3,514 research outputs found

    Reimagining the Journal Editorial Process: An AI-Augmented Versus an AI-Driven Future

    Get PDF
    The editorial process at our leading information systems journals has been pivotal in shaping and growing our field. But this process has grown long in the tooth and is increasingly frustrating and challenging its various stakeholders: editors, reviewers, and authors. The sudden and explosive spread of AI tools, including advances in language models, make them a tempting fit in our efforts to ease and advance the editorial process. But we must carefully consider how the goals and methods of AI tools fit with the core purpose of the editorial process. We present a thought experiment exploring the implications of two distinct futures for the information systems powering today’s journal editorial process: an AI-augmented and an AI-driven one. The AI-augmented scenario envisions systems providing algorithmic predictions and recommendations to enhance human decision-making, offering enhanced efficiency while maintaining human judgment and accountability. However, it also requires debate over algorithm transparency, appropriate machine learning methods, and data privacy and security. The AI-driven scenario, meanwhile, imagines a fully autonomous and iterative AI. While potentially even more efficient, this future risks failing to align with academic values and norms, perpetuating data biases, and neglecting the important social bonds and community practices embedded in and strengthened by the human-led editorial process. We consider and contrast the two scenarios in terms of their usefulness and dangers to authors, reviewers, editors, and publishers. We conclude by cautioning against the lure of an AI-driven, metric-focused approach, advocating instead for a future where AI serves as a tool to augment human capacity and strengthen the quality of academic discourse. But more broadly, this thought experiment allows us to distill what the editorial process is about: the building of a premier research community instead of chasing metrics and efficiency. It is up to us to guard these values

    A reinforcement learning recommender system using bi-clustering and Markov Decision Process

    Get PDF
    Collaborative filtering (CF) recommender systems are static in nature and does not adapt well with changing user preferences. User preferences may change after interaction with a system or after buying a product. Conventional CF clustering algorithms only identifies the distribution of patterns and hidden correlations globally. However, the impossibility of discovering local patterns by these algorithms, headed to the popularization of bi-clustering algorithms. Bi-clustering algorithms can analyze all dataset dimensions simultaneously and consequently, discover local patterns that deliver a better understanding of the underlying hidden correlations. In this paper, we modelled the recommendation problem as a sequential decision-making problem using Markov Decision Processes (MDP). To perform state representation for MDP, we first converted user-item votings matrix to a binary matrix. Then we performed bi-clustering on this binary matrix to determine a subset of similar rows and columns. A bi-cluster merging algorithm is designed to merge similar and overlapping bi-clusters. These bi-clusters are then mapped to a squared grid (SG). RL is applied on this SG to determine best policy to give recommendation to users. Start state is determined using Improved Triangle Similarity (ITR similarity measure. Reward function is computed as grid state overlapping in terms of users and items in current and prospective next state. A thorough comparative analysis was conducted, encompassing a diverse array of methodologies, including RL-based, pure Collaborative Filtering (CF), and clustering methods. The results demonstrate that our proposed method outperforms its competitors in terms of precision, recall, and optimal policy learning

    Unleashing the power of artificial intelligence for climate action in industrial markets

    Get PDF
    Artificial Intelligence (AI) is a game-changing capability in industrial markets that can accelerate humanity's race against climate change. Positioned in a resource-hungry and pollution-intensive industry, this study explores AI-powered climate service innovation capabilities and their overall effects. The study develops and validates an AI model, identifying three primary dimensions and nine subdimensions. Based on a dataset in the fast fashion industry, the findings show that the AI-powered climate service innovation capabilities significantly influence both environmental and market performance, in which environmental performance acts as a partial mediator. Specifically, the results identify the key elements of an AI-informed framework for climate action and show how this can be used to develop a range of mitigation, adaptation and resilience initiatives in response to climate change

    Towards Integration of Artificial Intelligence into Medical Devices as a Real-Time Recommender System for Personalised Healthcare:State-of-the-Art and Future Prospects

    Get PDF
    In the era of big data, artificial intelligence (AI) algorithms have the potential to revolutionize healthcare by improving patient outcomes and reducing healthcare costs. AI algorithms have frequently been used in health care for predictive modelling, image analysis and drug discovery. Moreover, as a recommender system, these algorithms have shown promising impacts on personalized healthcare provision. A recommender system learns the behaviour of the user and predicts their current preferences (recommends) based on their previous preferences. Implementing AI as a recommender system improves this prediction accuracy and solves cold start and data sparsity problems. However, most of the methods and algorithms are tested in a simulated setting which cannot recapitulate the influencing factors of the real world. This review article systematically reviews prevailing methodologies in recommender systems and discusses the AI algorithms as recommender systems specifically in the field of healthcare. It also provides discussion around the most cutting-edge academic and practical contributions present in the literature, identifies performance evaluation matrices, challenges in the implementation of AI as a recommender system, and acceptance of AI-based recommender systems by clinicians. The findings of this article direct researchers and professionals to comprehend currently developed recommender systems and the future of medical devices integrated with real-time recommender systems for personalized healthcare

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Learning recommender systems from biased user interactions

    Get PDF
    Recommender systems have been widely deployed to help users quickly find what they need from a collection of items. Predominant recommendation methods rely on supervised learning models to predict user ratings on items or the probabilities of users interacting with items. In addition, reinforcement learning models are crucial in improving long-term user engagement within recommender systems. In practice, both of these recommendation methods are commonly trained on logged user interactions and, therefore, subject to bias present in logged user interactions. This thesis concerns complex forms of bias in real-world user behaviors and aims to mitigate the effect of bias on reinforcement learning-based recommendation methods. The first part of the thesis consists of two research chapters, each dedicated to tackling a specific form of bias: dynamic selection bias and multifactorial bias. To mitigate the effect of dynamic selection bias and multifactorial bias, we propose a bias propensity estimation method for each. By incorporating the results from the bias propensity estimation methods, the widely used inverse propensity scoring-based debiasing method can be extended to correct for the corresponding bias. The second part of the thesis consists of two chapters that concern the effect of bias on reinforcement learning-based recommendation methods. Its first chapter focuses on mitigating the effect of bias on simulators, which enables the learning and evaluation of reinforcement learning-based recommendation methods. Its second chapter further explores different state encoders for reinforcement learning-based recommendation methods when learning and evaluating with the proposed debiased simulator

    Modern computing: Vision and challenges

    Get PDF
    Over the past six decades, the computing systems field has experienced significant transformations, profoundly impacting society with transformational developments, such as the Internet and the commodification of computing. Underpinned by technological advancements, computer systems, far from being static, have been continuously evolving and adapting to cover multifaceted societal niches. This has led to new paradigms such as cloud, fog, edge computing, and the Internet of Things (IoT), which offer fresh economic and creative opportunities. Nevertheless, this rapid change poses complex research challenges, especially in maximizing potential and enhancing functionality. As such, to maintain an economical level of performance that meets ever-tighter requirements, one must understand the drivers of new model emergence and expansion, and how contemporary challenges differ from past ones. To that end, this article investigates and assesses the factors influencing the evolution of computing systems, covering established systems and architectures as well as newer developments, such as serverless computing, quantum computing, and on-device AI on edge devices. Trends emerge when one traces technological trajectory, which includes the rapid obsolescence of frameworks due to business and technical constraints, a move towards specialized systems and models, and varying approaches to centralized and decentralized control. This comprehensive review of modern computing systems looks ahead to the future of research in the field, highlighting key challenges and emerging trends, and underscoring their importance in cost-effectively driving technological progress

    Evolution of artificial intelligence research in Technological Forecasting and Social Change: Research topics, trends, and future directions

    Get PDF
    Artificial intelligence (AI) is a set of rapidly expanding disruptive technologies that are radically transforming various aspects related to people, business, society, and the environment. With the proliferation of digital computing devices and the emergence of big data, AI is increasingly offering significant opportunities for society and business organizations. The growing interest of scholars and practitioners in AI has resulted in the diversity of research topics explored in bulks of scholarly literature published in leading research outlets. This study aims to map the intellectual structure and evolution of the conceptual structure of overall AI research published in Technological Forecasting and Social Change (TF&SC). This study uses machine learning-based structural topic modeling (STM) to extract, report, and visualize the latent topics from the AI research literature. Further, the disciplinary patterns in the intellectual structure of AI research are examined with the additional objective of assessing the disciplinary impact of AI. The results of the topic modeling reveal eight key topics, out of which the topics concerning healthcare, circular economy and sustainable supply chain, adoption of AI by consumers, and AI for decision-making are showing a rising trend over the years. AI research has a significant influence on disciplines such as business, management, and accounting, social science, engineering, computer science, and mathematics. The study provides an insightful agenda for the future based on evidence-based research directions that would benefit future AI scholars to identify contemporary research issues and develop impactful research to solve complex societal problems

    A novel evaluation framework for recommender systems in big data environments

    Get PDF
    Henriques, R., & Pinto, L. (2023). A novel evaluation framework for recommender systems in big data environments. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2023.120659---We gratefully acknowledge the support of Aptoide in providing access to the data which made this project possible. This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project—UIDB/04152/2020—Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS.Recommender systems were first introduced to solve information overload problems in enterprises. Over the last few decades, recommender systems have found applications in several major websites related to e-commerce, music and video streaming, travel and movie sites, social media, and mobile app stores. Several methods have been proposed over the years to build recommender systems. However, very little work has been done in recommender system evaluation metrics. The most common approach to measuring recommender system’s performance in offline settings is to employ micro or macro averaged versions of standard machine-learning measures. Profit or other business-oriented metrics have been proposed for other predictive analytics problems, such as churn prediction. However, no such metrics have emerged for the recommender system context. In this work, we propose a novel evaluation metric that incorporates information from the online-platform userbase’s behavior. This metric’s rationale is that the recommender system ought to improve customers’ repeatead use of an online platform beyond the baseline level (i.e. in the absence of a recommender system). An empirical application of this novel metric is also presented in a real-world mobile app store, which integrates the dynamics of large-scale big data environments, which are common deployment scenarios for these types of recommender systems. The resulting profit metric is shown to correlate with the existing metrics while also being capable of integrating cost information, thereby providing an additional business benefit context, which allows us to differentiate between two similarly performing models.publishersversionepub_ahead_of_prin
    • …
    corecore