250 research outputs found

    Estimation of Fiber Orientations Using Neighborhood Information

    Full text link
    Data from diffusion magnetic resonance imaging (dMRI) can be used to reconstruct fiber tracts, for example, in muscle and white matter. Estimation of fiber orientations (FOs) is a crucial step in the reconstruction process and these estimates can be corrupted by noise. In this paper, a new method called Fiber Orientation Reconstruction using Neighborhood Information (FORNI) is described and shown to reduce the effects of noise and improve FO estimation performance by incorporating spatial consistency. FORNI uses a fixed tensor basis to model the diffusion weighted signals, which has the advantage of providing an explicit relationship between the basis vectors and the FOs. FO spatial coherence is encouraged using weighted l1-norm regularization terms, which contain the interaction of directional information between neighbor voxels. Data fidelity is encouraged using a squared error between the observed and reconstructed diffusion weighted signals. After appropriate weighting of these competing objectives, the resulting objective function is minimized using a block coordinate descent algorithm, and a straightforward parallelization strategy is used to speed up processing. Experiments were performed on a digital crossing phantom, ex vivo tongue dMRI data, and in vivo brain dMRI data for both qualitative and quantitative evaluation. The results demonstrate that FORNI improves the quality of FO estimation over other state of the art algorithms.Comment: Journal paper accepted in Medical Image Analysis. 35 pages and 16 figure

    Spherical deconvolution of multichannel diffusion MRI data with non-Gaussian noise models and spatial regularization

    Get PDF
    Spherical deconvolution (SD) methods are widely used to estimate the intra-voxel white-matter fiber orientations from diffusion MRI data. However, while some of these methods assume a zero-mean Gaussian distribution for the underlying noise, its real distribution is known to be non-Gaussian and to depend on the methodology used to combine multichannel signals. Indeed, the two prevailing methods for multichannel signal combination lead to Rician and noncentral Chi noise distributions. Here we develop a Robust and Unbiased Model-BAsed Spherical Deconvolution (RUMBA-SD) technique, intended to deal with realistic MRI noise, based on a Richardson-Lucy (RL) algorithm adapted to Rician and noncentral Chi likelihood models. To quantify the benefits of using proper noise models, RUMBA-SD was compared with dRL-SD, a well-established method based on the RL algorithm for Gaussian noise. Another aim of the study was to quantify the impact of including a total variation (TV) spatial regularization term in the estimation framework. To do this, we developed TV spatially-regularized versions of both RUMBA-SD and dRL-SD algorithms. The evaluation was performed by comparing various quality metrics on 132 three-dimensional synthetic phantoms involving different inter-fiber angles and volume fractions, which were contaminated with noise mimicking patterns generated by data processing in multichannel scanners. The results demonstrate that the inclusion of proper likelihood models leads to an increased ability to resolve fiber crossings with smaller inter-fiber angles and to better detect non-dominant fibers. The inclusion of TV regularization dramatically improved the resolution power of both techniques. The above findings were also verified in brain data

    Evaluating the accuracy of diffusion MRI models in white matter

    Full text link
    Models of diffusion MRI within a voxel are useful for making inferences about the properties of the tissue and inferring fiber orientation distribution used by tractography algorithms. A useful model must fit the data accurately. However, evaluations of model-accuracy of some of the models that are commonly used in analyzing human white matter have not been published before. Here, we evaluate model-accuracy of the two main classes of diffusion MRI models. The diffusion tensor model (DTM) summarizes diffusion as a 3-dimensional Gaussian distribution. Sparse fascicle models (SFM) summarize the signal as a linear sum of signals originating from a collection of fascicles oriented in different directions. We use cross-validation to assess model-accuracy at different gradient amplitudes (b-values) throughout the white matter. Specifically, we fit each model to all the white matter voxels in one data set and then use the model to predict a second, independent data set. This is the first evaluation of model-accuracy of these models. In most of the white matter the DTM predicts the data more accurately than test-retest reliability; SFM model-accuracy is higher than test-retest reliability and also higher than the DTM, particularly for measurements with (a) a b-value above 1000 in locations containing fiber crossings, and (b) in the regions of the brain surrounding the optic radiations. The SFM also has better parameter-validity: it more accurately estimates the fiber orientation distribution function (fODF) in each voxel, which is useful for fiber tracking

    Spatially Regularized Reconstruction of Fibre Orientation Distributions in the Presence of Isotropic Diffusion

    Get PDF
    The connectivity and structural integrity of the white matter of the brain is known to be implicated in a wide range of brain-related diseases and injuries. However, it is only since the advent of diffusion magnetic resonance imaging (dMRI) that researchers have been able to probe the miscrostructure of white matter in vivo. Presently, among a range of methods of dMRI, high angular resolution diffusion imaging (HARDI) is known to excel in its ability to provide reliable information about the local orientations of neural fasciculi (aka fibre tracts). It preserves the high angular resolution property of diffusion spectrum imaging (DSI) but requires less measurements. Meanwhile, as opposed to the more traditional diffusion tensor imaging (DTI), HARDI is capable of distinguishing the orientations of multiple fibres passing through a given spatial voxel. Unfortunately, the ability of HARDI to discriminate neural fibres that cross each other at acute angles is always limited. The limitation becomes the motivation to develop numerous post-processing tools, aiming at the improvement of the angular resolution of HARDI. Among such methods, spherical deconvolution (SD) is the one which attracts the most attentions. Due to its ill-posed nature, however, standard SD relies on a number of a priori assumptions needed to render its results unique and stable. In the present thesis, we introduce a novel approach to the problem of non-blind SD of HARDI signals, which does not only consider the existence of anisotropic diffusion component of HARDI signal but also explicitly take the isotropic diffusion component into account. As a result of that, in addition to reconstruction of fODFs, our algorithm can also yield a useful estimation of its related IDM, which quantifies a relative contribution of the isotropic diffusion component as well as its spatial pattern. Moreover, one of the principal contributions is to demonstrate the effectiveness of exploiting different prior models for regularization of the spatial-domain behaviours of the reconstructed fODFs and IDMs. Specifically, the fibre continuity model has been used to force the local maxima of the fODFs to vary consistently throughout the brain, whereas the bounded variation model has helped us to achieve piecewise smooth reconstruction of the IDMs. The proposed algorithm is formulated as a convex minimization problem, which admits a unique and stable minimizer. Moreover, using ADMM, we have been able to find the optimal solution via a sequence of simpler optimization problems, which are both computationally efficient and amenable to parallel computations. In a series of both in silico and in vivo experiments, we demonstrate how the proposed solution can be used to successfully overcome the effect of partial voluming, while preserving the spatial coherency of cerebral diffusion at moderate to severe noise levels. The performance of the proposed method is compared with that of several available alternatives, with the comparative results clearly supporting the viability and usefulness of our approach. Moreover, the results illustrate the power of applied spatial regularization terms

    Extraction of Structural Metrics from Crossing Fiber Models

    Get PDF
    Diffusion MRI (dMRI) measurements allow us to infer the microstructural properties of white matter and to reconstruct fiber pathways in-vivo. High angular diffusion imaging (HARDI) allows for the creation of more and more complex local models connecting the microstructure to the measured signal. One of the challenges is the derivation of meaningful metrics describing the underlying structure from the local models. The aim hereby is to increase the specificity of the widely used metric fractional anisotropy (FA) by using the additional information contained within the HARDI data. A local model which is connected directly to the underlying microstructure through the model of a single fiber population is spherical deconvolution. It produces a fiber orientation density function (fODF), which can often be interpreted as superposition of multiple peaks, each associated to one relatively coherent fiber population (bundle). Parameterizing these peaks one is able to disentangle and characterize these bundles. In this work, the fODF peaks are approximated by Bingham distributions, capturing first and second order statistics of the fiber orientations, from which metrics for the parametric quantification of fiber bundles are derived. Meaningful relationships between these measures and the underlying microstructural properties are proposed. The focus lies on metrics derived directly from properties of the Bingham distribution, such as peak length, peak direction, peak spread, integral over the peak, as well as a metric derived from the comparison of the largest peaks, which probes the complexity of the underlying microstructure. These metrics are compared to the conventionally used fractional anisotropy (FA) and it is shown how they may help to increase the specificity of the characterization of microstructural properties. Visualization of the micro-structural arrangement is another application of dMRI. This is done by using tractography to propagate the fiber layout, extracted from the local model, in each voxel. In practice most tractography algorithms use little of the additional information gained from HARDI based local models aside from the reconstructed fiber bundle directions. In this work an approach to tractography based on the Bingham parameterization of the fODF is introduced. For each of the fiber populations present in a voxel the diffusion signal and tensor are computed. Then tensor deflection tractography is performed. This allows incorporating the complete bundle information, performing local interpolation as well as using multiple directions per voxel for generating tracts. Another aspect of this work is the investigation of the spherical harmonic representation which is used most commonly for the fODF by means of the parameters derived from the Bingham distribution fit. Here a strong connection between the approximation errors in the spherical representation of the Dirac delta function and the distribution of crossing angles recovered from the fODF was discovered. The final aspect of this work is the application of the metrics derived from the Bingham fit to a number of fetal datasets for quantifying the brain’s development. This is done by introducing the Gini-coefficient as a metric describing the brain’s age

    Reconstruction et description des fonctions de distribution d'orientation en imagerie de diffusion à haute résolution angulaire

    Get PDF
    This thesis concerns the reconstruction and description of orientation distribution functions (ODFs) in high angular resolution diffusion imaging (HARDI) such as q-ball imaging (QBI). QBI is used to analyze more accurately fiber structures (crossing, bending, fanning, etc.) in a voxel. In this field, the ODF reconstructed from QBI is widely used for resolving complex intravoxel fiber configuration problem. However, until now, the assessment of the characteristics or quality of ODFs remains mainly visual and qualitative, although the use of a few objective quality metrics is also reported that are directly borrowed from classical signal and image processing theory. At the same time, although some metrics such as generalized anisotropy (GA) and generalized fractional anisotropy (GFA) have been proposed for classifying intravoxel fiber configurations, the classification of the latters is still a problem. On the other hand, QBI often needs an important number of acquisitions (usually more than 60 directions) to compute accurately ODFs. So, reducing the quantity of QBI data (i.e. shortening acquisition time) while maintaining ODF quality is a real challenge. In this context, we have addressed the problems of how to reconstruct high-quality ODFs and assess their characteristics. We have proposed a new paradigm allowing describing the characteristics of ODFs more quantitatively. It consists of regarding an ODF as a general three-dimensional (3D) point cloud, projecting a 3D point cloud onto an angle-distance map (ADM), constructing an angle-distance matrix (ADMAT), and calculating morphological characteristics of the ODF such as length ratio, separability and uncertainty. In particular, a new metric, called PEAM (PEAnut Metric), which is based on computing the deviation of ODFs from a single fiber ODF represented by a peanut, was proposed and used to classify intravoxel fiber configurations. Several ODF reconstruction methods have also been compared using the proposed metrics. The results showed that the characteristics of 3D point clouds can be well assessed in a relatively complete and quantitative manner. Concerning the reconstruction of high-quality ODFs with reduced data, we have proposed two methods. The first method is based on interpolation by Delaunay triangulation and imposing constraints in both q-space and spatial space. The second method combines random gradient diffusion direction sampling, compressed sensing, resampling density increasing, and missing diffusion signal recovering. The results showed that the proposed missing diffusion signal recovering approaches enable us to obtain accurate ODFs with relatively fewer number of diffusion signals.Ce travail de thèse porte sur la reconstruction et la description des fonctions de distribution d'orientation (ODF) en imagerie de diffusion à haute résolution angulaire (HARDI) telle que l’imagerie par q-ball (QBI). Dans ce domaine, la fonction de distribution d’orientation (ODF) en QBI est largement utilisée pour étudier le problème de configuration complexe des fibres. Toutefois, jusqu’à présent, l’évaluation des caractéristiques ou de la qualité des ODFs reste essentiellement visuelle et qualitative, bien que l’utilisation de quelques mesures objectives de qualité ait également été reportée dans la littérature, qui sont directement empruntées de la théorie classique de traitement du signal et de l’image. En même temps, l’utilisation appropriée de ces mesures pour la classification des configurations des fibres reste toujours un problème. D'autre part, le QBI a souvent besoin d'un nombre important d’acquisitions pour calculer avec précision les ODFs. Ainsi, la réduction du temps d’acquisition des données QBI est un véritable défi. Dans ce contexte, nous avons abordé les problèmes de comment reconstruire des ODFs de haute qualité et évaluer leurs caractéristiques. Nous avons proposé un nouveau paradigme permettant de décrire les caractéristiques des ODFs de manière plus quantitative. Il consiste à regarder un ODF comme un nuage général de points tridimensionnels (3D), projeter ce nuage de points 3D sur un plan angle-distance (ADM), construire une matrice angle-distance (ADMAT), et calculer des caractéristiques morphologiques de l'ODF telles que le rapport de longueurs, la séparabilité et l'incertitude. En particulier, une nouvelle métrique, appelé PEAM (PEAnut Metric) et qui est basée sur le calcul de l'écart des ODFs par rapport à l’ODF (représenté par une forme arachide) d’une seule fibre, a été proposée et utilisée pour classifier des configurations intravoxel des fibres. Plusieurs méthodes de reconstruction des ODFs ont également été comparées en utilisant les paramètres proposés. Les résultats ont montré que les caractéristiques du nuage de points 3D peuvent être évaluées d'une manière relativement complète et quantitative. En ce qui concerne la reconstruction de l'ODF de haute qualité avec des données réduites, nous avons proposé deux méthodes. La première est basée sur une interpolation par triangulation de Delaunay et sur des contraintes imposées à la fois dans l’espace-q et dans l'espace spatial. La deuxième méthode combine l’échantillonnage aléatoire des directions de gradient de diffusion, le compressed sensing, l’augmentation de la densité de ré-échantillonnage, et la reconstruction des signaux de diffusion manquants. Les résultats ont montré que les approches de reconstruction des signaux de diffusion manquants proposées nous permettent d'obtenir des ODFs précis à partir d’un nombre relativement faible de signaux de diffusion

    Robust processing of diffusion weighted image data

    Get PDF
    The work presented in this thesis comprises a proposed robust diffusion weighted magnetic resonance imaging (DW-MRI) pipeline, each chapter detailing a step designed to ultimately transform raw DW-MRI data into segmented bundles of coherent fibre ready for more complex analysis or manipulation. In addition to this pipeline we will also demonstrate, where appropriate, ways in which each step could be optimized for the maxillofacial region, setting the groundwork for a wider maxillofacial modelling project intended to aid surgical planning. Our contribution begins with RESDORE, an algorithm designed to automatically identify corrupt DW-MRI signal elements. While slower than the closest alternative, RESDORE is also far more robust to localised changes in SNR and pervasive image corruptions. The second step in the pipeline concerns the retrieval of accurate fibre orientation distribution functions (fODFs) from the DW-MRI signal. Chapter 4 comprises a simulation study exploring the application of spherical deconvolution methods to `generic' fibre; finding that the commonly used constrained spherical harmonic deconvolution (CSHD) is extremely sensitive to calibration but, if handled correctly, might be able to resolve muscle fODFs in vivo. Building upon this information, Chapter 5 conducts further simulations and in vivo image experimentation demonstrating that this is indeed the case, allowing us to demonstrate, for the first time, anatomically plausible reconstructions of several maxillofacial muscles. To complete the proposed pipeline, Chapter 6 then introduces a method for segmenting whole volume streamline tractographies into anatomically valid bundles. In addition to providing an accurate segmentation, this shape-based method does not require computationally expensive inter-streamline comparisons employed by other approaches, allowing the algorithm to scale linearly with respect to the number of streamlines within the dataset. This is not often true for comparison based methods which in the best case scale in higher linear time but more often by O(N2) complexity
    • …
    corecore