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ABSTRACT 

 

Grouping by proximity is the principle of perceptual organization by which the elements of a visual 

scene which are closer in space tend to be perceived as a coherent ensemble. Research into this 

topic makes substantial use of the class of stimuli known as dot lattices. The Pure Distance Law 

(Kubovy et al., 1998) predicts that the probability of grouping by proximity in these stimuli only 

depends on the relative inter-dot distance between competing organizations. Despite much effort 

to explain how grouping by proximity is shaped by the basic organization of visual stimuli, its 

neural mechanisms are still under debate. Moreover, previous studies reported that grouping in dot 

lattices also occurs according to an orientation bias, by which these stimuli are perceived along a 

preferred orientation (vertical), regardless of what predicted by the Pure Distance Law. The aim 

of this thesis is to shed light on the functional and neural mechanisms characterizing grouping by 

proximity in dot lattices, as well as the trade-off between proximity- and orientation-based 

grouping. Study 1 investigates the role of high-level visual working memory (VWM) in promoting 

for the shift between grouping by proximity and orientation bias. Both the quantity (load) and the 

quality (content) of the information stored in VWM shape online grouping for dot lattices. Study 

2 presents a neural network model simulating the dynamics occurring between low- and high-level 

processing stages during dot lattices perception. The degree of synchrony between the units at low-

level module has a key role in accounting for grouping by proximity. Overall, our results show 

that high-level (Study 1) and low-level (Study 2) operations contribute in parallel to the emergence 

of grouping by proximity, as well as to its reciprocity with orientation-based grouping.  
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Introduction 

 

Given the limited resources of the visual system, humans and other species are constantly required 

to implement efficient perceptual strategies to account for the heterogeneity and complexity of the 

external world. To have sufficient chances of survival, they need to localize salient stimuli, even 

under conditions of reduced visibility or camouflage. To accomplish this goal, it is imperative to 

integrate the features belonging to a relevant object into a unitary and meaningful percept while, 

at the same time, segregating them from features that belong to non-relevant objects. Both 

processes are required to correctly identify objects, since different stimulus features project to 

separate sub-regions of the retinal mosaic (Ahnelt, 1998). 

The mechanisms through which the visual system organizes the complex pattern of sensory 

stimulation into a spatio-temporal coherent ensemble are collectively known as perceptual 

grouping. The word “spatio-temporal” here denotes that perceptual grouping organizes, not only 

static patterns of stimulation, but also ones that move or change over time, including changes 

caused by movements of the eyes. A clear example is provided by the phi phenomenon 

(Wertheimer, 1912), by which the same single dot appearing at different locations over time is 

perceived as being in continuous motion.  

Wertheimer (1923) was the first to describe a set of principles by which grouping processes occur. 

These are nowadays referred to as the classical principles of perceptual grouping. Some of them 

are illustrated in Figure I. Wertheimer showed that altering the distance between adjacent dots, 

such that some became closer than others, induced the observers to group the closest ones together 

as unitary structures. This first principle based on the spacing between separate elements was thus 
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named as proximity (Figure IA). According to the principle of similarity, elements sharing some 

features are more strongly integrated in a whole than different stimuli (Figure IB). The principle 

of common fate posits that elements moving in the same direction tend to be perceived as belonging 

together (Figure IC). Panels D and E of Figure I show the principles of good continuation and 

closure, by which grouping emerges between elements aligned along a common direction or 

converging towards a closer shape, respectively. In more recent years, other principles have been 

added to the classical ones (for an exhaustive dissertation on classical and contemporary grouping 

principles see Brooks, 2015; Wagemans et al., 2012).  

 

Figure I: Classical grouping principles individuated by Wertheimer (1923). (A). Example of 

grouping by proximity. The dots tend to be grouped into four separate pairs with the shortest inter-

dot distance in between. (B). Example of grouping by similarity. The elements of the array tend to 
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be perceived as two groups depending on the shape. (C). Example of grouping by common fate. 

Dots moving in the same direction tend to be grouped together. (D). Example of grouping by good 

continuation. Observers prefer to perceive this patter as two straight lines intersecting in the 

middle, rather than as two 90° angles with touching vertices. (E). Example of grouping by closure. 

Elements composing closed patterns tend to be grouped together.  

 

Perceptual grouping has traditionally been considered as a set of operations taking place at early 

stages of visual hierarchy, namely in a preattentive fashion (Palmer, 2002a; Palmer et al., 2003; 

Peterson & Kimchi, 2014). These operations are meant to generate proto-representations of an 

object in the visual field, over which subsequent operations are applied, which would lead to a 

final percept. However, in more recent years, this assumption has been challenged by the evidence 

that several factors, such as past experience, expectations and attentional manipulations, can 

strongly shape the occurrence and the timing of grouping processes (see Peterson & Kimchi, 

2014). This corpus of research contributed to the view of perceptual grouping as a highly complex 

process which arises from the interplay between bottom-up (early and automatic) and top-down 

(later and voluntary) processes.  

The present thesis aims to deepen our understanding of the functional and neural mechanisms of 

perceptual grouping, particularly highlighting the role of the reciprocal relationship between low-

level and high-level processing stages. In doing so, I specifically take into account the principle of 

grouping by proximity, even though many of the conclusions to which this work leads, might be 

extended to other grouping principles as well. 
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Chapter 1 introduces the issue of the objective measurement of perceptual grouping. The main 

focus is on psychophysical experiments aimed at quantitatively assessing the strength of grouping 

by proximity. The stimuli that most of these studies employed (i.e. the dot lattices) are extensively 

described. The chapter also introduces the issue of perceptual bias overruling grouping by 

proximity in dot lattices. Perceptual bias is understood as the top-down influence over low-level 

visual areas, reflecting the state of the observers. 

Chapter 2 presents a behavioral experiment aimed at investigating how external stimulus factors, 

such as proximity, and internal factors, such as perceptual bias, shape perceptual  grouping process. 

This study investigates the role of visual working memory (VWM) modulation in determining 

whether grouping process for ambiguous dot lattices occurs according to proximity principle or 

according to orientation bias. A dual-task paradigm is employed, where grouping evaluation is 

embedded in-between the encoding and the retrieval stages of a change-detection task, in which 

VWM is loaded with ungrouped information.  

Chapter 3 introduces a dynamic network model accounting for the perception of grouping by 

proximity based on its quantitative measurement. In the model, grouping by proximity is achieved 

through the interplay of feedforward and lateral connections between low- and high-level modules. 

By replicating some of the experimental results exposed in Chapters 1 and 2, the model simulations 

offer a biologically plausible explanation of the neural mechanisms underlying grouping by 

proximity, as well as orientation bias interference.  

The thesis ends with a general discussion of the results outlined in the two studies, and suggest 

possible developments for further research.  
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Chapter 1 

Quantitative Assessments of Grouping by Proximity 

 

1.1 The issue of Grouping Measurement 

The long history of research investigating the operations governing perceptual grouping can be 

traced back to Wertheimer’s seminal paper (1923). His work was crucial in laying the foundations 

for our understating of how the perceptual organization of visual scenes is extracted and processed 

by our perceptual system. The method that Wertheimer (1923) used to illustrate classical principles 

of perceptual grouping was based on visual demonstration of sketches illustrating the principle to 

his audience. Thus, this approach fully relied on the qualitative experience of observers. This 

method may suggest which components of a visual scene are typically bound together as a whole, 

but did not provide any indication of the strength of the grouping process (Peterson & Kimchi, 

2013; Wagemans et al., 2012a). 

To assess this issue, a quantitative approach is needed (Palmer, 2002b). As pointed out by Palmer 

and Beck (2007), the distinction between qualitative and quantitative approaches to the study of 

perceptual grouping relates to the distinction between subjective and objective methods in 

perceptual studies. In subjective perceptual tasks, correct responses rely on the current experience 

of the observers and, as such, susceptible to distortion. In objective perceptual tasks, correct 

responses are defined on the physical parameters of the stimuli, and, as such, are observer-

independent. In their perspective, quantitative estimation of grouping is best achieved when 

perceptual experience is unrelated to the subjective report of the participants.  
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This section provides an overview about such quantitative accounts to the investigation of 

perceptual grouping. Although several researches exposed here takes into account several 

principles of grouping, we will focus on proximity principle. As for many fields of psychology, 

research investigating grouping by proximity has used both indirect and direct methods, whose  

attributes are separately addressed in following .  

 

1.2 Indirect Measures of Grouping by Proximity 

One convenient strategy to overcome demand characteristics in perceptual research is to use tasks 

providing an indirect quantification of the processes under investigation (Palmer & Beck, 2007; 

Palmer & Nelson, 2000, Schmidt & Schmidt, 2013, Wagemans, 2018). The word “indirect” refers 

to the fact that perceptual judgments made by the observers do not reflect any task specification. 

In other words, participants are unaware about which dimension of visual stimuli represents the 

actual focus of the experiment (e.g. Gogel, 1976; Reingold & Merikle, 1988).  

One of the most popular method to indirectly asses grouping by proximity is the repetition 

discrimination paradigm (RDT; Beck & Palmer, 2002; Palmer & Beck, 2007; Vickery, 2008, 

Vickery & Jiang, 2009). Participants are showed with a string of alternating shapes (i.e. squares 

and circles). At one point, one of the shapes is repeated instead of being alternated with the other. 

This constitute the target pair, which participants have to detect as quickly as possible. The distance 

between the shapes in the target pair and the distance between the target pair and the other elements 

of the string are orthogonally varied. The results show that participants are faster in detecting the 

target pair when repeating shapes were both closer each other and farther from other adjacent 

shapes (within-group condition). This procedure has provided comparable results with other 
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grouping factors, such as similarity, common region, and connectedness (Palmer & Beck, 2007, 

Experiments 3-5). 

A more recent paradigm has been developed by Wei et al. (2018). Their task is based on the well-

known tilt aftereffect (TAE) typically found in adaptation studies (Dragoi et al., 2000; 2001; 

Fritsche et al., 2017; Jin et al., 2005; Webster, 2011). TAE refers to the fact that the perceived 

orientation of a stimulus (test) is altered after participants are exposed to a previous oriented 

stimulus (adaptor). In one of the conditions, adaptors are arrays of dots presenting a clear proximity 

organization. In this task, participants are required to respond to the orientation of the test stimulus, 

ignoring the previously presented adaptor. The results show that adaptors are still effective in 

inducing TAEs for subsequent test stimuli, with largest TAE implying a stronger proximity 

organization for the adaptors.  

These two examples clearly illustrate that indirect methods configures themselves as a valid 

approach to quantify grouping by proximity, as well as other principles and their interaction (Wei 

et al., 2018, Experiment 3). The fact that participants are not aware of which dimension of 

perceptual experience is actually under investigation makes this type of tasks less susceptible to 

demand characteristics, preventing response biases. However, the disadvantage of not relying on 

the perceptual experience is that the performance in these tasks could reflect perceptual and 

cognitive processes other than grouping. In other words, it is not guaranteed that indirect methods 

to perceptual grouping measures what they are designed for (Brooks, 2015: Palmer & Beck, 2007, 

Schmidt & Schmidt, 2013). To overcome these limits, other scholars prefer investigating grouping 

phenomena through direct methods.  
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1.3 Direct Measures of Grouping by Proximity 

Direct methods in grouping quantitative research involve presenting stimuli to the participants 

under multiple viewing conditions and collecting the reports about what they actually see 

(Wagemans, 2018). Although ruled by high experimental rigor, such approach derives from the 

qualitative demonstrations of early Gestaltists, and, as such, is based on the subjectivity of the 

observers. For this reason, a similar approach is referred to as experimental phenomenology (e.g. 

Albertazzi, 2015; Sinico, 2008), or, alternatively, as phenomenological psychophysics (Kubovy & 

Gephstein, 2003; Strother et al., 2003).  

As argued by Kubovy and Gephstein (2003), the emphasis put on the phenomenal aspect indicates 

“A characteristic of or belonging to reality as perceived rather than as independent of mind.”. This 

pits against idiosyncratic subjectivity, which strictly relates to the individuality of the perceiver, 

without being characterized by the sensory stimulation. Thus, phenomenology does not 

compromise the objectivity of psychological measurement, since it still is anchored to the 

appearance of a physical entity.  

The application of phenomenological psychophysics to perceptual grouping has classically made 

use of a peculiar class of stimuli, knows as dot lattices. Given the importance of such stimuli for 

empirical section of the present work, their perceptual organization is extensively described. 
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1.3.1 The geometry of Dot Lattices 

A dot lattice can be defined as a collection of dots on a plane, holding two fundamental proprieties: 

1) the dots are discrete (i.e., they can be distinguished as singular elements); and 2) the dots entirely 

span the plane (i.e., the separation between them is not excessive).  

The basic structure of a dot lattice is illustrated in Figure 1.1. Considering one dot O in the plane, 

we can define a distance a from its closest neighbor (A) and a distance b from its second closest 

neighbor (B). These distances coincide with the translation vectors a (with norm ||a||), and b (with 

norm ||b|| ≥ ||a||), respectively. The angle between these two vectors (γ) has been demonstrated to 

lie within the interval 60° ≤ γ ≤ 90° (Kubovy, 1994). a, b and γ together form the fundamental 

structure of a dot lattice, namely the basic parallelogram, with a and b being the shortest and 

longest sides, respectively. The basic parallelogram defines the spatial relationship between each 

quartet of dots in the stimulus, and, thus, the lattice itself (Figure 1.1).  

The diagonals of the parallelogram are indicated as the vectors c and d and are parallel to the 

vectors having norm ||a - b|| and ||a + b||, respectively. In this way, all the possible directions 

between one dot and its eight surrounding dots are specified by these four vectors, which, are 

constrained to the relation ||a|| ≤ ||b|| ≤ ||c|| ≤ ||d||.  
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Figure 1.1: Basic organization of a dot lattice. The vector connecting O and A is the shortest inter-

dot distance and is typically indicated as a (with norm ||a||). The vector b (with norm ||b|| ≥ ||a||) 

connects O with B and, in this example, is the second shortest inter-dot distance. The angle these 

two vectors form is indicated by γ. Together, a, b, and γ constitute the basic parallelogram, which 

determines the spacing between four dots. The diagonals of the basic parallelogram are indicated 

as the vectors c and d, which have norm ||a - b|| and ||a + b||, respectively. 

  

Since c and d can be always computed starting from a, b and γ, these are the parameters useful to 

characterize a lattice. Keeping a constant, Bravais (1949), and subsequently Kubovy (1994), 

formulated the taxonomy of dot lattices by systematically varying b and γ. These authors 

individuated six classes of dot lattices, each of which presents different symmetry proprieties: 
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square, hexagonal, rhombic, oblique, rectangular, and centered rectangular (Figure 1.2). As we can 

see by Figure 1.2A, as ||b|| changes relative to ||a||, different types of lattices are defined. Such 

difference in length between inter-dot distances b and a (||b||/||a||) is known as aspect ratio (AR) 

(Kubovy, 1994; Kubovy & Wagemans, 1995). For example, squared dot lattices are characterized 

by AR = 1.0, which means that ||b|| is equal to ||a||, and thus a and b distances are characterized by 

the same inter-dot spacing. As the AR increases, the difference between a and b increases and a 

becomes the shortest inter-dot distance. For AR > 1.0 and γ fixed at 90°, dot lattices are classified 

as rectangular. Thus, squared dot lattices can be considered as a specific subclass of rectangular 

dot lattices, presenting AR = 1.0.  

Figure 1.2: Taxonomy of dot lattices. (A). The six classes of dot lattices are obtained by keeping 

constant the norm of vector a and varying ||b|| and γ accordingly. The ratio between vectors a and 

b is known as the aspect ratio (AR = b/a), and it is an important parameter in determining how a 

dot lattice is perceived. (B). Illustration of one exemplar for each class. Note the circular 

configuration, which is typically how dot lattices are presented during experiments. 
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Dot lattices are typically displayed in a circular configuration as in Figure 1.2B, where the dots 

can be perceived as aligned in a certain orientation. These orientations parallel the four distance 

vectors a, b, c, and d, and, therefore, henceforth we will refer to them as a, b, c, and d. Thus, 

grouping by proximity in these stimuli occurs when they are perceived as parallel strips of dots 

oriented along a. Notice that at AR = 1.0, inter-dot distance along orientation b is equal to the one 

along orientation a, and, thus, b defines grouping by proximity as well. Moreover, hexagonal dot 

lattices are specified by the condition ||a|| = ||b|| = ||c|| and, thus, in these stimuli grouping by 

proximity occurs along each of these orientations. 

During a typical dot lattices experiment, the stimuli are presented in different orientations of a. 

Such orientations are specified by the angle between a and the horizontal diameter of the circular 

configuration of a dot lattice (θ), which ultimately defines the overall tilt of the stimulus (Figure 

1.3). 

 

Figure 1.3: Example of oriented dot lattice. The angle θ between a and the horizontal diameter of 

circular configuration defines the overall tilt of a dot lattice. In this exemplar, AR = 1.2 and γ = 

79°. 
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A last relevant feature of dot lattices is given by the fact that by increasing ||a||, the dot density of 

a finite dimension lattice is reduced, and vice versa. In other words, ||a|| represents the spatial scale 

of the stimulus. 

 

1.3.2 The Pure Distance Law 

In one of the first studies systematically varying all the parameters of dot lattices outlined above 

was conducted by Kubovy and Wagemans (1995). They presented participants with several types 

of dot lattices sampled the two-parameter stimulus space (Figure 1.2A). Stimuli lasted for 300 ms, 

after which participants were forced to report their perceived orientation. The frequencies for each 

orientation were then treated as an estimate of the strength of grouping by proximity and were 

plotted as a function of the relative inter-dot distance. The authors found that the probability to 

group the dots along one orientation v exponentially decreased with increasing its distance (v) 

relative to the shortest inter-dot distance (a):  

𝑝(𝒗)

𝑝(𝒂)
= 𝑒

−𝛼(
||𝐯||
||𝐚||

 − 1)
 [1.1] 

where the term ||v||/||a|| represents the length of the distance between two dots along orientation v 

scaled by the shortest inter-dot distance a and α (> 0) is referred to as attraction constant and 

defines the individual sensitivity to proximity (Figure 1.4). This function was defined attraction 

function because it states that the tendency to group together two dots (attraction) diminishes with 

increasing the distance between them.  
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Figure 1.4: Attraction function for different values of α. The tendency to group the dots along an 

orientation v other than a diminishes as the inter-dot distance along v (v/a) increases. In Equation 

1.1, α defines an individual parameter of sensitivity to proximity. Thus, the higher α, the higher 

observers tend to group the dots according to proximity principle (i.e. attraction along v is 

reduced).  

 

In other words, attraction function predicts that the probability to group the dots by proximity 

decreases as the inter-dot distance along orientations other than a diminishes. Since the structural 

organization of dot lattices imposes that ||b|| ≤ ||c|| ≤ ||d||, reducing the distance along b also 

increases the attraction along c and d. In this sense, the probability of grouping by proximity in dot 

lattices depends on their AR (Figure 1.5). Recall that when AR = 1.0, inter-dot distances along a 

and b have the same length. In this case, the attraction function predicts that the perception of the 

dot lattices along these orientations is equiprobable. Thus, since both interpretations are equally 
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likely, stimuli at AR = 1.0 present a higher degree of perceptual ambiguity (Kubovy, 1994). This 

model was therefore denominated Pure Distance Law, since, the only stimulus parameter 

predicting the occurrence of grouping by proximity is the relative distance between the single 

elements (Kubovy et al., 1998, but see Bleumers et al., 2008, for a discussion of how the scale of 

peripherally presented lattices affects the grouping).  

 

Figure 1.5: Probability of grouping by proximity in dot lattices at different values of AR. The 

probability to group the dots along a increases with the AR. At AR = 1.0, a and b have the same 

length and the attraction function predicts the same probability of grouping along both distances. 

Since the different stimulus interpretations are equally likely, dot lattices at AR = 1.0 present the 

highest level of perceptual ambiguity.   

 

The phenomenological psychophysics approach has been applied, among others, to investigate the 

interaction between proximity and similarity (Kubovy & Gephstein, 2000; Kubovy & van den 

Berg, 2008, Luna & Montoro, 2011). The aim of these studies was to characterize how the strength 

of grouping by proximity varies with the similarity between the elements of the stimuli, and vice 

versa. This has been pursued by combining the two factors in the stimuli such that they were either 

in accordance or in competition. Proximity and similarity contributed independently to grouping 
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processes, whereas their joint effect was given by the sum of both their effects in isolation. Similar 

additive effects have been found for the combination of proximity and collinearity (Claessens & 

Wagemans, 2005; 2008), and between proximity and curvature, at least as they were not in conflict 

(Strother & Kubovy, 2006; 2012). Interestingly, these latter studies found that curvature overruled 

proximity when grouping along the two dimensions competed. The authors interpreted these 

results in terms of the non-accidental character (Blusseau et al., 2016; Kayaert & Wagemans, 2010; 

Vogels et al., 2001; Witkin & Tenenbaum, 1983) of curvilinear patterns in the stimuli. Participants 

were more likely to group along the most curvilinear orientation because they considered it less 

likely to be a casual factor in the stimulus and, as such, it gained higher weight in the process of 

selection. This suggests that grouping by proximity can be modulated by a top-down factor 

representing acquired knowledge about external contingences. This information provided a bias 

on visual processes responsible for perceptual grouping, which overruled the stimulus support 

(Gephstein & Kubovy, 2005) brought by the proximity of the dots.  

 

1.4 Orientation Bias in Dot Lattices 

Numerous studies on visual discrimination of oriented stimuli found evidence for an orientation 

bias, by which participants are more likely to perceive the stimuli in a preferred direction (e.g. 

Appelle, 1972; Girshick et al., 2011; Nasr & Tootell, 2012). Using simple configurations of 

stimuli, such as oriented gratings, these studies have reported evidence for an oblique effect. That 

is, participants are better in discriminating cardinal orientations (i.e. horizontal and vertical) than 

oblique ones (but see Essock et al., 2003; Hansen & Essok, 2004, for different results using 

broadband natural scenes). Single cell recordings as well as neuroimaging studies have linked such 

effect to the intrinsic properties neural populations tuned to cardinal orientations, such as their 
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higher distribution within V1 and their narrower receptive fields (Chapman & Bonhoeffer, 1998; 

Furmanski & Engel, 2000; Li et al., 2003). 

In dot lattices, several studies provided evidence that grouping operations are accompanied by a 

bias for the vertical orientation (Bleumers et al., 2008; Claessens & Wagemans, 2008; Nikolaev et 

al., 2016). In these studies, participants presented with rectangular dot lattices were more likely to 

group the dots along the vertical orientation, regardless of what was predicted by the Pure Distance 

Law function. Thus, the preference for vertical orientation during dot lattices dicrimination is 

accompanied by a reduction of proximity sensitivity (α parameter of the attraction function). 

However, the opposite could also be true: random fluctuations in the α parameter during some 

trials may render participants more susceptible to the influence of vertical bias (Bleumers et al., 

2008).  

Gephstein & Kubovy (2005) proposed that orientation bias during dot lattice perception may 

reflect a situation in which the amount of information brought by the stimulus to the perceptual 

system is low. In that case, the final decision relative to the orientation of the lattices is taken on 

the basis of the internal state of the observer.  

Physiological and neuroimaging studies link these forms of perceptual bias to the top-down 

feedbacks from fronto-temporal networks over primary and secondary visual areas (V1 and V2), 

reflecting inferential (Frith & Dolan, 1997; Hohwy, 2017; Kok et al., 2013; Summersfield & de 

Lange, 2014; Wang et al., 2013), or associative (Albright, 2012) processes that may help people 

to deal with perceptual ambiguity. Accordingly, vertical preference in rectangular dot lattices was 

stronger for multistable stimuli at AR = 1.0, whereas it decreases as the stimuli become less 

ambiguous (Nikolaev et al., 2016). Grouping in dot lattices may therefore be intended as the 
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contraposition of two forces: the current stimulus and stimulus expectations (Nikolaev et al., 

2008). 

Several studies on dot lattices considered preference for vertical orientation a noise factor, which 

could be balanced by presenting rotated versions of the stimuli, such that the angle θ always 

appeared to be rotated to a different degree (e.g. Kubovy & Wagemans, 1995; Kubovy et al., 1998). 

However, other studies found that its occurrence was modulated by several contextual factors, 

such as the recent visual experience (Gephstein & Kubovy, 2005) and perceptual learning 

(Nikolaev et al., 2016).  

This suggests that orientation bias can exert systematic effects on dot lattices perception, which 

can alter the fate of ongoing grouping process. In the next sections, I will present a  

phenomenological psychophysics experiment aimed to shed light on the trade-off between 

grouping by proximity (as prospected by Pure Distance Law) and orientation bias in rectangular 

dot lattices. 
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Chapter 2 

 Top-Down Modulations on Grouping by Proximity and Orientation Bias 

 

2.1 Introduction 

The Pure Distance Law (Kubovy et al., 1998) assumes that the probability to group the dots in a 

lattice along one orientation purely depends on the relative distance between the dots along such 

orientation. In this sense, the emergence of perceptual organization in those stimuli is entirely 

determined by their bottom-up layout. However, top-down factors have been reported to alter 

grouping processes, overshadowing the distance between the dots. Strother and Kubovy (2006; 

2012) used rectangular dot lattices, with different degrees of curvature along a and b orientations. 

They found that participants are more likely to group the lattices according to the highly curved 

direction, regardless of what predicted by the AR of the stimuli. The authors explained these results 

in terms of non-accidental character (Blusseau et al., 2016; Kayaert & Wagemans, 2010; Vogels 

et al., 2001; Witkin & Tenenbaum, 1983) of the curvilinear pattern of the stimuli. In other words, 

the curvature is judged as less likely to occur by chance in that context and, as such, it gained 

higher weight in the process of selection. This result suggests that grouping by proximity can be 

modulated by a top-down mechanism that biases the representation of one feature at the expense 

of the relative distances between the dots. 

Similarly, proximity has been observed to be challenged by the relative preference for vertical 

orientation, a phenomenon termed orientation bias (Bleumers et al., 2008; Claessens & Wagemans, 

2008; Gephstein & Kubovy, 2005; Nikolaev et al., 2016).  
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Using rectangular dot lattices at different levels of AR (i.e. stimulus ambiguity), Nikolaev et al. 

(2016) observed sequences of trials, in which orientations close to the vertical were preferred, 

regardless of proximity. The effect was stronger for stimuli at the highest level of ambiguity, 

whereas it weakened as the AR of the lattices increased. Such episodes of orientation bias tended 

to disappear as the experiment went by, together with as increase in grouping based on proximity. 

The authors attributed the presence of orientation bias to visual working memory (VWM). They 

proposed that, during the early stages of the experiment, participants maintain in VWM a 

representation of past trials in order to adjust their judgments. When VWM is occupied by those 

previous representations, a biased response tuned towards vertical orientation is given. This 

explanation is in line with the view that during perception VWM maintains coarse representations 

of the stimuli (proto-representations), which are gradually updated with more detailed information 

by object-based attention (Gao, Gao et al., 2011; Gao, Ding et al., 2013). This process would result 

either in perception based on stimulus features or in perception based on bias, depending on 

whether VWM resources are available at hand. Thus, accordingly, whether proximity or 

orientation control grouping of the dots depends on the load of the information hold in VWM. 

To investigate top-down effects of VWM in determining the trade-off between proximity and 

orientation bias in perceptual grouping, we use a classical dual task procedure, where a visual 

discrimination task is embedded within the encoding and the test stages of a change detection task. 

For the former task, participants are shown with dot lattices with different degrees of ambiguity 

and have to report which orientation in the stimuli they perceive as the most prominent. For the 

latter task, participants are presented with four oriented items (i.e. Gabor patches) and are asked 

to retain them for a subsequent comparison. Gabor patches are presented in two conditions of 
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complexity, which differently engaged VWM resources. In the low-load condition, all Gabor 

patches are in the same orientation, whereas in the high-load condition, they differ.  

If the amount of information occupying VWM alters grouping processes for dot lattices, we expect 

to find higher rate of proximity-based responses in low-load than in high-load condition. If such 

reduction of proximity sensitivity is promoted by orientation bias, we expect this effect to coincide 

with an increase of vertical responses in high-load condition compared to low-load condition, 

regardless of the AR of the stimuli.  

However, it could be that, instead of VWM load, the factor shaping how dot lattices are grouped 

is VWM content. In this case, the key factor in determining the trade-off between proximity-based 

and orientation-based grouping would be the quality of the information in VWM, rather than the 

quantity. For example, when participants maintain in VWM a representation of preceding vertical 

information, it could influence whether the dots are grouped according to the proximity of 

according to the orientation in a newly presented stimulus. Thus, the report of participants would 

be determined by VWM content.  

The effect of VWM content on the perception of newly presented stimuli has been demonstrated 

(Kang et al., 2011; Pan et al., 2014; Salahub & Emrich, 2016; Scocchia et al., 2013, Teng & 

Kravitz, 2019, Experiment 3; van Leeuwen et al., 1988). In these studies, participants are typically 

asked to hold a stimulus or a single feature (e.g. orientation) in their VWM while performing a 

discrimination task. These studies show that perceptual performance improves when the items hold 

in VWM and the to-be-discriminated stimuli share some commonality compared to when they 

differ (congruence effect).  
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Thus, we check for the possible influence of VWM content. In both load conditions, half of the 

trials require to hold in VWM items with orientations similar to a, the orientation predicted by 

proximity for the dot lattice (congruent content); and others require to hold in VWM items with 

orthogonal orientations (incongruent content). Beside VWM load, we also expect congruency to 

affect grouping by proximity in the dot lattices. Specifically, proximity-based responses are 

expected to be enhanced in the congruent compared to the incongruent condition (congruence 

effect). Moreover, if VWM content can also promote for orientation-based grouping of dot lattices, 

a stronger congruence effect for vertical than for horizontal VWM content should emerge. 

 

2.2 Method 

 

 

2.2.1 Participants 

Thirty-three participants took part to the experiment (17 female, age = 26 ± 6). They all had normal 

or corrected to normal vision. Half of the data were collected at KU Leuven where participants 

were recompensed with 2 course credits for taking part to the experiment. The other half of the 

data were collected at Sapienza University of Rome, where participants voluntary joined the study. 

The whole procedure was in accordance to the Declaration of Helsinki and was approved by the 

Ethical Committee of KU Leuven. 
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2.2.2 Stimuli 

We used two sets of stimuli, one for each of the tasks involved in our dual task procedure. For the 

visual discrimination task, we used rectangular dot lattices, with AR values varying between 1.0, 

1.1 and 1.2. As discussed in Chapter 1, when the stimuli presented AR = 1.0, a and b distance 

vectors have equal norm, and, thus, according to the Pure Distance Law, grouping by proximity 

can occur along both a and b orientations and the stimuli have higher level of ambiguity. As the 

AR of the lattices increases, grouping by proximity more strongly tunes towards orientation a and 

the stimuli become less ambiguous.  

Similar to previous experiments (Nikolaev et al., 2008; 2010; 2016), dot lattices were arranged 

within a bivariate isotropic Gaussian distribution, to reduce possible impact of the edges of the 

screen. This created a circular configuration of supra-threshold dots with a diameter of 11.3 

degrees of visual angle (dva). In each dot lattice, the dots had a diameter of 0.46 dva and the inter-

dot distance at AR = 1.0 was 0.65 dva. Dot lattices were not presented in cardinal orientations (i.e. 

θ ≠ 0° and θ ≠ 90°), since grouping by proximity is reduced along such orientations (Claessens & 

Wagemans, 2008), and to minimize the risk of categorical effects on participants’ perceptual 

judgments. Instead, we used values of θ such that the stimuli appeared close to cardinal orientations 

(Figure 2.1): when θ was at 22.5° or 157.5°, a was closer to the horizontal axis (horizontal dot 

lattices); whereas when θ was 67.5° or 112.5°, a was closer to the vertical axis (vertical dot 

lattices).  
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Figure 2.1: Examples of dot lattices at AR = 1.2, we employed in our experiment. The orientation 

of the stimuli is defined according to the angle θ between the horizontal diameter of the circular 

configuration and the vector a. The stimuli tuned at 22.5° and 157.5° are closer to the horizontal 

axis, and, thus, they are referred to as “horizontal dot lattices”, whereas the ones tuned at 67.5° 

and 112.5° are closer to the vertical axis, and, thus, they are referred to as “vertical dot lattices”. 

 

For the change detection task, we presented memory arrays formed by Gabor patches embedded 

in a Gaussian envelope. The visible area of the patches covered 3 dva and their spatial frequency 

was 1.5 cycles per degree.  They were placed at four equally distant locations from the fixation 

point (a circle of 0.32 dva of diameter at the center of the screen). The distance between the fixation 

point and the center of each Gabor patch was 2.5 dva. To limit for possible interference arising 

from the global configuration of a memory array, in half of the presentations the whole array was 
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tilted by 22.5° clockwise from the horizontal, and in the other half it was tilted by 22.5° 

counterclockwise from the horizontal (Figure 2.2A). 

In low-load trials, the four Gabor patches all had the same orientation, whereas, in high-load trials, 

the four Gabor patches presented the same orientation two by two, with equally oriented stimuli 

that were either horizontally or vertically aligned (Figure 2.2B). In the high-load condition, Gabor 

patches subtended to three possible organizations: 1) a “horizontal memory array”, in which two 

Gabor patches were oriented at 22.5° and the other two at 157.5°; 2) a “vertical memory array”, in 

which two Gabor patches were oriented at 67.5° and the other two at 112.5°; 3) a “mixed memory 

array”, in which two Gabor patches were presented in one of the horizontal orientations (22.5° or 

157.5°) and the other two in one of vertical orientation (67.5° or 112.5°). Thus, depending on the 

orientation of the following dot lattice, we obtained a congruent condition when a horizontal 

memory array was followed by a horizontal dot lattice or when a vertical memory array was 

followed by a vertical dot lattice; an incongruent condition when a horizontal memory array was 

followed by a vertical dot lattice or when a vertical memory array was followed by a horizontal 

dot lattice; or a mixed condition when mixed memory arrays were presented. This latter provided 

a neutral baseline for comparison with the congruent and the incongruent conditions. In the low-

load condition, since all the stimuli within the memory array were in the same orientation, only 

vertical and horizontal memory arrays were possible, thus defining only congruent and incongruent 

conditions. 
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Figure 2.2: Memory arrays used for the different conditions of change detection task. Each array 

consists of a squared configuration of Gabor patches, rotated 22.5° clockwise or counterclockwise 

from the horizontal, with each stimulus being equidistant from the central fixation point. (A). In 

the low-load condition, all Gabor patches are in the same orientation: either horizontal (left) 

(22.5° and 157.5° rotations) or vertical (right) (67.5° and 112.5° rotations). (B). In the high-load 

condition, Gabor patches are in the same orientation two by two. Same orientation pairs can be 

either vertically or horizontally aligned. With respect to patch orientation, we distinguish: 

horizontal (with one pair of stimuli being at 22.5° and the other one being at 157.5°), vertical (with 

one pair of stimuli being at 67.5° and the other one being at 112.5°) and mixed (with all possible 

combinations of horizontal and vertical pairs). 
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2.2.3 Procedure 

The experiment consisted in a visual discrimination task sandwiched in-between the two displays 

of a change detection task. Tasks were performed on a 23’’ LCD monitor (refresh rate of 60 Hz), 

placed at 70 cm from the participants. The whole procedure was administered using PsychoPy3 

software (Pierce, 2007). Trials consisted of the following displays: fixation point, memory array, 

mask array, dot lattice, response probe, and test array (Figure 2.3). Memory array and test array 

referred to the change detection task, whereas dot lattice and response probe referred to the visual 

discrimination task. 

Figure 2.3: Single trial routine in our experiment. The four Gabor patches in the memory array 

could be either all in the same orientation (low-load condition) or, as in this case, in the same 

orientation two by two (high-load condition). After the mask and a 650 ms interval, participants 

performed the perceptual judgment task. A dot lattice was shown for 300 ms and followed by the 

response probe, which lasted until participants reported an orientation. Once completing the 

visual discrimination task, a test array with only one Gabor patch was shown and participants 

responded whether its orientation had changed between the two displays. Also the test array lasted 

on the screen until participants provided a response. 
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Trials began with 500 ms of fixation point, followed by 800 ms presentation of the memory array, 

which could appear either in low-load or in high-load condition. To prevent for the retinal 

persistence of the memory array (e.g. Sligte et al. 2008), Gabor patches were followed by a 50 ms 

mask. The mask consisted in four two-dimensional squared sine-wave gratings of 3 dva with a 

noisy texture embedded in a Gaussian envelope. Each grating was superimposed on one of the 

Gabor patches of the memory array. Then, after 650 ms of blank screen, participants saw the dot 

lattice for 300 ms. After additional 300 ms blank screen, the response probe was displayed until 

response. The response probe consisted of four circles (response icons), each half-cut by a diameter 

parallel to one of the four possible orientations of the dot lattice (i.e. a, b, c or d). For each of the 

four orientations of the dot lattices, four different response probes were obtained by 

counterclockwise rotating the response icons to one of four possible locations on the screen (i.e. 

upper-left, lower-left, upper-right, lower-right, respectively). Participants reported the orientation 

of the dot lattice by pressing with the right hand one of four keys from the numerical keyboard 

(“4”, “1”, “5”, or “2”). These keys spatially corresponded to the locations of the response icons on 

the screen during each trial (i.e. “4” for top-left response icon, “1” for down-left response icon, 

“5” for top-right response icon, and “2” for down-right response icon). If participants did not 

perceive a prominent orientation in the dot lattice, they were asked to guess one. The visual 

discrimination report was followed by a 300 ms blank screen. Finally, the test array appeared and 

lasted until a response was provided. For the test array, only one of the four Gabor patches in the 

memory array was presented. Participants indicated whether the orientation between the test Gabor 

patch had changed between the two displays. In half of the trials, its orientation remained the same, 

whereas, in the other half, it was different. The new orientation was selected among the remaining 

three orientations, each of which occurring the same number of trials. Participants responded to 
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the test array with the keys “1” and “2” of the numerical keyboard. The association between keys 

and responses was counterbalanced across participants. Before the new trial, there was a 500 ms 

inter-trial interval. In order to familiarize with the whole procedure, before starting the experiment, 

participants completed 12 practice trials. At this stage, for each response icon, the corresponding 

key was printed on the screen. The practice trials were equal for all participants but presented in a 

random order. Participants could ask for more practice trials until they felt ready to proceed with 

the experiment. To avoid that participants exclusively focused on one task, our instructions 

emphasized that the change detection and the visual discrimination were equally important and 

that they had to perform both at their best. 

The experiment consisted of 768 trials, divided into 8 blocks. Participants were allowed to do short 

breaks in-between the blocks. The number of high-load and low-load trials, as well as the number 

of trials for each AR and orientation of the dot lattices, was the same for each block. Within a 

block, the configuration of the memory array as well as the congruence between memory array 

and dot lattices was balanced for both high-load and low-load trials. The location of response icons 

were balanced between the blocks, and their order was randomized for each participant to prevent 

for an effect of the response probe configurations. The whole experiment lasted approximately 90 

minutes. 
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2.3 Results  

Based on the binomial distribution, we set the chance-level threshold for the change detection at 

54% of correct responses. Six participants did not reach such threshold and were excluded from 

the analyses. In addition, one participant was excluded because of software errors during the 

experiment. This led to a final sample of 26 participants. This sample size was sufficient to obtain 

reliable estimates of the effects under investigation: sample computation using the software G-

Power with the assumptions of medium effect sizes (𝜂𝑝
2 = .08) and high statistic power (β = 0.9) 

established that the minimum sample size required was 21 participants.  

Since orientations along c and d were rarely reported (9.8% of total responses for c and 9.3% of 

total responses for d), we restricted our analyses to the trials reporting a and b responses.  

A preliminary check determined that no difference between the sample collected at KU Leuven 

and the one collected at Sapienza University of Rome emerged for both the change detection task 

and the perceptual judgment task. Thus, these subgroups were merged for all next analyses.  

We first compared the percentages of correct responses (accuracy) to the change detection task 

between the two VWM conditions (low vs. high). Mean accuracy was lower in high-load than in 

low-load condition (t(25) = -9.4, p < .001, 𝜂𝑝
2 = .78), meaning that our manipulation of VWM load 

had been effective (Figure 2.4). 
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Figure 2.4: Performance to the change detection task for the two VWM load conditions. Dots 

represent average percentages correct and bars represent standard errors. The red dashed line 

represents chance level accuracy . 

 

For all next analyses, we used a within-subjects ANOVA with Greenhouse-Geisser correction (ε) 

of p-values when the sphericity of factors with more than one degree of freedom was violated and 

Bonferroni correction for post-hoc pairwise comparisons.  

We checked for an orientation bias for vertical orientation using a 2x2 repeated-measures ANOVA 

on response probability using response type (a vs. b) and response orientation (vertical vs. 

horizontal) as factors (Figure 2.5). Similarly to the study of Nikolaev et al., 2016, we found higher 

probability of a than b responses (F(1,25) = 38.85, p < .001, 𝜂𝑝
2 = .6) and higher probability of 

vertical responses than horizontal ones (F(1,25) = 6.95, p < .05, 𝜂𝑝
2 = .22). These findings are 

consistent with both the Pure Distance Law of grouping by proximity (Kubovy et al., 1998, 
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Kubovy & Wagemans, 1995) and the existence of a bias for vertical orientation in the grouping of 

rectangular dot lattices (Bleumers et al., 2008; Claessens et al., 2008; Nikolaev et al., 2016). 

 

Figure 2.5: The probability of a and b responses separated for vertical (V) and horizontal (H) 

response orientations. Dots represent average response probability and bars represent standard 

errors. 

 

Based on these observations, we computed a proximity-based grouping index, P(a-b), by 

subtracting the proportions of a responses to the proportions of b responses (regardless of their 

orientation), and an orientation-based grouping index, V(v-h), by subtracting the proportions of 

vertical responses to the proportions of horizontal ones (regardless of a- or b type). These indexes 

were then used as dependent variables for further analyses. Notice that P(a-b) and V(v-h) are not 

mutually exclusive. Both indexes enhance when a vertical a is chosen. In this case, however, we 

cannot determine whether this occurs because it is the shortest distance or because it is the 

preferred orientation. Similarly, they both decreases if a horizontal b is chosen. Horizontal a and 
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vertical b have an opposite effect on these indexes. In former case, the enhancement of P(a-b)  co-

occurs with a decrease in V(v-h), and vice versa for the latter case. Thus, using the combination of 

both indexes, we can determine whether grouping in different conditions is mostly driven by 

proximity or by orientation bias. Specifically, if an increase in V(v-h) co-occurs to a decrease in 

P(a-b), this would reflect an increase of orientation-based grouping at the expense of proximity-

based grouping. However, if both V(v-h) and P(a-b) increase, this implies a net shift from 

horizontal b responses to vertical a responses. If the VWM content is vertical, such a result may 

indicate a congruence effect. However, this does not necessarily imply an increase in orientation 

bias.  

To test how VWM load affects grouping by proximity, we used a 2x3 ANOVA on the proximity-

based grouping index P(a-b), with VWM load (low vs. high) and AR (1.0 vs. 1.1 vs. 1.2) as factors 

(Figure 2.6). In line with our predictions, we found P(a-b) to be higher in low-load than in high-

load condition (F(1,25) = 14.08, p = .001, 𝜂𝑝
2 = .36). Moreover, proximity-based grouping increased 

as the dot lattices became less ambiguous (F(2,50) = 38.59, p < .001, 𝜂𝑝
2 = .61, ε = .56), as expected 

from the Pure Distance Law of grouping by proximity (Kubovy et al., 1998, Kubovy & Wagemans, 

1995). We found an interaction between the two factors (F(2,50) = 7.8, p = .001, 𝜂𝑝
2= .24). Pairwise 

comparison showed that at AR = 1.0,  P(a-b) was equal between low- and high-load conditions, 

whereas the difference between conditions emerged for AR = 1.1 and AR = 1.2, (t(25) = 4.09, p < 

.001, 𝜂𝑝
2 = .4 and  t(25) = 4.13, p < .001, 𝜂𝑝

2 = .4, respectively), This finding was not surprising, 

since at AR = 1.0, no net preference for a over b responses is expected, so that the proximity index 

approaches to zero in both load conditions. 
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Figure 2.6: Proximity-based grouping indexes P(a-b) in two VWM load conditions for three levels 

of AR. Notice that when the AR is 1.0 (i.e. a = b), the two responses are equiprobable. As the 

stimuli become less ambiguous, proximity-based responses increase. Such increases are larger in 

the low-load condition than in the high-load condition. Dots represent average proximity index 

values and bars represent standard errors. 

 

Same ANOVA over V(v-h) showed that preference for the vertical orientation increased in high-

load condition with respect to low-load condition (F(1,25) = 6.79, p < .05, 𝜂𝑝
2 = .21), and was higher 

for more ambiguous dot lattices (F(2,50) = 7.98, p < .01, 𝜂𝑝
2 = .24, ε = .72). No interaction between 

VWM load and AR effects was observed (Figure 2.7). 
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Figure 2.7: Orientation bias V(v-h) in the two VWM conditions and for the three levels of AR. 

The preference for vertical orientation is higher in high-load condition, regardless of the dot 

lattices ambiguity. Dots represent average vertical preference and bars represent standard errors. 

 

The overall opposite trends of P(a-b) and V(v-h) in the two VWM load conditions imply that they 

result from an increase in orientation-based grouping with memory load. However, some 

differences in P(a-b) and V(v-h) between conditions seem to emerge. In particular, we saw that 

proximity-based grouping is unaffected by VWM when AR = 1.0, whereas higher VWM load 

enhances orientation-based grouping indistinctly for all the levels of AR. Recall that at AR = 1.0, 

proximity-based grouping is defined both along a and b orientations, because the equivalence 

between a and b for these stimuli. Thus, this discrepancy does not prevent us from concluding that 
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VWM load is involved in the shift between proximity- and orientation-based grouping of dot 

lattices. 

To investigate the role of VWM content, we ran separate ANOVAs on P(a-b) and V(v-h), taking 

the orientation of the memory arrays into account. Since the possible memory array orientations 

differed between low- and high-load conditions, we analyzed these two separately.  

We ran a 3-way repeated-measures ANOVA on P(a-b) for low-load condition, with memory array 

orientation (vertical vs. horizontal), dot lattice orientation (vertical vs. horizontal) and AR (1.0 vs. 

1.1 vs. 1.2) as factors (Figure 2.8). P(a-b) was higher for vertical dot lattices than for horizontal 

ones (F(1,25) = 5.1, p < .05, 𝜂𝑝
2 = .17) and increased with the AR of the stimuli (F(2,50) = 34.34, p < 

.001, 𝜂𝑝
2 = .58, ε = .62). We found an interaction between memory array orientation and dot lattice 

orientation (F(1,25) = 16.64, p < .001, 𝜂𝑝
2 = .4). For vertical dot lattices, P(a-b) was higher after 

vertical memory arrays than after horizontal ones (t(25) = 3.48, p < .005, 𝜂𝑝
2 = .32), whereas the 

opposite was true for horizontal dot lattices (t(25) = 4.29, p < .001, 𝜂𝑝
2 = .42).  
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Figure 2.8: Proximity-based grouping index P(a-b) after vertical and horizontal memory arrays 

in the low-load condition. Proximity-based grouping is higher for vertical dot lattices after vertical 

memory arrays and for horizontal dot lattices after horizontal memory arrays. Dots represent 

average proximity-based grouping index and bars represent standard errors. Abbreviations: H: 

horizontal; V: vertical. 

 

These results suggest a congruence effect promoted by VWM content. However, from Figure 2.8 

it is evident that there is no difference in P(a-b) between vertical and horizontal dot lattices after 

horizontal memory arrays. In other words, the congruence effect observed for horizontal dot 

lattices would be due to vertical memory arrays increasing b responses, instead of an increase of a 

responses after horizontal VWM content. This is also evident for stimuli at AR = 1.0, which after 
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horizontal memory arrays approached zero, whereas after vertical memory arrays tuned towards 

vertical orientation.  

This claim was confirmed by the same ANOVA performed on orientation-based response index 

V(v-h). We found the main effect of memory array orientation (F(1,25) = 16.64, p < .001, 𝜂𝑝
2 = .4): 

V(v-h) was higher overall with vertical than with horizontal memory arrays (Figure 2.9). This 

result shows that vertical memory arrays increased both a responses for vertical dot lattices and b 

responses for horizontal dot lattices. In other words, the preference for vertical orientation was 

strengthened for both dot lattice orientations after vertical memory arrays. This pattern was 

consistent across all the values of AR. This analysis also showed an interaction between AR and 

dot lattice orientation (F(2,50) = 34.34, p < .001, 𝜂𝑝
2 = .58, ε = .62), meaning  that at AR = 1.0, the 

preference for vertical grouping was the same in vertical and horizontal dot lattices, whereas it 

diminished with AR for horizontal stimuli (t(25) = 5.65, p < .001, 𝜂𝑝
2 = .56 and t(25) = 6.8, p < .001, 

𝜂𝑝
2 = .65; for AR = 1.1 and AR = 1.2, respectively). This trend implies an increase of a responses 

with AR in both dot lattices orientation, whereas there was no difference between a and b responses 

at AR = 1.0, in line with what prospected by the Pure Distance Law (Kubovy et al., 1998). 
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Figure 2.9: Orientation-based grouping index V(v-h) after vertical and horizontal memory arrays 

in the low-load condition. Orientation-based grouping increases when vertical items are kept in 

VWM. Dots represent average vertical preference and bars represent standard errors. 

Abbreviations: H: horizontal; V: vertical. 

 

For high-load condition, we performed a similar ANOVA as before on P(a-b), but now with three 

levels of memory array orientation (vertical vs. horizontal vs. mixed). This ANOVA kept the main 

effects of AR (F(2,50) = 35.35, p < .001, 𝜂𝑝
2 = .59, ε = .58), dot lattice orientation (F(1,25) = 9.26, p < 

.005, 𝜂𝑝
2 = .27), and the interaction between memory array orientation and dot lattice orientation 

(F(2,50) = 8.57, p < .001, 𝜂𝑝
2 = .26). Proximity-based grouping for horizontal dot lattices was higher 

after horizontal than after vertical (t(25) = 3, p < .01, 𝜂𝑝
2 = .26) and mixed (t(25) = 3.13, p < .05, 𝜂𝑝

2 
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= .28) memory arrays, as well as higher after mixed than after vertical ones (t(25) = 2.58, p < .05, 

𝜂𝑝
2 = .21). On the other hand, there was no difference in P(a-b) between the memory arrays for 

vertical dot lattices (Figure 2.10).  

  

Figure 2.10: Proximity-based grouping index P(a-b) after vertical and horizontal memory arrays 

in the high-load condition. Proximity-based grouping in vertical dot lattices does not depend on 

VWM content, whereas it is reduced for horizontal dot lattices after vertical memory arrays. Dots 

represent average proximity index and bars represent standard errors. Abbreviations: H: 

horizontal; M: mixed; V: vertical. 

 

These results resemble the ones found for the low-load condition. Consistently to Figure 2.8, in 

Figure 2.10 the congruence effect for horizontal dot lattices is attributable to the effect of vertical 
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memory arrays, favoring vertical b over horizontal a responses. The main contrast with the low-

load condition is the absence of memory array effects for vertical dot lattices. 

Again, the pattern observed for P(a-b) was confirmed by the same ANOVA as before, using V(v-

h) as dependent variable (Figure 2.11). As can be observed in Figure 2.9, the ANOVA reproduced 

a main effect of memory array orientation (F(2,50) = 8.94, p < .005, 𝜂𝑝
2 = .26, ε = .63) and an 

interaction between AR and dot lattice orientation (F(2,50) = 35.64, p < .001, 𝜂𝑝
2 = .59). Vertical and 

mixed memory arrays produced a larger number of vertical responses than horizontal ones (t(25) = 

3.22, p < .05, 𝜂𝑝
2 = .29 and t(25) = 2.96, p < .05, 𝜂𝑝

2 = .26, respectively). We found an interaction 

between memory array orientation and dot lattice orientation (F(2,50) = 3.6, p < .05, 𝜂𝑝
2 = .13). In 

horizontal dot lattices, orientation-based grouping increased after vertical memory arrays relative 

to horizontal (t(25) = 3.44, p < .01, 𝜂𝑝
2 = .32) and mixed (t(25) = 2.58, p < .05, 𝜂𝑝

2 = .21) ones, and 

following mixed memory arrays relative to horizontal ones (t(25) = 3.13, p < .05, 𝜂𝑝
2 = .28). This 

further supports the finding that orientation-based grouping increases for horizontal dot lattices 

after vertical VWM content. As previously seen for P(a-b), V(v-h) for vertical dot-lattices was 

unaffected by memory array orientation. Such an interaction was not observed in the 

corresponding analysis for low-load condition, where both vertical and horizontal dot lattices 

showed a generalized enhancement of V(v-h) after vertical memory arrays. 
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Figure 2.11: Orientation-based grouping index V(v-h) after vertical and horizontal memory 

arrays in the high-load condition. Orientation-based grouping in vertical dot lattices is unaffected 

VWM content, whereas it increases for horizontal dot lattices after vertical memory arrays. Dots 

represent average proximity index and bars represent standard errors. Abbreviations: H: 

horizontal; M: mixed; V: vertical. 

 

Taken together, these analyses suggest that both P(a-b) and V(v-h) are highly sensitive to vertical 

VWM content. In other words, when VWM content is consistent with the orientation bias, we find 

a higher tendency for orientation-based grouping of the dot lattices. When the stimuli are actually 

vertical, this manifests as enhanced a responses, whereas when they are horizontal this manifests 

as enhanced b responses. This produces a congruence effect in perceiving both vertical and 
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horizontal dot lattices, which, however, is asymmetric. This is clearly evident in Figure 2.8, where 

horizontal VWM content leaves proximity-based responses between horizontal and vertical dot 

lattices invariant. This effect seems to dissipate in the high-load condition when vertical dot lattices 

are presented. In this case, therefore, vertical VWM content would not promote vertical a 

responses, compared to horizontal and mixed VWM contents. This can be considered a ceiling 

effect due to the higher presence of orientation bias in this condition, which equates vertical 

responses among the different types of VWM contents. 

Overall, the results of this study are in line with the hypothesis that proximity-based grouping 

depends, at least in part, on VWM top-down modulation on lower level perceptual areas. When 

high VWM load prevents this modulation, or when VWM content matches with the biased 

orientation, the perceptual system is more likely to group the dots in accordance to the orientation 

bias. This enhancement in preference for vertical orientation is accompanied by a drop in 

proximity-based grouping. Thus, both VWM load and content shape how the grouping process in 

dot lattices unfolds. To address this complex pattern of results within a unitary and coherent 

framework, we propose and evaluate a model of the role of VWM in perceptual grouping.  

 

2.4 VWM Gating of Perceptual Grouping  

The effect of VWM load on grouping are consistent with studies suggesting that VWM promotes 

for the active maintenance of intermediate representations of percepts (proto-representations) until 

visual processing is completed (Gao, Gao et al., 2011; Gao, Ding et al., 2013; Roelfsema, 2005). 

In our case, such proto-representation may underlie to the proximity organization of the dot 

lattices. This mechanism would be refined by VWM content, which would promote proximity-
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based grouping at the expense of orientation-based grouping when it is inconsistent with biased 

orientation.  

Based on our observations, we suggest that whether grouping in dot lattices is proximity- or 

orientation-based depends on the competition between the orientation bias and the proximity 

proto-representation of the stimulus. In high-load condition, given the smaller amount of VWM 

capacity available to maintain proximity proto-representations, these would be weaker than in the 

low-load condition. This weakening would render the perceptual system more subjected to the 

orientation bias. The role of VWM content would be to gate which one amongst proto-

representation and orientation bias gets to determine grouping. Specifically, when consistent with 

orientation bias (i.e. it is vertical), the content promotes orientation-based grouping, whereas when 

it is inconsistent (i.e. it is horizontal), it promotes proximity-based grouping. 

To evaluate this hypothesis, we ran separate additive linear models for the low- and high-load 

conditions, using P(a-b) and V(v-h) as criteria and the following conditions as categorical 

predictors1:  

- V_h: VWM content is vertical and the proto-representation is horizontal; 

- V_v: VWM content is vertical and the proto-representation is vertical; 

- H_h: VWM content is horizontal and the proto-representation is horizontal; 

- H_v: VWM content is horizontal and the proto-representation is vertical. 

The regression model for low-load condition on P(a-b) was significant (F(3,100) = 7.65, p < .001, 

R2 = .19). For the single comparisons, we used H_h as the control condition. P(a-b) decreased in 

                                                           
1 In this notation, VWM content is expressed in upper-case and the proto-representation is expressed in lower-case. 
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V_h with respect to H_h (t(100) = -2.47, p < .05), meaning that vertical VWM content reduced the 

impact of proximity proto-representation on grouping process. There was no difference in P(a-b) 

between H_v and H_h. Since VWM content did not coincide with the biased orientation, grouping 

in these conditions was driven by their proximity proto-representations, which would equate 

between vertical and horizontal dot lattices. Finally, P(a-b) was higher in V_v than in H_h (t(100) = 

2.3, p < .05), meaning that a responses increased for vertical congruent stimuli compared to 

horizontal congruent ones. Notice that in the V_v condition the proximity proto-representation is 

consistent with the combination of VWM content and orientation bias. Thus, the proto-

representation provides for an additive effect in perceiving the vertical organization of the lattices, 

enhancing vertical a responses.  

The same model on V(v-h) (F(3,100) = 15.11, p < .001, R2 = .31) confirmed that the decrease in 

proximity-based grouping observed in V_h co-occurred with an increase in orientation-based 

grouping (t(100) = 2.47, p < .05), favored by vertical VWM content. 

The regression model on P(a-b) for the high-load condition was also significant (F(3,100) = 9.61, p 

< .001, R2 = .22). Proximity-based grouping was lower in V_h than in H_h (t(100) = -2.2, p < .05), 

reflecting again a decrease in horizontal a responses when VWM content was consistent to 

orientation bias. However, with respect to the effect observed in the low-load condition, this time 

the slope of the linear model is reduced (β = -.189 and β = -.223, for high- and low-load conditions, 

respectively). This implies that in condition H_h the number of horizontal responses decreased 

between low- and high-load conditions. This is in line with the idea of proximity proto-

representation weakening due to the higher amount of resources occupied in VWM. The 

comparison between H_v and H_h found no difference in P(a-b) score, implying that in both 

conditions grouping is driven by the proximity proto-representation of the stimuli. However, in 
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this case, the slope of the effect was higher than in the low-load condition (β = -.143 and β = -.027, 

for high- and low-load conditions, respectively). Again, this is consistent with the idea of proximity 

proto-representation weakening, which would decrease a responses in both conditions. The 

reduction for H_v, in fact, would be supplied by orientation bias, which would slightly enhance 

vertical responses for high-load condition. Proximity-based grouping in high-load condition also 

equated between V_v and H_v conditions. In this case, given the weakening of proximity proto-

representations, grouping is driven by orientation bias, which promotes for the same amount of 

vertical responses in both conditions. Thus, the boost in a responses for V_v found in low-load 

condition would be absent because of the weakening of VWM proximity proto-representations. 

Coherently with latter analysis, the regression on V(v-h) score was significant (F(3,100) = 7.83, p < 

.001, R2 = .19), and confirmed the increase in orientation-based grouping in V_h with respect to 

H_h condition (t(100) = 2.2, p < .05). 

To summarize, these additive effects confirm our model that grouping in dot lattices is constantly 

shaped by both proximity proto-representations and orientation bias. Whether grouping in a 

stimulus depends on proximity or on orientation bias is a matter of the quantity (load) and the 

quality (content) of the information held in VWM. In this sense, VWM gates grouping process.  

 

2.5 Discussion 

Previous studies adopting a phenomenal psychophysics approach to investigate grouping by 

proximity in rectangular dot lattices provided evidence of an orientation bias. Accordingly, 

participants were more likely to perceive those stimuli as vertical, even when a happened to be 

orthogonal to vertical orientation (Bleumers et al., 2008; Claessens & Wagemans, 2008; Gephstein 
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& Kubovy, 2005; Nikolaev et al. 2016). Thus, in these studies orientation-based grouping co-

occurred with a reduction in proximity sensitivity. 

By comparing the temporal dynamics of proximity-based and orientation-based responses, 

Nikolaev et al. (2016) attributed orientation-based grouping episodes to VWM load. They 

proposed that when information about previous trials was updated in VWM, it engaged the central 

capacity of the perceptual system (Raffone et al., 2104; Simione et al., 2012), inducing observers 

to respond based to the preferred orientation, rather by the organization invoked by the stimulus. 

Orientation-based grouping reduced in later blocks of the experiment and the authors attributed 

this effect to perceptual learning. Thus, in this case perceptual learning was governed by a decline 

in orientation bias, rather than by a boosting in proximity sensitivity (α parameter in Equation 1.1).    

We directly tested this proposal by systematically varying the information load in VWM and 

comparing grouping processes between the conditions. Such scenario was obtained by using a dual 

task procedure in which participants evaluated dot lattices while engaged in a simultaneous change 

detection task. Accordingly, we found that proximity-based grouping is lower in the high-load 

condition than in the low-load condition. This pattern is paralleled by an increase in orientation-

based grouping. Thus, accordingly to the results of Nikolaev et al. (2016), the decrease in grouping 

by proximity found in the high-load condition would be due to higher orientation bias, rather than 

to reduced stimulus discriminability. This conclusion is further supported by the finding that the 

effect of orientation bias on grouping in the high-load condition persists even for highly 

discriminable stimuli (Figure 2.7). Thus, as observed by Gephstein and Kubovy (2005), orientation 

bias does not implicate a mere weakening of stimulus support but rather an actual adjustment of 

default system preference. 
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We extended our investigation by raising the question of whether the trade-off between proximity 

and orientation bias in perceptual grouping was influenced by the quality of information 

represented in VWM (Kang et al., 2011; Pan et al., 2014; Salahub & Emrich, 2016; Scocchia et 

al., 2013, Teng & Kravitz, 2019). The results showed that visual discrimination is shaped by VWM 

content, with vertical VWM traces effectively promoting for orientation-based grouping. 

To account for this pattern of results we propose a model of VWM role in perceptual grouping by 

proximity. In this model, VWM is the key factor determining whether perceptual grouping of dot 

lattices occurs in accordance to proximity or in accordance to orientation bias. Thus, in line with 

previous theories of perceptual grouping (Roelfsema 2005; Ullman, 1984), we consider VWM as 

an integral part of the grouping process. We propose that the grouping process depends on the 

competition between a proto-representation conditioned by the stimulus (i.e. proximity) and the 

intrinsic bias for vertical orientation. This competition is regulated by both VWM load and VWM 

content.  

High VWM load reduces the chances of forming a stimulus-based proto-representation, promoting 

orientation-based grouping. At the same time, when VWM is fully available for visual 

discrimination, the strength of the proto-representation overcomes the impact of orientation bias, 

at least for non-ambiguous stimuli. VWM content, on the other hand, would provide higher weight 

to either proximity proto-representation or orientation bias, thus further impacting the outcome of 

the competition.   

Our model considers VWM and perception as two intertwined processes. Rather than a mere 

storage of perceptual outputs, VWM is conceived as dynamically involved in ongoing perceptual 

processes (Gao, Gao et al., 2011; Gao, Ding et al., 2013; Roelfsema, 2005). This view is also in 

line with studies showing that VWM is sensitive to the basic perceptual organization of stimuli 
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(Gao et al., 2016; Jiang et al., 2004; Quinlan & Cohen 2012; van Lamsweerde et al., 2015; 

Woodman et al., 2003). 

Our results suggest that VWM affects perceptual grouping in dot lattices by reducing orientation 

bias. Orientation bias, as other forms of perceptual bias, is thought to depend on top-down 

feedbacks on low-level visual areas. These reflect prior knowledge, probabilistic inferences and 

beliefs (Albright, 2012; Frith & Dolan, 1997; Hohwy, 2017; Kok et al., 2013; Summersfield & de 

Lange, 2014; Wang et al., 2013), which help to deal with perceptual ambiguity. Another form of 

top-down perceptual bias found during perceptual grouping of dot lattices refers to non-

accidentalness of stimulus features (Strother & Kubovy 2006; 2012). In this case, participants were 

more likely to group the dots along the curved orientation, regardless of proximity organization, 

because they judged as less likely for curvature to be a casual feature of the stimuli. Thus, previous 

knowledge about external contingencies impacts again the way a stimulus is processed.  

A future follow-up of this study may investigate whether VWM processes govern the trade-off 

between proximity- and curvature-based grouping. If the results were consistent between the 

experiments, higher proximity-based grouping in the low-load condition will be accompanied by 

higher curvature-based grouping in high-load condition, as well as more curvature-based grouping 

after curved information happens to be represented in VWM. A similar pattern of results would 

indicate that VWM modulates the activity on low-level areas, contrasting alternative top-down 

signals promoted by several types of perceptual biases. This would be in accordance with EEG 

and fMRI observations that VWM operations and visual perception processes rely on the same 

neural substrates and that VWM representations are maintained for several seconds in early visual 

areas, such as V1 and V2 (Bisley et al., 2004; Ester et al., 2009; Harrison & Tong, 2009; Motter, 

1994; Serences et al., 2009; Teng & Kravitz, 2019; van Kerkoerle et al., 2017).  
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A limitation of the present study is the fact that our change detection procedure did not involve 

any concomitant articulatory suppression. Thus, one may argue that participants may have used 

verbal representations instead of purely relying on VWM. It should be noted, however, that the 

memory arrays we employed could be hardly verbalized and this is effective in preventing the 

verbal representation strategy to overcome the visual one (Sense et al., 2017). 

Further studies are needed to address how VWM gates the trade-off between proximity and 

perceptual biases. However, our results suggest that grouping in dot lattice relies on parallel 

processing performed at multiple stages of cognitive hierarchy, ranging from early visual areas up 

to high-level prefrontal areas involved in perceptual bias and VWM operations.  

Next chapter will present a dynamic neural model accounting for the mechanisms of grouping by 

proximity and orientation bias in perceptual grouping within a biologically plausible architecture. 
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Chapter 3 

 A Dynamic Model of Grouping by Proximity and Orientation Bias 

 

3.1 Introduction 

One of the key aspects of the perceptual system is the ability to create stable representations of 

external objects (Maia & Cleeremans, 2005; van Leeuwen et al., 1997; Wagemans et al., 2012b). 

Stability refers to the robustness of these representations against perturbation, and it is particularly 

clear-cut in the case of perceptually non-ambiguous stimuli. This supposes that being presented 

with the same object under different viewing conditions does not alter its perception. For example, 

Kubovy and Wagemans (1998) demonstrated that grouping by proximity in dot lattices is not 

affected when either the spatial and the temporal scale are changed. 

On the other hand, such resistance to interference is counterbalanced by a certain degree of 

flexibility, which produces different outcomes during the perception of identical stimuli in distinct 

presentations. This is the case, for example, of rectangular dot lattices with AR = 1.0, where one 

can alternate between a and b organizations across separate trials. Similarly, during prolonged 

inspection of ambiguous stimuli, observers tend to switch between the possible interpretations of 

a percept (Wagemans et al., 2012b). Such alternation between settled perceptual organizations 

seems mostly to occur without voluntary control (Kleinschmidt et al., 1998; Toppino, 2003; 

Toppino & Long, 2005).  

The interplay between stability and flexibility in visual processing is well accounted by dynamical 

models. Perceptual stability in these models is achieved via the convergence to a permanent state 
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of activation, known as attractor (e.g. Hopfield, 1982). When an attractor is approached, the state 

of a system reaches equilibrium and does no longer change in response to the inputs received. In 

neural terms, an attractor can be thought as a state of sustained firing of a group of neurons 

(assembly) subtending to a specific representation (Raffone & van Leeuwen, 2003).  

At the same time, to assure perceptual flexibility, these systems have to incorporate mechanisms 

to escape from attractors. One convenient strategy is to provide the system with internal stochastic 

noise (van Leeuwen et al., 1997; Wagemans et al., 2012b). The assumption of intrinsic noise is in 

line with psychophysical approaches to perception based on signal detection theory (e.g. Mueller 

& Weidemann, 2008). In other words, noise alters the way in which a signal is filtered by sensory 

channels and may induce a drift from one attractor to another. Importantly, this trade-off between 

attractors is spontaneously accomplished by the system. This feature highlights a main 

characteristic of dynamical models, namely self-organization, which is also a fundamental 

propriety of Gestalt emergence (Pomerantz & Portillo, 2011). 

Grouping processes in the brain have been proposed to occur from the mutual excitation of neurons 

coding for the elements of a group (Herzog, 2018; Roelfsema & Houtkamp, 2011). This 

mechanism would segregate grouped components of a visual scene from non-grouped information. 

A possible neural code by which the activity of assemblies subtending to a group is differentiated 

from the activity of other assemblies is based on the synchrony of their firing (Luck & Beach, 

1998; Singer, 1999; von der Malsburg, 1981). Singer (1999) proposed that the synchrony in 

neuronal activity may represent a plausible mechanism for all the processes characterized by a 

flexible grouping of visual scenes. Synchronous activity at early perceptual stages has a stronger 

impact on further processing stages. This would be due to the saliency gained by synchronous 

presynaptic spikes, which have been found to elicit higher postsynaptic responses both at the local 
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level of the visual system (Dan et al., 1998; Freiwald et al., 2001) and at a more global level of 

different brain areas (Fries, 2005; 2015). In this sense, postsynaptic neurons would behave as 

coincidence detectors (Abeles, 1991), which read out afferent activity and enhance their 

responsiveness whether incoming signals are temporally correlated (Raffone & van Leeuwen, 

2003; Raffone & Wolters, 2001).  

Previous dynamic models accounting for grouping between parts of a visual scene into a coherent 

organization consisted of coupled oscillators (Grossberg & Grunewald, 1997; Grossberg & 

Somers; 1991; Raffone & van Leeuwen, 2001; Raffone & van Leeuwen, 2003; Raffone & Wolters, 

2001; van Leeuwen et al. 1997). In these models, synchronized activity is understood in terms of 

coherence of oscillatory activity between neurons coding for to-be-grouped information.  

Here, we propose a dynamical network model simulating the processes underlying grouping by 

proximity and orientation bias. Similarly to previous modeling work, we posit that perceptual 

organization emerges from the coherent oscillatory activity between the units in low-level 

perceptual modules. Synchrony is achieved via lateral recurring connections between neurons 

coding for the same orientation (Eckorn et al., 1990; Engel et al., 1990). The differential pattern 

of coupled activity is captured by higher levels modules and ultimately leads to an output which 

can be interpreted as a stable representation of an external stimulus. Our model investigates the 

dynamics occurring in the brain when an observer is presented with a rectangular dot lattice and 

is asked to judge which orientation is the most prominent. Attractors in our model are intended as 

the possible orientations along which a dot lattice can be perceived (a, b, c, and d). The model 

reaches an attractor as one of the four possible orientation is selected via a winner-takes-all 

dynamics. During each simulated trial, the model autonomously converges towards a winning 

attractor via a self-organized process driven by the intra- and inter-modules pattern of connectivity.  
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To account for the stability of grouping by proximity, the strength of the connections between 

neurons coding for each orientation is scaled according to the attraction function (Kubovy et al., 

1998; Kubovy & Wagemans, 1995). This reinforce lateral connections in way that is proportional 

to the inter-dot distances. On the other side, to account for the flexibility observed for dot lattices 

perception, we provide our model with internal stochastic noise, which allows for the trial by trial 

variability of the winning attractor.  

We test the model under different conditions of AR and proximity sensitivity (α parameter in 

Equation 1.1). We also implemented a possible mechanism for the vertical preference discussed 

in previous chapters.  

 

3.2 Model Architecture and Functional Logic 

The model consists of four interacting modules (Figure 3.1), each of which computes a different 

operation in order to achieve the emergence of perceptual organization in the system. These 

modules can be split into two distinct levels of perceptual hierarchy. The two lower-level modules 

mimic the functionality of primary visual cortices, whereas the two higher-level modules are 

involved in advanced stages of visual processing as well as in perceptual judgment. The lower-

level modules are the perceptual layer and the coincidence detectors module. The higher-level 

modules are the accumulators module and the decision units  module. Following a functional 

description of the modules is provided.  

- Perceptual Layer (PL). This module receives the external excitatory input signaling the 

presence of an external stimulus and its function can be linked to V1. PL consists of a 64 

neuronal assemblies, arranged into a configuration of eight rows and eight columns. In PL, 
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each dot of a simulated dot lattice is mapped into a single assembly in a topographical 

fashion. These assemblies are composed by four units coding for the same dot in the 

framework of a specific orientation (a, b, c, and d). This is in line with the orientation 

selectivity of neuronal receptive fields in V1 (e.g. Hubel & Wiesel, 1968). For simplicity, 

we posit that a is always horizontal, b is always vertical and the diagonal orientations, c 

and d, parallel the distance vectors with norm ||a - b|| and ||a + b||, respectively.  

Units within each assembly receive excitatory connections from the units coding for 

neighboring dots along the same orientation in other assemblies (Gilbert et al., 1996; 

Stettler et al., 2002). Given the fact that only one interpretation of the stimulus can 

perceived at time, units also receive inhibitory connections from the units coding for 

different orientations of a dot within the same assembly. This is in line with cross-

orientation models of V1 selectivity (Brouwer & Heeger, 2011; Morrone et al., 1982). In 

other words, cooperative inter-assembly and competitive intra-assembly dynamics take 

place at this stage. Finally, during each iteration of the simulated process, units of PL are 

fed by a randomly distributed noise, which impacts the effectiveness of the sensory input. 

In this sense, noise can be considered as an intrinsic propriety of the sensory channels, in 

line with what postulated by signal detection theory (e.g. Mueller & Weidemann, 2008). 

- Coincidence Detectors (CD) module. CD module is involved in the readout of the 

synchronous activity between the units in previous module (Raffone & van Leeuwen, 2003; 

Raffone & Wolters, 2001).  

For the units representing the dots along orientation a, CD module consists of eight units. 

Each of these units codes the synchrony between the neurons lying on the same row (i.e. 

horizontally aligned). Therefore, each row of the PL is mapped into a single unit in CD 
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module. Similarly, for the units coding for orientation b, the eight CD neurons process the 

synchrony between neurons lying on the same column (i.e. vertically aligned).  

On the other hand, the synchrony between the units representing oblique orientations (c 

and d) is read out by seven CD units each. This is because we limited the number of 

diagonals taken into account within PL.  

The information concerning the synchrony at local PL level is then fed as input signal to 

the higher-level modules. 

- Accumulators (ACC) module. This module consists of four units, each of which is 

representative for an orientation. Accumulators are a class of neurons which has been 

widely employed in simulating the processes underlying perceptual judgment (Forstmann 

et al., 2016; Ratcliff et al., 2016). The activity of accumulators can be represented as the 

gathering of perceptual evidence computed in different modules, until a threshold is 

reached. Typically, the overcoming of the threshold coincides with perceptual decision-

making.  

Here, we assume a different role for accumulators, which are involved in gathering 

evidence of the synchrony in lower-level units. In line with what theorized by Singer 

(1999), the more the units in PL are synchronous the more the rate of accumulators activity 

drifts. When a threshold for a specific orientation is reached, a stronger input relative to 

that orientation is passed to the decision units module. Since the orientations compete for 

the selection, the four accumulator mutually inhibit each other. For the simulations taking 

into account orientation bias, we provide an additional excitatory input to the accumulator 

coding for vertical orientation from a not explicitly modelled module. This influences the 
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gathering perceptual evidence from previous stages as well as the activity supplied to the 

higher module. 

- Decision Units (DU) module. This module consists of four neurons, each of which receives 

inputs from a single accumulator. When a DU is activated, the system enters an attractor 

and a specific orientation in the dot lattice is finally selected. Therefore, this module 

resembles the functioning of the high-level processing stages, such as dorso-lateral 

prefrontal cortex (DLPFC) during task requiring perceptual discrimination judgments 

among several alternatives (Heekeren et al, 2008). 

Since only one orientation can be active at time, we provide strong inhibitory connections 

between these units. Thus, when one of these units becomes active, it shuts off all the 

concurring neurons in a winner-takes-all fashion. 
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Figure 3.1: Architecture of the model. Perceptual layer (PL) and coincidence detectors (CD) 

module simulate the functioning of low-level perceptual areas, whereas accumulator (ACC) 

module and decision units (DU) model account for the operations performed at higher levels of 

perceptual hierarchy. Lateral inhibitory connections are represented within the modules, whereas 

excitatory feedforward connections are represented between the modules. In the figure, different 

assemblies of PL are represented as the units occupying the same position across the depth 

dimension. Excitatory connections between units in neighbor assemblies are not shown here. 
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3.3 Model Units 

For each modules of the network, we model different neuronal populations with specific activation 

dynamics.  

Units in PL are composed by the coupling between a fast shunting excitatory neurons and a slow 

additive inhibitory neurons (Grossberg & Grunewald, 1997; Grossberg & Somers; 1991; Figure 

3.2A). The activity of fast excitatory neurons can be thought as a phasic cellular response to an 

external stimulus, whereas the activity of slow inhibitory neurons resembles a tonic 

hyperpolarizing current on such neurons. The different temporal dynamics between fast and slow 

components is responsible of their behavior as relaxation oscillators (Figure 3.2B).  

 

Figure 3.2: Illustration of oscillators implemented in PL. (A). The units are composed by a fast 

excitatory component (x) coupled with a slow inhibitory component (y). (B). The slower rise and 

decay of the inhibitory subunit induces the oscillatory activity in the excitatory subunit.  
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The activation of these neurons is specified by the following first-order differential equations: 

𝑑𝑥𝑖

𝑑𝑡
= −𝐴𝑥𝑖 + (𝐵 −  𝑥𝑖)[𝐶𝑓𝑎(𝑥𝑖) +  𝐼𝑛𝑒𝑖𝑔ℎ +  𝐼𝑠𝑡𝑖𝑚 +  𝐼𝑛𝑜𝑖𝑠𝑒] − 𝐷𝑥𝑖𝑓𝑎(𝑦𝑖) − 𝑥𝑖𝐼𝑖𝑛ℎ [3.1] 

𝑑𝑦𝑖

𝑑𝑡
= 𝐸(𝑥𝑖 − 𝑦𝑖). [3.2] 

The terms 𝑥𝑖 and 𝑦𝑖 represent the activity of the ith fast and slow unit, respectively, and could be 

physiologically interpreted as the average voltage of a neural population at time t (Ellias & 

Grossberg, 1975). At time t = 0, values for 𝑥𝑖 and 𝑦𝑖 are randomly assigned from the ranges [0, 

0.15] and [0.15, 0.55], respectively. In Equation 3.1, the term −𝐴 is the decay rate parameter, 

whereas the terms (𝐵 −  𝑥𝑖) and −𝐷𝑥𝑖 are the shunting factors controlling for the total excitiatory 

and total inhibitory input, respectively. Total excitation is provided by the terms 𝐶𝑓𝑎(𝑥𝑖), 𝐼𝑛𝑒𝑖𝑔ℎ, 

𝐼𝑠𝑡𝑖𝑚, and 𝐼𝑛𝑜𝑖𝑠𝑒, representing non-linear self-excitation, excitatory input from units coding for 

neighboring dots along the same orientation, external input produced by dot lattice exposure, and 

stochastic noise of the channels, respectively. Total inhibition is given by 𝑓𝑎(𝑦𝑖) and 𝐼𝑖𝑛ℎ, which 

are the non-linear tonic input from the slow coupled unit and the intra-assembly inhibition from 

units coding for the same dot along another orientation. In Equation 3.2, the term 𝐸 designates the 

rise and the decay of the slow unit, thus controlling the rate of oscillatory activity (Figure 3.2B). 

𝐴, 𝐵, 𝐶, 𝐷, 𝐸, and 𝐼𝑠𝑡𝑖𝑚 are constant parameters of the model and their value is indicated in the 

Appendix. During each iteration, 𝐼𝑛𝑜𝑖𝑠𝑒 assumes a random value in the range [0, 0.1625]. 𝐼𝑛𝑒𝑖𝑔ℎ and 

𝐼𝑖𝑛ℎ are specified by the following equations: 

𝐼𝑖,𝑘
𝑛𝑒𝑖𝑔ℎ =  [𝑓𝑎(𝑥𝑖−1,𝑘) + 𝑓𝑎(𝑥𝑖+1,𝑘)]𝑊𝑘

𝑒𝑥𝑐 [3.3] 

𝑊𝑘
𝑒𝑥𝑐 =  𝑚𝑔 + 𝑚(1 − 𝑔)𝑒−𝛼(

𝑘
𝑎

 − 1)
 [3.4] 
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𝐼𝑖
𝑖𝑛ℎ = ∑ 𝑓𝑏(𝑥𝑖,𝑘)𝑊𝑃𝐿

𝑖𝑛ℎ

𝑁

𝑘=1 
∀ 𝑘 ≠𝑖

 [3.5] 

Equation 3.3 shows that each unit receives excitatory non-linear inputs from its two closest 

neighbors along kth orientation. This mechanism has been shown to effectively synchronize the 

activity between directly and indirectly connected fast oscillators (Grossberg & Somers, 1991). 

The incoming excitation is scaled by the term 𝑊𝑘
𝑒𝑥𝑐, which corresponds to the synaptic strength 

between ith unit and its neighbor units along kth orientation. Equation 3.4 describes how 𝑊𝑘
𝑒𝑥𝑐 is 

computed and its last term is the attraction function of Pure Distance Law (Kubovy et al. 1998; 

Kubovy & Wagemans, 1995). Thus, the efficacy of lateral excitatory connections in synchronizing 

the activity of one orientation-selective population in PL exponentially decreases with the 

corresponding inter-dot distance. In Equation 3.4, m defines the maximum value that 𝑊𝑘
𝑒𝑥𝑐 can 

assume, whereas g controls the difference between the values of 𝑊𝑘
𝑒𝑥𝑐 for each orientation. 

Equation 3.5 describes the intra-assembly inhibition. It can be thought as a signal from a not 

explicitly modelled interneuron integrating the non-linear activity of alternative fast units, scaled 

by the strength of inhibitory synapsis, 𝑊𝑃𝐿
𝑖𝑛ℎ. The values for parameter m, g and 𝑊𝑃𝐿

𝑖𝑛ℎ are provided 

in the Appendix. 

At each iteration, the synchrony of oscillatory activity between same orientation-selective fast 

units in the PL is read out by the CD, according to: 

𝑑𝑐𝑑𝑖,𝑘

𝑑𝑡
=  𝜏 [

1

𝑁
∑(𝑥𝑖,𝑘) − 𝑐𝑑𝑖,𝑘

𝑁

𝑖=1

] (1 − 𝜏) [3.6] 

In Equation 3.6, τ represents the time window by which two oscillations can be considered 

synchronous and can be linked to a neuronal membrane time constant (Raffone & van Leeuwen, 
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2001). In other words, it controls the advantage for synchronous activity in affecting higher-level 

processing.  

The read out of the synchrony made by CD is then fed to the ACC, whose temporal evolution is 

governed by the following equations: 

𝑑𝑎𝑐𝑡𝑘

𝑑𝑡
=  −𝐹𝑎𝑐𝑡𝑘 + [(𝐵 − 𝑎𝑐𝑡𝑘) (

1

𝑁
∑ 𝑓𝑐(𝑐𝑑𝑖,𝑘)

𝑁

𝑖=1

+ 𝑏𝑖𝑎𝑠) − 𝐼𝑘
𝑖𝑛ℎ𝑎𝑐𝑡𝑘] 𝐺 [3.7] 

𝐼𝑘
𝑖𝑛ℎ = ∑ 𝑓𝑑(𝑎𝑐𝑡𝑜)𝑊𝐴𝐶𝐶

𝑖𝑛ℎ

𝑁

𝑜=1 
∀ 𝑜 ≠𝑘

 [3.8] 

Equation 3.7 describes the activity (𝑎𝑐𝑡𝑘) of ACC based on the non-linear input from CD. 

Similarly to Equation 3.1, the terms −𝐹 and (𝐵 − 𝑎𝑐𝑡𝑘) are the decay rate and the shunting scaling 

factor for excitatory input, respectively. The term 𝑏𝑖𝑎𝑠 is set to 0.035 for the ACC coding for b 

(vertical) orientation, during the simulations reproducing the effects of orientation bias; otherwise 

it is set to 0. The parameter 𝐺 defines the rise of the units, that is the speed by which information 

about the synchrony in PL is gathered. Equation 3.8 computes the lateral inhibition among ACC 

and is based on the same principles of Equation 3.5. 

In DU module, each unit receives information relative to the synchrony for a specific orientation 

processed in previous levels. At this stage, unit activation is governed by the following equations: 

𝑑𝑑𝑒𝑐𝑘

𝑑𝑡
=  −𝐴𝑑𝑒𝑐𝑘 + (𝐵 − 𝑑𝑒𝑐𝑘)[𝑈𝑎𝑐𝑡𝑘 + 𝐶𝑓𝑒(𝑑𝑒𝑐𝑘)] − 𝑑𝑒𝑐𝑘𝐼𝑘

𝑖𝑛ℎ [3.9] 

𝐼𝑘
𝑖𝑛ℎ = ∑ 𝑓𝑔(𝑑𝑒𝑐𝑜)𝑊𝐷𝐸𝐶

𝑖𝑛ℎ

𝑁

𝑜=1 
∀ 𝑜 ≠𝑘

 [3.10] 
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By comparing Equations 3.9 and 3.1, we can see how the activity dynamics of DU is similar to the 

one described for the fast shunting units used to model the PL. The difference is that these neurons 

are not coupled to any slow additive unit. This prevents oscillatory activity at this stage, such that 

when an orientation is selected, a single unit stabilizes its activity (i.e. an attractor is entered). 

Fundamental to such mechanism is the lateral inhibition computed by Equation 3.10, where the 

parameter 𝑊𝐷𝐸𝐶
𝑖𝑛ℎ is higher than the synaptic weights for inhibition provided in previous layers. The 

parameter 𝑈 in Equation 3.9 is an amplification factor for the activity feeding from the ACC. 

Finally, 𝑓(𝑥) is a sigmoid function converting neuronal activity into non-linear signals, given by:  

𝑓(𝑥) =
𝑥𝑛

𝑄𝑛 + 𝑥𝑛
 [3.11] 

With 𝑄 determining the threshold (i.e. the value where the function starts to rise) and 𝑛 being the 

gain (i.e. the steepness) of the sigmoid. 

 

3.4 Simulations 

Our model is used to simulate grouping process with and without orientation bias influence. For 

both scenarios, we provide the model with different AR (1.0, 1.1, and 1.2), and different values of 

the α parameter in Equation 3.4 (6.72 and 9.145). In accordance with what outlined in previous 

chapters, this allows us to investigate the behavior of the model in different conditions of 

perceptual ambiguity and sensitivity to proximity. The values for α have been established on the 

basis of the results of Kubovy and Wagemans (1995). They found that α among the participants 

oscillated in the range [6.72, 11.57]. Accordingly, we use as lower α condition the minimum value 

these authors found in their experiment, and compute the value for higher α condition by adding 
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to 6.72 the difference between the highest and the lowest α found by Kubovy and Wagemans 

(1995).  

Thus, we provide the network with 2(bias: present vs. absent) x 2(α: 6.72 vs. 9.145) x 3(AR: 1.0 

vs. 1.1 vs. 1.2) conditions. We test 50 randomly initialized networks (seeds), for 30 replications 

(i.e. trials) per condition. Each trial lasts until either an orientation is selected (i.e. an attractor is 

entered) or a maximum of 3000 iterations is reached. During each iteration, differential equations 

are solved using the Euler’s method, with a time-step of 0.1. This corresponds to 300 ms of 

simulated time, in line with the exposure timing typically adopted in dot lattices experiments.  

 

3.5 Model Behavior  

In this section, we show how the behavior of one seed in a single trial changes with AR. The 

simulations reported here have been performed using α = 6.72 and without the additional parameter 

accounting for orientation bias. 

Figure 3.3 illustrates the behavior of the model at AR = 1.0. Figure 3.3A show the activity of eight 

fast excitatory units of PL coding for the different orientations (a, b, c, and d). In each subplots of 

Figure 3.3A, oscillatory activity represents the temporal evolution of a single unit coding for a dot 

on the same straight line. Each unit receives excitatory connections from the two closest neighbors 

along the same orientation and sends inhibitory connection to the complementary units coding for 

alternative orientations. The efficacy of such excitatory connections in synchronizing their activity 

depends on their weight, which, based on Equations 3.4, depends on the attraction function.  

The activity of the units coding for a and b presents a similar pattern of high synchronization, 

whereas the activity of the units processing for c and d orientations is completely stochastic. Since 



65 
 

at AR = 1.0, a and b orientations are characterized by the same inter-dot distance, which is shorter 

than the one subtending to c and d, this pattern is in accordance with the claim considering neural 

synchrony as a plausible marker for grouping by proximity (Singer, 1999).  

The synchrony between the units in the PL is then captured by the CD. Figure 3.3B, displays the 

activity of four synchrony detectors, each of which processes the temporal coincidence between 

the eight collinear perceptual units of Figure 3.3A. Note how the amplitude of such units is higher 

for synchronous orientations (a and b) than for asynchronous ones (c and d). This produces a net 

differentiation for the activity of the four ACC (Figure 3.3C). In this specific trial, we observe a 

toss-up between a and b orientations, which ultimately leads to the selection of a by the DU (Figure 

3.3D). When a is selected at this stage, the layer stabilizes its activity and the competitor 

orientations are shut-off via the lateral inhibition from the unit coding for the winning 

interpretation.  
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Figure 3.3: Simulation of a single trial with AR = 1.0, α = 6.72, and no orientation bias parameter.  (A). Perceptual units coding for a and b orientations show a 

similar pattern of synchrony, whereas the activity for c and d is stochastic. (B). The amplitude of CD is higher for the synchronous orientations (a and b) than  for 

the asynchronous ones. (C). The same pattern is reflected at the level of ACC, which show a toss-up between a and b. (D). Once an orientation is selected, the activity 

relative to other orientations is shut-off via the lateral inhibitory connections between DU.  
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Figure 3.4 reproduces a trial for a dot lattice at AR = 1.1. Figure 3.4A shows that a is the most 

synchronized orientation. Synchrony is still present among the units coding for b, although in a 

weaker form with respect to previous simulation. Again, stochastic activity is observed for the 

units representing c and d. The higher synchronous activity for the neurons coding for a and b is 

read out by the synchrony detectors (Figure 3.4B), which send this information to the respective 

accumulators. Although at the activity of CD show a clear predominance for orientation a, we 

again observe a close competition with b at the ACC level (Figure 3.4C). Such competition leads 

to the selection of b at the level of DU (Figure 3.4D). Therefore, even if the activity at lower layers 

provides a clear specification of what orientation should be selected based on proximity 

information, the recurrent dynamics between low- and high-level modules induces for a 

misinterpretation. 

This pattern is in line with what predicted by the Pure Distance Law (Kubovy et al., 1998; Kubovy 

& Wagemans, 1995), by which grouping by proximity depends on both the AR and the sensitivity 

parameter α. In fact, when α is low and the AR still allows for a certain degree of perceptual 

ambiguity (as for AR = 1.1), the probability to report orientation b is still considerable. 
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Figure 3.4: Simulation of a single trial with AR = 1.1, α = 6.72, and no orientation bias parameter.  (A). Synchrony in PL is higher between the units coding for a. A 

lower degree of synchronization is also observed between the units coding for b (B). The amplitude of CD is higher for the a than for other orientations. Note, however, 

that the CD coding for b still have considerable amplitude. (C). Despite the higher synchrony for a at lower stages, ACC activity still shows a toss-up between a and 

b. (D). The high activity of b at ACC level induces its selection at the stage of DU. This can be considered as a misinterpretation of the stimulus.
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At AR = 1.2 (Figure 3.5), the attraction of the dots along b further reduces, and such trend is 

mirrored by the further desynchronization of the units within the PL with respect to preceding 

simulations(Figure 3.5A). In this case, both the amplitude of CD (Figure 3.5B) and the rise of ACC 

(Figure 3.5C) show a net preference for orientation a, which ultimately leads to its selection at the 

DU stage (Figure 3.5D).   

These single-trial simulations illustrate how the model could account for the attraction function in 

dot lattices (Kubovy et al., 1998; Kubovy & Wagemans, 1995). The basic mechanism through 

which this is achieved is the gradual desynchronization for b, due to the increase of its relative 

inter-dot distance (AR). When the AR = 1.0, both a and b show the same level of synchronization 

and the selection of the model is stochastic. Moreover, the interplay between lateral within-module 

connections and feedforward between-module connections reproduces the occasional rise of 

orientations other than a, especially when the stimulus support (AR) and the sensitivity to 

proximity (α) are low.  
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Figure 3.5: Simulation of a single trial with AR = 1.2, α = 6.72, and no orientation bias parameter.  (A). Synchrony between PL units coding for b further reduces, 

compared to previous simulations. (B). The amplitude of CD puts b on the same level of c and orientations. (C). ACC activity shows a superiority for a with respect 

to b. Thus, in this condition, the low synchrony for b in previous layers cannot be overcame at this stage. (D). Given the higher synchrony for a in previous modules, 

this orientation is selected by DU.
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3.6 Simulation Results  

The results of all simulations run are summarized in Figure 3.6. The plots show the frequency of 

winning orientations across the simulated conditions. The first thing to note is that orientations c 

and d are never selected by the model. This is in line with previous studies with human observers 

(Bleumers et al., 2008; Claessens & Wagemans, 2005; 2008; Nikolaev et al., 2016; Strother & 

Kubovy, 2006) finding that the report of these orientations in rectangular dot lattices is negligible.  

The upper panels of Figure 3.6 show the results of the simulations without any bias provided to 

vertical orientation (b). The model replicates the effect of both AR and α parameters of attraction 

function (Kubovy et al., 1998; Kubovy & Wagemans, 1995). For AR = 1.0, the frequency in 

selecting  a and b equates, whereas grouping along orientation a increases with the AR of the 

simulated dot lattices. Concerning the effects of α, no difference emerges when the simulated dot 

lattices are at the extremes of the perceptual ambiguity continuum (i.e. AR = 1.0 and AR = 1.2). 

This pattern of results is expected, since the effect of α is to attenuate the synchrony between the 

units coding for orientations characterized by higher inter-dot distance. When AR = 1.0, a and b 

subtend to the same inter-dot distance and, thus, both these orientations are in accordance with dot 

proximity. On the other hand, at AR = 1.2, the difference in synchronous activity between the units 

coding for the two orientation is already high, and thus further reducing the synchrony for b 

provides a negligible effect. This suggests that grouping by proximity can be effectively promoted 

by highly unambiguous stimuli, even for low values of proximity sensitivity. On the other hand, 

the modulation of α is evident at AR = 1.1. In this case, AR alone does not promote for a clear 

differentiation of the activity relative to a and b in higher level module and, thus, the action of α 

in impacting the activity underlying orientation b produces visible effects.   
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The lower panels of Figure 3.6 show the effect of AR and α in the simulations accounting for 

orientation bias. Orientation-based grouping is more prominent when the stimuli are at the highest 

degree of ambiguity, whereas it dissolves for clearly unambiguous stimuli. This is in line with 

previous findings, which showed that orientation bias decreases with AR (Gephstein & Kubovy, 

2005; Nikolaev et al., 2016). The ratio between a and b responses does not change for different 

values of α at AR = 1.0 and AR = 1.2. Again, this depends on the difference in synchrony promoted 

by AR. In particular, when AR = 1.0, the synchrony between the units coding for b is not reduced 

by α, and, thus, the additive bias parameter produces a similar effect across the two conditions. 

Conversely, at AR = 1.2, the difference in synchrony between a and b makes the model resistant 

to the additive effect of bias already at the lowest value of α. At AR = 1.1, we find that for low 

values of α the model is sensitive to orientation bias. This effect depends on the dynamics occurring 

in high-level modules, where the activity between a and b is not clearly differentiated. This 

promotes for the higher rate of orientation-based grouping during these trials. This trend is, 

however, counteracted by α, which effectively promotes for a shift towards proximity-based 

grouping as its value increases.  

Overall, our simulations account for several findings in psychophysical literature about grouping 

by proximity and orientation bias. Specifically, our model well replicates the attraction function 

(Kubovy et al., 1998; Kubovy & Wagemans, 1995), as well as the higher impact of orientation 

bias for ambiguous stimuli. Moreover, the influence of α on grouping process is effective only at 

AR = 1.1, that is when the difference in synchrony between a and b is not large enough to be 

efficiently captured by higher level modules.  
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Figure 3.6: Simulation results for all the testing conditions averaged over 50 seeds. The 

simulations not providing for orientation bias show a clear effect of AR in increasing the rate of 

proximity-based grouping. Notice how increasing α produces visible effects only at AR = 1.1. In 

the simulations accounting for bias, there is a clear inverse relationship, with orientation-based 

grouping being reduced by AR. Also in this condition, the modulation of α produces a drift in 

grouping process only at AR = 1.1.      
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3.7 Discussion 

In this section, we provided a dynamical model to investigate the neural mechanisms underlying 

grouping processes in dot lattices. Gestalt organization, such as grouping by proximity, is an 

emergent feature of our perceptual system (Pomerantz & Portillo, 2011), which is characterized 

by both stability and flexibility. Stability is assured in our model by the convergence to a fixed 

activation state (i.e. attractor) in the DU module. Once an attractor is settled on, activity in DU 

module is no longer perturbed by lower level inputs. This corresponds to the selection of one 

orientation from the stimulus, which persists for the remaining duration of the trial. Different 

attractors in our model represent all the possible interpretations along which the dots can be 

grouped. The possibility to switch between different attractors over the trials is assured by the 

stochastic noise at the level of sensory neurons. This mechanism ultimately provides grouping 

processes with a certain degree of flexibility. In our model, this balancing between stability and 

flexibility results from the self-organization dynamics. In other words, we do not provide any 

external teaching signal specifying for the ideal output, but the model is free to evolve towards a 

particular state in an unsupervised fashion. This is in line with the view that Gestalt phenomena 

spontaneously arise from self-organized processes in the brain (Wagemans et al., 2012b).  

Critical to the emergence of grouping by proximity in our model is the interplay between 

competitive and cooperative connections occurring at every level of the model’s architecture. 

Competitive connections are ultimately responsible for the winner-take-all dynamic implemented 

at DU level, where only one attractor can be entered at time. On the other hand, cooperative 

connections play a critical role at low perceptual module, where they promote for synchronous 

activity between neighboring units.  
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Synchrony between units coding for the same orientation in PL module is the marker for how the 

sensory input is represented at higher processing modules (Luck & Beach, 1998; Singer, 1999; 

von der Malsburg, 1981). Ultimately, this is the substrate underlying grouping by proximity in our 

model: the higher the proximity along one orientation, the more the units coding for that orientation 

will synchronize their firing; increasing, thus, the chances to win the competition in DU module. 

The idea of synchrony between neurons coding for elements belonging to the same group as a 

possible substrate of Gestalt phenomena has successfully been applied in a previous model (van 

Leeuwen et al., 1997). The authors proposed a model composed by four layers of chaotic 

oscillators. Excitatory connections within and between the layers coding for different orientations 

were found to be effective in producing the emergence of grouping by proximity and by good 

continuation. However, with respect to our work, grouping by proximity was investigated as the 

shift between a and b organizations in rectangular dot lattice with AR = 1.0 over sustained stimulus 

exposure; without simulating the effects of different levels of stimulus ambiguity. Moreover, the 

previous model only implemented low level dynamics, without defining a large scale neural 

architecture accounting for subsequent steps of visual processing.   

In our model, the higher synchrony for the orientations characterized by smaller inter-dot distance 

is accomplished via the scaling of the weight of excitatory connections in PL module according to 

the attraction function (Equation 3.4). This implies that synchrony depends on both AR and α, with 

higher values of both parameters reducing the synchrony for orientations other than a. This 

functional logic replicates several aspects of grouping by proximity in rectangular dot lattices 

(Bleumers et al., 2008; Claessens & Wagemans, 2005; 2008).  

We find that grouping by proximity was more prominent for high AR, implying lower 

synchronization between the neurons coding for orientations characterized by higher inter-dot 
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distances. When AR = 1.0 and the inter-dot distances along a and b equates, the same level of 

synchrony is observed between these two orientations. In this case, there is no difference in the 

selection between a and b. This pattern also explains why the simulations addressing for the 

orientation bias produces a higher increase for b selection at AR = 1.0 than at other AR conditions. 

In this case, orientation bias is an additive term to the already high synchrony for b, which boosts 

its activation in further modules with respect to a.  

In our simulations, varying α only affects the grouping by proximity at AR = 1.1. Thus, α provides 

an additive effect to AR, which, however is effective only when the stimulus support alone is not 

sufficient to promote for a clear differentiation between a and b. Again, this pattern can be 

attributed to a weakening of b, rather than to an actual boost of proximity sensitivity. A similar 

mechanism also occurs in the simulations accounting for orientation bias, where higher α decreases 

the grouping along b, despite the additional bias term received.  

A critical aspect of our model is that the input relative to the bias for vertical (b) orientation is fed 

at the level of accumulators. This apparently contrasts with a view of perceptual bias as top-down 

signal from fronto-temporal networks on early visual areas (Frith & Dolan, 1997; Hohwy, 2017; 

Kok et al., 2013; Summersfield & de Lange, 2014; Wang et al., 2013). However, in the context of 

our model, such top-down modulation would be translated by a higher synchrony for vertical (b) 

orientation, which ultimately would led to a higher saliency in further processing stages (Singer, 

1999). Thus, even if our model does not appear to reproduce the precise neural dynamics 

underlying orientation bias, it produces an equivalent outcome. 

It has been proposed that each dot lattice can be thought of as four different stimuli which compete 

for awareness, each of which being represented by a straight line of dots parallel to a, b, c, or d 

(Kubovy & van den Berg, 2008). In our model, this competition for conscious access is depicted 
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in the DU module, which allows only one orientation to be active at a given time. Previous models 

dealing with selection and awareness of limited portions of visual stimulation (Raffone & Pantani, 

2010; Simione et al., 2012) incorporate Block’s distinction between phenomenal and access 

consciousness (Block, 1995; 2005). In these models, phenomenal consciousness is linked to the 

activity in lower level perceptual modules, where perceptual representations have broad 

accessibility (Block, 2007; Simione et al., 2019), whereas access consciousness is linked to the 

activity of higher-level stages, where few representations are available at a given time for cognitive 

manipulation (narrow accessibility). The gating of broad phenomenal representation into access 

consciousness is promoted by a global workspace (Dehaene et al., 2006; Dehaene & Naccache, 

2001), which serially allows competing representations to gain access consciousness when they 

receive top-down attentional modulation. In line with both Raffone and Pantani (2010) and 

Simione et al., 2012, our model maintains the distinction between broad phenomenal accessibility 

in lower-level modules and narrow accessibility in the higher-level module, where only one 

orientation can be effectively represented at a time. However, we do not implement any attention-

mediated gating signal to control for the winning representation, but the mechanism determining 

its selection is the bottom-up synchronization achieved at perceptual stages. This is in line with 

research suggesting that perceptual grouping emerges as a pre-attentive process (Kramer & 

Jacobson, 1991; Lamy et al., 2006; Luna et al., 2016; Montoro et al., 2014; Villalba-García et al., 

2018).   

Despite the wide range or psychophysical results accounted, our model in its current form present 

some limitations which should be addressed in future developments. A central feature of 

perceptual organization concerns the alternation of different interpretations over the sustained 

presentation of a stimulus. In other words, attractors are entered and escaped within the same trial, 
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due to the stochastic dynamics of the system. This propriety is defined metastability (Kelso, 2012; 

Kelso et al., 1995) and the attractors are better understood as fragile attractors (van Leeuwen, 

2007). However, in our model, such intermittent propriety of perceptual system is not rendered, 

and the switch between the attractors only occurs across different trials.  

Another aspect that is not fully supported by human perception studies concerns the fact that, in 

our model, all the units in the PL receive the same amount of input signaling for a dot lattice. 

However, in a typical experiment, these stimuli are embedded in a circular configuration, and 

sometimes in a Gaussian envelope (confront stimuli in Figure 2.1), which may provide a different 

degree of sensory input between neurons coding for central dots and neurons coding for peripheral 

ones.  

Despite these limitations, our model, already in its current form, offers a biologically plausible 

substrate of grouping processes. In doing so, it supports both the generation of representations 

proximity-based and based on orientation bias, which have been found to jointly participate during 

the perception of rectangular dot lattices.  
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Conclusion 

 

The aim of the present work was to investigate the functional and neural mechanisms underlying 

the emergence of perceptual grouping, with a special focus on the trade-off between grouping by 

proximity and orientation bias in dot lattices perception. The preference for grouping dot lattices 

along the vertical orientation, regardless of the relative distance between the dots, has been already 

reported in previous psychophysical experiments (Bleumers et al., 2008; Claessens & Wagemans, 

2008; Nikolaev et al., 2016). However, none of these studies provided a systematical investigation 

about the factors influencing this effect, as well as its interaction with grouping by proximity. The 

studies reported in this thesis provide the first attempt to characterize the conditions defining 

whether stimuli are grouped according to extrinsic factors, such as proximity, or according to 

intrinsic ones, such as orientation bias.  

In Study 1, we investigate how the shift between grouping by proximity and orientation bias is 

shaped by high-level VWM. We considered both the effect of load and content in VWM. We found 

that both aspects play a key role in determining the perception of rectangular dot lattices. 

Increasing VWM load produces a net shift from proximity-based to orientation-based grouping. 

At the same time, we also observe a clear effect of vertical VWM representations in promoting for 

the biased perception of those stimuli. We propose that grouping process is governed by the 

competition between proximity proto-representations of the stimuli and the vertical preference 

imposed on lower-level stage by orientation bias. In our view, grouping processes in low-load 

condition are mostly driven by proximity proto-representations, whereas in high-load conditions, 

such representations are weakened and perception is largely under the control of orientation bias. 
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In line with this claim, we found no difference in low-load condition in the rate of a and b responses 

at AR = 1.0. In this case, when both orientations supported stimulus proximity (AR = 1.0), VWM 

proto-representations subtend to a in half of the cases and to b in the other half of the cases. This 

pattern is abolished as the AR increases and proximity proto-representations tune towards a. 

Moreover, we found that in high-load condition the preference for vertical orientation is equal 

across all the level of AR. This implies that, in such condition, proximity proto-representations 

have no impact on visual processing of dot lattices.  

Model simulations performed in Study 2 are only partially in line with these results. Specifically, 

we found that the model without the additional bias term shows no difference between a and b 

responses at AR = 1.0, and a higher rate of a responses as the AR increased. This scenario may be 

ascribed to the low-load condition of Study 1, thus exhibiting a similar pattern of results across the 

studies. However, in simulations with the bias term provided (which mimics the high-load 

condition of Study 1), we found that at AR = 1.2 proximity was still preferred over orientation 

bias. This difference may be explained by the fact that in Study 1, due to the load provided to 

VWM, the generation of proximity proto-representation for stimuli at AR = 1.2 is effectively 

impeded, whereas in Study 2, despite the bias parameter, no mechanism interferes with the gradual 

building of a representation in DU module.  

In our model, grouping by proximity emerges as the parallel activation of several processing stages 

of visual hierarchy. This scheme is in line with the view of a visual system as characterized by 

intrinsic holism. Intrinsic holism has been proposed to occur in the brain through the interplay 

between short range connections within early visual areas and top-down signals from higher-level 

processing stages (van Leeuwen, 2015a). Thus, holistic perception would be achieved through 

recurrent cycles of activity operating at multiple stages of stimulus processing. This supposes a 
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visual system organized as a small-world network, where assemblies of units densely connected 

via short range connections provide for the coding of local features (e.g. single elements) and their 

coupling via long range connections allows the global structure to unfold (van Leeuwen, 2015b). 

This network structure is reproduced in our model, where long range connections between the 

modules effectively promote for the emergence of grouping.  

Simulations with our model provide evidence that the synchrony between the units in perceptual 

layer has a key role in grouping by proximity. We can speculate that VWM and orientation bias 

may regulate grouping process by influencing such low-level synchronization. In particular, it 

could be hypothesized that proximity proto-representations, once established following stimulus 

presentation, provide the units coding for a with top-down feedbacks which further facilitate their 

synchronization. On the other hand, the effects of orientation bias on units coding for vertical 

orientations may be more pervasive. It has been proposed that top-down projections affect the 

spontaneous activity at early stages of visual hierarchy, altering the synaptic efficacy between 

neurons coding for features that reflect perceptual regularities of the environment (Harmelech & 

Malach, 2013), such as vertical orientation (Coppola et al., 1998). In this sense, orientation bias 

may induce a long lasting effect on the synchrony between orientation-tuned neurons in V1.  

Future developments of Study 1 may address whether the modulation of VWM on grouping by 

proximity also occurs for other grouping principles. The reciprocal effect may also be investigated: 

namely, whether grouping by proximity is affected by other higher level processes, such as the 

stronger allocation of spatial attention towards the left visual hemifield (i.e. pseudo-neglect). It has 

been reported that detection accuracy is higher when stimuli are presented in the left visual 

hemifield compared to the right one (Learmonth et al., 2015a; 2015b; Thut et al., 2006) and 

grouping by proximity is impaired when dot lattices are shifted to the right of the fixation point 
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(Bleumers et al., 2008). Thus, one might expect proximity-based responses being higher whether 

the stimuli are presented leftward than rightward. This research would provide us with useful 

information about how perceptual system is organized, as well as about how the mechanisms 

subtending to different forms of perceptual bias affect low-level processing.  

Concerning Study 2, successive versions of our model should account for a more biologically 

plausible implementation of the bias input at the level of perceptual units. For example, it could 

be simulated as external input to the neurons coding for vertical orientation within each assembly 

from a non-explicitly modelled module. In this way, we would have a direct test that the effect of 

orientation would promote for a further synchrony between vertical units. To simulate a scenario 

more similar to that of Study 1, new implementations of the model should account for the effect 

of VWM content in enhancing the selection of vertical (b) orientation. A possible way to replicate 

this dynamics may be obtained by acting on the decay rate parameter (−𝐴) for vertical DU. 

Specifically, we could impose that, when a vertical interpretation (b) is selected in one trial, such 

activity decay is reduced. This would enhance the probability to reselect vertical orientation in 

next trial. Moreover, simulation results obtained for grouping by proximity are related to a subset 

to the dot lattices (see Figure 1.2). In fact, our model only deals with the classes of dot lattices 

constrained by the relation a ≤ b < c = d.  Thus, we do not account for grouping process in 

hexagonal and centered rectangular dot lattices, which are constrained by the relations a = b = c < 

d and a < b = c < d, respectively. In the former case, we should expect the synchrony between a, 

b, and c to equate at the perceptual stage. In the latter case, we should expect a similar pattern of 

low-level synchrony across b and c, which, depending on both α and AR, may induce for 

misinterpretations of the stimuli. A last development for our model would be to take into account 

the time elapsed from the presentation of the stimulus (t = 0) and the time in which an attractor is 
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entered. We could expect that similarly to grouping by proximity, decision time would be 

modulated by the attraction function parameters (α and AR), with reaction times for perceptual 

decision being slower as the values of AR and α decrease. This hypothesis seems supported by the 

diffusion models of reaction time (Bogacz et al., 2006; Forstmann et al., 2016; Ratcliff et al., 2016), 

which predict slower reaction times as the to-be-decided alternatives have the same weight of 

perceptual evidence.  

Overall, both the studies reported here agree that proximity- and orientation-based grouping result 

from the relationship between low-level and high-level processing stages. Further studies are 

required to better characterize the role of low-level synchrony and high-level VWM proto-

representations in the emergence of grouping by proximity. The studies in this thesis contribute to 

highlight such new research perspective, which hopefully will promote for a renewed interest in 

the investigation of the mechanisms other than stimulus parameters in determining perceptual 

grouping. 
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Appendix 

Model’s Parameters  

 

Table 1: Units parameters. 

A 1 

B 1 

C 20 

D 33.3 

E 0.05 

𝐼𝑠𝑡𝑖𝑚 0.3 

m 0.5 

g 0.125 

τ 0.4 

F 1/150 

G 1/150 

U 1.25 

𝑊𝑃𝐿
𝑖𝑛ℎ 0.4 

𝑊𝐴𝐶𝐶
𝑖𝑛ℎ 0.7 

𝑊𝐷𝐸𝐶
𝑖𝑛ℎ 5 

 

 

 

 

Table 2: Sigmoid function arguments. 

 𝑄 𝑛 

𝑓𝑎  0.9 4 

𝑓𝑏  0.95 4 

𝑓𝑐  0.4125 15 

𝑓𝑑  0.3 4 

𝑓𝑒 0.95 4 

𝑓𝑔 0.4 20 

 

 


