝑗, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 , 𝑖 = 1, … , 𝑛;    ℎ = 1, … , 𝑚;    𝑗 = 1, … , 𝑘 

(3) 

The ending time of each operation is calculated in (4), where the start time of operation h of 

product i, 𝑠𝑖ℎ, is replaced by the start time of maintenance task h, 𝑠𝑚ℎ, and the process time of 

operation h of product i, 𝑝𝑖ℎ, is replaced by the process time of maintenance task h, 𝑝𝑚ℎ, in 

maintenance tasks case. 

 𝑓𝑖ℎ =  𝑠𝑖ℎ + 𝑝𝑖ℎ    ,   𝑖 = 1, … , 𝑛;    ℎ = 1, … , 𝑚 (4) 
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To calculate the start time of the operation it depends if it is a production operation or a 

maintenance operation. In first case, constraint (5), it is calculated based on the previous operation 

of the corresponding product if any, otherwise starts at time zero. Though, if there is already 

another operation, in the same station, allocated to that time slot, this one is altered to a new time, 

starting at the end of that task, fjh. 

𝑠𝑖ℎ = {

𝑠𝑖ℎ−1 + 𝑝𝑖ℎ−1, 𝑛𝑜 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 ℎ > 1
0, 𝑛𝑜 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔; ℎ = 1

𝑓𝑗ℎ−1,                         𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔
    ,   𝑖 = 1, … , 𝑛;    ℎ = 1, … , 𝑚 

(5) 

If it is a maintenance operation the start time of the operation is calculated based on the user 

intent. It could be desirable to have the maintenance tasks allocated as soon as possible, as late as 

possible or a third option where there are no pretensions about maintenance tasks allocation. 

However, there is an important aspect to respect, the maintenance tasks should be executed during 

the maintenance shift, which in this case is between 6a.m. and 2p.m. 

The maintenance task start time to “as soon as possible” case is calculated in (6). The Maintenance 

Shift Start time is represented by MSS, the Maintenance Shift End time is represented by MSE, 

DT represents the Day the Task is performed and 1440 minutes are the total minutes of one day. 

It is assigned a start time and if there is a conflict with other operation in the same station that 

time is changed to the next slot within the maintenance shift time. If that maintenance shift is 

already full, it is allocated to the beginning of the maintenance shift of the day after and so on. 

 

𝑠𝑚ℎ = {

𝑀𝑆𝑆 + 1440 ∗ 𝐷𝑇, 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔; 𝑓𝑖ℎ > 𝑀𝑆𝐸
𝑠𝑖ℎ−1 + 𝑝𝑖ℎ−1,                             𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔; 𝑓𝑖ℎ ≤ 𝑀𝑆𝐸
𝑀𝑆𝑆,                                 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑎𝑠𝑘𝑠 

 

(6) 

To calculate the start time of a maintenance task “as late as possible”, the constraint (7) is used. 

First, the task is allocated to the last shift maintenance slot of the time window. If there is 

overlapping with another task, it is allocated to the next slot in that shift. In the case that shift is 

already full, it is allocated to the previous day and so on. The timeWindow represents the amount 

of days reserved to the schedule. 

 

𝑠𝑚ℎ = {

𝑀𝑆𝑆 + 1440 ∗ (𝐷𝑇 − 2), 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔; 𝑓𝑖ℎ > 𝑀𝑆𝐸
𝑠𝑖ℎ−1 + 𝑝𝑖ℎ−1,                             𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔; 𝑓𝑖ℎ ≤ 𝑀𝑆𝐸

𝑀𝑆𝑆 + 1440 ∗ (𝑡𝑖𝑚𝑒𝑊𝑖𝑛𝑑𝑜𝑤 − 1), 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑎𝑠𝑘𝑠 
 

(7) 
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To check the operations order, each product contains a collection with all operations belonging 

to that product. If an operation is executed after another one with higher priority, then a parameter 

representing the weight of the errors occurred is incremented (multiplied by 10), leading to a very 

large fitness value when the solution is invalid. If the total makespan is, for example, 125, but 

there is one error, so the fitness value will be 1250. This way is possible to know the number of 

errors present in each generation. 

Finally, it is obtained a solution containing a schedule for each station in the shop-floor, with the 

respective start and end times of each operation. 

Based on this definition of the architecture an implementation is suggested in chapter 4.
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4 
Chapter 4.  Implementation 

In this chapter is described the implementation of the proposed scheduling architecture, discussed 

in sections 3.3 and 3.4. The scheduling tool was developed using Java language, the Jenetics 

library and the Restlet API to provide REST services. 

Restlet is a REST framework for Java platform. This allows the computer systems to 

communicate between them through the Internet. 

Jenetics is a library written in java which allows an easy, but very complete, implementation of 

GA in different problem domains. The only runtime dependency to other libraries is to Java 8 

runtime. The library has a clear definition of the different concepts of GA, such as Gene, 

Chromosome, Genotype, Phenotype, Population and Fitness Function. It allows to easily change 

between minimize and maximize the fitness function without the need to tweak it (Wilhelmstotter, 

2016). For a deeper knowledge about Jenetics the reader is encouraged to visit its webpage, where 

is all the information about this library, at http://jenetics.io/. 

In the next section are presented the implementation of the services provided by this scheduling 

tool. 

http://jenetics.io/
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 Services 

The scheduling tool provides several different services. One of them is to generate a new schedule, 

based on the information available about the operations to perform and the stations available. The 

other one allows an operator to insert new maintenance tasks in the system, which will be included 

in the schedule when a new one is requested. The third one, allows to remove a task inserted by 

the operator. 

To create the RESTful web services, an object of CorsService from restlet.service class was 

instantiated. This allows cross-domain communication from the browser and is possible to specify 

the allowed origins and the allowed credentials, using the setAllowedOrigins and 

setAllowedCredentials methods, respectively. The parameter passed to the allowed origins 

method was a new instance of HashSet(Arrays.asList(“*”)), which means that the resource can 

be accessed by any domain . The allowed credentials were set to true, which means that the 

browser will expose the response to the application. This way, it was possible to run both the 

server and the client sides on the same machine. 

In order to set up new services an instance of the Component object from the restlet class was 

created. Through the getServices().add method from the Component class, was defined that the 

service would run under HTTP protocol on port 8182. By the getServices.add method, the 

CorsService instantiated before was added to the list of services. 

From here, it was only needed to execute the getDefaultHost.attach method from the component 

class, to provide a new service, passing the name of the service and its class as parameters, such 

as the newTask, removeTask or newSchedule services, as represented in Figure 4-1. 

 

Figure 4-1 - Service methods to execute a new schedule, insert a task and remove a task, respectively 

Finally, the services were set up using the start method from the Component class. 

The implementation of the scheduling tool itself is defined in the following section. 
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 Scheduling 

To implement the scheduling tool, it was developed an algorithm which processes all the 

information received from the PERFoRM middleware, generates a collection of schedules and 

sends it back to the middleware. The class diagram developed is presented in Figure 4-2 and 

specifies the interactions between the created classes and the main methods used in the algorithm. 

The SchedulingInterface class stores the information about stations, products and operations to 

allocate, obtained from the respective files present in the middleware. It also stores an HashMap 

of the generated schedules. 

The Station class defines a work station and includes the associated skills it is able to execute, the 

operations list allocated to that station and its makespan, among others. 

In the same way, the Task class contains all the information about an operation to execute. Such 

as its ID, the station where it will be executed and the duration, in minutes, of the task. 

On the other hand, the Product class abstracts a product, containing its ID as well as the operations 

needed to be performed. 

The GeneticProcessing class translates the information obtained by the interface to be able to be 

executed by the GA in the Scheduling class, using the convertOperations method. Once the GA 

algorithm is performed and the best solution is found, i.e. the best schedule for the shop-floor, 

this one is divived in several schedules, one for each station. Finally, the GeneticProcessing class 

translates the schedules obtained to be PERFoRM-complaint, using the toPMLSchedule method, 

and sends this collection of schedules to the middleware. 
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Figure 4-2 - Scheduling class diagram 

The Scheduling class executes the GA process by call the generateSchedule method. It uses the 

checkOperationsPrecedence method the check if the operations respect their order and the 

tasksStartTime method to attribute the starting times to each task. The makespan method 

corresponds to the fitness function and determines the fitness value of each individual. 

In Figure 4-3, is represented the sequential diagram of the scheduling tool indicating the 

interactions between the different classes. The scheduling tool first gets all the available stations 

from the middleware and instantiate each one of them as a Station object. Then, it gets the 

collection of PMLOperations, also from the middleware, and creates a Product object each time 

there is no product instantiated for that operations. After that, a GeneticProcessing object is 

created with the information received and the PMLOperation collection is converted into a 

collection of Task objects ready to be used by the GA. In the next step, the SchedulingInterface 

starts the generation of the PMLSchedule. The GeneticProcessing class creates a new instance of 

the Scheduling class and invokes the method to generate a new schedule. After a solution is 

reached, it is sent back to the GeneticProcessing class and is converted to a PMLSchedule by each 

station, with all the times (start and end times) set. Lastly, the PMLSchedule collection is sent to 

the SchedulingInterface where it can be sent to the middleware. 
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Figure 4-3 - Scheduling sequential diagram 

4.2.1. SchedulingInterface 

SchedulingInterface class implements the interface where it is possible to generate new schedules 

and add maintenance tasks manually to the list of tasks to allocate. 

When initialized it gets the information of the stations available in the shop-floor and then the 

operations to be performed by those stations. This information is obtained from files stored in the 

middleware and are, posteriorly, converted to the respective classes. 

The stations are converted to a Station object and stored in an Hashmap collection identified by 

its ID. On the other hand, the operations are stored in a list of PMLOperation and each time an 
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operation of a non-existing product arrives that product is created and stored in an Hashmap to, 

later, be possible to identify the precedence of operations in each product. 

4.2.2. Station 

This class is used to instantiate each station available in the shop-floor. Thus, it is possible to 

access any of them. Each instance is characterized by a unique identifier, a collection of the skills 

which the station can perform, a start and an end time, a collection of operations to be performed 

by that station and the total time the station is planned to be operating. 

4.2.3. Task 

The Task class is the generic representation of the operations to be executed in the shop-floor. 

Converting each PMLOperation into a Task object makes it more generic, once it can be adapted 

to a different situation, and easier to handle the GA once the order of the operation 

(operationNumber) and the station associated are available in this class, but not in the 

PMLOperation class. Otherwise, would be harder to access them each time a new task needs to 

be allocated. Similarly, the duration of the operation is not available in PMLOperation class, it is 

needed to access the associatedSkill parameter and then the configurations collection to access 

the Duration field. The start and end times of the operation are represented as an int which makes 

it easier to process the times once the duration is an int too. Each task contains an identifier and 

the associated product identifier that let it know to which product it belongs to. 

4.2.4. Product 

The Product class is the representation of the existing products in the shop-floor ready to be 

performed. Each one has an identifier and contains a collection of the operations needed to be 

executed. There is also a Boolean field to indicate if all the operations are done or not and, 

consequently, know if a product can already be scheduled, since some products depend on other 

to be executed. However, the precedence of products was not implemented in this work. 

4.2.5. Station 

The Station class provides an abstraction of the working stations available in the shop-floor. It 

contains all the necessary information about the stations to perform the scheduling, including a 

collection of the associated skills it can execute, the total working time since the first operation 

starts till the last one ends, a collection containing all the operations which will be performed in 

the station and the start and end times of each station. 
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4.2.6. GeneticProcessing 

This class basically treats the data before and after performing the schedule. It converts the 

collection of PMLOperations into an HashMap of Tasks, this way it is easy to access each one of 

them to alter the start and end times. The generateSchedule method instantiates the Scheduling 

class to obtain a scheduling solution and returns a collection of PMLSchedules. The 

toPMLSchedule method converts the solution obtained in the Scheduling class to a collection of 

PMLSchedule, assigning the times to each PMLOperation, ready to be sent to the middleware. 

Finally, the tasksStartTime method translates the times of each operation coming from the 

Scheduling class into Date type values. 

4.2.7. Scheduling 

The Scheduling class implements the GA. It stores the collections of operations, products and 

stations needed to execute the algorithm. The generateSchedule method sets the parameters of the 

GA and starts the algorithm. The eval method is used as the fitness function and evaluates the 

algorithm. For that, tasksStartTime method assigns the start and end times to the operations, 

accordingly to the sequence of operations received and the checkOperationPrecedence method 

verifies if the precedence between operations is respected. There is a variable, weight, which is 

used to increase the value of the fitness function if some task is in a wrong order. 

Next is defined the implementation of the data acquisition and processing, necessary to then 

execute the GA. 

 Data Acquisition 

The data acquisition is done through the middleware and the GUI, as demonstrated in Figure 4-4. 

Each time a new schedule is requested, the algorithm gets the following data, necessary to perform 

the task allocation: 

• Production operations collection; 

• Maintenance operations collection; 

• Stations available in the shop-floor. 
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Figure 4-4 - Data acquisition 

Both production and maintenance operations are loaded from the middleware and stored in a 

common LinkedList of operations. Each new entry of the list is stored on the form of a 

PMLOperation, as demonstrated in Figure 4-5. Also, the maintenance tasks could be inserted 

from the GUI interface. In this case, they are stored in a LinkedList with the same format, where 

they can be removed, until a new schedule is requested. At this point, the maintenance tasks are 

added to the common list of operations. 

Each operation present in the file is converted to a PMLOperation object and contains necessarily 

an operation ID, an associated skill, with the respective ID and configuration list and the operation 

type, production or maintenance. Each configuration should have the associated entity ID and the 

duration of that operation. 

In the production operations case, it should, additionally, contain the operation number and the 

associated product ID. 

Also, it is necessary to get the information about all the stations in the shop-floor available to 

execute operations. That information is stored in an HashMap. The key of each entry in the 

HashMap is the station ID and each station is stored in the HashMap over the format of a Station 

object. So, the information is loaded from the middleware and for each different station present 

on it a new Station object is instantiated, containing the ID and the skills of each station. Each 
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skill is a PMLSkill instance and contains an ID, the corresponding station ID, task’s duration, and 

a PMLConfiguration collection, since each skill could have different configurations, depending 

on which station it is executed. 

Additionaly, was implemented an HashMap to store the different products whose operations 

where loaded from the middleware. The key of each entry is the product ID and each product is 

stored in the format of a Product object. It contains an ID and the number of operations to be 

executed in that product. In this way, is possible to check the precedence between products. All 

this process is represented in Figure 4-5. 

 

Figure 4-5 - Data acquisition flowchart 
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It was assumed that the maintenance teams are always available and the maintenance shift is done 

between 6am and 2pm. It was also assumed that the factory is always operating and there are no 

holiday times. 

The GA can only be executed after all the previous data is known and stored. The GA’s 

implementation is described below. 

 Genetic Algorithm 

In order to implement the genetic processing, the previous information was used together with 

the Jenetics library. 

To easily access the tasks stored by the algorithm, the list of tasks was converted into an 

HashMap. The key of each entry is the ID of the operation, which is unique and each one is stored 

over the format of a Task object. This allows to access the operation number and duration directly, 

unlike on the list of PLMOperation. 

Also, it was created a PMLSchedule variable, where the generated schedule (for all stations yet) 

is stored. To generate a new schedule, the method generateSchedule of the Scheduling class was 

called and this is where the Jenetics library comes in. 

In Figure 4-6 are presented the steps performed by Jenetics to execute the GA. First, the initial 

population is created. After that, is calculated the fitness value of each individual in the 

population. Then, the generation number is increased and in lines 5 and 6, respectively, the 

survivor and the offspring population are selected, through the offspringFraction property of the 

Engine.builder. In line 7 the offspring population is altered. Finally, the survivor and the altered 

offspring populations are combined into a new population. The fitness value of each individual 

of the new population is calculated again, in line 9. While the termination criteria is not reached, 

steps from line 4 to 9 are repeated (Wilhelmstotter, 2016). 

 

Figure 4-6 - Pseudo-code of the Jenetics genetic algorithm steps. Image taken from (Wilhelmstotter, 

2016) 
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The process describing the instantiation of the GA using the Jenetics library is described next and 

presented in Figure 4-7. 

It was created an ISeq sequence from the values of the HashMap of tasks to allocate, containing 

objects of Task type. From this sequence was created a permuted chromosome using the method 

of of the PermutationChromosome class. Then, a genotype Factory was instantiated containing 

objects of type Genotype<EnumGene<Task>>, using the method of of the Genotype class, which 

allows to create new individuals during the evolution process. This process is represented in the 

first steps of Figure 4-7. 

To evaluate the individuals, a method, called eval, was created, which represents the fitness 

function. The main goal of this method is to attribute the start and end times to each task and get 

the fitness value of each generation. Once the values of each station are changed in each 

generation, it was necessary to create a loop to reset the values of each instance of the Station 

class present in the HashMap containing all the stations. Then, the same was did to the products 

HashMap. 

Then, was created the evolution engine, in step 5 of the Figure 4-7, responsible for evolving a 

given population, through the builder method of the Engine class. The fitness function and the 

genotype factory were passed as parameters to the builder method, which allows to evaluate each 

individual present in the population. Several methods of the Engine.Builder class were called in 

order to set the needed parameters to perform the GA. 

• populationSize: the number of individuals which form the population; 

• offspringFraction: the offspring population fraction; 

• survivorsSelector: the selector used for selecting the survivor population; 

• offspringSelector: the selector used for selecting the offspring population; 

• optimize: the optimization strategy used by the engine; 

• alterers: the alterers used for alter the offspring population. New instances of 

PartiallyMatchedCrossover and SwapMutator (from Jenetics library) were created. It 

changes the order of genes in the chromosome, where no duplicated genes within the 

chromosome are allowed.; 

• build: builds a new Engine instance from the set properties. 

All the previous parameters are adaptable, depending on the problems’ size and complexity, 

except optimize, which was set to minimum, making it possible to obtain the minimum value from 

the fitness function. 
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After that, the phenotype was generated, via the stream method of the Engine class. This created 

a new infinite evolution stream with a newly created population. To prevent the process to evolve 

infinitely, a limit needed to be set. The limit method from the EvolutionStream class, was set 

twice. One of them, indicating the maximum generations allowed by the algorithm. The other one 

truncating it by steady fitness, i.e. if truncating the evolution stream if no better phenotype is 

found after a given number of generations. It was done using the bySteadyFitness method of the 

limit class. Finally, after the process evaluate all the individuals, the evolution result was collected 

from the evolution stream, using the collect method, which is inherited from interface 

java.util.stream.Stream. 

 

Figure 4-7 - Flowchart representing the process of Jenetics library 

The fitness function is represented in Figure 4-8. To implement it was created a loop going 

through all the chromosomes present in the genotype. For each chromosome, another loop was 

created, going through all the genes present in that chromosome. Then, an instance of the Task 

object was obtained from each gene and the task’s duration, the associated station ID and the 

operation’s type were stored in variables. If the task is a production operation, so another variable 
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is created to store the associated product ID and the tasks’ precedence of that product is verified. 

If it is a maintenance operation, there is no product ID associated. In the case that the station ID 

is not present in the stations HashMap, the current iteration of the loop is ignored and moves on 

to the next.  

At that time, the times of the task were defined. How it was explained in the architecture chapter, 

in the production operations case, the start time was calculated based on the previous operation 

of the corresponding product if there was any, otherwise the start time is zero. The end time was 

obtained by add the task’s duration to the start time. However, if there was already another 

operation allocated to that station at the same time, causing a conflict, a new time is set to the 

current task, starting at the end of the other, with which there was a conflict. 

In the maintenance tasks case, the start time depends on the user intent. It could be “as soon as 

possible” or “as late as possible”, defined in equations (6) and (7) of the section 3.4.6, 

respectively. To check the conflicts in the case of maintenance tasks, the principle is the same, 

however it is necessary to check if the maintenance is performed during the maintenance shift. 

So, if it is not, it should be allocated to the next day, in the case of the “as soon as possible” 

scenario, or the previous day, in the case of the “as late as possible” scenario, using the day 

variable present in the Task class. 

After getting the times of the task, the makespan of the associated station is updated, if the task 

end time is greater than the current station’s makespan. Finally, that task is added to the station’s 

list. And finally, that list is sorted from the lower start time to the highest, thus the maintenance 

tasks could be inserted without having to go through all the tasks. 

Here, if the task was a production task and the corresponding product ID exists in the products 

HashMap, that task is added to the end of operations’ list of that product and the precedence 

between operation is checked. So, for each other operation which the operation number is not 

lower than the current operation number, the weight variable is multiplied by 10. This way, the 

fitness value will be much higher in the case where the precedence between operations was not 

respected. 
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Figure 4-8 - Flowchart of the implemented fitness function 

To complete the fitness function, it was necessary to get the minimum value of the chromosomes 

present in the genotype. Hence, it was necessary to create a loop to iterate over the stations’ 

collection to find the station with the higher makespan value, which represents the total amount 

of time the set of tasks of that chromosome will need to be executed. After get the value of all 

chromosomes from the genotype, the minimum value, representing the best solution found in that 

generation, can be obtained. 

Here, it is important to note that if the value of the weight variable is the same as the beginning, 

so the solution found is a valid solution, representing a feasible schedule to all the operations. 

Otherwise it is an invalid solution. 

Over the generations, the Jenetics library saves the solution with the minimum value found till 

the moment, once the optimize method from the Engine.Builder class was set to minimum. 
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The way which the collection of schedules, provided by the solution found in the GA, is sent to 

the middleware, is described in the next section. 

 Send Generated Schedules 

Once the valid solution may not have been the last solution found and the current values present 

on Station, Task and Product classes may be from other solution, it was necessary to create a 

method which replicates the process described above to obtain the start and end times for each 

operation, but only for the best solution. 

Then, in order to be possible to send the collection of schedules to the middleware, that solution 

was converted to a PMLSchedule. It was created an HashMap to store a schedule of each station. 

The key of each entry is the station ID and the information is stored in the format of a 

PMLSchedule. It was also created an HashMap to store the set of operations which each station 

will perform, where the key of each entry is the station ID and it stores information in the format 

of a LinkedList<PMLOperation>. Then, for each station was created a new instance of the 

PMLSchedule object and each one was stored in the first HashMap. After that, each operation 

was added to the list of operations of the respective schedule (station). At that point, for each 

PMLSchedule the associated operations were added, using the setAssociatedOperations method 

from the PMSchedule class, passing as argument the value of the second HashMap. 

At this point, the collection of PMLSchedules for each station was obtained. Being thus possible 

to manage it as intended.  So, to send the collection to the middleware, it was used the method 

writeValueAsString from the fasterxml.jackson.databind.ObjectMapper class, which allows to 

send any object as a string.
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5 
Chapter 5.  Tests and Results 

This chapter describes the tests performed to validate the proposed implementation of the 

scheduling algorithm. 

The tests were executed on a computer running Microsoft Windows 7 Professional operating 

system with a 64 bits’ architecture, with Java version 8, an Intel Core i7-4770 processor at 

3.40GHz and an 12GB RAM drive. 

All the information about operations to perform the schedule algorithm was loaded from a .xlsx 

file, as well as the stations available and correspondent skills which each one can execute. Those 

files were used to validate the proposed algorithm, trying to mimic the middleware function, yet 

they were stored locally. They contained all the information necessary about both operations and 

stations. 

The data files were provided by a PERFoRM project partner and contain real information about 

production tasks to execute and the stations used to perform those tasks. It includes all the 

necessary information, such as task’s ID, duration, associated product and associated station. As 

well as station’s ID and associated skills. 
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A GUI was created to test and validate the developed algorithm, yet it will not be implemented in 

the PERFoRM project. In this interface is possible to insert new tasks to the list of tasks to execute, 

indicating its ID, type, duration and the station where it will be executed. It is also possible to 

generate a new schedule based on the available tasks and stations, as presented in Figure 5-1. 

 

Figure 5-1 - Graphical user interface 

In order to reach the parameters presented in this section, exhaustive tests in the 3x3 and 5x5 

problems were performed, since in this case it was faster to get results. A 3x3 problem means that 

there are three different products containing three operations each, and so on. In this case, there 

can be till three different stations operating. 

The different problems used were: 

• 3x3 problem; 

• 5x5 problem; 

• 7x7 problem; 

• 9x9 problem. 

Taking into account the 3x3 scenario, it was loaded a file with three different products, each one 

with three different operations to perform on three different stations. Completing a total of 9 

different operations to perform over three different stations. For the 5x5 scenario, was loaded a 

file with 5 different products, each one with 5 different operations to perform on 5 different 

stations and so on. To the other cases, the parameters were chosen taking into account the best 

values of the previous cases. All the tasks used had execution times between 1 and 720 minutes, 

i.e. the shortest task had an execution duration of 1 minute and the longest one of 720 minutes. 
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The file containing the stations’ information was the same for all scenarios, containing data about 

12 stations, so the number of stations available and use in the schedule doesn’t compromises the 

algorithm performance. 

The tests were performed in a set of non-identical stations, where each one of them perform a 

different type of operation. 

So, initially, high values to the number of generations and population were chosen to ensure that 

a solution could be found no matter the processing time. Then, different values of crossover 

probability, mutation probability, selectors and elitism were set. Always considering that small 

values of crossover and mutation probabilities could not lead the process to evolve and high values 

could not reach good solutions since the individuals can be damaged if it is too changed. Thus, 

the values of crossover were tested between 10% and 100% and the range for mutation was 

between 1% and 30%. 

The parameters used may not be optimal but perform efficiently for the presented cases. Those 

parameters were reached after performing exhaustive tests in the 3x3 and 5x5 problems. To the 

other cases, the parameters were chosen based on the best of the previous problems’ parameters. 

Several tests were performed where the crossover and mutation probability were generated 

manually or randomly within a certain range and the parameters of the best results were taken. 

Here is presented a brief explanation and results on how this was performed for the 5x5 problem, 

since 3x3 problem is too small and the difference of results is mainly observable when parameters 

change too much. 

The crossover probability values were tested within the range between 10% and 100% and 

mutation probability values between 1% and 30%. However, not all the cases are demonstrated 

in the following tests, only the necessary to verify the difference when an attribute is changed. 

 Crossover and Mutation 

As mentioned before, the following tests were performed in a 5x5 problem, which contains five 

different products with five operations each and five stations are available to perform those 

operations. So, a total of 25 tasks were allocated. The values listed below were fixed and do not 

changed during the following tests: 

• Number of generations: 60; 

• Population size: 200; 

• Steady fitness: 20; 
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• Elitism: 4%; 

• Survivor selector: Tournament selector with 3 individuals; 

• Offspring selector: Tournament selector with 3 individuals. 

The number of generations represents the maximum iterations the GA will perform before 

finishing the process. The population size parameter defines the number of individuals present in 

each generation of the GA. The steady fitness parameter limits the evolution of the GA, i.e. the 

number of generations that the GA should perform without improvements in the evolution 

process. The elitism reflects the percentage of the best individuals of the previous generation 

which will be present in the next generation. Finally, the selectors are used to define how survivor 

and offspring populations will be selected for the next generation, in this case is used a 

Tournament Selector, where the strongest of the n individuals is chosen. 

For each value of the crossover probability, different values of mutation probability are tested and 

the results are presented in the following tables.  

• Best Fitness (%): number of times which the best fitness found was reach, among all 

the cases 

• Best Fitness: the value of the best fitness found 

• Worst Fitness: the value of the best fitness found 

• Average Generations: the number of generations needed to found the best solution 

• Successful Cases: quantity of valid solutions found 

Crossover 90% 

In Table 5-1 it is possible to observe that 90% crossover probability performs well for lower 

mutation probability values, once the successful cases decrease when mutation probability is 

increased. 

Table 5-1 – Results with crossover probability at 90%  

Mutator 
Best Fitness 

(%) 
Best 

Fitness Worst Fitness 
Average 

Generations 
Successful 

Cases 

0,05 75% 1976 2277 41,5 100% 

0,08 60% 1976 2566000 46,15 85% 

0,11 35% 1976 18300000 42,3 55% 

0,14 5% 1976 20470000000 39,05 15% 
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Crossover 80% 

Results of Table 5-2 show that the number of successful solutions increased compared with the 

90% probability. Also, the number of generations to obtain a solution decreased. Thus, it means 

that a crossover probability of 80% should perform better than 90% most of the times. 

Table 5-2 – Results with crossover probability at 80% 

Mutator 
Best Fitness 

(%) 
Best 

Fitness Worst Fitness 
Average 

Generations 
Successful 

Cases 

0,05 50% 1976 2317 31,9 100% 

0,08 65% 1976 2294 37,2 100% 

0,11 40% 1976 26050000 37,55 85% 

0,14 20% 1976 180900000 38,25 65% 

Crossover 70% 

With a crossover probability of 70%, Table 5-3, were obtained more successful cases than any 

other and the best fitness reached was found around half of the times.  

Table 5-3 – Results with crossover probability at 70% 

Mutator 
Best Fitness 

(%) 
Best 

Fitness Worst Fitness 
Average 

Generations 
Successful 

Cases 

0,05 55% 1976 2136 31,95 100% 

0,08 45% 1976 179500 33,3 95% 

0,11 40% 1976 2277 36,5 100% 

0,14 60% 1976 179500 41,45 95% 

Crossover 60% 

However, with a crossover of 60%, Table 5-4, the results are identical but it took less generation 

to found a solution, despite the best fitness not be found so many times. 

Table 5-4 – Results with crossover probability at 60% 

Mutator 
Best Fitness 

(%) 
Best 

Fitness Worst Fitness 
Average 

Generations 
Successful 

Cases 

0,05 45% 1976 2294 26,3 100% 

0,08 45% 1976 213600 28,1 95% 

0,11 40% 1976 2367 32,85 100% 

0,14 40% 1976 222400 29,9 80% 
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Crossover 50% 

For a crossover of 50%, present in Table 5-5,  it performs better than 90% and is similar to 80%, 

though, despite it found the best fitness less times, it took less generations to do so. Comparatively 

to 60% and 70% values, it found slightly less successful cases and the best fitness is reached less 

times, which keeps it a little below from the others. 

Table 5-5 – Results with crossover probability at 50% 

Mutator 
Best Fitness 

(%) 
Best 

Fitness Worst Fitness 
Average 

Generations 
Successful 

Cases 

0,05 30% 1976 230900 21,75 90% 

0,08 40% 1976 2294000 24,55 90% 

0,11 15% 1976 1795000 28,9 80% 

0,14 50% 1976 2525 30,1 100% 

Maintenance Tasks 

Since the crossover probability value of 70% presented more successful cases and found more 

times the best solution than the other values, two maintenance tasks of 100 minutes were added 

on two different stations, using a crossover value of 70%. For each day of work there is only one 

maintenance shift where is possible to allocate the maintenance tasks. Which means that for each 

1440 minutes (one day), 480 minutes are available to allocate maintenance tasks. The results are 

shown in Table 5-6. 

Table 5-6 - Results with crossover value of 70% and a total of 27 tasks to allocate, including two tasks 

with 100 minutes each 

Mutator 
Best Fitness 

(%) 
Best 

Fitness Worst Fitness 
Average 

Generations 
Successful  

Cases 

0,05 55% 1976 2136 28,35 100% 

0,08 45% 1976 2294 36,65 100% 

0,11 60% 1976 2277 39,5 100% 

0,14 50% 1976 2136000 39,45 95% 

Then, another two maintenance tasks were added to the same stations, with the same duration, 

performing a total of two maintenance tasks on each station. The results are presented in Table 

5-7. 
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Table 5-7 - Results with crossover value of 70% and a total of 29 tasks to allocate, including four tasks 

with 100 minutes each 

Mutator 
Best Fitness 

(%) 
Best 

Fitness Worst Fitness 
Average 

Generations 
Successful  

Cases 

0,05 60% 1976 2248 32,15 100% 

0,08 60% 1976 179500 35,15 95% 

0,11 75% 1976 2253 41,65 100% 

0,14 30% 1976 2136000 40,3 90% 

Then, the execution time of the maintenance tasks used in Table 5-7 were increased from 100 

minutes to 250 minutes. The results are shown in Table 5-8. 

Table 5-8 - Results with crossover value of 70% and a total of 29 tasks to allocate, including four tasks 

with 250 minutes each 

Mutator 
Best Fitness 

(%) 
Best 

Fitness Worst Fitness 
Average 

Generations 
Successful  

Cases 

0,05 55% 2159 2294 31,25 100% 

0,08 50% 2159 2294 35,3 100% 

0,11 45% 2159 205000 38,5 95% 

0,14 30% 2159 247700 43,45 90% 

In the next section, is presented how both population size and the number of generation affect the 

different types of problems. 

 Population and Steady Fitness 

In the following tests, the parameters of crossover and mutation were set to 60% and 100%, 

respectively. The goal is to demonstrate how different population sizes and steady fitness values 

affect the results in terms of algorithm runtime and successful solutions found. 

For that, four different size JSSPs were taken, namely 3x3, 5x5, 7x7 and 9x9, and their 

performance were compared for the same parameters. The red dots in the runtime charts represent 

the invalid schedules obtained. 

Population of 500 individuals 

In a case with a population of 500 individuals and a steady fitness of 100 generations, successful 

solutions, without conflicts, were always found in the smallest problems, as demonstrated in the 

first chart of Figure 5-2. However, these parameters had difficulty to find successful solutions in 
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larger problems, which is possible to verify by the invalid solutions found (red dots). The chart 

of the execution runtime shows that successful solutions were found relatively quickly. 

 

 

Figure 5-2 - Chart of successful solutions found and algorithm runtime, respectively. Steady fitness of 

100 generations 

When the steady fitness was incremented to 300 generations, more successful cases were found 

in the 7x7 and 9x9 problems, as demonstrated in the first chart of Figure 5-3. However, comparing 

with the previous case, the runtime execution increased. 
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Figure 5-3 - Chart of successful solutions found and algorithm runtime, respectively. Steady fitness of 

300 generations 

As represented in Figure 5-4, after augmented the steady fitness for 500 generation, more 

successful solutions were found in the largest problems. However, the runtime increased as in the 

previous case. 
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Figure 5-4 - Chart of successful solutions found and algorithm runtime, respectively. Steady fitness of 

500 generations 

Population of 1000 individuals 

Once the number of individuals present in the population was increased to 1000, the number of 

unsuccessful solutions found decreased (less red dots in the chart), even with a steady fitness of 

100 generations, as it is possible to observe in Figure 5-5. Also, the runtime decreased when 

compared with the case of Figure 5-4. 
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Figure 5-5 - Chart of successful solutions found and algorithm runtime, respectively. Steady fitness of 

100 generations 

When the number of steady fitness generations was increased to 300 generations, the biggest 

difference to the previous case was that in the largest size problem, the number of successful cases 

increased to more than double, as shown in Figure 5-6. Yet, once again, the runtime has increased. 

0% 20% 40% 60% 80% 100%

3x3

5x5

7x7

9x9

Successful cases (%)

JS
SP

 t
yp

e

Successful

Unsuccessful

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30

Ti
m

e 
(s

ec
)

Samples

3x3' 5x5' 7x7' 9x9'



Tests and Results Chapter 5 

70 Dynamic Scheduling for Maintenance Tasks Allocation supported by Genetic Algorithms 

 

 

Figure 5-6 - Chart of successful solutions found and algorithm runtime, respectively. Steady fitness of 

300 generations 

As shown in Figure 5-7, the successful solutions found in the 9x9 problem increased for more 

than a half, while in the other size problems only successful solutions were found, when the steady 

fitness was incremented to 500 generations. Again, this has led to an increase in the runtime. 
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Figure 5-7 - Chart of successful solutions found and algorithm runtime, respectively. Steady fitness of 

500 generations 

Population of 1500 individuals 

When the number of individuals present in the population was increased to 1500, with a steady 

fitness of 100 generations, as shown in Figure 5-8, the number of successful schedules found for 

7x7 and 9x9 problems has decreased compared with the example of Figure 5-7. The runtime also 

decreased for all the scenarios. 
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Figure 5-8 - Chart of successful solutions found and algorithm runtime, respectively. Steady fitness of 

100 generations 

In Figure 5-9, the steady fitness was increased to 300 generations. This has led to an improvement 

on the number of successful cases found in 9x9 problem, possible to observe by the decrease of 

the red dots, while in the other problems it remained the same. It also led to an increment of the 

runtime in all the scenarios. 
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Figure 5-9 - Chart of successful solutions found and algorithm runtime, respectively. Steady fitness of 

300 generations 

By increased the number of generations of the steady fitness to 500, successful solutions were 

found in more than 75% of the cases, even in the largest problem, as demonstrated in the first 

chart of Figure 5-10. Once again, it led to an increase of the runtime, presented in the second chart 

of Figure 5-10. 
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Figure 5-10 - Chart of successful solutions found and algorithm runtime, respectively. Steady fitness of 

500 generations 

In the next chapter are presented the conclusions about accomplished work, as well as the further 

work necessary to improve this scheduling tool.
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6 
Chapter 6.  Conclusion and Future Work 

In this chapter, some conclusions about the developed work will be presented, as well as some 

attention to the subjects that should be approached in the future to keep developing the work 

presented in this document. 

 Conclusions 

The main goal of this work was to develop a scheduling tool, able to efficiently allocate a set of 

production and maintenance tasks in a factory. The JSSP to be applied in a real case was a tough 

challenge, since there were a lot of considerations to take into account and the most research 

material is based on static and non-real environments. 

That being said, after analyzing the results obtained in Chapter 5, some conclusions can be drawn 

from the presented work. 
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In what concerns to the case where the crossover and mutation were changed, section 5.1, 

different factors were tested. Such as the fitness value, the number of generations to get a solution 

and the percentage of successful solutions found in each case. 

Analyzing the tables of the section 5.1, it is possible to observe that there are several possible 

crossover-mutation combinations to get results with near 100% of successful cases, to solve this 

scheduling problem. Some of them can reach the best fitness more times and other can reach the 

best solution in less generations. This can happen because partially-matched crossover and swap 

mutator act in an identical way, once both cross the genes of the chromosome and guarantee that 

there are no replicate genes. Even though, crossover probabilities between 0.5 and 0.7 and a small 

mutation probability, between 0.05 and 0.1, look to perform well in this JSSP. 

After adding some maintenance tasks to the list of tasks to allocate, the tool was able to reallocate 

the production tasks in a way that the maintenance tasks could be executed during the maintenance 

shifts, without worsening the obtained fitness values. Since in cases where two and four 

maintenance tasks of 100 minutes were added, the best fitness value remained the same as the 

case when there were no maintenance tasks. However, when were added two tasks of 250 minutes 

to each station, the total execution time of the maintenance tasks exceeded the 480 minutes 

available per day to allocate the maintenance tasks and the best fitness found went from a value 

of 1976 to 2159, which means that some maintenance tasks were allocated to the next day. The 

average number of generations to found a solution remained almost the same as well as the 

successful solutions found, when the maintenance tasks were added. 

In section 5.2 were tested the size of population and the steady fitness generations. The tests 

proved that when the population size and the number of generations were increased, the number 

of valid solutions found was bigger, nevertheless, it consumes more processing time which could 

be undesirable. Consequently, it is extremely important to get a good balance between the 

population size and the number of generations that limit the process evolution. If those values are 

too high, runtime time will also be, but if they are too low, valid solutions could not be found. 

Next, are presented some conclusion about the different population sizes applied to problems with 

different sizes, i.e. different number of operations and stations available to perform those 

operations: 

• Population of 500 individuals: A population of 500 individuals performed well for small 

size problems, however had some problems to find valid solutions for bigger problems, 

although it is possible to note some improvements were reached when the steady fitness 
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was increased. Also, the algorithm took only a few seconds to execute in smaller problems 

(less than 0.5 seconds), but once the complexity increased it took more time. 

• Population of 1000 individuals: By increasing the population size to 1000 individuals, 

the successful solutions found for 7x7 increased almost to 100%. For 9x9 problem the 

valid solutions found increased largely when the number of generations were augmented. 

By the other hand, the processing time is bigger compared to a population of 500 

individuals and, also, when the number of generations is increased. 

• Population of 1500 individuals: By setting the population size to 1500 individuals, it got 

the most successful cases when the number of generations was 500, despite the time 

consumed was bigger than any other case. For smaller values of the number of generations, 

the results were similar to the ones with 1000 individuals’ population, in terms of 

successful cases and the algorithm runtime. But, it always found more valid solutions than 

the 500 individuals’ population. 

The results obtained in this work suggest that GAs can be used to generate schedules in a JSSP. 

They can find feasible solutions in a reasonable amount of time, being that in a lot of cases they 

found an optimal solution, as shown in Chapter 5. Although they could take too long when there 

are many tasks to allocate, most of the times a good solution was found. 

The main problem was when a product had a lot of tasks to be performed and they need to follow 

a predefined order, which requires the algorithm to consume a lot of processing power. 

The proposed approach could be a good solution to solve the task allocation problem efficiently 

for small dimension problems. For small problems, till the 7x7 problem, it found feasible 

schedules most of the times. And those schedules were found always in less than 10 seconds, 

which was fast enough. Yet, it needs to be adjusted to solve more complex problems, such as the 

9x9 problem, since good solutions were found just a few times. 

Besides it can deal with a flexible shop-floor, where a working station can execute different 

actions, the algorithm was not designed to decide which one is better, so, the station configuration 

always need to be specified. 

All the tests were performed using a real set of operation and stations, with complete information 

about each one, provided by one of PERFoRM’s partner. It was an important help, in order to 

validate the results obtained, since the data was from a real environment. 
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 Future Work 

The future work should focus on get a better performance of the algorithm, by getting a better 

way to allocate the tasks corresponding to the same product. This can be done by set an initial 

chromosome where the tasks already respect the production order. Also, more efficient genetic 

operators could be adopted to avoid precedence errors. 

In a more specific way, an initial chromosome could be instantiated based on the good 

chromosomes previously obtained. Or it can be initialized in a way which the order of the tasks 

was already well defined, instead of starting a random chromosome each time a new schedule 

was requested. Also, both crossover and mutation operators could be implemented in order to 

keep always the tasks’ order of a product, changing the genes more efficiently, so the tasks of a 

specific product stay always in the same order. This way, the precedence errors between tasks 

would not occur and maybe some processing time could be saved. 

Another important point is the precedence between products. In a real factory, some products can 

only be executed after others have been done. The further work should focus mainly at this point 

in order to have a more embracing and robust algorithm. 
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