34,004 research outputs found

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports

    Statistical Significance of the Netflix Challenge

    Full text link
    Inspired by the legacy of the Netflix contest, we provide an overview of what has been learned---from our own efforts, and those of others---concerning the problems of collaborative filtering and recommender systems. The data set consists of about 100 million movie ratings (from 1 to 5 stars) involving some 480 thousand users and some 18 thousand movies; the associated ratings matrix is about 99% sparse. The goal is to predict ratings that users will give to movies; systems which can do this accurately have significant commercial applications, particularly on the world wide web. We discuss, in some detail, approaches to "baseline" modeling, singular value decomposition (SVD), as well as kNN (nearest neighbor) and neural network models; temporal effects, cross-validation issues, ensemble methods and other considerations are discussed as well. We compare existing models in a search for new models, and also discuss the mission-critical issues of penalization and parameter shrinkage which arise when the dimensions of a parameter space reaches into the millions. Although much work on such problems has been carried out by the computer science and machine learning communities, our goal here is to address a statistical audience, and to provide a primarily statistical treatment of the lessons that have been learned from this remarkable set of data.Comment: Published in at http://dx.doi.org/10.1214/11-STS368 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Counterparty credit risk management in industrial corporates

    Get PDF
    Ever since the financial crisis of the banking system of 2008 - 2010 the paradigm that deposits or other exposures towards major banks are safe has been fundamentally questioned. This put industrial corporates, who to support their business usually need to manage significant cash holdings or incur counterparty credit risk via derivatives, in the situation to develop or extend their resources for counterparty credit risk management. This paper provides a comprehensive overview over the practical issues into the subject benefitting largely from the findings of an interview series conducted with the respective heads of counterparty and customer credit risk management in the time period April - September 2011 of 25 large european enterprises with a large subset being members of the German DAX Index.Financial Risk Management; Credit Risk; Counterparty Credit Risk; CCR Management; Organisation; Financial Controlling; Financial Institutions; Banks
    corecore