Spherical deconvolution (SD) methods are widely used to estimate the
intra-voxel white-matter fiber orientations from diffusion MRI data. However,
while some of these methods assume a zero-mean Gaussian distribution for the
underlying noise, its real distribution is known to be non-Gaussian and to
depend on the methodology used to combine multichannel signals. Indeed, the two
prevailing methods for multichannel signal combination lead to Rician and
noncentral Chi noise distributions. Here we develop a Robust and Unbiased
Model-BAsed Spherical Deconvolution (RUMBA-SD) technique, intended to deal with
realistic MRI noise, based on a Richardson-Lucy (RL) algorithm adapted to
Rician and noncentral Chi likelihood models. To quantify the benefits of using
proper noise models, RUMBA-SD was compared with dRL-SD, a well-established
method based on the RL algorithm for Gaussian noise. Another aim of the study
was to quantify the impact of including a total variation (TV) spatial
regularization term in the estimation framework. To do this, we developed TV
spatially-regularized versions of both RUMBA-SD and dRL-SD algorithms. The
evaluation was performed by comparing various quality metrics on 132
three-dimensional synthetic phantoms involving different inter-fiber angles and
volume fractions, which were contaminated with noise mimicking patterns
generated by data processing in multichannel scanners. The results demonstrate
that the inclusion of proper likelihood models leads to an increased ability to
resolve fiber crossings with smaller inter-fiber angles and to better detect
non-dominant fibers. The inclusion of TV regularization dramatically improved
the resolution power of both techniques. The above findings were also verified
in brain data