3,745 research outputs found

    A decision support methodology to enhance the competitiveness of the Turkish automotive industry

    Get PDF
    This is the post-print (final draft post-refereeing) version of the article. Copyright @ 2013 Elsevier B.V. All rights reserved.Three levels of competitiveness affect the success of business enterprises in a globally competitive environment: the competitiveness of the company, the competitiveness of the industry in which the company operates and the competitiveness of the country where the business is located. This study analyses the competitiveness of the automotive industry in association with the national competitiveness perspective using a methodology based on Bayesian Causal Networks. First, we structure the competitiveness problem of the automotive industry through a synthesis of expert knowledge in the light of the World Economic Forum’s competitiveness indicators. Second, we model the relationships among the variables identified in the problem structuring stage and analyse these relationships using a Bayesian Causal Network. Third, we develop policy suggestions under various scenarios to enhance the national competitive advantages of the automotive industry. We present an analysis of the Turkish automotive industry as a case study. It is possible to generalise the policy suggestions developed for the case of Turkish automotive industry to the automotive industries in other developing countries where country and industry competitiveness levels are similar to those of Turkey

    Analyzing the solutions of DEA through information visualization and data mining techniques: SmartDEA framework

    Get PDF
    Data envelopment analysis (DEA) has proven to be a useful tool for assessing efficiency or productivity of organizations, which is of vital practical importance in managerial decision making. DEA provides a significant amount of information from which analysts and managers derive insights and guidelines to promote their existing performances. Regarding to this fact, effective and methodologic analysis and interpretation of DEA solutions are very critical. The main objective of this study is then to develop a general decision support system (DSS) framework to analyze the solutions of basic DEA models. The paper formally shows how the solutions of DEA models should be structured so that these solutions can be examined and interpreted by analysts through information visualization and data mining techniques effectively. An innovative and convenient DEA solver, SmartDEA, is designed and developed in accordance with the proposed analysis framework. The developed software provides a DEA solution which is consistent with the framework and is ready-to-analyze with data mining tools, through a table-based structure. The developed framework is tested and applied in a real world project for benchmarking the vendors of a leading Turkish automotive company. The results show the effectiveness and the efficacy of the proposed framework

    ASSESSMENT OF THE POSSIBILITY OF USING BAYESIAN NETS AND PETRI NETS IN THE PROCESS OF SELECTING ADDITIVE MANUFACTURING TECHNOLOGY IN A MANUFACTURING COMPANY

    Get PDF
    The changes caused by Industry 4.0 determine the decisions taken by manufacturing companies. Their activities are aimed at adapting processes and products to dynamic market requirements. Additive manufacturing technologies (AM) are the answer to the needs of enterprises. The implementation of AM technology brings many benefits, although for most 3D printing techniques it is also relatively expensive. Therefore, the implementation process should be preceded by an appropriate analysis, in order, finally, to assess the solution. This article presents the concept of using the Bayesian network when planning the implementation of AM technology. The use of the presented model allows the level of the success of the implementation of selected AM technology, to be estimated under given environmental conditions

    Warranty Data Analysis: A Review

    Get PDF
    Warranty claims and supplementary data contain useful information about product quality and reliability. Analysing such data can therefore be of benefit to manufacturers in identifying early warnings of abnormalities in their products, providing useful information about failure modes to aid design modification, estimating product reliability for deciding on warranty policy and forecasting future warranty claims needed for preparing fiscal plans. In the last two decades, considerable research has been conducted in warranty data analysis (WDA) from several different perspectives. This article attempts to summarise and review the research and developments in WDA with emphasis on models, methods and applications. It concludes with a brief discussion on current practices and possible future trends in WDA

    Differentiating between fatal and non-fatal mining accidents using artificial intelligence techniques

    Get PDF
    Using statistical methods for categorical data analysis, namely multiple correspondence analysis and Artificial Intelligence through Bayesian networks, we analysed a database of occupational mining accidents for Spain for the period 2004–2017 to identify the factors most associated with the occurrence of fatal and non-fatal accidents. The results obtained allow to shed light on the hidden patterns present in different work situations where accidents can have fatal consequences. In addition, this study exemplifies the application of statistical techniques suitable for Big Data and data-driven decision making in the mining sector.Xunta de Galicia | Ref. ED431C 2018/4

    Reliability assessment of manufacturing systems: A comprehensive overview, challenges and opportunities

    Get PDF
    Reliability assessment refers to the process of evaluating reliability of components or systems during their lifespan or prior to their implementation. In the manufacturing industry, the reliability of systems is directly linked to production efficiency, product quality, energy consumption, and other crucial performance indicators. Therefore, reliability plays a critical role in every aspect of manufacturing. In this review, we provide a comprehensive overview of the most significant advancements and trends in the assessment of manufacturing system reliability. For this, we also consider the three main facets of reliability analysis of cyber–physical systems, i.e., hardware, software, and human-related reliability. Beyond the overview of literature, we derive challenges and opportunities for reliability assessment of manufacturing systems based on the reviewed literature. Identified challenges encompass aspects like failure data availability and quality, fast-paced technological advancements, and the increasing complexity of manufacturing systems. In turn, the opportunities include the potential for integrating various assessment methods, and leveraging data to automate the assessment process and to increase accuracy of derived reliability models
    • …
    corecore