748 research outputs found

    Perceptual Grouping through Competition in Coupled Oscillator Networks

    Get PDF
    Meier M, Haschke R, Ritter H. Perceptual Grouping through Competition in Coupled Oscillator Networks. In: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN). Bruges (Belgium): d-side; 2013.In this paper we present a novel approach to model perceptual grouping based on phase and frequency synchronization in a network of coupled Kuramoto oscillators. Transferring the grouping concept from the Competitive Layer Model (CLM) to a network of Kuramoto oscillators, we preserve the excellent grouping capabilities of the CLM, while dramatically improving the convergence rate, robustness to noise, and computational performance, which is verified in a series of artificial grouping experiments

    Cortical Synchronization and Perceptual Framing

    Full text link
    How does the brain group together different parts of an object into a coherent visual object representation? Different parts of an object may be processed by the brain at different rates and may thus become desynchronized. Perceptual framing is a process that resynchronizes cortical activities corresponding to the same retinal object. A neural network model is presented that is able to rapidly resynchronize clesynchronized neural activities. The model provides a link between perceptual and brain data. Model properties quantitatively simulate perceptual framing data, including psychophysical data about temporal order judgments and the reduction of threshold contrast as a function of stimulus length. Such a model has earlier been used to explain data about illusory contour formation, texture segregation, shape-from-shading, 3-D vision, and cortical receptive fields. The model hereby shows how many data may be understood as manifestations of a cortical grouping process that can rapidly resynchronize image parts which belong together in visual object representations. The model exhibits better synchronization in the presence of noise than without noise, a type of stochastic resonance, and synchronizes robustly when cells that represent different stimulus orientations compete. These properties arise when fast long-range cooperation and slow short-range competition interact via nonlinear feedback interactions with cells that obey shunting equations.Office of Naval Research (N00014-92-J-1309, N00014-95-I-0409, N00014-95-I-0657, N00014-92-J-4015); Air Force Office of Scientific Research (F49620-92-J-0334, F49620-92-J-0225)

    Synchronized Oscillations During Cooperative Feature Linking in a Cortical Model of Visual Perception

    Full text link
    A neural network model of synchronized oscillator activity in visual cortex is presented in order to account for recent neurophysiological findings that such synchronization may reflect global properties of the stimulus. In these recent experiments, it was reported that synchronization of oscillatory firing responses to moving bar stimuli occurred not only for nearby neurons, but also occurred between neurons separated by several cortical columns (several mm of cortex) when these neurons shared some receptive field preferences specific to the stimuli. These results were obtained not only for single bar stimuli but also across two disconnected, but colinear, bars moving in the same direction. Our model and computer simulations obtain these synchrony results across both single and double bar stimuli. For the double bar case, synchronous oscillations are induced in the region between the bars, but no oscillations are induced in the regions beyond the stimuli. These results were achieved with cellular units that exhibit limit cycle oscillations for a robust range of input values, but which approach an equilibrium state when undriven. Single and double bar synchronization of these oscillators was achieved by different, but formally related, models of preattentive visual boundary segmentation and attentive visual object recognition, as well as nearest-neighbor and randomly coupled models. In preattentive visual segmentation, synchronous oscillations may reflect the binding of local feature detectors into a globally coherent grouping. In object recognition, synchronous oscillations may occur during an attentive resonant state that triggers new learning. These modelling results support earlier theoretical predictions of synchronous visual cortical oscillations and demonstrate the robustness of the mechanisms capable of generating synchrony.Air Force Office of Scientific Research (90-0175); Army Research Office (DAAL-03-88-K0088); Defense Advanced Research Projects Agency (90-0083); National Aeronautics and Space Administration (NGT-50497

    Computational Models of Auditory Scene Analysis: A Review

    Get PDF
    Auditory scene analysis (ASA) refers to the process(es) of parsing the complex acoustic input into auditory perceptual objects representing either physical sources or temporal sound patterns, such as melodies, which contributed to the sound waves reaching the ears. A number of new computational models accounting for some of the perceptual phenomena of ASA have been published recently. Here we provide a theoretically motivated review of these computational models, aiming to relate their guiding principles to the central issues of the theoretical framework of ASA. Specifically, we ask how they achieve the grouping and separation of sound elements and whether they implement some form of competition between alternative interpretations of the sound input. We consider the extent to which they include predictive processes, as important current theories suggest that perception is inherently predictive, and also how they have been evaluated. We conclude that current computational models of ASA are fragmentary in the sense that rather than providing general competing interpretations of ASA, they focus on assessing the utility of specific processes (or algorithms) for finding the causes of the complex acoustic signal. This leaves open the possibility for integrating complementary aspects of the models into a more comprehensive theory of ASA

    Fast numerical integration of relaxation oscillator networks based on singular limit solutions

    Get PDF

    Establishing Communication between Neuronal Populations through Competitive Entrainment

    Get PDF
    The role of gamma frequency oscillation in neuronal interaction, and the relationship between oscillation and information transfer between neurons, has been the focus of much recent research. While the biological mechanisms responsible for gamma oscillation and the properties of resulting networks are well studied, the dynamics of changing phase coherence between oscillating neuronal populations are not well understood. To this end we develop a computational model of competitive selection between multiple stimuli, where the selection and transfer of population-encoded information arises from competition between converging stimuli to entrain a target population of neurons. Oscillation is generated by Pyramidal-Interneuronal Network Gamma through the action of recurrent synaptic connections between a locally connected network of excitatory and inhibitory neurons. Competition between stimuli is driven by differences in coherence of oscillation, while transmission of a single selected stimulus is enabled between generating and receiving neurons via Communication-through-Coherence. We explore the effect of varying synaptic parameters on the competitive transmission of stimuli over different neuron models, and identify a continuous region within the parameter space of the recurrent synaptic loop where inhibition-induced oscillation results in entrainment of target neurons. Within this optimal region we find that competition between stimuli of equal coherence results in model output that alternates between representation of the stimuli, in a manner strongly resembling well-known biological phenomena resulting from competitive stimulus selection such as binocular rivalry

    Perceptual grouping by proximity and orientation bias: experimental and modelling investigations

    Get PDF
    Grouping by proximity is the principle of perceptual organization by which the elements of a visual scene which are closer in space tend to be perceived as a coherent ensemble. Research into this topic makes substantial use of the class of stimuli known as dot lattices. The Pure Distance Law (Kubovy et al., 1998) predicts that the probability of grouping by proximity in these stimuli only depends on the relative inter-dot distance between competing organizations. Despite much effort to explain how grouping by proximity is shaped by the basic organization of visual stimuli, its neural mechanisms are still under debate. Moreover, previous studies reported that grouping in dot lattices also occurs according to an orientation bias, by which these stimuli are perceived along a preferred orientation (vertical), regardless of what predicted by the Pure Distance Law. The aim of this thesis is to shed light on the functional and neural mechanisms characterizing grouping by proximity in dot lattices, as well as the trade-off between proximity- and orientation-based grouping. Study 1 investigates the role of high-level visual working memory (VWM) in promoting for the shift between grouping by proximity and orientation bias. Both the quantity (load) and the quality (content) of the information stored in VWM shape online grouping for dot lattices. Study 2 presents a neural network model simulating the dynamics occurring between low- and high-level processing stages during dot lattices perception. The degree of synchrony between the units at low-level module has a key role in accounting for grouping by proximity. Overall, our results show that high-level (Study 1) and low-level (Study 2) operations contribute in parallel to the emergence of grouping by proximity, as well as to its reciprocity with orientation-based grouping
    corecore