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Samenvatting

Laten we beginnen met een experiment. Antwoord eerst op deze vraag: “Welke
geluiden hoort u in de directe omgeving van uw woning?” Maak een lijst en hou
deze bij. Wandel de volgende keer wat langzamer door uw buurt en concentreer
u op de geluiden die u hoort. Neem nu de lijst die u eerst maakte en vul hem
met andere geluiden die u opmerkte. Wat u in dit experiment doet, lijkt triviaal,
maar het is de beste manier om bewust te worden van de geluidsomgeving waarin
u dagelijks vertoeft. De invloed van deze geluidsomgeving op onze stemming
en zelfs onze gezondheid is in de afgelopen decennia grondig onderzocht. Haar
rol in de stedelijke planning is toegenomen en kan als even relevant worden
beschouwd als andere factoren, zoals visuele esthetiek, veiligheid en mobiliteit.

De geluidsomgeving behoort tot de externe wereld, buiten de luisteraar. Het
luisteren naar de geluidsomgeving verwijst naar een perceptuele daad, actief
uitgevoerd door de luisteraar. Bij beantwoorden van de eerste vraag uit het
experiment komt bovendien retrospectieve beoordeling van wat is gehoord, dus
een herinnering aan geluiden, of vanuit neurologisch perspectief, een herinnering
aan geluidsgeinduceerde indrukken, of vanuit nog een ander perspectief, de
activiteit van sporen in de hersenschors die externe geluidsstimuli coderen.
Daarom is de geluidsomgeving slechts de helft van het verhaal, de andere helft
begint bij onze oren, het perifere auditieve systeem, waarvan de signalen in
de hersenen worden verwerkt. Om rekening te houden met deze perspectief-
verschuiving, van geluidsomgeving naar luisteraar, heeft Schafer in 1969 de
term “soundscape” (geluidslandschap) gesuggereerd. De term is ondertussen
vastgelegd in een ISO standard: “The soundscape is the acoustic environment
as it is perceived and understood by the individual or by society”.

Het is interessant op te merken dat het soundscape concept is ontstaan uit
hedendaagse muziekbewegingen. Muzikanten uit de jaren 60 vroegen zich wat
muziek eigenlijk is. Emblematisch is het antwoord van John Cage dat, op een
bepaalde manier, de basis van het soundscape concept omvat: “Music is sounds,
sounds around us whether we’re in or out of concert halls”.

Tijdens het uitvoeren van een wandeling in uw buurt met aandacht voor
het omgevingsgeluid, doet u iets gelijkaardigs als de zogenaamde soundscape
wandelingen die Schafer en zijn voormalige studenten deden en die omgevings-
geluidsdeskundigen tegenwoordig soms doen om informatie over de geluids-
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omgeving op bepaalde locaties te verzamelen. De wetenschappelijke wereld
begon het werk van Schafer en het belang van de soundscape benadering slechts
na enkele decennia te overwegen toen de beperkingen van indicatoren als het
equivalent geluidsniveau — een gemiddelde energiedosis —duidelijk werden voor
het voorspellen van geluidhinder en de kwaliteit van het geluidsklimaat in de
publieke ruimte. Meer gedetailleerde fysische indicatoren werden en worden
geintroduceerd, maar “ergernis” of een “positieve gevoel” zijn een “state of
mind” van de luisteraar en kunnen dus niet helemaal correct begrepen worden
door enkel de fysieke aspecten van de geluidsomgeving te beschouwen. Daarom
is grondig inzicht in soundscape onmogelijk zonder het modelleren van de men-
selijke auditieve waarneming. Vanuit dit standpunt, beoogt dit proefschrift een
algemeen en flexibel computationeel model te vinden dat de geluidsomgeving zo
nauwkeurig als een menselijke luisteraar kan analyseren: een kleine stap naar
het zogenaamde mens-gebaseerde machinaal luisteren.

Een belangrijke randvoorwaarde in dit proefschrift betreft de computationele
efficiéntie en de brede inzetbaarheid van het voorgestelde model. In het bijzonder
voor de intrinsieke karakteristieken van het menselijke perifere auditieve systeem
zijn gedetailleerde modellen ontwikkeld die leiden tot specifieke eigenschappen
zoals gammatone filtering, maar deze zijn niet erg bruikbaar in gedistribueerde
stedelijke geluidsmonitoring systemen. Deze doctoraatsthesis heeft dan ook
tot doel een computationeel instrument te verschaffen dat (deels) op klassieke
meetapparatuur zou kunnen draaien. Dus, om een evenwicht te vinden tussen
nauwkeurigheid, biologische plausibiliteit en computationele efficiéntie, wordt
ab initio vastgelegd dat het model moet starten van 1/3-octaafband spectrum
analyse met een tijdsresolutie van 0.125s.

Het voorgestelde computationeel model omvat drie stadia: verwerking bij het
perifeer auditief systeem, mappen van eigenschappen op basis van gezamenlijk
voorkomen via een zelforganiserende kaart en modelleren van aandacht en object
creatie door middel van een specifiek artificieel neuraal netwerk. In dit werk
wordt in het bijzonder de nadruk gelegd op een nieuwe strategie om de kaart te
trainen die continue selectief leren genoemd wordt en die rekening houdt met
karakteristieken van leren van geluid bij mensen. Perceptie en retrospectieve
evaluatie van geluidslandschappen door mensen hangt immers niet enkel af van
de frequentie waarmee de verschillende geluiden voorkomen. Terugkerend naar
de hypothetische vraag die in de openingsparagraaf gesteld werd; bevatte uw
lijst woorden als stilte of achtergrondgeluid? Waarschijnlijk niet en dit ondanks
het feit dat — indien u in een residentiéle buurt woont —niet specifiek achter-
grondgeluid veel frequenter voorkomt dan duidelijk identificeerbare opvallende
geluidsgebeurtenissen. Men heeft inderdaad vastgesteld dat enkel de geluiden
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die een waarnemer bewust waarneemt, bijdragen tot het vormen van een mentaal
beeld van de geluidsomgeving, de soundscape en uiteindelijk de beoordeling
van de kwaliteit ervan. Niet enkel het aanwezige geluid bepaalt welke geluiden
waargenomen worden; geluiden die uw aandacht kunnen trekken in bepaalde
omstandigheden kunnen volledig genegeerd worden op andere momenten en
in een andere context. In het ontwikkelde computationeel model resulteert
eenzelfde geluid inderdaad eveneens in een andere respons afhankelijk van de
omgeving waarvoor de zelforganiserende kaart getraind is.

Auditieve aandacht speelt naast leren eveneens een centrale rol in het men-
selijk auditief systeem. Het laat toe enkel relevante en noodzakelijke informatie
door te geven aan het werkgeheugen. Daarom is het noodzakelijk om auditieve
aandacht te modelleren in elk systeem met de ambitie het menselijke auditieve
waarneming te imiteren. Aandacht wordt typisch gemodelleerd als een contri-
butie van twee mechanismen: “bottom-up” en “top-down”, ook wel inwaarts en
uitwaarts georiénteerde aandacht genoemd. Bottom-up aandacht wordt bepaald
door de opvallendheid van het geluid: zeldzame en opvallende fysische karakte-
ristieken of instinctief biologisch belang. Bottom-up aandacht onderzoekt de
geluidsomgeving naar veranderingen in intensiteit, frequentieinhoud, of ruimte-
lijke locatie. De lijst die u stelde zullen normaal gezien vooral geluiden bevatten
die sterk opvallen in de geluidsomgeving. Top-down aandacht wordt daarentegen
gedreven door de taak die de luisteraar op dat moment uitvoert en kent cogni-
tieve resources toe aan de geluiden die belangrijk zijn voor het volbrengen van
deze taak of op zijn minst aan deze taak gerelateerd zijn. Bijvoorbeeld, tijdens
het koken zal men meer aandacht hebben voor het geluid van de pruttelende
gerechten dan voor het geluid van auto’s die voor de gevel passeren. Bottom-up
en top-down mechanismes zijn voortdurend in competitie om aandacht op de
juiste geluiden te richten en sensorieel overladen te vermijden. Deze competitie
is hiérarchisch gestructureerd en komt op verschillende niveaus van abstractie
voor: van lage niveaus waar competitie tussen neurale representaties van basis
kenmerken van het geluid worden geanalyseerd tot op het hoogste niveau waar
competitie tussen auditieve stromen en objecten optreedt. Op het hoogste
niveau komt daar nog de competitie of versterking door interactie tussen de
verschillende zintuigen bij. Een belangrijk mechanisme dat het aandachtsproces
beinvloedt is inhibitie van terugkeer. Dit mechanisme verhindert dat aandacht
gericht blijft op een steeds weerkerend geluid en veroorzaakt een natuurlijk
afzoeken van de auditieve scéne. Top-down, taakgerelateerde aandacht kan dit
proces wijzigen waardoor het congitieve systeem gefocusseerd kan blijven op
een bepaalde stimulus.

Alle bovenvermelde kennis wordt verwerkt in een computationeel aandachts-
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model dat gebaseerd is op een artificieel neuraal netwerk. Dit model wordt
gesuperposeerd op de zelforganiserende kaart. Elke cel in de zelforganiserende
kaart wordt gekoppeld aan een neuron van het artificieel neuraal netwerk
dat aandacht modelleert. De langetermijn plasticiteit van de auditieve cortex
wordt vertaald naar een traag lerende zelforganiserende kaart terwijl de snellere
aandachtsmechanismen door het neurale netwerk worden gemodelleerd. Zoals
vermeld is selectieve aandacht ook belangrijk bij het selecteren (en soms vormen)
van auditieve objecten. In dit werk wordt een alternatief model voorgesteld voor
het vormen van auditieve objecten: koppelen van de zelforganiserende kaart aan
een oscillerend neuraal netwerk dat de dynamische oscillator koppeling tussen
sensorische cortex neuronen geéxciteerd door een auditieve stimulus modelleert.

In dit werk worden eveneens verschillende toepassingen van de ontwikkelde
modellen gepresenteerd. De eerste toepassing betreft het automatisch selec-
teren en opnemen van een verzameling van typische geluiden voor een buurt,
“akoestische samenvatting” genoemd. Er wordt aangetoond dat deze compacte
verzameling van geluiden het geluidsklimaat van een locatie karakteriseert vol-
gens mensen die in deze buurt wonen. Met andere woorden, het theoretisch
model beantwoordt de vraag “welke geluiden hoor je in de directe omgeving van
je woning?”. Deze soundscape analyse kan gebruikt worden als startpunt van de
ontwikkeling van een geluidslandscahp dat de perceptie van de geluidsomgeving
door de gebruikers van een ruimte verbetert. Dit verbeterd ontwerp wordt
typisch gerealiseerd door aangename en gewenste geluiden toe te voegen of te
accentueren zodat ongewenste geluiden gemaskeerd worden of op zijn minst
niet langer in de focus van de aandacht liggen. Er wordt aangetoond dat de
voorgestelde modellen gebruikt kunnen worden om de effecten van mogelijke
interventies te beoordelen. Hierdoor is het niet langer nodig gebruik te ma-
ken van dure luisterpanels om de effectiviteit van maatregelen te beoordelen.
Betekenis hechten aan de waargenomen geluiden — het proces dat toelaat
de geluidservaring met woorden te beschrijven —wordt in het voorgestelde
computationele model niet expliciet ingebouwd. Desalniettemin gaat een tweede
toepassingsvoorbeeld hier verder op in door een support vector machine te kop-
pelen aan de zelforganiserende kaart. Met deze methode kunnen bijvoorbeeld de
geluiden in de akoestische samenvatting van een label voorzien worden. Tot slot
bespreekt dit werk een aantal andere, complementaire toepassingen: herkennen
van specifieke geluidsgebeurtenissen en detecteren van atypische geluiden als
deel van een multicriteria aanpak voor anomalie en fout detectie in stedelijke
sensornetwerken.

Een bespreking van de belangrijkste bevindingen en mogelijke verdere ont-
wikkelingen besluiten deze scriptie. Verschillende aspecten van menselijke
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auditieve perceptie werden niet beschouwd of slechts in een zeer vereenvoudigde
vorm meegenomen. Bijvoorbeeld, binaurale effecten werden buiten beschou-
wing gelaten, gesuperviseerde training of reinforced leren kwamen niet aan bod.
Het complexe cognitieve proces dat geluiden identificeert en er betekenis aan
toekent, kon niet in de rekenmodellen opgenomen worden; de support vector
machine aanpak lijkt te weinig performant in vergelijking tot de menselijke
competenties. Dit zijn maar enkele voorbeelden die moeten aantonen dat het
pad naar een computationeel haalbaar en volledig omvattende mens-achtige
machinale luisteraar nog steeds een uitdaging vormt. Hopelijk heeft dit werk
dit pad een stap korter gemaakt.






Summary

Let us start with an experiment. First, answer this question: “Which sounds
do you hear in the direct surroundings of your home?” Make a list and take it
with you. Then, next time you are near home, try to walk slower and focus on
the sounds you hear. In case you want to add some sounds, take the list out
and complete it. This little experiment might seem somewhat trivial. However,
it is the best way to become self-conscious about the sonic environment you
experience every day. Its influence on our mood and even our health has been
very well studied in the last decades and its role in the urban planning process
has grown a lot, so that it can now be considered as relevant as, for example,
visual aesthetics, safety and mobility.

The sonic environment is related to the external world, outside of the
listener’s head. However, listening to the sonic environment refers to a perceptual
act, actively performed by the listener. Additionally, answering the initial
question involves a retrospective assessment of what has been heard, thus
involving a recollection of sounds, or, from another perspective, a recollection
of sound-induced impressions, or, from yet another perspective, memory traces
in the brain cortex encoding external sound stimuli. The sonic environment
is therefore only half of the story. The other half starts from our ears, the
peripheral auditory system, whose signals are further processed in the brain. In
order to account for this shift in perspective, from the sonic environment to the
listener, the term soundscape has been suggested in the 1969 by Schafer and
defined in a ISO standard: “The soundscape is the acoustic environment as it
is perceived and understood by the individual or by society”.

It is interesting to notice that the concept of soundscape arose from trends
in contemporary music. Musicians of the 1960s wondered what music actually
is. Emblematic is the answer given by John Cage, in some way containing the
seed of the soundscape approach: “Music is sounds, sounds around us whether
we’re in or out of concert halls”.

Walking in the surroundings of your home, paying attention to the sounds
you hear, you are doing something very similar to the so-called soundwalks that
Schafer and his former students performed and that environmental acousticians
are sometimes doing nowadays to collect information about soundscapes in
given locations. In fact, the scientific community started to consider the work of
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Schafer and the importance of the soundscape approach only a few decades later,
when indicators such as the energy equivalent sound pressure level — an averaged
energy level —began to show limitations in the prediction of noise annoyance
and the quality of the sound climate in public areas. Other indicators, with the
same goal, were and are introduced. But what is certain is that “annoyance” or
a “positive feeling” are a “state of mind” and cannot be completely understood
just by considering the physical aspects of the sonic environment. Therefore,
analyzing the soundscape is impossible without modelling human auditory
perception. This statement is the starting point of this dissertation, which aims
to find a general and flexible computational model able to analyse the sonic
environment as accurately as a human listener would: a small step towards the
so-called human-like machine listening.

An important precondition of this dissertation refers to the computational
efficiency of the proposed model. In particular, several detailed methods have
been conceived for the intrinsic properties of the human peripheral auditory
system like gammatone filtering, but they cannot be easily used in distributed
urban monitoring systems. Therefore, this dissertation aims to provide a compu-
tational tool that could ultimately (if only partly) run on classic measurement
equipment. Thus, in order to find a balance between accuracy, biological plausi-
bility and computational efficiency, the presented model is based on a 1/3-octave
band spectrum analysis at 0.125s.

The proposed computation model is composed of three stages: peripheral
auditory processing, mapping of acoustical features based on co-occurrence by
means of a self-organizing map and modelling auditory attention and auditory
object creation by means of specific neural networks. In particular, this work
has focussed on a novel strategy to train the map, called continuous selective
learning, which accounts for aspects of human auditory learning. In fact,
human perception and retrospective assessment of soundscapes do not depend
exclusively on the rate of occurrence of sounds that are heard. Returning to
our experiment: would expressions as silence, background noise or quietness
be mentioned in your list? Probably not, although — in case you live in
a residential area —mnot specific background sound occurs more often than
identifiable and noticeable sound events. In fact, only the sounds that the
listener consciously notices will contribute to the creation of a mental image
of the sonic environment, the listener’s soundscape, and ultimately will shape
his/her perception of its quality. Not only the physical sound features determine
which sounds are perceived; sounds that could attract our attention in certain
circumstances would be totally ignored at other moments or in other contexts.
In the developed computational model, the same sound input would result
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in different model outputs depending on the sound environment where the
self-organized map was trained.

Together with learning, auditory attention (inter)plays a central role in
human auditory perception. In fact, it allows us to select the information
needed to be passed on to the working memory. For this reason, modelling
the auditory attention is of the utmost importance in every system aiming
to imitate human auditory perception. Typically, attention is modeled as the
contribution of two kinds of mechanisms, respectively called bottom-up and
top-down mechanisms. Bottom-up attention is related to the conspicuity of
the sound: rare or novel physical features or instinctive biological importance.
Bottom-up mechanisms perform a novelty detection task, thus monitoring the
acoustic environment for changes in intensity, frequency or spatial location of
the sound stimuli. Typically, the list of sounds you would come up contains
mostly these conspicuous sounds. At the other hand, top-down attention is
driven by the task performed at that moment by the listener and focus cognitive
resources on sounds that are important for accomplishing such task or are at
least task-related. For example, if you are cooking, you would most likely pay
attention on the simmering food instead of sound coming from cars passing by in
front of your house. Bottom-up and top-down mechanisms interact continuously
in a competitive selection process in order to direct attention on the right
sounds and avoid sensory overload. This competition is also hierarchically
structured and acts at different levels of abstraction: from low levels, where
competition among neural representations of basic sound features occurs, up to
the highest cognitive levels where competition among different auditory streams
occurs. The last level would be the competition among the information from the
different senses, eventually arising in cross-sensory reinforcements. An important
mechanism modulating attentional process is the so-called inhibition-of-return.
It prevents attention to be continuously focused on the same auditory stream,
thus naturally generating an attentional scan of the auditory scene. Top-down,
task-related attention mechanisms can alter this process in order to keep the
working memory focused on the desired task.

This empirical knowledge is transferred into a computational attention model
based on an artificial neural network that takes into account both bottom-up
and top-down mechanisms and includes inhibition-of-return as well. Such a
model can be seen as a second layer, superimposed on the self-organizing map.
Each unit of the self-organizing map is coupled to a unit in the neural network
modelling attention. The long-term plasticity of the auditory cortex is modeled
by a slow learning self-organizing map, while the faster attention mechanisms
by the neural network. As mentioned before, attention is important in selecting
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(and in some cases forming) auditory objects. This dissertation also proposes an
alternative model of auditory object formation by coupling the self-organizing
map with an oscillatory neural network, which models the dynamic oscillatory
correlation of sensory cortex neurons excited by an auditory stimulus.

This dissertation also presents several applications of the theoretical model.
The first one is the automated selection and recording of a collection of typical
sounds at a given location, called “acoustic summary”. It is shown that this
is a comprehensive set of sounds characterizing the specific location as judged
by people living in the surroundings. In other words, the theoretical model
presented here answers that very first question “Which sounds do you hear in
the direct surroundings of your home?”. Such a soundscape analysis can be
used as the starting point for the design of a soundscape improving the auditory
scene perception experienced by the users of a space. This improved soundscape
is typically achieved by adding or accentuating pleasant and desirable sounds in
order to mask or, at least, shift the listener’s attention from undesired sounds. It
is shown that the proposed model can be used to evaluate the perceptual effects
of possible interventions, thus removing the need of expensive listening panels
to assess their effectiveness. Attaching a meaning to sounds— the process that
lets you describe with words the experienced sounds —is not tackled by the
computational model proposed here. However, a second application is presented
which aims to find a simple solution to this issue by using a support vector
machine linked to a trained self-organizing map. This method can be used, for
example, to label the sound excerpts composing an acoustic summary. Finally,
the dissertation also discusses some other complementary applications of the
model: the recognition of particular known sounds, i.e. specific sound event
recognition, and the detection of atypical sounds as part of a multi-criteria
approach for anomaly and failure detection in urban sensor networks.

The dissertation is concluded by discussion of the main findings and possible
improvements. In fact, several aspects of the human auditory perception
have been either simplified or not considered in the proposed model. For
example, no binaural effects were taken into account, and no supervised and
reinforcement learning strategies were modeled in the training of the self-
organizing map. Moreover, the complexity of the cognitive act of identifying a
sound and attaching a meaning to it could not be included in the theoretical
model and the coupling of the model with a support vector machine appears to
be too simplistic when compared to human proficiency. These are just a few
examples showing that the path towards a computationally feasible and totally
comprehensive human-like machine listening remains challenging. Hopefully,
this work made it a step shorter.
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CHAPTER 1

From human auditory
perception to machine
listening

In this introductory chapter the basic principles of human auditory percep-
tion are laid before. In this context, the soundscape approach is introduced.
Important aspects of human auditory perception such as auditory scene
analysis, auditory attention and learning are discussed. Finally, ma-
chine listening is introduced as an attempt to synthesize the knowledge
on human auditory perception in computational models and particular
attention is given to the novelty of the approach presented in this work.

1.1 Perception, sensation and computation

Human beings have always been concerned with understanding how the external
world is represented in consciousness, the so-called perceptual problem, and
how the act of perception can affect their emotions. An immediate extension,
called the correspondence problem, is how accurate the perception represents
the external reality considered the fact that we perceive the external world via
intrinsic limited senses. It should thus not surprise that perception has been
a primary concern in many philosophical theories. The philosophical school
linked to Plato considered the sensory inputs as an inaccurate copy of the
external world, eventually corrected by the Reason, thus providing us a perfect
representation of it. Such view was several centuries afterwards extended by
the German philosopher Immanuel Kant: the intellect creates the perceived
phenomena, based on whatever inadequate information is provided by the
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sensory systems, by means of the innate primary concept of time and space and
several innate categories defining object quantities, qualities and the relations
among such objects. Therefore, studying perception means studying an aspect
of cognition and reason, noticeably reducing the importance of studying the
sensory systems. This school of thought has been criticized since the time of
Plato by the philosophical tradition called sensism or sensualism. Aristippo, a
contemporary of Plato, argued that the senses are enough accurate to represent
the external world and therefore there is no need to correct them by the platonic
Reason; before him the presocratic Protagoras said that “Man is nothing but a
bundle of sensations”. This view was rephrased by Hobbes in the 17th century
and later by Locke. In their works the importance of the sensory inputs is the
key for understanding the mind. As Hobbes wrote:

there is no conception in a man’s mind which hath not at first,
totally or by parts, been begotten upon the organs of sense ().

Locke went further conceiving the mind as a tabula rasa, with no innate
categories or rules, a kind of white paper written by sensory processes. In this
view studying the perception means studying the sensation and the afferent
sensory systems.

The modern and scientific approach to sensory perception seems the result of
a third thought of school influenced by both the two extreme opposing positions.
Aristotle was the first who tried at compromise followed by St. Thomas Aquinas.
In more recent times, the compromise led to the separation of sensation and
perception, as first introduced by Thomas Reid (2). Such distinction is still
nowadays broadly used and it is commonly accepted in psychology. The term
sensation refers to the stimulation of a sensory receptor which converts energy
into a nerve signal reaching the brain. In case of audition, the energy contained
in the sound pressure waves is transferred by the eardrum and the middle ear
to the cochlea where the hair cells transform it into a nerve signal reaching
the brain by means of the auditory nerve. Perception is an intellectual process
referring to the selection, organization and interpretation of the sensory inputs.
It is worth noting that Reid, as his predecessor Berkeley, was very influenced in
his work by Newton’s inductive ascent reasoning in his attempt of ascending
towards more unifying and general laws (3)). The scientifically-based study of
sensation and perception is however due to the work of Hermann von Helmholtz,
considered one of the pioneers of perceptual psychology. He was indeed one of
the first to use his insights on nerve physiology and ophthalmology to formulate
empirical theories of depth perception, colour and motion perception and to
infer from them a more general perceptual theory. In his works about theory of
vision (4)) he introduced the concept of unconscious conclusion or unconscious
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inference to describe the reflex-like mechanism by which perception is formed.
The inputs coming from the sensory systems, the sensation, are pre-rationally
worked out by humans to form a percept. However, such unconscious process is
not regulated by absolute categories as in Plato or Kant’s philosophy: individual
(as cultural and sociological) differences can lead to different percepts. The
Helmholtz’s formulation of unconscious inference implies also that perception has
an important developmental and behavioural aspect: the influence of different
past experiences can eventually end up in different percepts of the same sensory
inputs.

Helmholtz’s great contribution to perception is not limited to vision: his book
“On the Sensations of Tone as a Physiological Basis for the Theory of Music” (5)
in the 1862, together with the contemporary work of Fechner (6)), is a milestone
of the not yet born disciplines called psychoacoustics and musical psychology.
In the twentieth century the progress in fields as neurology, audiology and
psychology provided decisive insights on how humans perceive sounds, focussing
on both sensation and perception and the relation between them. Such progress
was also possible thanks to the birth of computer science in the 1930s and
the following tremendous technological development. But the increase of the
calculus performance resulted also in an increase in theoretical research on
possible computational models simulating biological mechanisms, (auditory)
perception and sensation included. Insights in psychoacoustics started thus to
be included in theoretical computational models: the history of A-weighting is
likely the first tangible example. Fletcher and Munson (7)) introduced in the
early 1930s the psychoacoustic concept of loudness defined as —“the magnitude
of auditory sensations” and determined experimentally the first equal-loudness
contours (the so-called Fletcher-Munson curves), thus characterizing the non-
linear relationship in the frequency domain between sound pressure level and
loudness. Three years later, in 1936, these findings could already be introduced
by means of the A-weighting curve (the 40 phon Fletcher-Munson curve) in the
first standards for sound level meters (8). Sometimes biological mechanisms
inspire computational models which go further the primary scope of modelling
them. Artificial neural networks (ANNs), for example, have been conceived
since the very beginning, in the 1940s and 1950s, as computational counterparts
of biological neurons and still nowadays are fundamental in modelling human
brain. However, ANNs showed very soon their potential in solving a wide
variety of tasks of machine learning. Therefore, ANNs have been often used in
many sectors where their biological plausibility was not relevant. The transfer
of knowledge about human auditory perception into computational models will
be taken into account in Section
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1.2 Reductionism and the soundscape approach

Understanding the physiological and psychological mechanisms underlying the
human auditory perception is the final goal of psychoacoustics, already men-
tioned in the previous section. This branch of science uses typically a reductionist
approach for modelling the many aspects of human hearing. The equal-loudness
contours mentioned before, for example, used pure tones, energetic masking
was accurately studied by means of artificial sounds, such as sequences of tones
or broadband noises (9), or using speech (I0) and the experiments were always
performed in laboratory conditions.

The same reductionist approach is overall used in environmental acoustics
too. Traffic noise, for example, is typically assessed as the sum of the noise
produced by all vehicles, typically modelled as different one-dimensional noise
sources: engine, tires, exhaust and aerodynamic noise. Many parameters are
used, as type of vehicle, speed, type of road surface and driving behaviour.
Therefore, empirical equations have been developed within international project
studies like RoTraNoMo, Harmonoise and Nord2000. Reductionism is also
applied in studying sound propagation and noise control engineering, resulting
in international standards (ISO 9613-1 (II) and ISO 9613-2 (12))). Even classic
noise annoyance assessment and noise abatement policies tend to evaluate the
quality of a sonic environment based on overall A-weighted noise level, Lgey,
thus trying to reduce the intrinsic complexity of the studied issue. However, this
approach has received several critics (I3t [14) as many other factors contribute
to the quality of a sonic environment: spectral (15) and temporal structure (16])
are essential descriptors and many other indicators will be added likely in the
future. Researchers started thus to wonder whether such reductionist approach
will ever be sufficient: a paradigm shift from noise annoyance to sound quality
occurred (I7) and a more holistic and qualitative approach for assessing the
quality of the sonic environment started to be used (I8 [19)). Such approach,
called the soundscape approach or soundscaping (20) is however not new.

The word and concept of soundscape became popular at first in the music
world thanks to the composer and environmentalist R. Murray Schafer and his
books: The New Soundscape (21)) and The Tuning of the World (22), respectively
from 1969 and 1977. However, no exact definition of soundscape is given in such
books, probably supposing the analogy with landscape would be sufficiently
clear to the reader. The first definition seems to be the following one from the
Handbook for Acoustic Ecology (23):

An environment of sound (or sonic environment) with emphasis on
the way it is perceived and understood by the individual, or by a
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society.

It seemed the community of acousticians needed musicians such as Schafer to
make this shift of perspective. In the 60s, in fact, musicians started to reflect
about what is music. A very emblematic answer has been given by avant-garde
composer John Cage and was reported by Schafer (21)):

Music is sounds, sounds around us whether we’re in or out of concert
halls.

Such a definition can in some way be considered as the seed the soundscape
approach was born from. Musicians started going out music halls to listen to
the sounds produced by nature, man or machines: the soundwalk method was
thus born and became a common practice in the context of the Schafer’s World
Soundscape Project (22)), the first project focusing on soundscape. Thanks
to it, soundscape interest started to spread out of the musicians community
and drummed up the interest of acousticians, who added their expertise for
finding a link among physical sound features and the soundscape description.
Therefore, soundscaping combines the physical registration of relevant acoustical
parameters with the evaluation of perceptual effects via specific interviews and
questionnaires involving community members who live in the location under
study (24)). Soundscaping is often deployed by means of soundwalks in urban
outdoor spaces while conducting sound measurements and perceptual interviews,
or by means of even longer term strategies mainly based on mobile sound
measurements and extensive community involvement, in particular from public
workers such as local police officers (20]).

Soundscaping arose the consciousness of the scientific community on the fact
that not every urban sound is noise and that the strive to reduce noise annoyance
is not exactly equivalent to noise abatement. The soundscape researcher would
eventually attempt to preserve and eventually accentuate soundmarks, i.e.
sounds that are unique to an area, as defined by Schafer (22)). Soundscape is
therefore referred as an essential aspect of urban planning, at the same level of
importance as visual aesthetics. Nowadays, soundscape research is a very active
interdisciplinary research field involving acousticians, psychologists, musicians,
linguists, architects and urban planners, just to mention the main professional
groups.

1.3 Analysing the auditory scene

Humans have a great proficiency in disentangling mixtures of incoming sounds
into coherent perceptual representations of objects (called auditory streams),
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usually related to individual sound sources, based on a combination of auditory
and visual cues. Understanding how humans perform this task is crucial
especially within the soundscape approach. In a simplifying manner, this process
of auditory scene analysis is often regarded as a two-stage analysis-synthesis
process (25]). In the first stage (segmentation), the acoustic signal is decomposed
into a collection of time-frequency segments. In the second stage (grouping),
segments that are likely to have arisen from the same environmental source are
combined into auditory streams. Traditionally, it has been assumed that the
perceptual mechanisms behind this process are largely pre-attentive: only after
auditory streams are formed, they can become an object of attention (26} 27)).
Although this view is appealing because of its conceptual simplicity, recent
findings suggest that attention also plays a role in the formation of auditory
streams (28; 29)). Overall, it can be stated that the process of auditory scene
analysis draws on low-level principles for segmentation and grouping, but is
fine-tuned by selective attention (B0) which will be investigated in the next
section.

1.4 Auditory attention

Attention plays an important role in audition. Auditory attention in fact allows
us to focus our mental resources on specific aspects of the acoustic environment,
while ignoring all other aspects (31)), thus avoiding cognitive overload. As
formerly mentioned, auditory attention plays a role even in the auditory stream
formation and not only in auditory stream selection.

Central in most theories on attention — visual as well as auditory —is
the interplay of bottom-up (saliency-based, depending on the characteristics of
the stimulus) and top-down (voluntary, depending on the state of the listener)
mechanisms in a competitive selection process (30; 32). The bottom-up mecha-
nism selectively enhances responses to sounds that are conspicuous, for example
because they have rare or novel physical features, or are of instinctive biological
importance. This is accomplished in the sensory cortex by a novelty detection
system that continuously monitors the acoustic environment for changes in
frequency, intensity, duration or spatial location of stimuli (33; B34). In con-
trast, the top-down mechanism focuses processing resources on the auditory
information that is most relevant for the current goal-directed behaviour of
the listener. The selection of information for entry into working memory is
found to be a competitive and hierarchically structured process (32). Selective
attention is thus typically compared to a stagelight (35]), sequentially “illuminat-
ing” different elements of the auditory scene. To do this, an important process
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inhibition-of-return (36}; B7) (IOR) occurs. Originally investigated in the vision
domain (38)), IOR prevents attention from permanently focusing on a particular
element of the (auditory or visual) scene. In Posner’s first experiments it was
found out that measured reaction time for detecting visual objects in previously
cued locations was longer when compared to locations not previously cued (38]).
IOR can to a certain extent be inhibited by voluntary selective attention, which
may prohibit involuntary switching of attention to task-irrelevant distractor
sounds (39)).

1.5 Auditory learning

The importance of auditory attention per se would not be sufficient to correctly
perceive and identify sounds. Learning, specifically auditory learning, is crucial
and essential for surviving, but the mechanisms underlying it are still not
clearly understood. Desired or undesired familiar sounds are in fact more
easily detected (40) than unknown sounds. Sensitivity to particular acoustical
features of a sound are learned in early childhood, but new sounds can be
learned at all ages (4I). Once sounds become familiar, they are identified
more easily. It must be noted that learning effects are not limited to high-
level associative memory. Several neurophysiological studies have reported
on the capacity for holding memory traces (enduring neural records) in the
primary auditory cortex (see Weinberger (42]) for an extensive review). In
particular, the number of neurons of the representational area of a sound is
tuned by its importance (43) and the bigger the area, the stronger the memory
effects (44). Neurophysiological correlates of cognitive processes such as selective
attention (45} 46)), expectancy (47)), concept formation (48) and crossmodality
effects (49) have been found in the primary auditory cortex, suggesting that due
to neuronal plasticity, the primary auditory cortex is not merely an acoustic
analyser, but an adaptive auditory problem solver (42). Another important
property of the auditory cortex is tonotopy: neurons next to each other are
typically excited by similar stimuli. Tonotopic maps have been observed in the
auditory cortex of animal species such as cats (50) and monkeys (51} [62). The
human cortex also contains several topologically ordered regions (53} 54 [55),
similar to regions observed in the macaque monkey brain (55). In order to
develop a human-mimicking model for machine listening, continuous learning
and tonotopic mapping of the auditory cortex have to be taken into account.
As explained in the next chapter, such aspects will involve a key role in the
model.
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1.6 Machine listening: accuracy or complexity?
The human-like listening approach

After the publication in 1990 of the groundbreaking book of Albert S. Bregman
Auditory Scene Analysis (25]), many researchers started wondering whether it
would be possible to transfer such knowledge about human auditory perception
into computational models. In a very short time the multidisciplinary branch
called computational auditory scene analysis, CASA, was born (see Wang and
Brown (56]) for an overview of computational auditory scene analysis models).

However, most of the researchers in this new research field started to focus
very soon on speech and how extracting as clean as possible foreground sound
signal from background noise. Reproducing the cocktail-party effect E| by
computational means became thus the key research topic.

The model presented in this work aims to mimic human evaluation of the
sonic environment not trying to extract sounds that are as clean as technically
possible, but trying to analyse the scene as accurately as a human listener would.
This model is therefore flexible: no restrictions about neither the type of heard
sounds nor sound processing applications are considered. Counterexamples can
be voice and speech recognition techniques: they are restricted to a certain
time-frequency domain and aim to solve specific issues as word target recognition
and voice recognition. The presented model, on the contrary, aims to cover all
aspects of machine listening without losing the ultimate goal of this research,
i.e. human-like machine listening.

Most of the CASA models are based on very detailed and sophisticated
sound analysis techniques such as Gammatone filters and Mel-frequency cepstral
coefficients (MFCCs). Gammatone filtering is in fact the most computationally
feasible solution for simulating the cochlear response, while MFCCs are widely
used in speech recognition techniques. The Gammatone filtering technique has,
however, the disadvantage that off-the-shelf sound measurement equipment
cannot be used as a front-end, which decreases its applicability in environmental
acoustic sensor networks. The alternative to simply record and transmit the
sound at all microphones continuously is also infeasible due to data storage and
transmission bandwidth limitations. The MFCCs have been very successful for
single-source, non-reverberant speech recognition (58). However, they suffer
from high sensitivity to noise and reverberation, much like other techniques such
as the continuous wavelet transform (CWT). Good performances for specific

1Phenomenon of focusing auditory attention on a specific auditory stream thus filtering out
all other auditory stimuli. The phenomenon was first defined as the cocktail-party problem
by Colin Cherry (57) in 1953: “how do we recognize what one person is saying when others
are speaking at the same time?” (57)).
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environmental sound recognition tasks could be achieved provided that the
recording contains single and clean sources (59)), clearly an unrealistic assumption
for actual environmental sounds (60). Their use in long-term environmental
monitoring networks seems therefore disadvantageous.

Thus, in order to find a balance between accuracy, biological plausibility
and computational feasibility, the presented model is based on 1/3-octave band
spectrum analysis at 0.125s. The choice of such time resolution can be justified
by noting that a wide range of outdoor environmental sounds have a relatively
slowly varying temporal envelope (61% [62} [63]) and that attention mechanisms
work on the same time scale as suggested by measured event-related potentials
(ERP) (64).
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From human auditory perception to machine listening




CHAPTER 2

Theoretical model

The empirical knowledge on human auditory processing (auditory scene
analysis, masking, detection of sounds, learning, and auditory selec-
tive attention) summarized in the previous chapter, is worked out into a
human-mimicking computational model of auditory processing as described
in the following sections. The input of the model is the sound signal
recorded by a microphone (only monaural inputs are considered). The
model output depends on the application the model is used for. Computa-
tional efficiency is advantageous for long-term deployment, high feasibility
and possible extension to a multi-node sensor network: simplified com-
putational auditory processing models are thus preferred. The proposed
computation model is composed of three stages: (a) peripheral auditory
processing, (b) mapping of acoustical features based on co-occurrence and
(c) modelling auditory attention and grouping. The following sections
will give an overview of each of these stages.

2.1 Peripheral Auditory Processing

The sound signal measured by the microphone is collected by the off-the-
shelf sound measurement equipment and the 1/3-octave band spectrum from
20 Hz to 20kHz is calculated with a temporal resolution of 1/ Sﬂ Such sound
representation is not as detailed as the one obtained by using a gammatone
filterbank, but has the important advantage to be computationally light and
supported by all off-the-shelf sound measurement equipment, which can be used
as a front-end, thus increasing the applicability of the model. Subsequently, a
simplified cochleagram is calculated using the Zwicker loudness model (9} 65)),
which accounts for energetic masking in analogy to the initial processing by

In Appendix [A|a temporal resolution of 1s is used.
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the cochlea and basilar membrane. The complete audible frequency range is
considered (0 to 24 Bark) with a spectral resolution of 0.5 Bark, resulting in 48
spectral values at each time step.

The auditory system segregates sounds and triggers the bottom-up auditory
attention based on individual auditory features such as spectral or temporal
irregularities (25} 60 [67; [68; 69). These sound features have been used for
constructing computational auditory saliency models (34t [70} [71]). Based on
them, measures for intensity, spectral and temporal modulation, also called
contrast, are calculated using a centre-surround mechanism (72)), thus taking
into account the receptive fields in the primary auditory cortex (67; [72} [73} [74]).
This is done by convolving at each time step the cochleagram with several 2D
gaussian and difference-of-gaussian filters encoding respectively intensity and
spectro-temporal gradients at 16 different scales: 4 for intensity and 6 for both
spectral and temporal contrast, similarly to (34) ﬂ A cross section of these
filters is shown in Figure 2.1} Two-dimensional difference-of-gaussian filters are
a very good approximation of the more computationally demanding laplacian
of gaussians, the multi-dimensional generalization of the mexican hat wavelets.
By using a set of these functions it is possible to detect changes in time and
frequency at various scales, thus measuring the spectral and temporal contrast
of the input sound.

The resulting vector 7(t), called sound feature vector or simply feature vector,
is thus composed of 16 x 48 = 768 values. It encodes the informative content
about the sonic environment at a given time step and it will be henceforth used
for the following steps of the models.

2.2 Sound feature grouping based on co-occurrence and
topological mapping

The feature vector provides the informative content about the sonic environment
at a given time step. However, it would be useless if such information would
not be coupled with a model of the continuous learning effects typical of
humans. It has been shown that sensitivity to particular acoustical features
of a sound are learned early childhood and that new sounds can be learned
at all ages (41]). Moreover, the primary auditory cortex can hold memory
traces (see (42)) for a review) and the number of neurons of the representational
area of a sound is tuned by its importance (43) and the size of such area is

2In (34) 4 instead of 6 filters are used for modelling both spectral and temporal modulation.
However, the cochleagram is calculated with very higher temporal resolution.



2.2 Sound feature grouping based on co-occurrence and topological
mapping 15

(a)

0.0 — / ' AN e

0
frequency [Bark]

10p ® :

10p © ]

8 % 4
time [s]

Figure 2.1: Cross section of the receptive filters that are used to calculate
(a) intensity, (b) spectral contrast and (c) temporal contrast. For the latter,
causality is preserved by only convolving with the past.

proportional to the strength of the memory effects (44)). In order to model
these properties of human learning, the use of a neural network-based approach
by using a self-organizing map (SOM), also called Kohonen map (75), coupled
with the continuous selective learning discussed in Section [2.3]is proposed in
this work. A reason to use a SOM neural architecture in this model comes
to the fact that several topographic maps have been observed in visual and
auditory cortex (505 GBI} [76 [77) and the SOM has been originally conceived
as an abstract mathematical model of topographic mapping. However, the
SOM original incremental algorithm described in this section trains the SOM
purely on the rate of occurrence of heard sounds although human perception
and retrospective assessment of soundscapes does not depend exclusively on it.
For this reason a new learning technique called continuous selective learning is
proposed in this work and it will be discussed in Section [2:3] By means of an
extensive training on sound feature vectors at the microphone location, the SOM
would eventually learn which features co-occur, thus allowing to categorize the
typical sounds composing the specific sonic environment. The training of the
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SOM should usually last for a long period, that can vary from few days to some
weeks, depending on the variety of the sonic environment at the given location.
Moreover, the SOM, typically described as an unsupervised learning-based
method for clustering and high-dimensional data visualization (78)), seems a
very suitable model to manage the high-dimensionality of the sound feature
vectors. The presented model is intrinsically context dependent: typical sounds
at a given location can fit or not fit in the sonic environment of other locations;
such aspect has analogies in human cognitive processes studied by means of
detection task experiments: familiarity with the sound to be detected makes
the detection easier (79). In the rest of this section, a formal description of
the SOM architecture and the original incremental algorithm used for the first
training of the SOM are presented.

The SOM used in this model is a 2D network of M equally-spaced units in a
regular hexagonal M, by M, lattice and will be denoted as m; = (m,, m,) € R2,
Each unit 7 has an associated reference vector m,; in the high-dimensional sound
feature space. The initial position of the reference vectors is calculated by means
of principal component analysis on an input data subset, resulting in vectors
lying in the hyperspace spanned by the eigenvectors corresponding to the two
principal components (78). After initialization, their coordinates are modified
during the first training phase which is based on the Original Incremental SOM
Algorithm (75) wherein the following three steps are repeated at each time step.
First, the sound feature vector 7(t) calculated at time step ¢ is selected. Then
the best-matching unit (BMU) i) (¢) is calculated. The BMU is the unit
corresponding to the closest reference vector:

¢(t) = argmin [[7(t) —mi; (¢)]] - (2.1)

Third, the reference vector corresponding to the BMU and, to a lesser extent,
those of the neighbouring units in the 2D lattice are moved closer to the input
high-dimensional data point:

g (t+ 1) =M () + hey,i (F(t) — i (1)) (2.2)

where h is the neighbourhood function. In our model we opted for a Gaussian
function of the distance between c¢ (t), i.e. the BMU at time step ¢, and the unit

1:
- - 2
m; —m,
he(tys = o (f) exp (—” 7). ” ) : (2:3)

where the learning rate 0 < a (t) < 1 and the width of the 2D neighbourhood
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o(t) are two time-step dependent parameters and both are strictly monotonically
decreasing functions:

C N
a(t):ozoc+t, C’:\/—E, (2.4)
oft) = 1+ (o0~ 1) (), (25)

where ag = «t = 0) is the initial learning rate and N is the number of samples
used for the training. Note that h.,; = a (t) for the BMU. The SOM adaptation
governed by the neighbourhood function is thus, due to Eq. and ,
strictly decreasing in time and, due to the Gaussian function in Eq. , is
also decreasing for units farther from the BMU in the lattice.

After this training, the reference vectors of the SOM units can be seen as a
non-linear discrete 2D mapping of the probability density function of the sound
feature vectors 7(t) used for training. In particular, specific regions of the sound
feature space contain more reference vectors than other only sparsely represented
regions, thus preserving the high-dimensional relationships underlying the input
feature vectors (75)). In other words, feeding a new sound feature vector 7(t)
to the trained SOM, the smaller the distance to the BMU HF(t) — 1My ||, the
more often similar sound feature vectors occurred during the training phase.

2.3 SOM extension: Selective Continuous Learning

Mapping the probability density function of the incoming sounds is not sufficient:
human perception and retrospective assessment of soundscapes do not depend
exclusively on the rate of occurrence of heard sounds. For instance, salient but
less often occurring sound events would be better remembered than nonsalient
ones that might occur more often but stay out of attention focus. The SOM
trained with the Original Incremental SOM Algorithm is thus used as a starting
point for a second much longer training phase which will be referred as continuous
selective learning (CSL). At each time step ¢ the sound feature vector 7(¢) is
calculated and the BMU i, () is found as before. However, not all input
sound feature vectors 7(¢) are used as inputs during the CSL: a learning phase is
triggered only if the distance to the BMU is bigger than an activation threshold
Tup:

17(8) = ey (1)) > Tup- (2.6)

All the input vectors calculated at the following time steps are selected as inputs
for training until the distance to the BMU becomes lower than a deactivation
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threshold Tgoun:
HF(t) - mc(t) (t)H < Tdown . (27)

The Egs. - are still valid. Furthermore, sound feature vectors
occurring a few seconds before the triggered learning period are included
for smoothing and causality issues. Typically two seconds are considered,
corresponding to 16 feature vectors.

The advantages of the CSL have been discussed for the first time in Oldoni
et al. (80). In particular, it has been shown that a SOM trained using sound
feature vectors from a quiet site can match traffic sound in terms of distance
to the BMU after a training with the CSL E| using sound feature vectors from
a street as input. The distance to the BMU of this SOM is comparable to
the distance to the BMU of the SOM trained exclusively on traffic sound (80).
Moreover, a measure of overall auditory saliency EL 0 < s(t) <1, is used for
calculating the learning rate parameter a:

@ ()= a0 5 () 05+ () 5 c= 2=, (2.8)
where g = a(t = 0) is the initial learning rate and N is the total number of
samples in analogy with Equations and ﬂ The measured saliency is
used as a learning strength modulator: the learning of sound feature vectors
whose related saliency values are higher than 0.5 is enhanced, while sound
feature vectors with lower saliency are somewhat suppressed. The goal of using
saliency in CSL is to increase the effectiveness in reducing the SOM units whose
reference vectors are related to often occurring but not relevant background
noise or quiet moments. The thresholds T, and T,y are empirically chosen
in such a way that less than 10% of all sound feature vectors are used as input
for CSL.

Another important aspect besides computation is the way to visualize the
SOM 2D grid of units after training. The high-dimensionality of the sound fea-
ture space makes the visualization via projection on a particular hyperspace not
sufficiently informative. The ultimate purpose of SOM visualization techniques
is to easily identify groups of neighbouring units with similar high-dimensional
reference vectors by locally investigating the morphology of the map. For this
reason a typical SOM visualization technique uses the U-matrix (82)), a matrix

3in Oldoni et al. (80) the CSL is referred to as dynamic learning

4A detailed description of the algorithm for calculating the auditory saliency can be found
in De Coensel and Botteldooren (81))

5The only difference is that during the SOM incremental algorithm explained in Section
all N sound feature vectors are used for training, while during the CSL N is much larger than
the number of vectors effectively used as inputs.
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Figure 2.2: U-matrix of the SOM: (left) after initialization via principal compo-
nent analysis, (centre) after training based on the original SOM incremental
algorithm, (right) after training based on continuous selective learning.

containing both the distances between nearest neighbouring units and their
average. The U-matrix has dimensions [2M, —1,2M, — 1] and the distance
is colour-coded, thus making it possible to distinguish regions of SOM units
with similar reference vectors from regions showing higher variability. In Fig-
ure [2.2] the effects of the training based on the SOM incremental algorithm and
subsequent CSL are shown.

The reference vectors referring to the trained SOM units can be seen as
representative abstract sound prototypes encoded by their sound feature vectors.
Such prototypes can be heard by recording sound samples which are the most
similar to them in the sound feature space. Such set of sounds can be seen as a
sound library describing the sonic environment at the measurement location.
Further details on such library and an application based on it will be discussed
in Section 3.2

2.4 Auditory object formation, auditory attention and en-
vironmental sound recognition techniques

In this section several submodels based on the trained SOM are discussed. First,
the attempt of modelling auditory object formation over time via an oscillating
neural network will be presented. Some ideas from this model have been used
also to model the role of selective auditory attention. Finally, in the last two
sections a Support Vector Machine and a fuzzy excitation model approach are
coupled to SOM for identifying sounds.
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2.4.1 Grouping and auditory object formation by means of an oscilla-
tory neural network

In the 1980s insights into the oscillatory correlation properties of neurons in
the sensory cortex resulted in an increase of theoretical research on possible
computational models of the corresponding biological mechanisms. The first
model constructed by von der Malsburg and Schneider was later extended by
Wang in his shifting synchronization theory by means of a Locally Excitatory
Globally Inhibitory Oscillator Network (LEGION) (83). In general, each in-
put pattern is represented by the synchronization of a group of LEGION’s
oscillators. Contrarily, desynchronization among different groups of oscillators
representing different input patterns occurs. Thanks to its ability of segmenting
multiple input patterns, LEGION was applied in 2D image scene segmenta-
tion (84 [85: [86). Similarly, LEGION was used to solve CASA issues as auditory
stream segregation (87 [88]), speech detection (89) and has been used in a
computational framework modelling auditory selective attention (90). In all
these LEGION based computational framework the auditory signal is in some
way transformed in a 2D representation which represents the input for LEGION.
In such representation, where time is explicitly or implicitly included, the issue
of auditory segregation is thus very similar to image scene segmentation.

In this work, the similarity of a sound feature vector and a specific SOM
unit is, from a neural oscillatory point of view, a measure of the external
stimulation that a LEGION oscillator receives. As stated in Appendix [A] a
measure of similarity can be defined by means of a decreasing function of the
distance to the BMU. It should be underlined that the SOM unit and the
LEGION oscillator can be conceptually considered the same formal neural
unit expressing two different functionalities of ideal neurons: the long term
memory formation is modelled by the SOM extensive training, while the dynamic
oscillatory correlation of sensory cortex neurons excited by an auditory stimulus
is modelled by LEGION. Moreover, in this SOM-LEGION coupled model, the
so-called permanent weights among near oscillators are determined during the
SOM training, being related to the similarity of two neighbouring SOM units:
near SOM units which are very distant in the multi-dimensional sound feature
space are therefore loosely connected. In case more than one group of oscillators
is excited by the input feature vector, desynchronization among them naturally
arises as shown in Figure 23] For more details about LEGION and its coupling
with SOM, see Appendix [A]

However, this synchronization within groups and desynchronization among
groups of oscillators occurs after a transient phase. Eventually, it occurs after
each change of the external stimulation, letting the oscillators to recombine
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Figure 2.3: Left (2 columns): similarity (inverse of the distance) of two input
samples at t = 3s (top) and t = 4s (bottom), before (1st column) and after
(2nd column) binarization. Right (4 columns): some snapshots of LEGION
taken at different times.

their dynamic connection weights to adapt themselves to the new external input.
However, such an abrupt reset of the oscillation periodicity makes impossible
any attempt to follow the streams in a dynamic auditory scene, thus limiting the
useability of this approach. Such problem has not yet been solved and still limits
the straightforward use of LEGION in long running applications. It is worth
to mention that the LEGION applications to CASA cited before don’t tackle
this issue, analysing only few seconds long sound excerpts. Such applications
involve also a very detailed time-frequency analysis which is not feasible in the
framework of this work as already mentioned in Section[T.6] Actually, calculating
the trajectories of all LEGION’s oscillators is very computationally demanding
as well, especially in this work where a high number of oscillators are used. In
order to speed up the computational process the singular limit method (91)) is
extensively used as mentioned in Appendix [A] However, such approximation
doesn’t reduce the disruptive transient on the oscillation periodicity after each
change of the external stimulation.
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2.4.2 Modelling Auditory Attention

To model auditory attention an excitatory-inhibitory artificial neural network
(ANN), simulating the auditory cortex, is introduced. Such a network is to a
certain degree similar to LEGION due to the fact that it uses the same concept
of local excitation and global inhibition in order to reach a dynamic winner-
take-all situation. The formal duality between the SOM unit and the LEGION
oscillator is also maintained: the long term memory formation is expressed
by the extensive SOM training and the excitation-competition mechanisms
underlying auditory attention are modelled by ANN.

Each neuron 7 is excited by input sounds with feature vectors that are
similar to the reference feature vector of the corresponding SOM unit. In
order to simulate the importance played by conspicuous and salient sounds in
bottom-up attention mechanisms, the saliency s(t) of the incoming sound is
used as an excitation modulator factor in a similar way it was used in Section [2.3
for modulating the auditory learning in the SOM. The IOR, TOR;(t), is also
introduced as in (8I) and it is implemented by increasing the inhibition of the
activated neurons. In this way a scan of the sonic environment is promoted,
shifting from a group of neurons to another. A leaky integrator is used to
implement both TOR;(t) and excitation E;(t) for all neurons.

The top-down attention can be also included in such model as an IOR
modulator by changing the time constants for neurons related to a certain group
of SOM units, thus delaying or even halting the shift of attention.

As in LEGION, local excitatory and global inhibition terms are added in the
model to achieve the same goal of clustering, due to the local excitation EL;(t),
and competitive selection, due to the global inhibitor IG(t). As for the weights
among LEGION oscillators, the local excitatory term of neuron 7 is based on the
excitation of the neighbouring neurons and is weighed based on the similarity
among the reference vectors of the corresponding SOM units as explained in
Section In this way neighbouring neurons related to similar sounds (in the
sound feature space) are strongly connected, while neurons encoding dissimilar
sounds are weakly connected. As in LEGION, a global inhibition term I'G(t) is
added to all neurons when the activation term is higher than a certain threshold,
thus enhancing competitive selection among groups of excited neurons. The
activation of a neuron, A;(t), can be then written as the sum of all these terms:

A;(t) = max{0, B, (t) + ELi(t) + IOR:(t) + IG(1)}, (2.9)

where the maximum guarantees non negative activation values.
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2.4.3 Classifying sounds via Support Vector Machines

One of the goals of machine listening is creating automated systems able to
classify sound events occurring in a certain environment. In the context of
outdoor environments, an approach based on a Support Vector Machine (SVM)
coupled with SOM is considered here.

The sound library in Section |2.3| representing the sound prototypes encoded
by SOM units can be listened to one by one and manually labeled by an expert
listener. However, it requires a lot of time and thus this approach is unfeasible
for being used at a large scale. A supervised learning method based on a SVM
can be used to automatically label the SOM units. The SVM is first trained
using reference vectors of SOM units inheriting the labels given by an expert
listener to the corresponding sound samples forming the sound library; after the
training the SVM can be used for labelling sounds of other SOMs from other
time periods or other locations. The more the sonic environments are similar,
the more such approach is effective.

The SVM can also be used for a basic environmental sound recognition tool:
once the SOM units are coupled with labels, the incoming sound can be at each
time step identified by using the label of the corresponding BMU, thus forming
a model for continuous environmental sound recognition. A drawback of the
SVM method is that only generic labels or categories of sounds can be used in
order to maintain the training set related to each label statistically significant.
Even so, a non-negligible number of units cannot be covered by labels due to
the high specificity of the represented sounds. A way to solve this would be to
include them in even broader sound categories at the expense of loosing further
accuracy. In Section [3:3] an application of the use of a SVM is shown and its
performance in labelling a sound library is discussed.

2.4.4 ldentifying sounds via a fuzzy excitation model

Identifying specific target sounds is a common subject in CASA models and
in many environmental sound monitoring applications. Typically, they have
been deployed in order to identify a specific target sound and cannot be easily
adapted for identifying other type of sounds. Although the sound feature
extraction and the use of SOM have not been originally conceived for this goal,
a model for identifying environmental target sounds is here proposed. It has the
advantage of being very general and usable for every sort of sounds present in
the sonic environment under study. It combines SOM, supervised learning and
a similarity measure, S(¢), with 0 < S(¢) < 1, as in De Coensel et al. (92). After
training a SOM at a given location as in Sections [2.2] and 2:3] a set of target
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Figure 2.4: Some snapshots of SOM units’ excitation taken at different times
during a target sound event, i.e. the passage of a train.

sounds are manually selected from the sonic environment, the corresponding
sound feature vectors are extracted and the excitation of the SOM units is
calculated via a Gaussian transformation similarly as in Sections and

di(t,)—d;(t)

Ei(t,j)=e O, (2.10)

where i is the index over the set of target sounds, j the index over the SOM
units, d(t, j) is the distance of the sound feature vector at time ¢ to the j— SOM
unit, d(t) is the distance to the BMU at time ¢ and k is a positive constant
defining the width of the Gaussian function. In particular, E;(¢,7) < 1 and
E;(t,7) = 1 only for the BMU. The idea is to create a prototype of the excitation
of the target sound using the set of known target sound samples and measuring
the similarity S(t) between it and the excitation due to the incoming sound: the
higher S(t), the more similar the incoming sound to the prototype. However, the
duration of the target sound samples is typically variable: the easiest solution
would be averaging over time and over samples, but it cannot be applied in
case of not steady target sounds where excitation of different regions of SOM at
different moments for each target sound occurs. An example is given in Figure
[2.4] where the excitation of the SOM units is shown at different time steps of a
target sound, in this case the passage of a train.

In this example, changing the type of train, its speed and the number of
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railcars could modify the excitation pattern among the SOM units. In this
work, this issue is solved by summing for each target sound i the excitation of
the SOM units over the target sound duration t;:

Ei(j) = Y Ei(t.j), (2.11)

and then clustering the resulting excitation maps E;(7). The number of clusters
should not be chosen a priori, depending on the variability among the target
sounds. In the application shown in [3.4] a k—means clustering is performed
and the optimal number of clusters, N, is found by using the Davies-Bouldin
index (93). In this way not one, but multiple, although typically a very limited
number, excitation prototypical maps Ej, (j) are created. Each cluster inherits
a prototypical sound event duration, 5, by averaging the durations of all the
sound samples belonging to it. By means of time windows as long as the
prototypical sound event durations, as many excitation maps of the incoming
sound as the number of prototypes are calculated:

t+tn

(Y E(t,§), h=1,..,N (2.12)

Finally, similarity measures Sy (t) between the incoming sound and the proto-
typical excitation maps Ej, (7) are thus computed and coupled to corresponding
dynamic thresholds T} (¢), 0 < T, (¢) < 1:

1, if Sy (t) > Tp(t — 1)
Th(t) =S e~Tuo) =2 if ¢ ¢, < Land S,(t) < Tp(t—1)  (2.13)
Thm if t > thy + L and Sh(t) < Th(t — 1)

where the threshold 0 < T}, < 1 is a fixed real number, ¢, is the most recent
time that T,,(¢) = 1 and L is a broad time window centred on a sound target
event. An example of the functioning of the dynamic threshold is shown in
Figure A target sound is considered being detected if T, (t) = 1 at least for
one of the N dynamic thresholds during a broad time window centred on the
target sound event. Vice versa, it would be considered not detected if T, (¢) # 1,
for all thresholds during the same broad window. A study of the performance
of this model follows in Section where a case study is discussed. As already
mentioned, the use of SOM, as presented in Sections [2.2} 23] has not been
conceived for detecting specific target sounds. In fact, the proposed method
would fail in detecting out of context sounds or very rare sounds, due to the fact
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Figure 2.5: Example of the functioning of the dynamic threshold. Above:
similarity S(¢) and dynamic threshold T'(¢). Below: sound pressure level. The
two peaks are related to two target sound events.
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that they would never or almost never occur during the CSL-based training.
These outliers could be better detected considering the fact that the distance
to the BMU would be very high. More details on such outlier detection method
can be found in Section [3.5
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CHAPTER 3

Applications

In this chapter, several applications of the theoretical model are presented.

First an application in the context of urban soundscape analysis is shown:
a collection of typical sounds at a given location, called acoustic summary,
can be automatically extracted. It is shown that this is a comprehensive
set of sounds characterizing the specific location as judged by people living
in the surroundings. An example of soundscape design is also provided
assessing the perceptual effect of introducing additional sounds. The
evaluation of the SVM-based method to automatically label sound samples
is presented next. This method is very useful, for example, to label
the sound excerpts composing an acoustic summary. The third section
presents an application of the fuzzy excitation model for identifying specific
target sounds. Finally, it is shown how the theoretical model can be used
for anomaly detection in urban noise sensors as part of a multi-criteria
approach. In addition, the theory underlying the aggregation of multiple
indicators is discussed.

3.1 Introduction

The theory presented in the previous chapter will be deployed here in several
applications. Although machine listening cannot completely reproduce or mimic
human listening, several aspects of it will be investigated here. In particular,
the following topics will be considered:

e selecting typical sounds (acoustic summary tool, Section [3.2)),

e attaching meaning to them (automatic sound labeling via SVM, Sec-

tion ,
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Figure 3.1: Aspects of machine listening considered in this work.

e recognizing particular known sounds (specific sound event recognition,

Section

e detecting atypical sounds (anomaly and failure detection, Section [3.5]).

3.2 Soundscape mapping and design

Liveability of the urban environment has always been a primary issue for
architects, landscape and urban planners. In particular, there is an increasing
awareness of the fact that the sonic environment forms an essential component of
the urban environment that requires as careful planning as the landscape (94} [95)).
Therefore, the current challenge for acousticians is to develop specific tools
in order to efficiently characterize and represent the soundscape of a specific
location and, based on that, design possible future soundscapes in order to
evaluate the potential of planned urban interventions.

3.2.1 Soundscape mapping: the acoustic summary tool

Once the learning presented in Section has ended, the reference vectors
associated to the trained SOM units can be seen as representative abstract sound
prototypes encoded by their sound feature vectors. Once a SOM is trained, it
can be used for constructing a library of sounds, whereby sound samples that
are most similar in the sound feature space to the sound prototypes within
the SOM are recorded. The first step in constructing the acoustic summary is
calculating feature vectors for the sound observed at each time step as explained
in Section [2.I] The BMU is then selected, and the distance between its reference
vector and the current sound feature vector is calculated. Based on this distance,
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sound recording is triggered if the selected SOM unit has not been the BMU
before (meaning that the encountered sound has not occurred before during the
sound sample retrieval phase), or if the distance to the BMU is smaller than any
earlier distance for this BMU (meaning that a better matching sound sample
is encountered). These steps have to be taken with low latency due to the
limited audio recording buffer of typical measurement stations. Sound samples
are recorded from 3 seconds before to 2 seconds after the recording trigger. It
turns out that for typical urban soundscapes, the bulk of the SOM units is
represented by an audio sample after a few days of sound sample retrieval. This
large set of sounds can be seen as a sound library describing the soundscape at
the measurement location.

Due to the high number of sounds, such sound library could be way too big
and unpractical for easily exploring the given soundscape by listening. Therefore,
a selection is needed: three ranking criteria are presented that can be used to
select a subset of the most representative sounds for the given soundscape; this
subset is called the acoustic summary. The acoustic summaries used in the
experiment described in Appendix [C|are composed of 32 sounds.

The first proposed ranking criterion is based on saliency: the higher the
saliency, the more likely the sound sample will be representative and the higher
its ranking. As explained in Section [2.3] a measured overall saliency value
can be calculated at each time step from the sound feature vector. The SOM
reference vectors lie in the sound feature space, therefore saliency values can
be calculated for each of them, resulting in a saliency overlay on the SOM as
shown in Figure[3.2]

It could happen that only similar sounds encoded by very close SOM units
would be selected if a SOM region is the most salient one. In order to avoid this,
a constraint on the distance among the 2D SOM units could be introduced. For
example, in the construction of the acoustic summaries presented in Appendix [C]
no contiguous SOM units could be selected.

A second criterion is based on how often each of the SOM units was selected
as the BMU during a given time interval, typically one day or more, resulting in
a frequency of occurrence overlay on the SOM as shown in Figure [3.2] However,
the frequency of occurrence of sounds is not likely to be a sufficient criterion to
represent the sounds that will be noticed and remembered, as already mentioned
in Section [2:3] For this reason, a third method is proposed which combines
saliency and frequency of occurrence of each SOM unit.

Also for these two other selection criteria the same constraint on the 2D
distance among the SOM units can be used. In Appendix [C] no contiguous
SOM units could be selected.
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(a) (b)
Figure 3.2: Map of (left) saliency and (right) frequency of occurrence of the
reference vectors linked to the units of a SOM trained at a location in Ghent,
Belgium. The occurrence map is calculated based on one full working day,

691200 samples, and shows the relative logarithmic occurrence as BMU of each
SOM unit.

A listening test involving local experts and described in Appendix [C] has
been performed to evaluate the ability of the model to produce acoustic sum-
maries representative of the soundscape at a number of urban locations. In
a first experiment, local experts could almost always identify their own living
environment from a set of 3 locations after listening to the acoustic summaries
constructed by means of all the three selection criteria. However, as resulted
from a second experiment, the acoustic summary criterion combining saliency
and frequency of occurrence of the sound events generally produces the most
accurate acoustic summary as shown in Figure [3.3] where the answers of all
participants for all selection criteria are given. Three acoustic summaries, all
coming from the location where the participant lives, but either formed by the
saliency, the frequency of occurrence, or the mixed criterion were presented.
The participants were asked to rank the presented fragments based on perceived
accuracy in representing the surroundings of the participant’s own home, from 1
for the most appropriate one up to 3 for the least appropriate one. The saliency-
based criterion produces good acoustic summaries as well but risks to outweigh
highly informative and salient sounds especially in urban residential areas. In
addition, participants judged the acoustic summaries based on frequency of
occurrence alone to be the least representative due to the prevalence of quiet
sound fragments, which are much less informative of the given soundscape even
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Figure 3.3: Ranking given by all participants to three acoustic summaries
related to their own surroundings. The three acoustic summaries were selected
by means of three different criteria: saliency (black), frequency of occurrence
(grey) and their combined measure (white).

though they occur very often in residential areas. In the third experiment,
each participant was asked to construct his/her own collection of sounds that
represented the direct surroundings of its home, by selecting sounds from a set
of 64 sounds. Half of the sounds the participant could choose from came from
his home location, the other half was from two other randomly chosen locations
(more details about the choice of the locations is given in Appendix . All
participants except one score better than a random guess. Moreover, the link
from the results of the first and the third experiment demonstrates that the
representativeness of an acoustic summary is a direct consequence of the quality
of each sound composing it. Nevertheless, the number of false negative and
false positive cannot be in general neglected: the sound samples composing an
acoustic summary can, most of the time, be associated to more than one loca-
tion, if the sound samples are considered separately from the others. Therefore,
results of this experiment confirm the validity of using an acoustic summary
for representing or evoking a soundscape. Finally, the test demonstrated that
typically only a few sounds are needed to represent the soundscape of an urban
area, confirming the choice of 32 sounds for each location as a sufficient number
of sounds. A more detailed discussion of the experiments’ results can be found

in Appendix [C]
3.2.2 Designing new soundscapes

The assessment of the soundscape at a given location as described in Section [3.2.7]
is the first step of any soundscape designing technique. In this section, the
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next step is considered, i.e. designing new soundscape scenarios by assessing
the perceptual effects of introducing additional sounds. The introduction of
green areas in the urban environment or changing the end use of a street
(e.g. converting a street into a pedestrian area) are typical examples of inter-
ventions that would eventually lead to a soundscape alteration and the task of
the urban (soundscape) planner is to evaluate beforehand the benefits of such
interventions in function of cost-effectiveness analysis. The soundscape design
case study presented here is based on the formation of a sound library of the
modified soundscape and on the use of the auditory attention model explained
in Section

A fixed sound measurement station was installed in the city of Ghent, next
to an urban road, carrying about 3000 vehicles/day during a typical work day.
The sonic environment at the chosen location mainly consists of a mixture of
road traffic noise due to private and public transport, and noise from pedestrians
due to the proximity of several shops and one educational institution. A SOM
was trained during a period of 3 weeks using the CSL as explained in Section
2.0l

The aim of the case study is to assess the perceptual effects of introducing
a green urban area, thus attracting songbirds at the microphone location, a
measure that is often proposed to increase the pleasantness of a soundscape (96]).
In case no green area can be inserted, the use of audio islands by means of
(camouflaged) loudspeakers can be planned (97; [98)). For this, a 1-h sound
recording was performed during a work day not included in the period used
for training. The Laeqduring this 1-h period was 68.2dB(A). Subsequently,
a series of 30 artificial one-hour sonic environments were created by mixing
the original recording with an increasing number of bird sounds at random
instances in time. For this, a series of bird vocalisations without background
noise, with a duration of up to a few seconds, were used, for which the peak
level was adjusted to match the peak level of the few bird sounds present in the
original recording thus creating a realistic level for the individual chirps. The
1-h L zcqof the added bird sound ranged from 46.3 dB(A), representing very few
sporadic twitters, to 75.8 dB(A), representing a quasi-continuous bird chorus,
resulting in a signal-to-noise ratio (SNR) from -21.9dB to 7.6 dB.

The 30 artificial sound mixtures were used in random order for a second
CSL phase. This phase is particularly important to let the SOM get acquainted
with the new bird sounds mixed with the actual sonic environment. A sound
library was then created and the SOM units whose sound samples contained
bird vocalizations were marked by an expert listener. They are mainly grouped
in two separate regions as shown in Figure 3.4} the first region could be
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Figure 3.4: The two regions of the SOM related to individual bird chirps (above
left) and bird chorus (below right).

associated to individual bird twitters while the second region is devoted to bird
chorus. The presence of multiple SOM regions for bird sounds is due to the fact
that individual chirping sounds and bird choruses are automatically located in
different regions in the multidimensional sound feature space and are therefore
represented by different groups of SOM reference vectors.

SOM units belonging to these two regions are more frequently the BMU as the
SNR of bird sound increases as shown in Figure[3.5] In particular, the frequency
of occurrence of the SOM units of the first region increases monotonically until
a peak is reached at a SNR equal to -2dB and then decreases to zero: as SNR
increases the bird twitters are more and more frequent so that bird chorus
fragments start to form. Therefore, the frequency of occurrence of SOM units
belonging to the second region increases significantly and becomes dominant at
a SNR equal to 0dB. Taking into account the auditory attention mechanisms
explained in Section and considering the same two regions, the percentage
of time that human attention is focused on bird sound can be estimated and
it is shown in Figure 3.6} In particular, it can be seen that for lower SNR
such percentage is slightly higher than the frequency of occurrence shown in
Figure due to the high saliency of bird sounds in comparison with the
background. In contrast, bird sounds are continuously present for high SNR
and IOR will cause attention to shift temporarily away from it. As a result
the fraction of the time that the sound is expected to attract attention is lower
than the fraction of the time that the sound is present. These results are in
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Figure 3.5: Evolution of the fraction of time the BMU is located in region 1
(bird chirp, dotted line), region 2 (bird chorus, dashed line) and their sum (total,
continuous line) as a function of SNR between background and foreground. For
each sound scenario, one hour (3600 1s testing samples) has been used.

accordance with empirical results found by De Coensel et al. (99) assessing
that already at a SNR of -10dB bird sounds can increase the pleasantness
of the soundscape significantly. For more details about this case study, see

Appendix [B]

3.3 Attaching meaning to sounds: automated labeling

In this section a case study is presented, based on the model explained in
Section 2.4.31

Two sound libraries related to two trained SOMs are considered here. The
two SOMs have been trained using CSL on sound feature vectors calculated
from continuous data collected from the same location but during two different
periods, three weeks in October and three weeks in November 2011 respectively.
Both sound libraries contained sound samples recorded the day after the end
of the training. In particular, they were composed of 2369 and 2892 samples
respectively, i.e. 68% and 83% of the total 3500 SOM nodes. An expert listener
(a researcher specialized in environmental acoustics) listened to the 5s long
samples composing the sound libraries and observed that the most common
sound events could be assigned to the following classes: bird, chatting people, car,
truck, motorbike/scooter, tram and background noise/hum. The same person
selected the sounds belonging to these classes. Two sets corresponding to the
two sound libraries were then created: the first one was composed of 1046 sound



3.3 Attaching meaning to sounds: automated labeling 37

1.0 T T T T T T

0.9 |-enee Cluster 1 (bird chirp) 1
---- Cluster 2 (bird chorus)

0.8

—— Total

0.7 |
06
0.5
04

Fraction of time

03
02
01+

0.0 =
-25 -20 -15 -10 -5 0 5 10

Signal-to-noise ratio (SNR) [dB]

Figure 3.6: Evolution of the fraction of time the auditory attention is located
in region 1 (bird chirp, dotted line), region 2 (bird chorus, dashed line) and
their sum (total, continuous line) as a function of SNR between background
and foreground. For each sound scenario, one hour (3600 1s testing samples)
has been used.

fragments, while the second set was composed of 1206 sound fragments, i.e.
44% and 42% of the total number of samples composing the sound libraries.
The not included sound samples were either considered by the expert listener
as a mixture of sounds from different classes or could not being classified in any
of the 7 classes. The reference vectors of the SOM nodes related to the first
set were used to train a SVM as explained in Section [2:4.3] while the second
library referring to the second SOM was used for testing. The distribution
of the classes over the test sound library as given by the expert listener is
shown in Figure It can be noticed that some SOM nodes are either not
represented in the sound library or they are not labeled: some less frequent
sound classes were not considered (church bells, different kinds of alarming
sounds as horns, etc.), neither mixtures of co-occurring sounds. As shown in
Figure the proposed SVM automated method provides a SOM labeling
quite similar to the one given by the expert (917 matching labeled sounds,
76% of the 1206 sounds labeled by the expert listener) suggesting that the
proposed SVM labeling method is able to reproduce with a certain degree of
accuracy the human SOM labeling when sufficient data are available. In order
to confirm such findings, a comparison test was performed: a second listener
was asked to listen to the second (test) sound library and to classify the sound
samples using the classes already used by the expert listener. In Figure
some differences may be found when compared to the sound library labeled
by the expert listener. The labels belonging to road vehicle categories (car,
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truck and motorbike/scooter) seem to be slightly more mixed in the case of the
second listener. Also his/her perception of background noise is different, which
is reflected in the bigger cluster of sounds assigned to that class. Summing
up all the classes, the second listener gave a higher number of labels than
the expert (1543 and 1206, respectively). All these results confirm a natural
human variability in distinguishing and tagging sounds. Moreover, the labeling
deviation between these two human listeners is slightly larger than the deviation
between the expert human listener and the SVM classification based on the
SOM reference vectors, making it an interesting solution for automating urban
sound labeling.

vy 3
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i

Figure 3.7: Distribution of the 7 classes over the sounds of the test sound library
as provided by (a) an expert listener, (b) the SVM trained on the reference
vectors of another SOM used for training, (c) a second listener. The not coloured
SOM units are either not represented in the sound library or refer to some less
frequent sound classes which were not considered (church bells, different kinds
of alarming sounds as horns, etc.) or refer to mixtures of co-occurring sounds.

3.4 Measure of similarity for specific sound recognition

In many applications the recognition of a specific type of sound, typically called
target sound is needed. In this section a case study of the model proposed in
Section is presented and its performance discussed. A microphone was
placed at 20m from railways in the suburbs of the Belgian city of Ghent. A
SOM was trained based on the feature vectors calculated from continuous data
collected during October and November 2012. A few months later two separate
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recording sessions were performed on two different days for a total of 3.5 hours
of recordings. Thirty-seven train passages were detected by listening and are
considered as the target sounds of this case study. The duration of the train
passages is highly variable, from 7 seconds up to 24 seconds, depending on
type of train, speed and number of railcars. The target sounds were divided
randomly in two equally populated groups (18 train passages in the first group
and 19 train passages in the second) for a 2-fold cross-validation test, i.e. the
two groups are both used for training and testing.

The excitation pattern for every train passage in the training group is
calculated and averaged over time as explained in Section resulting in Nyr
excitation maps, F;, i = 1, .., Nyr, where N;r is the number of train passages in
the training set, Nyr = 18 or N;r = 19, for the two cross-validation tests. Next,
a k—means clustering is performed in order to define the excitation prototypical
maps. The optimal number of cluster, three, was first found by using the
Davies-Bouldin index (93). The corresponding excitation prototypes, Ey, E,
and Es are shown in Figure The average train passage durations related to

(a) (b) (c)

Figure 3.8: The three excitation prototypical maps for train sound detection
after clustering.

the three prototypes (t1,t2,13), were used as time windows for measuring the
sum of the excitation of the SOM units related to the incoming sound:

t+t1 t+ito t+ts3

(Z E(t7‘r7y)7 Z E(t7x7y)7 Z E(t7 x7y))7 (3'1)

A train passage belonging to the testing group is considered being detected
(true positive) if at least one of the dynamic thresholds: T;(¢) = 1, at least once
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during a broad window centred around the train passages. Vice versa, it would
be considered not detected (false negative) if T;(t) # 1, for all thresholds in the
same broad window. An erroneous detection (false positive) occurs if at least
one of the dynamic thresholds T;(¢) = 1 for ¢ not belonging to time windows
related to train passages. The performance of this model can be studied by
means of the following statistical measures: precision Pr, recall Re and their
combination called F-score Fy, defined as follows:

_ TP
Pr = 75775

Re = Tqui-l;’N (32)

__ 2Pr-Re
Fl Pr+Re

where TP, FFP and FN are respectively the number of true positives, false
positives and false negatives. In the left graph of Figure such measures are
plotted in function of the threshold parameter Ty: Re = 1, i.e. FN = 0, for
Ty <0.12, Pr=1,ie. FP =0, for Ty > 0.21 and F; = 0.9 for 0.1 < Ty < 0.2.
In particular, for Ty = 0.12 all trains from the testing group are correctly
detected and three false positives occur. Very similar results are obtained
interchanging the roles played by training and testing sets as shown in the right
graph of Figure [3.9

The same model has been also tested using as input the 1/3-octave band
spectrum at 0.125s instead of the excitation of the SOM nodes. Slightly better
results are obtained in this study case. However, it is probably due to its
peculiarities: very loud train passage events, low background noise and the
almost total absence of road noise sources. In fact, this simplified approach
results in many false positives if tested in a location situated in an urban area.

3.5 Contribution to a multi-criteria approach of measure-
ment anomaly detection

Nowadays, it is possible to deploy a distributed noise sensor network due to the
technological development of low-cost consumer grade microphones. However,
a strong and as much as possible automated quality control of the measured
data is necessary in order to handle the lower reliability of such microphones.
In sound sensor networks, four type anomalies can be identified:

e abrubt fault or failure: breakdowns leading to a significantly deviating
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Figure 3.9: Precision, recall and Fi-score of the 2-fold cross-validation test as
functions of the threshold parameter Tj.

behaviour of the whole measurement chain

e incipient fault: small and often slowly developing continuous fault such
as for example sensor drift

e temporary fault: temporary wrong measurements, for example due to
transient harsh environmental conditions

e unezxpected and rare sound events: sound events considered atypical com-
pared to the sonic environment experienced where the microphone is
placed, thus altering long term noise exposure evaluation indicators such
as Lday; Levening: LnightOr Lden. Malicious alteration of the acoustic envi-
ronment around the unattended microphones to voluntarily modify the
noise measurement is another example of this type of anomaly.

In order to detect these anomalies, a multi-criteria approach consisting of
four quality models has been proposed. Each criterion results in a quality
score between 0 and 1 and is aggregated into a global score, by means of an
ordered weighted average (OWA) operator (100)). The quality control system
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was developed as a team effort and has been published by Dauwe et al. (1()1)|H
In this section the personal contribution to the multi-criteria approach will be
discussed, i.e. the quality model based on SOM and the calculation of the global
score by means of the OWA aggregator.

After an extensive training on the sonic environment in the proximity of
the microphone, a SOM can be used to detect anomalies in particular of the
last two categories. In fact, after the CSL is performed, the distance of the
BMU to the incoming sound feature vector can be seen as a measure of how
typical the sound is within the sonic environment at the measurement location.
So, if the distance to the BMU is very high (higher than a fixed threshold),
then the incoming sound can be defined as an outlier for the given acoustic
environment, and a low quality score is assigned. The average distance to the
BMU over a minute period, dgmu(t), is transformed into a quality score Qg
via the following function:

dpyMu ()
—In22BMU

Qs(t)=e mid (3.3)

where T,,;4 denotes the distance to the BMU for which the quality score equals
to 0.5.

In order to get a final quality of the measurement, i.e. a single scalar @ 4,
the partial quality evaluations from each quality model have to be merged
by means of an aggregation operator or aggregator. The ordered weighted
averaging (OWA) operators form a very flexible and tunable parametrized class
of averaging type aggregation operators. Many notable operators such as the
minimum, maximum, arithmetic average and median are members of this class.

The input of the aggregator is the vector Q(t) composed of the 1 minute
based quality scores of the anomaly detection models and the previous output
of the same aggregator, Qa(t — 1):

Q(t) = [Q1(1),Qru(t),Qp(t),Qs(t),Qa(t — 1)], (3.4)

where Q1(t), Qu(t) and Qp(¢) are the partial quality scores calculated by three
other models described by Dauwe et al. (I0T)which will be not discussed in this
work. A noticeable feature of the OWA aggregator class is its versatility to
work with a variable number of quality scores, a situation which can occur in
case one or more quality models are temporarily not working or new models
are added.

11t will be reported also in the PhD dissertation of Samuel Dauwe.
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The weight vector W = [wy,wa, - -+ , wy,] containing the weights of the OWA
is calculated as follows:

j—1
—),

w; = F(L) - F( s (3.5)
n

where F(r) = F,(r) = r®, n and j are respectively the dimension and an index

of the ordered vector P

Q(t) = [Ql(t)7Q2(t)ﬂ T 7Qn(t>}’ j=1..,n, (3~6)

from the largest value to the smallest one. Note that Q(t) = Q(t) if and only if
Qr(t) > Qu(t) > > Qa(t —1). The parameter « is called the quantifier of
the OWA operator and it is a positive real number which affects the orness of
the OWA defined as:

n—1

1

orness(W) = — Zj W—j. (3.7)
7=0

The weight vector should be calculated only in case the dimension of the quality
vector changes, i.e. if a quality model has been added or for some reason has
ceased to work. Finally the aggregated quality can be calculated as a weighted
average:

Qalt) =W-Q(t) = Zn:wj - Q;(t). (3.8)

The adjective ordered comes from the fact that the quality scores @Q;(t) are
ordered. Following the definitions in Equations and the OWA operator
results in the arithmetic mean if & = 1 (orness(W) = 0.5), the maximum if
o =0 (orness(W) = 0) and the minimum if & — oo (orness(W) = —17). The
aggregated quality @ 4(t) is a number between 0 and 1, where a low Q 4(¢) score
means low quality of the corresponding sensor measurement, whereas scores
near to one indicate good and trustful sensor readings.

In the application discussed here o = 2, so that W results to be:
W =[0.04,0.12,0.2,0.28,0.36], orness(W)=0.7, (3.9)

In this way @ 4 is very sensitive to @5, the smallest quality indicator. This
choice is motivated considering the fact that each criterion has been developed
for detecting a different kind of anomaly: high orness is therefore important to

2In this specific case: n = 5.
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detect every anomaly. In Figure [3.11] the quality scores of all four methods and
the aggregated quality for a period of two entire days are shown. The windshield
of the microphone was first attacked by birds around 10 pm of the first day and
eventually became detached after a few hours in the night. As illustrated in
Fig@ during the detachment the Laeq,1min increases anomalously, afterwards
it decreases to almost the same sound level as before the detachment, but with
an increased noise floor due to the wind-related noise. This example was chosen
because the other quality criteria failed to detect the anomaly. For an overview
of all possible anomalies and other examples, please refer to (10T]).
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Figure 3.10: Lacq,imin graph illustrating a failure in which the windshield
became detached from the microphone after being attacked by birds, resulting in
anomalous peaks followed by a slightly increased noise floor after the detachment.



3.5 Contribution to a multi-criteria approach of measurement

anomaly detection

45

Figure 3.11: From top to bottom: Qr, Qu, @p (quality scores not considered

in this work), Qg and the final aggregated quality score Q4. Only Qg seems
to detect the detachment of the windshield and the aggregated quality Q 4

decrease thus moderately.
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CHAPTER 4

Conclusions and future work

This chapter presents several conclusions regarding the model and its
applications. Special attention is given to future work, needed to improve
the main aspects of the model in order to increase the performance and
the biologial plausibility in analyzing the auditory scene and deploy it in

extended long-time running sound sensor networks.

The model presented in this work consists of several submodels:

1.

processing the incoming sound signal in a broad set of sound features
mimicking the peripheral auditory processing and assessing its auditory
saliency;

topographically mapping the sound features based on co-occurrence and
a learning technique — continuous selective learning, CSL —conceived
within this work for working with long time series and therefore tuning a
SOM to the typical heard sounds, thus aiming to replicate the effects of
the underlying mechanisms of human learning;

. auditory object formation via LEGION replicating the oscillatory correla-

tion properties of neurons in the sensory cortex;

modelling the main aspects of human auditory attention and competitive
selection making a distinction between bottom-up and top-down attention;

attaching meaning to sounds via automated labeling by means of a SVM
coupled to the SOM trained at a given location;

identifying specific target sounds by means of a fuzzy excitation model
using the trained SOM and a similarity measure.
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Moreover, several important applications based on (part of) this model are
presented in Chapter [3] In the remainder of this conclusive chapter, the key
aspects and findings will be presented with a view to the unsolved issues to be
tackled in future research.

The first step of the computational model for peripheral auditory processing
presented in Section was based on 1/3-octave band spectrum from 20 Hz to
20kHz of monaural sound signal performed at a temporal resolution of 1/8s.
This approach presents surely its limitations as regards biological plausibility,
but it is needed for maintaining a high level of computational feasibility being
supported by all off-the-shelf sound measurement equipment in use nowadays.
The cochleagram performed using the Zwicker loudness model accounted for
energetic masking, which is a key aspect of peripheral human auditory processing.
The receptive fields in the auditory cortex were mimicked by means of multiscale
centre-surround mechanisms aiming to encode intensity, spectral and temporal
contrast of the incoming sound. Again, biological plausibility was limited by
computational feasibility: the human auditory system is particularly proficient
in recognizing tonality within the incoming sound signal, an aspect linked to
speech recognition by evolutionary reasons. The aim of the model presented in
this work is limited to analyse outdoor environmental scenes, therefore speech
analysis is not considered. However, the use of simple tonal features could be
useful for a better detection and characterization of human voices and bird
vocalizations. Another interesting idea for future work would be the use of
sound features based on dynamic ripples instead of Gaussian and difference-of-
Gaussian filters. Dynamic ripples combine one spectral modulation rate with
one temporal modulation rate. They are therefore ideal as primary signals
in several neurological researches investigating the auditory stimuli processing
in the (primary) auditory cortex (45} [102; 103} 104 [105). In particular, they
seem promising in capturing the interactions between spectral and temporal
responses in the human cortex (106).

The sound feature vector formed by the set of sound features encoding
intensity, spectral and temporal contrast of the incoming sound was used as
input for a neural architecture called SOM which was introduced in Section [2.2]
and was first inspired by topographic mapping of various regions of the sensory
cortex and its plasticity during learning. The use of sound features based on
dynamic ripples coupled with SOM should improve the biological plausibility of
the model. Selective tuning to combined spectro-temporal modulations occurs
in the human primary and secondary auditory cortex as demonstrated by means
of dynamic ripples (I03]), which were also used in studies on receptive fields
in animal auditory cortex (@5 [107; [I08). In this work continuous selective
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learning, a specific learning technique, was introduced which aims to mimic the
tendency of auditory system to enhance the learning of salient although not so
often occurring sounds. In particular, a measurement of the auditory saliency
was used as learning modulator.

Auditory object formation was proposed coupling each SOM unit with a
neuron of a neural oscillatory network called LEGION, thus expressing two
functionalities of ideal neurons: long term memory formation based on SOM
training and the dynamic oscillatory correlation of sensory cortex neurons excited
by an auditory stimulus schematized by LEGION. However, the transient phase
occurring after each change of the external stimulation disrupts the oscillation
periodicity making thus impossible any attempt to follow the auditory object(s)
and limiting the use of this kind of networks in cognitive computational models.
More appropriate computational oscillatory models are thus needed.

However, some concepts of LEGION dynamics such as local excitation and
global inhibition were used in an ANN conceived to model auditory attention:
IOR mechanisms and bottom-up attention were modelled as well as the way
to introduce in the model the top-down focused attention. ANN can produce
auditory objects without the help of any supervised learning technique. However,
an issue not tackled by this research is the link among such auditory objects in
the neural network and the auditory objects as perceived by humans. This issue
is due to the fact that only unsupervised learning was considered in this research,
while it is clear that supervised and reinforcement learning strategies should be
considered as well. A second aspect not taken into account in this work is the
process of attaching meaning to auditory objects, therefore identifying sounds.
It has been shown that the meanings attributed to sounds act as a determinant
for soundscape quality evaluations (109; [I10), and therefore identification of
sounds is an important factor in the context of soundscape design; sounds that
are not identified are expected to influence overall soundscape appraisal to a
lesser degree. The model presented by Boes et al. (IT1]) could help to solve
these issues by introducing a concept layer and a human-based labeled sound
library used for the supervised learning of the ANN. In the same work it is
also shown how the role of the “teacher” is important at an early stage but
decreases as the training runs. However, attaching meaning to well-defined
sound events by means of labels as a human listener would do is not trivial:
the influence of inter-individual differences and linguistic issues have to be
solved (I10). Inter-individual differences are very often related to the context
in which the sound event occurs, an aspect of utmost importance. For example,
the sounds of the shoreline and of a distant highway are very similar: only
the context could solve the ambiguity. Or, from a different perspective, the
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same sounds could be described differently depending on the familiarity of the
listener with them. Just using the same example, a man living in a sea town
would describe those two sounds as being recorded at the shoreline, while people
living in developed urban areas would labeled them as coming from a distant
highway. A human listener would typically describe a known sound event by
either its source or by the action generating it or even using both together: the
labels “tram”, “braking” and “tram braking” are just an example of these three
different ways to attach a meaning to the heard sound and actually none of
these three labels can be considered more correct than the others, although the
third label seems the more precise. In the model combining the trained SOM
with a SVM presented in Sections 2.4.3] and [3:3] a small set of standardized
labels referring exclusively to the sound source were used by the expert listener:
car, truck, motorcycle, people, bird, tram and background. The sound library,
composed of 2369 sound samples, did not contain sufficient sound samples of
several less frequently occurring sound sources as bells, shutting doors, etc.
and so they could not be used for training the SVM on these other sound
categories. Therefore, this approach and the work of Boes et al. (I11]) show
that a much broader human labeled sound dataset is urgently needed and it
would represent an important step towards human-like automated labeling. The
solution proposed by the acoustics group of INTEC-UGent is to use the broad
diffusion of internet and mobile apps to reach as many potential “teachers” as
possible. The sounds composing the sound libraries and many other sounds
are organized in a tailored database and coupled with an online game [[] where
participants are asked to listen to sound excerpts and to label them in order
to score. This approach assures not only the construction of a very broad
dataset of labeled environmental sounds but also preserves the inter-individual
variability in labeling. Moreover, such variability in labeling can be used for
tuning the meaning attachment phase on the desired level of accuracy.
Although the future developments discussed here are needed and seem
very promising, the current model can already produce remarkably interesting
results. The acoustic summary, as explained in Section [3.2] revealed to be
an interesting tool for detecting and selecting the most representative sound
events as humans would do, thus characterizing the soundscape of a specific
location. The validation test performed by people living in the surroundings
of the microphone locations demonstrates the goodness of the automatically
constructed acoustic summaries. In particular, the selection of sounds based
on both saliency and frequency of occurrence seems to be the most simple and
valid strategy for representing a soundscape. Moreover, it has been shown that
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the model can be used for designing future soundscape scenarios too. The
SOM can be trained on artificial mixtures of sounds which simulate the sonic
environment after an urban planning intervention. Exploring the sound library,
specific regions of the SOM related to the new sounds can be found and the
influence in the perceived soundscape can be estimated by means of the auditory
attention modelling ANN.

The SOM architecture combined with the CSL can also be a starting point for
specific applications in environmental acoustics such as target sound recognition
(see Sections and and anomaly detection (see Sections and [3.4).
The distance to the SOM units of a set of manually selected target sounds can
be used to create a prototypical excitation map, a sort of distinctive imprint.
The excitation due to the incoming sound can therefore be compared to such
map and detection occurs by measuring its similarity with the excitation map.
Successfully tested on train passage detection in Section [3:4] this technique is
worth to be further tested on different target sounds. The SOM can also be
integrated in a multi-criteria approach for anomaly detection. The distance of
the BMU is a non-linear measure of how typical the sound is within the sonic
environment at the measurement location. Therefore, the incoming sound can
be considered not typical of the given acoustic environment when the distance
to the BMU is high. A low quality score is therefore assigned thus making the
detection of unexpected and rare sound events possible. Not only, frequent low
quality scores could also indicate malfunctions, failures or deliberate tampering.

The model here presented has been partly developed in the context of
the IDEA project E| (Intelligent Distributed Environmental Assessment), fo-
cussing on traffic related environmental stressors such as air pollutants and
noise. In such context, an important goal was the development of an extensive
distributed measurement network maintaining the necessary level of computa-
tional feasibility of long-running data-driven applications. A well structured
database model based on the Open Geospatial Consortium (OGC) observations
and measurements standard (O&M) was needed in order to define a domain-
independent, conceptual model for representing standardized spatiotemporal
data. In particular, the 1/3-octave band spectrum calculated by all sensor
nodes was continuously stored in such database, which was queried in order to
retrieve the necessary data to run the computational model presented in this
work. Moreover, in order to construct and maintain a well-ordered sound library
in real-time as defined in Section [2.3| a specific database has been developed.
The next challenge would be to implement such model in a flexible network
architecture making use of multi-agent systems (MASs) in order to integrate
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the model here presented in a computing environment capable of managing and
optimizing several applications autonomously (112)). In this way the applica-
tions presented in Section [3| could run simultaneously for several microphones
enhancing sensibly the computational efficiency.
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Environmental sound measurement networks are increasingly applied for

monitoring noise pollution in an urban context. Intelligent measurement
nodes offer the opportunity to perform advanced analysis of environmental
sound, but trade-offs between cost and functionality still have to be made.
When using a tiered architecture, local nodes with limited computing
capabilities can be used to detect sound events of potential interest, which
are then further analysed by more powerful nodes. This paper presents a
human-mimicking model for detecting rare and conspicuous sound events.
Features encoding spectro-temporal irregularities are extracted from the
sound, and a Self-Organizing Map (SOM) is used to identify co-occurring
features, which most likely belong to a single sound object. Extensive
training allows this map to be tuned to the typical sounds that are heard
at the microphone location. A Locally Fxcitatory Globally Inhibitory
Oscillator Network (LEGION) is used to group units of the SOM in order
to construct distinct sound objects.
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A.1 Introduction

Advances in the design of low-cost computing devices and sensors, together
with an increase in bandwidth and covering power of low-cost wireless networks,
are forming a technological push for the use of wireless sensor networks (I13)).
Acoustical sensor networks in particular provide a wide range of applications,
such as audio surveillance for public security (114 [115)), habitat monitoring (116}
117) or environmental noise pollution monitoring (118 [119). Information
retrieved from the latter could be used to assess potential noise annoyance or
sleep disturbance, to validate noise maps or even to locally steer activities, e.g.
via intelligent traffic systems.

Although the hardware, storage capacity and communication bandwidth
needed for building environmental sound measurement networks is increasingly
becoming cheaper, trade-offs between cost and functionality still have to be
made. For example, it is infeasible to perform advanced sound source recognition
using small, cost- and energy-efficient nodes, while it is also infeasible to simply
record and transmit the sound at all microphones continuously, due to data
storage and transmission bandwidth limitations. A solution for this problem
is to use a tiered architecture (see e.g. (I17))), in which the spatial resolution
of the network is exploited by using cheap local nodes with limited computing
capabilities, which select and transmit sound fragments of possible interest to
be processed by more powerful nodes (usually centrally located).

One of the most basic techniques for sound event detection is thresholding:
when the instantaneous sound pressure level exceeds a predefined threshold,
the occurrence of a sound event is assumed, and the node starts recording
for a given period of time. In case of adaptive thresholding, the threshold is
relative to the background level, which can vary in time slowly (120). More
recently, a number of techniques for selecting salient parts of the auditory scene
have been proposed, inspired by the neural mechanisms that guide human
attention (34} [70; [7T). However, a major disadvantage of current techniques is
that no distinction is made between frequently occurring and thus expected
sound events, and rare events. Moreover, the kind of expected sound events
depends on the context of the microphone. For example, the sound of birds
singing can be expected near a microphone situated inside an urban park, while
the sound of cars passing by is expected in a busy street.

The ideal node in an environmental sound measurement network for moni-
toring noise pollution should, in a computationally efficient way, be able to learn
and discern the sounds frequently occuring at the location of the microphone,
thus distinguishing between common and rare or conspicuous sound events. In
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this paper, we show how this goal could be achieved using a simple biologically
inspired technique.

Features encoding spectro-temporal irregularities are extracted from stan-
dard 1/3-octave band levels, which can be measured with off-the-shelf sound
level meters. Subsequently, sound events are discerned using a combination of
two types of neural networks: a Self-Organizing Map (SOM) (75) that allows—
after extensive training—to identify co-occurring sound features and a Locally
Excitatory Globally Inhibitory Oscillator Network (LEGION) (84) for grouping
and segregation of corresponding sound fragments. The combination of both
neural networks models two essential features of the brain: the SOM mimics the
plasticity (during the learning phase) and complex morphology of the network
of neurons forming the auditory cortex, while the LEGION approximates the
dynamic oscillations between connected neurons.

In Section [A72] we provide a description of the coupled SOM-LEGION net-
work, starting from the sound extraction, and the specific solutions adopted.
The model was applied in different real scenarios: the results and some discus-
sions are provided in section Finally, a section with conclusions follows in

A4

A.2 Methodology

A.2.1 Sound feature extraction

In a first stage, a feature vector is extracted, at regular time intervals, from
the sound signal measured by the node microphone. Instead of calculating a
detailed time-frequency representation of the raw sound wave, the model starts
from the 1/3-octave band spectrum, calculated with a temporal resolution of 1s.
This procedure has the main advantage that off-the-shelf sound measurement
equipment can be used as a front-end, which reduces the computational load
on the measurement node. The choice of time resolution can be justified by
noting that the sounds of main importance for environmental noise pollution
monitoring (cars, trains, aircraft, fans etc.) have a relatively slow varying
temporal envelope (61} 12T). A simplified cochleagram s(f,t) is then calculated
using the Zwicker loudness model (9), which accounts for energetic masking.
The complete hearable frequency range is considered (0 to 24 Bark) with a
spectral resolution of 0.5 Bark, resulting in 48 spectral values at frequencies
fi= %j Bark, for each timestep.

The mechanism for extracting the feature vector, which characterizes the
amount of novelty in the sound signal, is inspired by the way the human
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auditory system biases its attention toward particularly conspicuous events. The
auditory system is, next to absolute intensity, also sensitive to spectro-temporal
irregularities. Based on existing models for auditory saliency (34; [70} [TT)),
the proposed model calculates measures for intensity, spectral and temporal
modulation using a center-surround mechanism, which mimicks the receptive
fields in the auditory cortex. In particular, multi-scale features are calculated in
parallel by convolving the cochleagram with various 2D gaussian and difference-
of-gaussian filters g;(f,t). The former encode intensity, while the latter subtract
between a “center” fine scale and a “surround” coarser scale, and encode the
spectral and temporal gradient of the cochleagram at 16 scales (4 for intensity,
6 for spectral contrast and 6 for temporal contrast):

ri(f,t) = (s % gi)(f, 1) (A1)

with ¢ = 1,2,...,16. Fig. [A1] shows a section of the filters along the time or
frequency axis. Finally, a feature vector 7(¢) is constructed at each timestep,
consisting of 16 x 48 = 768 values:

16 48

(t) = Z Z 7i(f5:t)€a86i—1)+j (A.2)

i=1 j=1

with {€ : 1 < k < 768} the standard basis for the 768-dimensional Euclidean
space.

A.2.2 Feature co-occurrence analysis: Self-organizing map

The self-organizing map (SOM), an abstract mathematical model of topographic
mapping from the (visual) sensors to the cerebral cortex (77), is most often
described as an unsupervised technique for the visualization of high-dimensional
data (78)). It does so using typically a 2D network of units or nodes. Their
representation in the high-dimensional space is provided through reference
vectors. After initialization, their coordinates are modified during the training
process wherein the following (vastly simplified) steps are repeated until a
stopping criterion is met:

1. Feed an input high-dimensional data point to the SOM.

2. Determine the best-matching unit (BMU) i.e. the unit corresponding to
the closest reference vector.

3. Move the reference vector corresponding to the BMU and, to a lesser
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Figure A.1: Cross section of the receptive filters that are used to calculate
(a) intensity, (b) spectral contrast and (c) temporal contrast. For the latter,
causality is preserved by only convolving with the past.

extent, those of the neighbouring units in the 2D grid, closer to the input
high-dimensional data point.

In practice, the training process and the resulting SOM are strongly influenced
by a number of parameters, such as the size of the SOM, the type of initialization
of the units, the strength of learning and the type of neighbourhood considered
in the third step, as well as the evolution over time of the learning parameters.

Nevertheless, after training it is clear that the frequency distribution of
the input data in the high-dimensional space will be approximated by the
reference vectors of SOM units, possibly leading to dense high-dimensional
clusters interspaced by regions where the reference vectors of the SOM units
are more distant. This emerging order is the basis for the effective visualization
in the SOM. Consequently, the SOM can also be considered to perform a kind
of abstraction, compressing information while preserving the most important
high-dimensional relationships (75). A trained SOM could then be understood
as a nonlinear 2D projection of the probability density function of the high-
dimensional input data. An intuititive quantification of the SOM quality is then
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the average high-dimensional distance of a set of data points to their respective
BMUs.

Now, we provide a brief, more formal description of the SOM technique,
based on the description in (78). More formally, we consider an n-dimensional
input space R", in our application the 768-dimensional space of raw sound
features. The SOM units are represented by the reference vectors m; € R",
with index i identifying the unit. The M units in the 2D network are aligned
on a regular M, by M, grid and are represented as m; = (m,, m,) € R% As
the vectors m; are adapted during training, we will write m; (¢) to denote the
vector at time-step ¢ during training, and use m; only when training is complete.
Input data is represented as ¥ € R™, and at time-step ¢, the sample 7 (¢) is
processed by the SOM. The BMU at time-step ¢ is then found by considering

¢(t) = argmin [[7(t) —mi; (¢)]] - (A.3)

Thus, at time step ¢, M) (t) denotes the BMU for the input sample 7(t).
Adapting the BMU or, indeed, any unit, is then performed as follows:

M (t4 1) = M (t) 4 hegry,s (F(t) —m4 (1)) (A.4)

where h, the neighbourhood function, performs a non-linear smoothing selection
on the discrete 2D neighbourhood structure. Often used is a Gaussian function
of the distance between the BMU at time step ¢, ¢(t), and the generic unit 4

— = 2
m; —1mg;
hc(t),i = (t) exp <_H20’2(t)(t)|‘> . (A5)

The time-step dependent parameters governing the behaviour of this type of
neighbourhood function are the learning rate 0 < a(¢t) < 1 and the width of
the 2D neighbourhood o (t). Both are monotonically decreasing in ¢:

at) = aOCL—l—t’ C= %, (A.6)
o) = 1+ (70 1) (") (A7)

where N is the number of samples. Observe that h.; = «(t) only for the
BMU, and is strictly decreasing for units farther from it in the 2D grid. Thus,
for a constant similarity, the BMU is adapted to a stronger extent than any
neighbouring units.
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A final point concerns the visualisation of the 2D grid after training. Due
to the high dimensionality of the raw feature space, the visualization of the
trained map via projection on particular planes is rarely informative—one could
argue that if such an approach would lead to satisfactory results, there was
less need to apply the SOM algorithm in the first place. Rather, in order to
easily identify regions with similar high-dimensional representations, it will be
more informative to display how close in the high-dimensional space a unit in
the map is to its neighbouring units. In fact, a typical way to visualize the
morphology of the map uses the so-called U-matrix (82)), which is a matrix
of dimensions [2M, — 1,2M, — 1] containing both the distances between the
nearest neighbours and their average. Color-coding the units on the map on the
basis of their average distance to their nearest neighbours allows distinguishing
regions where 2D neighbouring reference vectors are similar, from regions of
high variability. We provide an example in Section [A73]

When training is complete, the SOM quality can be assessed on the basis of
two concepts. The first is the average distance between each input vector from
a set of test samples and its BMU, the so-called average quantization error E.

It is computed as follows for a set of test samples 7(1),...,7(N):
N = -
_ t) —m,
- = HT(N). uroly (A.8)

with 17,4y now denoting the BMU for test sample 7(t).

The second concept is the topographic error, the proportion of test samples
for which the BMU and the next-best-matching unit are not neighbours. A
low topographic error can be considered to be indicative of a focused SOM,
clustering the units around the dense regions in R"™.

These concepts complement each other quite well: if all the units are widely
spaced in the R™ space formed by the eigenvectors, the SOM is very likely to
obtain a quite low average quantization error, while the topographic error is
likely to be large. If, in contrast, the units are packed too tightly around the
densest regions in R", the average quantization error can be expected to be
high, while the topographical error is expected to be low.

To reduce both the average quantization error and the topographic power of
the map, it is usually sufficient to reduce the initial width of the neighbourhood
function oy and/or the learning rate ag, making the map less flexible, while
simultaneously increasing the number of training runs to compensate for the
slower learning (75).

A hexagonal lattice was used in this paper, allowing a 2D grid of equal-spaced
units while maximizing for any value of o (¢) the number of neighbours in the grid.
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The unit reference vectors were initialized by the linear initialization function,
resulting in a regular array of vectorial values that lie on the subspace spanned by
the eigenvectors corresponding to the two largest principal components of input
data used during the training (78). In our application, the high-dimensional
space is composed of the raw sound features, meaning each unit corresponds to
an abstract prototype of a sound. The goal is thus to group similar (in the raw
feature sense) sound fragments in the SOM. Sound feature values that often
arise together, and are thus often part of the same sound fragment, are then
expected to have the same BMU, or to even cluster close together in the SOM.
In order to allow this behaviour to arise, a proper choice of features is crucial,
as well as proper values for the parameters governing the SOM construction,
training and resulting performance.

The training phase has to take into account a very large number of input
data: in our case 86400 samples (the number of seconds in one day) were used.
Afterwards, the trained SOM is ready to receive new data samples and localize
the BMU.

As we will now show, a natural link between SOM and LEGION then arises:
the similarity of a raw feature vector and a specific SOM unit is, from a neural
oscillatory point of view, a measure of the external stimulation that a LEGION
oscillator receives. Conceptually the SOM unit and the LEGION oscillator can
be considered the same formal neural unit. In fact, the two neural networks are
the expression of two different functionalities of ideal neurons: the long term
memory formation is modeled by the SOM extensive training while the dynamic
oscillatory correlation of sensory cortex neurons excited by an auditory stimulus
is schematized by LEGION. The LEGION network model and the details of
the SOM-LEGION coupling are developed in the next section.

A.2.3 Segregation: LEGION

Increased insight in the oscillatory correlation properties of the neurons in the
sensory cortex during the 1980s resulted in an increase in theoretical research on
possible computational models of the corresponding biological mechanisms. One
of the first models thus constructed, by von der Malsburg and Schneider (122),
was later extensively developed in the auditory context by Wang (87 [88]) using a
so-called shifting synchronization theory, based on oscillatory correlation, where
neuronal oscillators representing the neuronal counterpart of specific sound
features are used.

In that context, each sound object was represented by synchronization of
a group of oscillators corresponding to the relative sound features. Contrarily,
desynchronization among different groups of oscillators meant that the sound is
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the sum of different auditory streams.

The Wang model is based on a particular network architecture referred to
as LEGION (84)): it is generally composed of a 2D grid of oscillators, in our
coupled SOM-LEGION architecture corresponding to the units in the SOM.
The dynamics of the i-th oscillator is the combined activity of an excitatory
unit x; and an inhibitory unit y;:

i =31 —x} +2—yi + LH (pi —¢) + Si + p, (A.9)

and
yi = € (v (1 + tanh (x;/8)) —vi) , (A.10)

where I; is the external stimulation, H is the Heaviside function, p; is the so-
called lateral potential, ¢ is a threshold, S; is the overall coupling contribution
due to the near oscillators of the network and p < 0 is a source of Gaussian
noise. There are three regulating parameters: 7, € and 3, where the last two
are small positive constants.

The external stimulation I; in , together with the permanent connection
weights T;, (explained later), entails the core of the SOM-LEGION coupling.
I; depends on the distance between the input raw feature vectors 7(t) and the
i-th unit of the trained SOM, closely related to the quantization error in the
SOM. It is computed as

I (t) = TH ||F(t) — ]| ™" = AMp, (8) ] (A.11)

where I is a positive constant, H the Heaviside function, ||7(t) — m;| " is a
measure of the similarity of the input vector to the i-th unit, My, (¢) is the
h-order simple moving average of the inverse of the distance of the BMU and
0 < A < 1 is a relative threshold. Because of the use of H, this formulation of
the external stimulation can be referred to as a binarization: oscillators similar
enough to the raw feature vector are stimulated, while those too far away are
not.

It must be clear by now that all variables in — are dimensionless.
It holds true for the variable of integration which is naturally referred as time
and that here we call internal time or LEGION time and indicated as t,; at
the contrary in the real time is involved. The simplest way to match
them is to fix a certain LEGION time interval 7, and impose the equality 7, =
1s thus avoiding the confusion between two different time scales. Returning to
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(A.9)-(A.10) it means that:

. ZT; 1 Z;
€T, = = —
Yodt, T, dt

dt =7, dt,, (A.12)

and the same holds for y;.

If I; is positive and H = 1, the i-th oscillator produces a near-steady stable
orbit between a so-called silent phase (left branch of the #-nullcline cubic
function in ) and an active phase (right branch). The passage between
them occurs at a faster time scale compared to motion within each phase, thus
resulting in a sort of jumping. Finally, the parameter ~ in influences the
relative time spent in each phase.

The coupling term S; is typically composed of two terms:

kEN (1)

with the first term taking into account the phase of the oscillators in the
neighbourhood, N (#), through the use of dynamic connection weights (explained
later) and the second term referring to the activity of a global inhibitor z
weighted by W,. If at least one oscillator is in the active phase, z — 1 at a
slow time scale whereas z — 0 if all oscillators are in the silent phase, thus
allowing the activation of new oscillators (for more details on the form of z and
the threshold 0., see ((87))).

Terman and Wang (83) formulated a procedure called dynamic normalization,
significantly speeding up the synchronization within each oscillator block. It
involves the dynamic connection weights, which can be assessed from the external
stimulation, and the so-called permanent connection weights:

u; =n(1—wu;) L —vu, (A.14)
Wik = WTTik Ui U — Wzk Z Tij ’LLZ"U,j — wl/Wik 5 (A15)
JENI

where the variable u measures whether the oscillator 7 is stimulated, the constants
1 > v are chosen so that u; tends to 1 quickly if the oscillator ¢ is stimulated,
while it relaxes slowly to 0 when it doesn’t receive any external stimulation.
In 7 Wr is the so-called total dynamic connection weight and the last
term, not explicitly dependent on wu, is here for the first time introduced as
a dissipating term weighted by the parameter w: this term does not affect
appreciably the normalization if wy < 1. When using this procedure, all the
oscillators belonging to the same externally excited group receive the same



A.3 Results 63

amount of coupling from their neighbours, irrespective of whether they are
completely surrounded by externally stimulated oscillators or not, being one of
oscillators at the border of the group. The T, are called permanent connection
weights and, contrarily to the dynamic weights Wy, are fixed between two
neighbouring oscillators, being the expression of the hardwired connections in
the network. In the SOM-LEGION coupled model, these permanent weights are
determined during training, being related to the similarity of two neighbouring
units, d;, = ||m; — e

Tk = Trnas [1 +¢ (‘5’“_6’”” - 1)} , (A.16)
5maw - 6min

where the constant T,,,, is the maximal permanent connection weight and

¢ < 1is a scaling factor in order to have (1 — @) Trhar < Tig < Tinaz. Thus, the

more similar two units of the SOM are, the higher the coupling between the

two corresponding oscillators is.

The study of the dynamics of our LEGION network implies solving hundreds
of coupled differential equations, rendering impossible any attempt to process
in real-time the massive amount of data acquired by a sound measurement
network. To speed up the computational process the singular limit method
developed by Linsay and Wang (91)) is extensively used. This method, in the
form of an algorithm, allows skipping most of the computation by considering
the fact that the oscillatory system feels the effect of oscillator changes only
when oscillators jump up or down: only at those moments the lateral potential
and global inhibitor values can change. Thus, the only information needed to
know the dynamics of the entire system is the branch occupied by each oscillator
and the time at which a jump occurs (for more details on the method, see (91)).

The lateral potential, as implemented in (91)), is not suited for dynamic
external stimulation I (¢). In this paper a different and simpler approach was
used: at the end of each cycle of the algorithm the active oscillators that do not
have at least 1 of 6 neighbours active are forcedly inhibited by moving them to
the left branch.

A.3 Results

In our work we have focused on two different sound scenarios: a typical urban
sound environment defined by a mixture of light and heavy traffic noise, labelled
as T, and a park, with typical natural sounds and only marginally affected
by human presence, labelled P. Two fixed measurement stations, one for each
scenario, recorded standard 1/3-octave band levels calculated with a time
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Figure A.2: Distance of the raw feature vector related to a typical sample
from T and two maps trained at the same location, but with different initial
parameters: (a) ag = 0.6, o9 = 50, high flexibility; (b) ap = 0.03, ¢ = 10, low
flexibility. Training length: 86400 samples.

resolution of 1s. Different values for some SOM parameters were tested in order
to improve the ability of SOM to identify co-occurring sound features. The
dimensions of the 2D grid seemed to be not critical above lower limit values.
In this paper they were fixed to M, = 25 and M, = 100. The most critical
parameters were found to be the length of training runs, the initial value of
the learning rate, ag, and the width of the 2D neighbourhood o(. To evaluate
the quality of the SOM training, some sound excerpts were recorded at the
same scenarios but not used during the training phase. An example is provided
in Fig. [A72] wherein the distance between the raw feature vector related to a
quiet moment at T and the units of two maps trained at T but with different
flexibility are plotted. The less flexible map, which is the one trained with
smaller o and og, displays a better focusation and is thus preferable.
Training maps in fixed scenarios result in a strong sound-context dependency.
Thus, all of the units of a map trained in P are very dissimilar to raw feature
vector corresponding to a typical sample from T, as can be seen in Fig. d).
Obviously, the units in such a map display a better matching for a quiet natural
sound sample, as shown in Fig. b). In contrast, the map trained in T shows
good focusation and a low quantization error for both the samples Fig. a)
and (c), as even in a road traffic environment, silent periods are present (e.g.
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0
Figure A.3: Distance of the raw feature vector related to a typical sample from
P and the units in the SOM trained in (a) T, (b) P. Distance of the raw feature

vector related to a typical sample from T and the units in the SOM trained in
(¢) T, (d) P.

during the nocturnal part of the recording used for training). This context
dependency allows an intuitive way to distinguish between common and rarely
occurring (or even new) sound events, possibly triggering an alert or a more
detailed analysis of the sound events: by re-training the map with that specific
input, a later occurence of the same sound will no longer trigger an alert. The
context dependency can also be exploited in a different way: feeding a sample
to a number of SOMs, each of which was trained on a different context, and
comparing the focusations and the quantization errors, can yield information
about which context the sample most likely belongs to.

The context dependency can be reduced by training the SOM with excerpts
coming from various scenarios. There is an interesting parallel between this
situation and the human brain, which is exposed to a lot of different sound
contexts during life. To approximate this multi-context learning, a series of 51
sound excerpts of 15 minutes where recorded at various locations in and around
the city of Ghent, including traffic-free shopping streets, street canyons with
low and high traffic intensity, residential areas, open squares, urban parks and
quiet areas at the edge of the city. The new sound samples replaced partly of
the night time samples of each scenario, T and P respectively, thus creating two
more heterogeneous scenarios called HT and HP. Two new SOMs were trained,
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Figure A.4: Distance between the raw feature vector of a sample from a crowded
street and the units in the SOM trained in (a) T, (b) P, (¢) HT. Training length:
86400 samples, ay = 0.03, o9 = 10.

one in HT and the other in HP. The units of the old SOMs cover the new
sounds only poorly, having been trained exclusively with inputs coming from
their specific scenario, T or P. In contrast, the new SOMs are very versatile
and can match practically all types of inputs corresponding to the wide range
of scenarios they have been trained on. In Fig. [A-4] this aspect is visualized
by taking into account a 1s sound fragment from a crowded shopping street,
where talking passers-by can be heard. Moreover, the new SOMs still show a
low quantization error for samples from T or P, as shown in Fig. [AT5]

The U-matrix of the SOM trained in HT is shown in Fig. [A:6] revealing
how the SOM is composed of regions where neighbouring units are very similar
and regions where the opposite holds true. This is common if the SOM has
been trained on the basis of a very diverse set of sounds (e.g., coming from very
different contexts).

As explained at the end of Section[A:2.2] the LEGION oscillators and the
SOM units are two different functional representations of the same neural units.
In particular, the units best matching the input can be interpreted as externally
excited neuronal oscillators, in accordance with (A.11)). LEGION thus provides:

1. grouping of contiguous excited oscillators representing particular raw
feature vectors, by means of coherent oscillations;
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Figure A.5: Distance between the raw feature vector of a typical sample from
T and the units of the SOM trained in (a) T, (b) HT. Distance between the
raw feature vector of a typical sample from P and the units in the SOM trained
in (c) P, (d) HP. Training length: 86400 samples, ag = 0.03, o¢ = 10.

2. segmentation of distinct groups of oscillators by introducing a phase among
the groups oscillation.

For the simulation shown in Fig. [A77] the SOM trained in P was chosen.
The parameters for SOM training were set as follows: ay = 0.03, 09 = 10. The
values h = 3 and A = 0.92 were used for binarization in and the external
stimulation I was set respectively to 0.2 and 0 for stimulated and unstimulated
oscillators. The neighbourhood was composed of the 6 nearest neighbours. The
maximal value of the global inhibitor W, was set to 1.7. The following values for
the parameters regarding the dynamic connection weights W;; in f
were used: n = 3.0, v = 0.1 and w = 1. The permanent connection weights, as
defined in , were calculated using ¢ = 0.5 and 7' = 1.5. Of the parameters
in (A.9)-(A.10) governing the dynamics of a single oscillator, only 7 is needed
if the singular limit method is adopted, and it is set to 6.5 here. Finally, for the
LEGION time, the value 7, = 15 was used.

Fig. [A7] shows oscillatory dynamics of LEGION together with the similarity
to the SOM units and the external stimulation I(¢) for a period of 2s. It
is a clear example of the ability of LEGION to segregate different groups of
stimulated oscillators by letting them move to the active phase at different
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Figure A.6: U-matrix of a SOM trained in HT. Training length: 86400 samples,
g = 0.03, gg — 10.

times. In particular, Fig. [A7 at ¢ = 4.2s shows the transient phase wherein
the oscillators recombine their dynamic connection weights to adapt themselves
to the new external input.

A.4 Conclusions

A model for context-dependent environmental sound monitoring, rigidly grounded
on neurological mechanisms, was constructed in this paper. The plasticity of
the human cortex, in the context of processing spectro-temporal features, was
simulated by the use of a Self-Organizing Map (SOM) based on 1s standard
1/3-octave band levels. Much as human beings do, sounds were learned within
the context in which they were usually heard, resulting in a high context de-
pendency and a high tuning of the model on the typical sounds heard in the
specific scenario. In other words, how the presence or absence of a sound during
training influenced the SOM, depends on the other sounds perceived during
training. After training, the map could be used to assess how typical a new
sound fragment is by determining its similarity to the units of the SOM.

A different manifestation of the context dependency is the number of nodes
a SOM devotes to a specific type of sound (e.g. car passages, near-silence,
pedestrian chatter). Correspondingly, the more heterogeneous the soundscape
on which a SOM is trained, the smaller the number of nodes dedicated to each
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Figure A.7: Left (2 columns): similarity (inverse of the distance) of two input
samples at t = 3s (top) and ¢t = 4s (bottom), before (1st column) and after
(2nd column) binarization (A = 0.92, moving average order: h = 3). Right (4
columns): some snapshots of LEGION taken at different times. The samples
used here are extracted from test input data recorded in scenario P.

specific type of sound.

By coupling the SOM to a Locally Excitatory Globally Inhibitory Oscillator
Network (LEGION), which simulates the oscillatory correlation activity of the
neuronal sensory cortex, we were able to use the coupled model for object
formation and segregation tasks, where an object in our context is a group of
contiguous units similar to the new sound sample.

The model could be used to distinguish between common and rare sound
events in a context-specific manner. Moreover, we feel the model merits further
research in order to assess its suitability for specific environmental sound
recognition and segregation. In order to do so, future work will have to focus
on increasing the time resolution and the sound stream formation ability by
reducing the transient time in the LEGION oscillatory dynamics.

A different avenue of interest is increasing the biological plausability of the
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SOM-LEGION coupling. More to the point, previously unheard sound events
can result in little activation of the map, while one would prefer to have a
LEGION-segregation between known and unknown components even in such a
setting, especially in case of highly salient, though unknown, events. Segregation
could also be performed for unknown sound events by changing the binarization
threshold, perhaps by considering local maxima in activation of the SOM. In the
current implementation, previously unheard components will likely be ignored
due to them having a smaller activation than the known components of the
sound event. Another issue regards the training phase. In this paper there is a
sharp distinction between training and testing phase, which is not biologically
plausible: to a certain extent, connections in the brain remain flexible, and
training from external stimuli remains possible. A possible improvement of
the model could be to trigger a new SOM learning phase when conspicous but
unknown sound events are observed.
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Urban soundscape design involves creating outdoor spaces that are pleas-
ing to the ear. One way to achieve this goal, is to add or accentuate
sounds that are considered to be desired by most users of the space, such
that they mask undesired sounds, or at least distract attention away from
undesired sounds. In view of removing the need for a listening panel to
assess the effectiveness of such soundscape measures, the interest for new
models and techniques is growing. In this paper, a model of auditory
attention to environmental sound is presented, which balances computa-
tional complexity and biological plausibility. Once the model is trained
for a particular location, it classifies the sounds that are present in the
soundscape and simulates how a typical listener would switch attention
over time between different sounds. The model provides an acoustic
summary, giving the soundscape designer a quick overview of the typical
sounds at a particular location, and allows to assess the perceptual effect
of introducing additional sounds.
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B.1 Introduction

Sound is an integral part of the urban environment, and there is a growing
awareness that acoustical aspects should be considered at the same level of
importance as architecture and visual aesthetics in urban planning and the design
of urban outdoor spaces (95 123} [124). For example, it has been shown that
easy access to nearby outdoor (green) spaces for public amenity, such as urban
squares and parks, leads to important positive effects on stress restoration (125
and general well-being (126} [127) of urban residents. In order to create this kind
of urban spaces, environments that are of high acoustic quality, it is essential
that auditory aspects and knowledge on human perception of environmental
sound are included during the urban planning and design process. The goal of
the soundscape designer is to compose acoustic environments that are as much
as possible pleasing to the ear. More in particular, this means creating spaces
in which the sounds that the listener identifies as desired in that context are
often heard, while undesired sounds remain mostly hidden to the human ear,
or at least are not noticed by the user of the space. This approach obviously
goes beyond noise abatement and the striving for silence, and as such, there
is a growing need for new models and techniques for soundscape analysis and
design, well grounded in human auditory perception.

In this paper, a human-mimicking computational model for soundscape
analysis is presented, which combines a self-organizing map of acoustical features
with a functional model of auditory attention. The model classifies the sounds
that are present in the soundscape over time, and simulates how listeners
would switch their attention over time between different sounds. As such, it
can be used within the soundscape design process to assess the influence of
soundscaping measures (e.g. adding desired or removing undesired sounds) in
the field. Next to this, the model involves constructing an acoustic summary
through extensive training, tuning the model to the typical sounds that are
heard at a particular location. The latter could be used to quickly provide an
overview of a specific soundscape for the soundscape designer.

Auditory scene analysis has already been studied extensively by compu-
tational means (see Wang and Brown (56]) for an overview). The ultimate
goal of most of these models is to extract clean sound samples for individual
components of the auditory scene, e.g. for separating speech from background
noise. The ultimate aim of the present model is to mimic human evaluation of
the sonic environment. In contrast to these previous models, it does not aim at
extracting sounds that are as clean as technically possible, but at analysing the
scene precisely as accurate as a human listener would be capable of. However,
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as the model is aimed to be integrated in equipment for long-term outdoor
sound measurement, it presents a compromise between biological accuracy and
computational efficiency. Furthermore, because of the huge variation between
listeners, the model is aimed to be valid on a statistical basis, rather than on
an individual basis. It has to be noted that the model, in its present form, does
not involve the automated labeling of classified sounds; rather, it simulates how
a soundscape will be analytically perceived by the listener. This work refrains
from designing methodologies for identifying which sounds are desired in a given
environment with a particular use (128} [129).

In Section a short overview of the literature on auditory scene analysis,
attention and masking is given, summarizing the empirical foundation for
the model, without going into much detail on the neurobiological basis. In
Section [B3] a detailed formulation of the model is presented. In Section [B-4] a
case study that illustrates the use of the model as a tool in soundscape design
is presented. Finally in Section conclusions and perspectives for future
research follow. The work described in this paper builds upon different ideas
presented in earlier works (8T} [120; 130} 13T} [132).

B.2 Empirical background

B.2.1 analysing the auditory scene

Outdoor acoustic environments are usually composed of a wide range of sounds
that often overlap in time or frequency. Humans have a great proficieny
in disentangling this mixture of incoming sounds into coherent perceptual
representations of objects (called auditory streams), usually related to individual
sound sources, based on a combination of auditory and visual cues. In a
simplifying manner, this process of auditory scene analysis is often regarded as
a two-stage analysis-synthesis process (25). In the first stage (segmentation),
the acoustic signal is decomposed into a collection of time-frequency segments.
In the second stage (grouping), segments that are likely to have arisen from the
same environmental source are combined into auditory streams. Traditionally,
it has been assumed that the perceptual mechanisms behind this process are
largely pre-attentive: only after auditory streams are formed, they can become
an object of attention (26} 27). Although this view is appealing because of its
conceptual simplicity, recent findings suggest that attention also plays a role in
the formation of auditory streams (28 29)). Overall, it can be stated that the
process of auditory scene analysis draws on low-level principles for segmentation
and grouping, but is fine-tuned by selective attention (30).
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B.2.2 Detecting and identifying a sound

Some sounds, although present in the auditory scene, will not be detected;
no matter how hard the listener tries, these sounds remain masked. Masking
effects have been widely studied using artificial sounds, such as sequences
of tones or broadband noises (9), or using speech (I0), but basic research
on auditory masking of environmental sound is lacking (I33). Two types of
masking are generally distinguished (134} [I35]): energetic and informational
masking. Energetic masking concerns competing sounds (maskers) overlapping
in time and frequency such that parts of one sound (the target) are rendered
inaudible. Informational masking regards difficulties to detect a target sound
which cannot be accounted for by interfering energy patterns at the peripheral
auditory system, but are caused by auditory mechanisms at higher levels of
processing. An example of the latter is the inability to separate elements of the
target sound from elements of the masker sound, due to similarity between the
target and the masker (136)).

At this point it is useful to distinguish between detecting and identifying
environmental sounds. Detecting a sound means that the listener can observe
that a sound is present. Identifying a sound means that the listener can name
the sound. For simple sounds such as pure tones, detecting is almost equal to
identifying, but for speech and environmental sound this is not the case. It
has been shown that the meanings attributed to sounds act as a determinant
for soundscape quality evaluations (109 [110), and therefore identification of
sounds is an important factor in the context of soundscape design; sounds that
are not identified are expected to influence overall soundscape appraisal to a
lesser degree.

Detectability of a particular target sound within a soundscape is expected
to depend on the spectral characteristics of both the target sound and the
background sound, as can be concluded from knowledge on (energetic) masking.
However, one should keep in mind that both target and background sound may
exhibit considerable temporal variations. For example, the use of water sounds
for masking road traffic noise in urban parks has recently gained some scholarly
interest (99; 133). Reducing the detectability of road traffic noise to 10 % of
the time by adding water sound might therefore require water sound with an
equivalent level up to 10dB(A) above the equivalent level of road traffic noise.
The model of Glasberg and Moore (137 [I38) summarizes the knowledge on
(partial) loudness due to energetic masking, and may be used to quantify the
audibility of time-varying sounds in the presence of background sound.

Leech et al. (I39) and Gygi and Shafiro (I40) investigated the particular
characteristics of a sound that allow it to be identified in familiar auditory back-
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ground scenes. The signal-to-noise ratio between the sound and the background
noise was found to be the most important factor in their studies. They also
found that contextual congruency between the sound and the background noise
plays a role, in the sense that sounds that are not readily expected within a
given environment are more easily identified. They could not prove that this
was due to potential similarities in acoustic features of background noise and
congruent target sounds.

Identifying a sound not only involves the ear but also the brain, and both
have their limitations. It can be expected that information content plays a role:
the more information is embedded in a sound, the easier it will be to detect it.
In the experiment by Gygi and Shafiro (140), some of the physical components
of the sounds that made them more identifiable were standard deviation of
the spectrum and the number of bursts or peaks. Both characteristics are
related to the information content of a sound, and both make the target sound
less likely to be masked completely. More generally, it can be expected that
identifying a sound within a complex auditory scene also depends on how many
unique features the sound has. For example, broadband noises are less likely to
be identified than vocalizations that contain a rich variety of tones and tonal
fluctuations.

Furthermore, familiarity of the listener with the sound to be detected makes
it easier for the listener to detect it (40). This mechanism could work for
desired as well as for undesired sounds. Sensitivity to particular acoustical
features of a sound are learned in early childhood, but new sounds can be
learned at all ages (41). Once sounds become familiar, they are identified
more easily. It must be noted that learning effects are not limited to high-
level associative memory. Several neurophysiological studies have reported
on the capacity for holding memory traces (enduring neural records) in the
primary auditory cortex (see Weinberger (42]) for an extensive review). In
particular, the number of neurons of the representational area of a sound is
tuned by its importance (43) and the bigger the area, the stronger the memory
effects (44). Neurophysiological correlates of cognitive processes such as selective
attention (45} 46)), expectancy (47), concept formation (48) and cross-modality
effects (49) have been found in the primary auditory cortex, suggesting that due
to neuronal plasticity, the primary auditory cortex is not merely an acoustic
analyzer, but an adaptive auditory problem solver (42)). Another important
property of the auditory cortex is tonotopy: neurons next to each other are
typically excited by similar stimuli. Tonotopic maps have been observed in the
auditory cortex of animal species such as cats (50) and monkeys (51 [62)). The
human cortex also contains several topologically ordered regions (53} 54 [55),
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similar to regions observed in the macaque monkey brain (553)).

B.2.3 Paying attention to a sound

Although a particular sound within the acoustic environment may be hearable
if one listens to it, this does not imply that one actually has to. Users of the
space may not notice the sound because they are performing tasks—auditive
or not—or are involved in activities that require their attention. On a longer
time scale, the sounds that we consciously notice will contribute to the creation
of a mental image of the acoustic environment at a location, and ultimately
will shape our perception of its quality. As such, not noticing a sound can be
positive if the sound is not part of the acoustic design, while it is negative if
the sound is considered a unique soundmark (I141I)) of the location.

Auditory attention allows us to focus our mental resources on specific aspects
of the acoustic environment, while ignoring all other aspects (3I). More in
particular, the auditory attention mechanism is responsible for selecting the
information that is to be processed in more detail in working memory, and thus
that may be used for making decisions and taking actions (32). It is an essential
mechanism in human input processing, as it avoids sensory overload. Central
in most theories on attention (visual as well as auditory) is the interplay of
bottom-up (saliency-based, depending on the characteristics of the stimulus)
and top-down (voluntary, depending on the state of the listener) mechanisms in
a competitive selection process (30; [32).

The bottom-up mechanism selectively enhances responses to sounds that are
conspicuous, for example because they have rare or novel physical features, or are
of instinctive biological importance. This is accomplished by a novelty detection
system that continuously monitors the acoustic environment for changes in
frequency, intensity, duration or spatial location of stimuli (33} [34). This pre-
attentive mechanism operates rapidly and independently of the nature of the
particular task that the listener may be performing. In contrast, the top-down
mechanism focuses processing resources on the auditory information that is most
relevant for the current goal-directed behavior of the listener. This mechanism
is guided by information already held in working memory, through sensitivity
control, in which the relative strengths of different information channels that
compete for access to working memory are regulated (32)). Examples are
directing eye movement or changing the orientation of the head, or modulating
the sensitivity of the neural circuits that process the information. Finally,
the selection of information for entry into working memory is found to be a
competitive, hierarchically structured process (I42]). At low hierarchical levels,
competition occurs within neural representations of basic sound parameters;
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at higher levels, competition occurs between different auditory streams; at the
interface with working memory, competition occurs between information from
the different senses. At each level, the stimulus with the highest relative strength
is selected (combining bottom-up and top-down effects), in a winner-takes-all
fashion. This is why selective attention is often compared to a stagelight (35),
sequentially illuminating different parts of the scene for further analysis. An
important factor in this process is inhibition-of-return (37; [143) (IOR), which
prevents attention from permanently focusing on the most salient components of
the scene, naturally generating an attentional scanpath over time. The process
of voluntary selective attention involves working memory, sensitivity control
and competitive selection operating in a recurrent loop (32]), and may prohibit
involuntary switching of attention to task-irrelevant distractor sounds (39).

It is difficult to determine whether a particular sound within the acoustic
environment is noticed or not, using psychophysical experiments. Simply asking
people about the sound may point their attention towards it and make them
notice the sound. In laboratory conditions, biophysical measures such as event-
related potentials (ERP) can be used to assess the influence of attention to
sounds during the performance of various non-auditory tasks (144 [145]). Such
research suggests that effective orientation of attention towards particular sounds
is influenced by a wide range of top-down, personal factors: the prior experience
of the listener with the sound and the significance of the sound to the listener,
the listener’s intentions and activities, its emotional state (I46; [I47) or even a
possible genetic component (148; [I49)). Next to this, the emotional cues carried
by a sound also affect the degree to which it captures attention. Unpleasant
sounds are known to attract human attention more than neutral sounds (150),
even when the peak sound amplitudes are similar (I51).

B.3 Computational framework

B.3.1 General considerations

In the following paragraphs, the knowledge on human auditory processing of
environmental sounds summarized in the previous section is worked out into
a computational model of auditory attention that can be used for analysing
outdoor soundscapes. The model takes as input the sound signal recorded by a
microphone at a particular location and has as output a measure of the potential
of various soundscape components (related to sound sources) for attracting
attention. In view of long-term deployment of the model in outdoor measure-
ment equipment, and for evaluating simulated soundscape design interventions,
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computational efficiency (low data communication rates, real-time operation,
etc.) is advantageous. Consequently, the use of detailed auditory processing
models, such as those existing for loudness (137, masking (I38]), stream segre-
gation (56), auditory saliency (34) or auditory attention (I52)) is not feasible.
Instead, simplified models for each step of the soundscape analysis process
are proposed. Next to this, the proposed model only accounts for monaural
sound, disregarding the influence of spatial cues on attention, and does not
perform automated labeling of sounds. The proposed computational model is
comprised of three stages, illustrated in Figure (a) peripheral auditory
processing and the calculation of a measure of auditory saliency, (b) mapping of
acoustical features based on co-occurrence and (c¢) modelling auditory attention.
A detailed description of each of the three stages follows.

B.3.2 Peripheral auditory processing

In a first stage, a feature vector is extracted, at regular time intervals, from the
sound signal measured by the microphone. Instead of calculating a detailed
time-frequency representation of the raw sound wave (e.g. using a gammatone
filterbank), the model starts from the 1/3-octave band spectrum (31 bands from
20Hz to 20kHz), calculated with a temporal resolution of 1s. This procedure
has the main advantage that off-the-shelf sound measurement equipment can be
used as a front-end, which increases the applicability of the model. The limited
data rate (31 values per second) makes it possible to implement the model
on a large-scale measurement network and to store data for longer periods of
time. Furthermore, the choice of time resolution can be justified by noting
that a wide range of outdoor environmental sounds have a relatively slowly
varying temporal envelope (61} [62} [63]). Subsequently, a simplified cochleagram
is calculated using the Zwicker loudness model (9 [65), which accounts for
energetic masking. Again, the complete hearable frequency range is considered
(0 to 24 Bark) with a spectral resolution of 0.5 Bark, resulting in 48 spectral
values at each time step.

The mechanism for extracting the feature vector, which characterizes the
strength and spectro-temporal variability in the sound signal, is inspired by
the way the human auditory system biases its attention towards particularly
conspicuous events. Based on existing models for auditory saliency (34;[153)), the
proposed model calculates measures for intensity, spectral and temporal contrast
using a center-surround mechanism, which mimics the receptive fields in the
auditory cortex. In particular, multiscale features are calculated in parallel by
convolving the cochleagram with various 2D gaussian and difference-of-gaussian
filters. The former encode intensity, while the latter encode the spectral and
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Figure B.1: Schematic overview of the proposed computational model: (a)
peripheral auditory processing, (b) self-organizing map of acoustical features
based on co-occurrence, and (c) auditory attention.
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Figure B.2: Cross section of the receptive filters that are used to calculate
(a) intensity, (b) spectral contrast and (c) temporal contrast. For the latter,
causality is preserved by only convolving with the past.

temporal gradient of the cochleagram. In total, 16 scales (4 for intensity, 6 for
spectral contrast and 6 for temporal contrast) are considered. Figure shows
a section of the filters along the time or frequency axis. Using this procedure,
a feature vector is constructed at each time step, consisting of 16 x 48 = 768
values.

Based on the feature vector, a measure for the saliency of the sound at each
time step is calculated. The calculation largely follows the scheme presented
by Kalinli and Narayanan (153), with the major adjustment that the effects of
spectro-temporal orientation and pitch are not considered. First, rectified center-
surround differences are calculated from the raw features obtained at different
scales within the same modality (intensity, spectral or temporal contrast),
mimicking the properties of local cortical inhibition (34]). The resulting center-
surround differences are then scaled to a common range, in order to eliminate
the difference in dynamic range between the different modalities and scales, and
normalized using an iterative nonlinear algorithm that simulates competition
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between neighbouring salient locations on the tonotopic scale, promoting peaks
while suppressing background noise (I54). The normalized center-surround
difference vectors are then combined (added) across scales within each modality,
and the resulting vectors are again normalized using the same algorithm, and
combined to achieve a single tonotopic vector, encoding the saliency of the
sound at each time step and at each frequency channel. Finally, a single saliency
score at each time step is calculated by summing all values of the saliency
vector, hereby assuming that saliency combines additively across frequency
channels (70). A detailed description of the algorithm can be found in De
Coensel and Botteldooren (81).

B.3.3 Co-occurrence mapping of features

Biological systems learn which auditory features belong to the same auditory
object based on co-occurrence. However, auditory learning as described at
the end of Section [B:2.2)is not a straightforward process, and is still far from
being fully understood and computationally replicable. Moreover, learning
and memory are not observable phenomena; they have to be inferred from
behaviour (42)). Nevertheless, in the computational framework here presented,
an initial unsupervised learning strategy based on feature co-occurrence is used.
It is implemented as a Self-Organizing Map (SOM) or Kohonen Map (155)), an
abstract model of topographic mapping in the sensory cortex (see Section .

A SOM is a two-dimensional grid of units, each of which is represented in
the high-dimensional feature space through a reference vector. The Original
Incremental SOM Algorithm (I55)) to train the map consists of iterating the
following two steps until some stopping criterion is met:

1. An input feature vector is provided at each time step and the unit corre-
sponding to the closest reference vector, generally called the best-matching
unit (BMU), is found.

2. The reference vector corresponding to the BMU and those of units near
to the BMU are moved closer to the input feature vector.

The second step underlies the topological preservation. After training, the
reference vectors of the SOM units tend to a nonlinear discrete mapping of the
distribution of the input data. Some regions of the feature space will be densely
mapped by the reference vectors of the SOM units, while other regions will only
be sparsely represented. This way, the high-dimensional relationships underlying
the input feature data are projected on a two-dimensional map (I55). Once
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the projection is sufficiently accurate, as quantified by the stopping criterion,
training stops.

Machine learning purely based on co-occurrence does not account for the
influence of several factors influencing human learning such as attention that
were mentioned in Section [B:2} Therefore, the basic SOM training is extended
with a second training phase that accounts for saliency and novelty of the sound,
thus attributing more weight to sounds that are likely to attract attention. The
implemented strategy, called continuous selective learning (132), can be seen
as a series of much shorter learning periods, triggered whenever the distance
between the new feature vector and the BMU is higher than an activation
threshold, 77, and halted when less than a deactivation threshold, 75, with
T < Ti. Moreover, in order to give more importance to salient sound events,
the overall saliency as calculated in Section is used as a modulator of
the learning strength. It is observed that after a couple of weeks of continuous
selective learning, the SOM is capable of identifying—in terms of distance to the
BMU—most of the sounds occurring in a specific acoustic environment. In other
words, after such training, the reference vector of each SOM unit corresponds to
a representative sound prototype. In order to translate the information encoded
in the SOM into hearable sound samples, a sound recording session can be used,
during which representative 5-second sound samples with feature vectors closest
to each SOM unit are stored. We call this compilation of sounds the “acoustic
summary” of the given soundscape (132)). Note that the sound samples of the
acoustic summary are not labeled automatically in this work. Instead, this
can be performed by an expert listener (e.g. an acoustician acquainted with
the soundscape of the given location), who explores the acoustic summary and
identifies regions in the map corresponding to specific classes of sounds used to

present the results in Section

B.3.4 Modelling auditory attention

In order to identify sounds that will be heard on the basis of a trained SOM, an
excitatory-inhibitory artificial neural network (ANN), simulating the auditory
cortex, is introduced. With each unit of the SOM, a neuron is associated,
to be excited by input sounds with feature vectors that are similar to the
reference feature vector of the corresponding SOM unit. In order to achieve
this, first, a measure for similarity between the input feature vector and the
SOM reference vectors needs to be calculated. This is done by calculating
the Euclidean distance between the two vectors. Low values of this distance
indicate high similarity and vice versa, but, as high excitation is desired in
case of high similarity, a gaussian-like function, centered around zero, is used
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to convert the Euclidean distances to excitation values, resulting in excitation
values approaching 1 for highly similar, and 0 for dissimilar vectors. To take
into account the fact that the excitation process is not instantaneous, a leaky
integrator is used, with different time constants for increasing and decreasing
excitation values.

Bottom-up attention, as explained in Section is a rapidly operating
process and is independent of the activity the listener is involved in, facilitating
the detection of conspicuous and salient sounds. This is implemented in the
model by weighing neuron excitation with a saliency factor, calculated based
on the reference vector of the corresponding SOM unit.

As in De Coensel and Botteldooren (81), IOR is introduced to prevent
auditory attention from staying focused on one particular source, thus enabling
a listener to scan his/her auditory environment. At each time step, only a
certain number of neurons will finally be activated, indicating that attention
is focused on these neurons. In the current model, IOR is implemented as an
increasing inhibition term for these neurons, causing activation to decrease and
eventually to fall back to zero. For neurons that are not activated, and thus are
not a candidate to get attention, IOR decreases to zero, such that activation
is made possible again. This way, IOR causes attention to be continuously
shifted from one zone to another. As with excitation, a leaky integrator is used
for the implementation, again with different time constants for increasing and
decreasing values.

The effect of top-down or outward oriented attention is implemented as a
factor modulating the IOR mechanism. By changing the IOR time constants
for neurons related to certain zones of the SOM, the shifting of attention can
be delayed or even halted when it is focused on neurons corresponding to one
of these zones. This way, sustained attention on the sounds represented by
these zones is facilitated. Modelling the cause of top-down attention itself is far
beyond the scope of current computational models.

Finally, concepts of a Locally Excitatory Globally Inhibitory Oscillator
Network (84) (LEGION) are used to implement clustering and competitive
selection, to indicate which sound receives attention and thus is entered in
working memory. In order to minimize the computational load of the model,
there are no oscillators as in a LEGION, but local excitation and global inhibition
terms are still used respectively for clustering and competitive selection. Local
excitation is added to the input of each neuron, based on the excitation of
its neighbouring neurons, weighted with precalculated connection weights that
depend on the similarity of the reference vectors of the two corresponding SOM
units. Neighbouring neurons which represent very similar sounds are strongly
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connected, while connection is weak when the neurons represent dissimilar
sounds. A preliminary unit activation can be calculated as the sum of excitation
terms minus the IOR, with negative values being set to zero. Global inhibition
now adds a new inhibition term to each neuron in the network, calculated based
on the sum of these preliminary activations of all neurons. When this summed
activation exceeds a certain preset value, global inhibition will rise, and vice
versa. By subtracting this inhibition term from the preliminary activation and
setting negative values to zero, the final activation is calculated. Thanks to the
clustering effect of local excitation, at each time step, only one or a few clusters
will have positive values for their final activation. These clusters represent the
sounds that receive attention, and for which information is sent to working
memory.

B.4 Case study

B.4.1 Overview

In this section, a proof of concept of the computational framework presented in
Section is provided. A fixed sound measurement station was installed in the
city of Ghent, next to an urban road, carrying about 3000 vehicles/day during a
typical work day. The sonic environment at the chosen location mainly consists
of a mixture of road traffic noise due to private and public transport, and noise
from pedestrians due to the proximity of several shops and one educational
institution. A standard 1/3-octave band spectrum at 1s time intervals was
measured during 3 weeks and is used to train the computational attention model
(see below).

The aim of the case study was to assess the perceptual effects of attracting
songbirds at the microphone location, a measure that is often proposed to
increase the pleasantness of a soundscape (96). For this, a one-hour sound
recording was performed during a work day (but not during the latter 3-week
period used for training). The Laeq during this one-hour period was 68.2dB(A).
Subsequently, a series of 30 artificial one-hour sonic environments were created
by mixing the original recording with an increasing number of bird sounds
at random instances in time. For this, a series of bird vocalisations without
background noise, with a duration of up to a few seconds, were used, for
which the peak level was adjusted to match the peak level of the few bird
sounds present in the original recording. The one-hour Laeq of the added bird
sound ranged from 46.3 dB(A), representing a few sporadic vocalisations, to
75.8 dB(A), representing a quasi-continuous bird chorus, resulting in a signal-
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Figure B.3: The average short-term partial loudness (STPL) of the bird sound
above the background noise, as a function of signal-to-noise ratio.

to-noise ratio (SNR) for bird sound versus background ranging from -21.9dB
to 7.6 dB.

B.4.2 Results

A first assessment of the effect of adding bird sound would be to check the
audibility of the bird sound above the background noise. Figure [B.3] shows
the average short-term partial loudness (STPL) of the bird sound above the
background, for the series of artificial sound mixtures, as a function of signal-
to-noise ratio, as calculated with the model of Glasberg and Moore (I38).
The average partial loudness rises monotonically with signal-to-noise ratio,
and starts to increase with a higher rate between -5dB and 0dB, marking
the range in which the individual bird vocalisations, which can be partially
energetically masked if considered separately, start to form a chorus that is
audible continuously. Note that the energetic masking model by Glasberg and
Moore has only limited applicability in evaluating the effect of acoustical design
measures in situ, because it requires that separate recordings for foreground
and background sound are available (thus only artificial sound mixtures can be
used), and that, due to its computational complexity, fragments are short—for
the results of Figure [B:3] only the first minute of sound was used.

To demonstrate the performance of the auditory attention model presented in
this work, first, acoustical feature vectors and instantaneous saliency values were
calculated for the 3-week measurement period, using the algorithm presented in
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Section [B:3:2] Subsequently, based on this data, a SOM, composed of 50 x 75
= 3750 hexagonally placed units, was trained in three phases. During the first
phase, the incremental SOM training algorithm, as presented in Section
was applied to the features calculated during 14 hours of the first day of the
measurement period. During the second phase, the selective learning algorithm
was applied to the remaining 3 weeks of measurement data. During the third
phase, the artificial sound mixtures containing bird vocalisations were used in
random order. Training a SOM on the sounds at a specific location results in
a strong sound context dependency (I3I). In particular, sounds not present
in the training set cannot be easily classified (they will have a large distance
to the BMU). Therefore, the third training phase is needed to get the SOM
acquainted with the new bird sounds added to the background. From now on,
we will refer exclusively to this fully trained SOM.

An acoustic summary has been created as mentioned in Section [B.3.3
based on several hours of recording at the given location and the 30 artificial
soundscapes. Next, SOM units related to bird sounds are marked by an expert
listener, and these are shown in Figure h). They are mainly grouped into
two different regions, related to individual bird chirps (region 1) and a chorus
of bird song (region 2). In light of Section the presence of multiple SOM
regions devoted to bird sounds should not be surprising: the sound of a single
chirp and the sound produced by many birds in chorus result in different sound
features, and thus in different regions of the map. Figure a)-(g) shows how
often each of the units of the SOM become the BMU when the original sound
and each of the artificial sound mixtures is presented to the model.

As expected, units inside both regions corresponding to bird sounds are
more frequently the BMU as the SNR of bird sound increases. This behavior
can be quantitatively evaluated by calculating the percentage of time the BMU
belongs to either region 1 or region 2 as a function of the SNR. Figure
shows that the percentage of the time that individual bird chirp features are
dominant (BMU belonging to region 1) increases monotonically, until a peak
is reached at a SNR equal to -2dB. At that point, the percentage of the time
that bird chorus features (BMU belonging to region 2) are dominant starts
to increase, while the time that individual bird chirp features are dominant
falls back to zero with increasing SNR, marking a quasi-continuous bird chorus
present throughout the corresponding artificial sound mixtures.

Now, the same procedure is repeated, taking into account attention mech-
anisms. Although implemented in the general computational model (see Sec-
tion , the effect of top-down attention is not taken into account, as this
would require a model for working memory, which is outside the scope of this
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Figure B.4: Logarithmic distribution of the occurrence of the BMU among the

SOM units for different scenarios: (a) background, (b)-(g) artificial soundscapes,

in which bird vocalisations are progressively added to the background. For each
sound scenario, one hour (3600 testing samples) has been used. (h) The two
regions of the SOM related to individual bird chirps (region 1) and bird chorus

(region 2).
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Figure B.5: Evolution of the fraction of time the BMU is located in region 1
(bird chirp, dotted line), region 2 (bird chorus, dashed line) and their sum (total,
continuous line) as a function of SNR between background and foreground. For
each sound scenario, one hour (3600 testing samples) has been used.

paper. Consequently, IOR time constants are the same for all neurons. The
neuron with the strongest activation is now taken at each time step to represent
the sound (i.e. the combination of sound features) that receives attention, and
in the same way as before, a distribution of occurrence is calculated. From
this distribution, the same two clusters are used to calculate the percentage of
time the most strongly activated neuron is located in each of the regions, thus
approximating the fraction of time that attention is focused on bird sound. The
results are displayed in Figure [B:6]

It can be seen that for lower SNR, the percentage of time that attention is
paid to birds is slightly higher than in Figure [B.5 while for higher SNR, this
percentage is lower. This indeed is the expected behavior, as for lower SNR,
each time bird sound is detectable, it will get attention because its saliency is
higher than the background, and because inhibition-of-return will be very low.
For higher SNR, bird sound will be continuously detectable, and inhibition-
of-return will cause attention to shift away from it. Considering that sounds
need to be audible and be paid attention to, in order to contribute to the
appraisal of a soundscape, these results are also in accordance with empirical
results reported by De Coensel et al. (99). There, it was found that, already
at an SNR of -10dB, adding (salient and intermittent) bird sound to a sonic
environment dominated by road traffic noise would increase the pleasantness
of the soundscape significantly, more than adding the sound of a continuously
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Figure B.6: Evolution of the fraction of time the auditory attention is located
in region 1 (bird chirp, dotted line), region 2 (bird chorus, dashed line) and
their sum (total, continuous line) as a function of SNR between background
and foreground. For each sound scenario, one hour (3600 testing samples) has
been used.

flowing fountain at various SNR, although the latter may be more suited to
energetically mask road traffic noise (99; 133). The sounds produced by bird
vocalisations and fountains are generally considered to be positive in urban
and rural environments (121} [156). Consequently, in the context of soundscape
planning, the presented model can be helpful to quantify the potential positive
effect of introducing additional sounds in the sonic environment, e.g. through
the use of audio islands (98)).

B.5 Conclusions

Taking into account the mechanisms underlying human auditory perception of
environmental sound is a fundamental principle in soundscape design. However,
models and techniques that would assist the soundscape designer in achieving
this goal are still lacking. In this work, a computational model for soundscape
analysis was presented, which implements processes such as bottom-up selective
attention and learning, with the goal of simulating how listeners would switch
their attention over time between different sounds. The model consists of
simplified implementations of several already existing submodels for auditory
saliency, topographic mapping, learning, and auditory attention. It complements
already existing models of attention-based auditory scene analysis (50) although
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it does not provide the same level of detail. However, the novelty of this model
lies in its capability to process long stretches of sound in order to accommodate
for the huge variation in environmental sounds that characterize the typical
urban outdoor environment. The model can be applied to construct an acoustic
summary of a soundscape, i.e. a collection of the typical sounds that can be
heard at a particular location, and allows to assess the influence of soundscaping
measures such as adding additional sounds to distract attention away from
undesired sounds. The latter use was illustrated through a case study, in which
the effect of adding bird sound to an urban sonic environment was investigated,
and in general, accordance with empirical results was found for this particular
case. An unexpected model outcome was the emergence of two regions in the
map as more and more bird sounds were entered. It was confirmed by listening
to the samples that these highly activated regions corresponded to what could
be labeled “bird chirps” at the one hand, and a “bird chorus” at the other.

The presented model does not take into account cross-sensory or high-level
cognitive effects that lead to top-down auditory selective attention, or meaning
attachment to sounds. The latter would involve accounting for the influence
of inter-individual differences, and solving linguistic issues (I10). Indeed, a
sound can be described at two different levels, either by its source or by the
action generating it, although such levels are not always clearly separated. A
description of the physical properties of either the sound source or the sound
itself is provided only when the listener is not able to identify the source or the
activity generating the sound. In order to explain the complexity of labeling
and categorizing the sounds, observe the following two examples: the sounds of
a tram passing by a stopping place and the sound produced by birds. In the
first example, a listener would typically label each sound based on the action
that generates the sound (braking, opening the doors, warning sounds before
closing the doors, accelerating), while it would be unlikely that the specific
sources (brakes, engine or loudspeaker) are mentioned. In this case, activity
categorization will thus be dominant. Obviously, listeners would also very likely
mention the tram as a whole, referring to the sound source. In the second
example, the sound produced by birds, the label “bird chirping” is generally
used, thus showing again a mixture of the two levels: sound source (birds) and
the activity producing such sounds (chirping). Moreover, a listener may refer to
the number of birds: while one bird chirping or several birds chirping together
denote the same activity, the (number of) sound sources changes. Automated
labeling of the acoustic summary as compiled with the present model thus
provides a challenge for future research.
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Detecting and selecting sound events is emerging as an interesting tech-
nique for characterizing and representing the soundscape of a specific
location. In this article we propose a computational model for automat-
ically constructing a so-called acoustic summary, i.e. a comprehensive
collection of sounds aiming to represent the specific soundscape at a given
location. Such an acoustic summary could be used by architects, sound-
scape designers, and urban planners to explore - by listening - the sonic
environment at a certain location as it is perceived by a human listener.
The model is based on a self-organizing map, a type of neural network.
It starts by extracting several psychoacoustic features from the sound. A
specific, extensive and unsupervised training allows this map to be tuned
to the typical sounds that are likely to be heard at the microphone location.
The learning algorithm takes into account some basic aspects of human
perception. For example, salient events tend to be better remembered than
the ones that do not stand out, even if they occur less frequently. After the
training, the self-organizing map is used to form an exhaustive acoustic
summary by means of automatically recording specific sound events for
the microphone location. In addition to describing the proposed tool, this
paper also presents a validation test with local experts in order to show the
ability of the model to pick up sounds which bring out the distinctiveness
and the specificity of the soundscape as a local expert would do.

C.1 Introduction

Livability of the urban environment has always been a compelling issue for
urban planners. Well-being of the citizen is related to the quality of the urban
environment in different ways. Person-environment mismatch at the dwelling
may lead to stress and related health impacts (I57) but also the quality of the
public space is of utmost importance. High quality public spaces stimulate social
cohesion, recreation, and physical activity (I58)). In particular the role of urban
green areas has been extensively investigated in this respect and several studies
from the last decades indicate that people’s psychological restoration and well-
being is enhanced by direct access to nature and restorative areas (159; [160; 16T}
162 [163) by visual access to them from the dwellings (164 [165; [166]) and by their
perceived availability (127)). The positive role played by such areas has meanly
been studied from the perspective of visual diversity, naturalness and aesthetics.
However, the role of the soundscape and in particular quietness and tranquillity
is increasingly being stressed (I27)). Therefore, there is an increasing awareness
of the fact that the sonic environment forms an essential component of the
urban environment that requires as careful planning as the landscape (94} [95)).
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(Classically, urban sound has been treated as a waste product to be tackled with
suitable noise control policies whose most popular and visible tool has been
extensive noise mapping. However, the final goal of planning and designing
urban environments is not only noise abatement, but the creation of spaces with
matching positive acoustic qualities (I67). This approach, typically referred
to as a soundscape approach, is getting increasing multidisciplinary attention
and is the subject of several projects and studies (95} 129} 168} [169; 170). As
the soundscape concept extends beyond the sonic or acoustic environment and
includes the way this is perceived and understood by a typical user of the space
and within a typical context, the tools at the disposal of the urban sound planner
and soundscape designer should account for human auditory perception (I71]).

Today, physical registration of relevant acoustical parameters is commonly
accepted as a first soundscape analysis step (I72), followed by an evaluation
of the perceptual effects by techniques such as specific interviews and ques-
tionnaires, preferably involving community members who live at the location
under study (24]). The combination of these two approaches is called combined
soundscape analysis (168} [172)) and it is often deployed by means of soundwalks,
in which sound measurements and perceptual interviews are conducted simul-
taneously. In a research perspective, the results are combined in order to find
quantitative relationships between physical sound indicators and perceptual
attributes (I73). Soundwalks are a popular methodology for understanding
outdoor soundscapes (I74), but they are inherently short-term and typically
include only daytime. For this reason, several long-term strategies have been
developed, mainly based on mobile sound measurements and community involve-
ment, e.g. with public workers such as local police officers (I72]). This approach
is surely more detailed and complete, but requires a considerable organizational
effort and regular and constant participation, resulting in feasibility and re-
producibility issues. In both short and long term approaches, a methodology
for systematically selecting and recording a comprehensive collection of sound
events that is representative for the sonic environment in the way that it is
perceived and understood by local experts — inhabitants and visitors — would
mean a significant step forward in soundscape methodology.

In this paper a neural-network-based model is proposed that automatically
constructs an acoustic summary, i.e. a collection of representative sounds
that are likely to be noticed at a particular location and together represent
the soundscape at that location. The acoustic summary can provide a quick
overview of a specific soundscape, thus being a useful soundscape analysis tool
for the urban planner and the soundscape designer. In contrast to most of
the computational auditory scene analysis (CASA) models (see (56) for an
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overview) the major interest here does not lie in extracting as clean as possible
sound samples for all components of the auditory scene. On the contrary, the
intention is to summarize the sonic environment using only those sounds that a
human observer, not particularly focusing its attention to environmental sound,
would notice. For this reason, the proposed model partly takes inspiration from
specific CASA techniques for extracting salient fragments of the auditory scene
but it is also inspired by mechanisms underlying human attention (34 [70; [71)).
Moreover, CASA techniques are not context dependent. Distinguishing between
frequently occurring sounds and out-of-context or rarely occurring sounds is a
crucial aspect in constructing an acoustic summary. For this reason, besides a
biologically inspired auditory processing model, learning is a very important
aspect in the presented model. It is implemented by means of a neural network
called Self-Organizing Map (SOM) or Kohonen Map (I55) and a specifically
tailored learning technique. Furthermore, the model attempts to create a
compromise between biological accuracy and computational efficiency as the
model is to be integrated in equipment for long-term outdoor measurement and
the data processing underlying the decision whether or not to record particular
sound events has to be made in real-time.

The structure of this paper is as follows: Section describes the neural-
network based model to construct the acoustic summary. Section[C.3]is dedicated
to the results of a validation test performed by local experts in order to assess
how accurately the acoustic summary is representing the soundscape in their
neighborhood. Section [C.4] discusses the results and future developments.
Finally, in Section conclusions are presented.

C.2 Methods

C.2.1 Overview

Constructing the acoustic summary requires computational auditory scene
analysis that mimics how a human observer would split the sonic environment
in its relevant components. Considering the application of the model in long-term
outdoor measurement stations, computational efficiency has to be considered.
For this reason, existing detailed auditory processing models for loudness (137),
masking (I38) and auditory saliency (34)) are replaced by simplified versions.
The proposed model is comprised of two main stages, illustrated in Figure
(I) during the learning phase a self organizing map (SOM) is tuned to the typical
sounds at the given location based on the sound level and its spectrum and
(IT) for each class of sounds thus obtained, prototypes are recorded to form
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Figure C.1: Schematic overview of the proposed computational model: (I)
learning and (IT) acoustic summary formation. Both stages start by a simplified
(I.a,IT.a) peripheral auditory processing. The learning uses the output of such
processing for (Ib) training a self-organizing map of acoustical features. The
acoustic summary formation stage uses the trained map for (IL.b) retrieving
sound samples and thus forming a sound library. Finally, an acoustic summary
is formed (IL.c) by selecting from the library a limited number of sounds based
on a ranking method.

the acoustic summary. Real-time operation is required in the second stage
due to the limited sound buffer of typical outdoor measurement stations. The
sound signal recorded by the microphone is first treated in a similar way as the
human peripheral auditory processing (I.a-IL.b) and both acoustical features
and a measure of auditory saliency are calculated. The learning stage maps
the acoustical features based on co-occurrence (I.b) using the incremental SOM
algorithm and a training technique called Continuous Selective Learning (CSL)
that was developed specifically for this purpose. Once the learning has ended,
the trained SOM can be used for automatically triggering the recording of typical
and salient sounds and thus incrementally forming a library of prototypical
sounds (IL.b). The acoustic summary is then formed by selecting a small number
of sounds from this sound library, based on a ranking method (IL.c). In this
paper three different ranking methods are presented and tested during the
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validation test.

C.2.2 Sound feature extraction

The sound feature extraction stage of the proposed model is highly inspired by
a model for auditory attention that was developed earlier by the authors (I71]).
A 1/3-octave band spectrum with a temporal resolution of 0.125s is calculated
starting from the raw audio signal. The relatively coarse temporal resolution
was chosen considering the fact that environmental sounds usually show a
slow-varying temporal envelope (61; [12I). To account for energetic masking, a
simplified cochleogram s(f,t) is then calculated based on the Zwicker loudness
model (9) covering the complete audible frequency range (0 to 24 Bark) with a
spectral resolution of 0.5 Bark. The auditory system is, in addition to absolute
intensity, also sensitive to spectro-temporal irregularities (25} [66; [68} [175). The
proposed model therefore calculates measures for intensity, spectral and temporal
modulation using a center-surround mechanism (72)), based on auditory saliency
models (34} [70; [71)). More in detail, a convolution of the cochleogram with
various 2D gaussian and difference-of-gaussian filters is performed in parallel at
each time step, resulting in a set of multi-scale features called sound feature
vector and consisting of 768 values. The corresponding high-dimensional vector
space will be referred to as the sound feature space. More details about the sound
feature extraction can be found in (I7I)). Finally, a scalar value called overall
auditory saliency is also calculated from the sound feature vector, following the
algorithm developed by (81)).

C.2.3 Learning

The feature vector provides extensive information about the sonic environment
at a given time step. Analysis of the sonic environment should usually last
for a long period ranging from a few days to several weeks, depending on the
richness in sounds of the sonic environment at the given location. The crucial
point is how to use such a large amount of data to construct a concise but
exhaustive acoustic summary. In this paper a neural-network-based approach is
proposed, which makes use of a self-organizing map. Several topographic maps
have been observed in the visual and auditory cortex (50; [5I} [76; [77)) and the
SOM has been originally conceived as an abstract mathematical model of such
topographic mapping. Moreover, SOM is typically described as an unsupervised
learning-based method for clustering and visualizing high-dimensional data (78)),
another important aspect to take into account due to the high-dimensionality
of the sound feature space. In the framework of the present model, the SOM
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would eventually learn which features belong to the same auditory object based
on co-occurrence. Furthermore, the size of a representational area of a sound
in primary auditory cortex is closely related to its importance (43) and the
strength of the memory effects (44]), an aspect of auditory learning very well
modeled by SOM and the CSL which will be described later in this section.
As mentioned in Section [C.d] context dependency should be considered while
selecting sounds for constructing an acoustic summary. Knowing the context
can entail familiarity with the sonic environment and it has been shown that
familiarity with the sound to be detected makes the detection easier (79)). The
extensive training on sound feature vectors at the microphone location tunes
the SOM to the typical sounds composing the local sound environment and
thus makes the system “familiar” with them.

The SOM used in our model is a 2D network of 3750 equal-spaced units
in a regular hexagonal lattice. Each unit has an associated reference vector in
the high-dimensional sound feature space. The initial position of the reference
vectors is calculated by means of principal component analysis on an input data
subset as in (78)). After initialization, reference vector coordinates are modified
during a first training phase which is based on the Original Incremental SOM
Algorithm (I55). In particular, at each time step, the unit with reference vector
that most closely matches the current sound feature vector is selected (typically
called the best-matching unit or BMU) and the reference vector of the BMU,
and to a lesser extent the reference vectors of the neighbouring units in the 2D
lattice, are moved closer to the input feature vector. After this initial training
phase, the reference vectors of the SOM units can be seen as a non-linear discrete
2D mapping of the probability density function of the sound feature vectors used
for training. In particular, some regions of the sound feature space contain more
reference vectors than others, thus preserving the high-dimensional relationships
underlying the input feature vectors (I55). When positioning a new sound
feature vector with respect to the trained SOM, the smaller the distance to the
BMU, the more often similar sound feature vectors occurred during the training
phase. The learning algorithm described above is purely based on frequency of
occurrence and does not take into account the fact that human perception and
retrospective assessment of a sonic environment also depends on the saliency of
the sounds. Salient sound events would be better noticed and remembered than
less salient ones (I76]) even if they do not occur that often. Therefore, the SOM
trained with the original incremental SOM algorithm is used as a starting point
for a second much longer training phase which is referred to as (continuous)
selective learning. As in (I71]) the overall auditory saliency, a number between
zero and one, is used for modulating the learning rate parameter during the
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selective learning: the learning based on sound feature vectors whose related
saliency values are higher than 0.5 is enhanced, while learning based on feature
vectors corresponding to sounds with lower saliency is somewhat suppressed.
The goal of using saliency in selective learning is to reduce the number of SOM
units whose reference vectors are related to often occurring but non-relevant
sounds such as the urban background hum. At each time step, the BMU is
found as before. However, not all input sound feature vectors are used as
inputs during the selective learning: a learning phase is triggered only if the
distance to the BMU is higher than an activation threshold Tup. All subsequent
input vectors are then selected as inputs for training, until the distance to
the BMU drops below a deactivation threshold Tdown. Furthermore, sound
feature vectors occurring a few seconds before the triggered learning period are
included. In this paper, a 2 seconds pre-trigger period is used, corresponding
to 16 time steps. The thresholds Tup and Tdown are chosen in such a way
that less than 10% of all sound feature vectors are used as input for selective
learning. In order to visualize the effects of training on the SOM reference
vectors the so-called U-matrix (82) is used. This matrix shows the distances
between reference vectors related to each pair of neighboring SOM units. By
means of a color-coding it is thus possible to distinguish groups of SOM units
with similar reference vectors and areas with high variability. The effects of
the CSL on the clustering of SOM units can be seen in Figure [C.2| where the
U-matrix after the first training using the original incremental SOM algorithm
is shown next to the U-matrix of the final SOM after the continuous selective
learning phase.

C.2.4 Sound sample retrieval and selection

The reference vectors associated to the trained SOM units can be seen as
representative abstract sound prototypes encoded by their sound feature vectors.
Once a SOM is trained, it can be used for constructing a library of sounds,
whereby sound samples that are most similar in the sound feature space to the
sound prototypes within the SOM are recorded. As shown in the schematic
overview in Figure 1, the first step in constructing the acoustic summary is
calculating feature vectors for the sound observed at each time step as explained
in Section [C.2.2] The BMU is then selected, and the distance between its
reference vector and the current sound feature vector is calculated. Based on
this distance, sound recording is triggered if the selected SOM unit has not been
the BMU before (meaning that the encountered sound has not occurred before
during the sound sample retrieval phase), or if the distance to the BMU is
smaller than any earlier distance for this BMU (meaning that a better matching
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Figure C.2: U-matrix showing the distance by means of color-coding among
the reference vectors of neighboring SOM units after (left) the first training
session using the original Incremental SOM algorithm and (right) the continuous
selective learning.

sound sample is encountered). These steps have to be taken with low latency
due to the limited audio recording buffer of typical measurement station. Sound
samples are recorded from 3 seconds before to 2 seconds after the recording
trigger. It turns out that for typical urban soundscapes, the bulk of the SOM
units is represented by an audio sample after a few days of sound sample
retrieval. This set of sounds can be seen as a sound library describing the
soundscape at the measurement location. The large number of audio samples
that is gathered through the procedure described above is unpractical for easily
exploring the given soundscape by listening. For this reason, three ranking
criteria are presented, which can be used to select a subset of sounds that is most
representative for the given soundscape; this subset is then called the acoustic
summary. The first proposed ranking criterion is based on saliency: the higher
the saliency, the more likely the sound sample will be representative and the
higher its ranking. As explained in Section[C.2:2] a measured overall saliency
value can be calculated at each time step from the sound feature vector. The
SOM reference vectors lie in the sound feature space, therefore saliency values
can be calculated for each of them, resulting in a saliency overlay on the SOM.
A second criterion is based on how often each of the SOM units was selected as
the BMU during a given time interval, typically one day or more, resulting in a
frequency of occurrence overlay on the SOM. As mentioned in Section [C.2.3]
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the frequency of occurrence of sounds is not likely to be a sufficient criterion to
represent the sounds that will be noticed and remembered. For this reason, a
third method is proposed which combines saliency and frequency of occurrence

of each SOM unit
log (0; + 1)

log N

where o; is the number of time steps the SOM unit ¢ is the BMU, N is the

total number of samples used for calculating the frequency of occurrence, s;

the saliency of unit 7 and 8,.. and B, are two positive weighting coefficients
between 0 and 1 so that Boce + Bsar = 1.

The number of sounds to be selected depends on the envisaged use of the
acoustic summary. In the validation test discussed in Section 32 sounds
have been selected based on their ranking for each criterion. An a posteriori
justification for selecting exactly this number is given in Section [C-4]

Cp = ﬂocc . + Bsal * Si, (Cl)

C.3 Validation test

C.3.1 Overview

A validation test has been designed to check the representativeness of the
automatically generated acoustic summaries for an urban soundscape. Sound
recording devices at 6 locations in and around the Belgian city of Ghent, that
will be referred to as Bi, Ko, Bu, Sp, Be, and Dr were used. In[C] the day-
evening-night equivalent sound level, Lqc,, and a qualitative description of the
sonic environment for each location are given. Four locations Bi, Ko, Bu and Sp
are situated in urbanized areas, Be is located in the very heart of the city while
Dr is in the suburbs. Sound recording devices were attached to the front fagade
of dwellings. Sixteen people living in the surroundings of the sound recording
devices placed in Bi, Ko, Bu and Sp have been contacted for participating to
the test as local experts, four per location. Very few people were living in
the direct surroundings of the devices placed in Be and Dr, so nobody was
contacted from these two locations. The acoustic summaries from these two
locations were therefore exclusively used as confounders and their quality was
not assessed by the validation test. For this reason, Bi, Ko, Bu and Sp will be
referred to as group 1 in the remainder of the paper, while locations Be and Dr
will form group 2. For each participant in the validation test, three locations
were selected at the beginning of the test. The first selected location was always
the location from group 1 where the participant lived. The two other locations
were randomly selected: one location was chosen among the others of group
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Location | Lgen(dB(A)) | Description

Urban square in the city centre. Road traffic noise

due to private and public transportation, noise from
Ko 71.4 b P P

pedestrians and a music fanfare on Sunday. Micro-
phone placed on a windowsill at the third floor.

Urban no-through street in the centre of Ghent,
mainly used for parking. Limited road traffic noise
Bi 61.3 due to private transportation, noise from pedestrians
and children playing from a recreational area in the
neighbourhood. Microphone placed on a windowsill
at the 1st floor.

Urban street in a residential area. Road traffic noise

Sp 65.5 due to private and public transportation. Micro-
phone placed on a windowsill at the second floor.

Urban street along the railways. Road traffic noise
Bu 73.3 due to private and public transportation, train noise.
Microphone placed on a windowsill at the 3rd floor.

Urban street in a restricted traffic zone in the very
heart of Ghent. Limited road traffic noise due to
the transit of taxi and trucks for restaurants and
Be 65.2 shop delivery, noise from pedestrians due to the
presence of the most important tourist attractions
of the city and very distinct bell melodies from the
nearby belfry.

Quite rural place, about 500 meters from railways.
Dr 56.4 Microphone placed in the backyard of a house in a

countryside village.

Table C.1: Lqen(dB(A)) and qualitative description of the sonic environment at
the six locations where the acoustic summary model has been tested. All the
locations are situated in the Ghent municipality, five of them in the city, one in
a suburban area a few kilometers from the city center.
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Figure C.3: Snapshot of the first experiment. In this experiment the participants
were asked to perform the following task: “In the pictures below you will discover
a collection of sounds by clicking on different areas of these pictures. Each
picture corresponds to a particular place in Ghent. The intensity of red colour
indicates how frequently each sound would be noticed at this place. One of the
pictures corresponds to the direct surroundings of your home. Select the button
below the one you think it is”.

1, and one among the two locations of group 2. The validation test itself was
composed of four consecutive experiments, followed by a small questionnaire
in which comments could be formulated. The test duration was not fixed and
varied among the participants from 30 minutes up to one hour. A computer
with high quality sound card and a Sennheiser HD-280 PRO headphone were
used for audio presentation.

C.3.2 Experiment 1

In the first experiment, the participants explored the sounds of the acoustic
summaries of the three selected locations and had to select the one that they
thought corresponded to the direct surroundings of their home (see Figure
for a snapshot of the experiment).

This experiment was repeated three times, with acoustic summaries con-
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Figure C.4: Correctness of the answers given by the 16 participants from the
four locations of group 1 (Ko, Bi, Sp, Bu) while being asked to select among
three choices which acoustic summary represented the surroundings of their
home.

structed using each of the three criteria —saliency, frequency of occurrence
and combined criterion —in randomized order. Each acoustic summary was
visualized as a panel of 32 buttons, each of them corresponding to a different
sound sample. A colour map spanning from yellow to red was used to colour the
different buttons. Depending on the three different ranking criteria, the colour
encoded (1) the saliency value s;, (2) the frequency of occurrence o;, or (3) the
combined value ¢; of the corresponding SOM unit. To stress color differences,
yellow was assigned to the smallest value and red to the highest value among the
32 values for s;, 0; and ¢;. Participants could listen to each of the sound samples
as much as they wanted, by clicking the respective button, before selecting an
acoustic summary from the three candidates shown in randomized order. In
Figure [C.4] the results of the first experiment are shown. In total 13 participants
out of 16 correctly selected the acoustic summary that corresponded to the direct
surroundings of their home for summaries constructed on the basis of saliency
and the combined criterion. Only 11 participants selected the correct acoustic
summary in case it was constructed on the basis of frequency of occurrence.
The few errors are not equally divided among the four locations included in
this test. All participants at the location Bi and Sp recognized the acoustic
summaries correctly and from Bu only one error for both saliency and occurrence
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criteria occurred. The acoustic summaries from Ko were hardly recognized;
most errors were made for the acoustic summary formed by occurrence, followed
by the combined criterion and then the saliency criterion. In general, the high
and similar number of correct answers for all three ranking-selecting criteria
indicates that the sound library where the sounds are selected from is composed
of typical and representative sounds for the given location. To further explore
possible differences between the three criteria, the number of sounds to which
each participant listened before making a choice, is analysed. From the box plot
in Figure it is clear that participants decided faster in case of acoustic sum-
maries based on saliency, while on average they needed to listen to the highest
number of sounds for occurrence-based acoustic summaries. These differences
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Figure C.5: Box plot of the number of sounds the participants played for deciding
which acoustic summary among three choices represented the surroundings of
their home. Standard whisker value, 1.5, has been used.

are statistically analysed with the linear regression model Y = ax+b with Y the
number of played sounds, a = (a1, as) the coefficients of the regression model,
b the constant term of the regression and z the two-dimensional categorical
variable coding for the different acoustic summary criterion, so that = (0,0)
for the acoustic summary based on saliency, while z = (1,0) and = = (0, 1) for
the occurrence and the combined criterion respectively. After excluding the
outliers in Figure the null hypothesis Hy: a1 = as = 0 is rejected based on
an overall F—test for regression: F'(2,40) = 3.42, p = 0.04. In this regard, it
should be noted that, although randomized, the order in which the summaries
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based on each of the three criteria were presented could in theory have influ-
enced the number of played sounds. The order, coded as a two-dimensional
categorical variable, is thus added in the previous regression model and the
null hypothesis Hy: a1 = as = by = bs = 0 cannot be rejected this time, being
F(4,38) = 1.82, p = 0.14. Moreover, the adjusted R—square, R?, is the highest
when the criterion is the only explanatory variable (R? = 0.1) and it decreases if
the order of presenting the three criteria is added in the regression (R? = 0.07).
The same holds true if such order is the only explanatory variable (R? = 0.02).
A final proof that the number of sounds is truly influenced by the acoustic
summary criterion and not by the order of presentation is given by an F'—test
comparing the two regression models. The extended regression model with
the order added does not provide a significantly better fit: F(2,38) = 0.34,
p=0.72.

C.3.3 Experiment 2

In the second experiment, three acoustic summaries, all coming from the location
where the participant lives, but either formed by the saliency, the frequency of
occurrence, or the mixed criterion were presented. The participants were asked
to rank the presented fragments based on perceived accuracy in representing
the surroundings of the participant’s own home (see Figure for a snapshot
of the experiment). The results of this experiment are shown in Figure
where frequency of the given ranks (1, 2, or 3) is depicted per acoustic summary.
The acoustic summary based on occurrence is clearly considered the least
representative. The combined criterion provides an acoustic summary ranked
first and second by 15 out of 16 participants.

C.3.4 Experiment 3

In the third experiment, each participant was asked to construct his/her own
collection of sounds that represented the direct surroundings of its home, by
selecting sounds from a set of 64 sounds (see Figure for a snapshot of the
experiment). Half of the sounds the participant could choose from came from his
home location, the other half was from two other randomly chosen locations: 16
sounds from the location of group 1 and 16 sounds from the location of group 2.
The participants were not told about such subdivision. All sounds belonged to
acoustic summaries based on the combined criterion. This inclusion/exclusion
of sounds in the final sound collection can be seen as a binary classification task;
therefore it makes sense to speak of true and false positives or negatives. The
sounds coming from the participant’s location that were rightly selected by the
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Figure C.6: Snapshot of the second experiment. In this experiment the partici-
pants were asked to perform the following task: “In the pictures below you will
discover a collection of sounds by clicking on different areas of these pictures
representing the direct surroundings of your home. The intensity of red colour
indicates how frequently each sound would be noticed. Now please rank these
pictures according how appropriate they are to the direct surroundings of your
home. Type 1 for the most appropriate one, 3 for the least appropriate one.”

participant are called true positives (TPs), while selected sounds recorded at
other locations are called false positives (FPs). The true negatives (TNs) are the
sounds from other locations correctly not selected and the false negatives (FNs)
are the sounds from the surrounding of the participant’s home not selected. The
higher the number of TPs and TNs, the better the acoustic summary model
has captured the peculiarities of the soundscape at each location. An overview
of the results for all participants is shown in Figure [C.9] The high variability
among participants was to be expected. Nevertheless, 10 of the 16 participants
scored TPs and TNs both greater than 16, with 16 being the expected result of
a random guess. The False Positive Ratio (FPR) and the True Positive Ratio
(TPR) are calculated and shown in Figure The FPR is defined as the
ratio between the FPs and the number of sounds from other locations, i.e. 32,
while the TPR is the ratio between the TPs and the number of sounds from
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Figure C.7: Overview of the results of the second experiment: each participant
was asked to rank three acoustic summaries of its own surroundings based on
how representative of its location were. The three acoustic summaries, already
presented in the first experiment, were selected by means of three different
criteria: saliency, frequency of occurrence and their combined measure.

the participant’s location, again 32. The higher the TPR and the lower the
FPR are, the more convincing the acoustic summary. In Figure 7 one can see
that all participants except one score better than a random guess which would
give a point along the diagonal line, the so-called line of no-discrimination.
Moreover, the participant called Koy in Figure is very far from this line too,
showing that this participant was completely misled by the proposed sounds.
In fact, from Figure [C.9]it can be seen that he only selected sounds from the
two other locations. The results of the third experiment support the findings
from the first experiment. Participants from Bi and Sp —not making any
mistake in the first experiment—scored on average better than participants
from Bu, who, in turn, scored better than participants in Ko, as shown in
Figure where the accuracy, defined as (T'Ps + T Ns)/64, is plotted. The
participants from Ko in addition show the highest variability: the first and
second participant respectively have the best and the worst accuracy among
all participants. It can be noted that the accuracy of the participants from Ko
follow the results they obtained during the first experiment: the first participant
got the best score in the first experiment making only one mistake, the third
participant made two mistakes out of three, while the other two participants
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Figure C.8: Snapshot of the third experiment. In this experiment the partic-
ipants were asked to perform the following task: “Now we would like you to
make your own collection of sounds that represents the direct surroundings
of your home. For this, select the appropriate sounds in the table below and
indicate how frequently you hear them using the color scale.”

could never select their own acoustic summary. It is also worthwhile checking
whether accuracy was influenced by the number of played sounds in the second
experiment. Participants listened exclusively to sounds coming from their own
surroundings just before performing this third experiment. So it could have
been possible that correct selection in the third experiment is enhanced when
more sounds have been listened to in the second experiment. A t—test on
the slope of a simple linear regression model between accuracy and number of
played sounds in the second experiment does not reject the null hypothesis of
unrelated variables, i.e. slope equal to zero (T'—score= 1.08, p = 0.16). The
same conclusion holds if precision, defined as TPs/(TPs + FPs), instead of
accuracy is considered (T—score= 1.48, p = 0.30). An F'—test confirms the null
hypothesis for both accuracy (F' = 2.18, p = 0.16) and precision (F = 1.13,
p=0.31).
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Figure C.9: Overview of the results of the third experiment where each par-
ticipant was asked to make his/her own acoustic summary that represented
the direct surroundings of its home. It was asked to select the appropriate
sounds among 64 sounds: thirty-two formed the acoustic summary from the
participant’s location based on the combined criterion; the other 32 sounds
were randomly selected from the acoustic summaries of the other two randomly
selected locations based on the combined criterion as well. The participants are
denoted by location acronym and a progressive number. In black the sounds
from the participant’s location correctly selected, called true positives (TP);
in dark grey the sounds from a different location wrongly selected, called false
positives (FP); in light grey the sounds from the participant’s location not
selected, called false negatives (FN); in white the sounds from other locations
correctly not selected, called true negatives (TN).

C.3.5 Experiment 4

In the last experiment, participants were asked to label 20 sounds that were
randomly selected from the 32 sounds composing the saliency-based acoustic
summary from their dwelling location (see Figure for a snapshot of the
experiment). This experiment was followed by a small questionnaire in which
each participant was asked to leave free comments about the experiment (see
Figure . In an open question, it was asked whether there were sounds not
heard in the labeling experiment that should have been included in order to
better represent the surroundings of the participant’s home. The comments,
summarized in are important hints to better understand the obtained
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Figure C.10: Scatter plot of the True Positive Rate versus the False Positive
Rate calculated based on the results shown in Figure 6. Different markers are
chosen for the four locations the participants come from: circles (Ko), squares
(Bi), stars (Sp) and diamonds (Bu). The line of no-discrimination is also shown:
a random guess would give on average a point on such line.

results. For example, the comments written by the participants from Ko can
explain their errors in the first experiment: three out of four were expecting the
typical sounds of the market held each Sunday morning in their neighbourhood.
Those sounds were not present in the acoustic summaries because the sound
sample retrieval was not running during any Sunday, thus missing the very
specific so-called soundmarks of that location (22). The same could be said
about the comment of participant Kos: the construction works he referred to
were a very recent activity starting after the sound sample retrieval stopped. In
addition, the participants from Bu missed the typical sound of the elementary
school located at their backside. These soundmarks were not recorded because
the microphone was placed at the front facade of the house. It is worth noting
that the main remarks came from the participants living in Ko and Bu, which
were the only ones making errors during the first experiment.
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Comment

It would be nice to include
sounds of the music bands playing
on Sunday morning and during
flower market on Sunday.

I didn’t hear noise samples of the
construction works going on in
the square where we live. Oth-
erwise it was very representative.
Ninety-five procent of the audio
samples were traffic noises: it cor-
responds well to the amount of
traffic we have in front of our
apartment.

No comment or positive remarks
as “good representation, typical
sounds and ambience”

I would include some sounds from
the music school at the other side
of the street

The sounds represent our street,
especially the buses.
More calm situations are needed.

I miss the sounds of the back of
the house, e.g. the children play-
ing in the playground.

Participants
Ko, Koz, Koy
K02

Biy, Biy, Big
Biy

Sp1, Sps, Spa
Spa

Bul, BUQ, Bu3
Bu4

Most of the sounds are present.

Table C.2: Main concepts expressed in the comments written by the participants
after listening to and labeling 20 sounds randomly selected from the 32 sounds
composing the acoustic summary based on saliency. The comments are linked
to the participants who wrote them.
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Figure C.11: Accuracy in selecting one’s own acoustic summary for all partici-
pants divided per location. Mean and standard deviation are also indicated.

C.4 Discussion

The first idea emerging from this study is the importance of soundmarks
in describing a soundscape: any acoustic summary which lacks soundmarks
would be considered to be less representative, as occurred in Ko or, to a lesser
extent, in Bu. Typically, soundmarks have a very specific temporal pattern
and occurrence, thus sound sample retrieval needs to run continuously in order
to include also these potentially less frequent, but highly relevant soundmarks.
Together with soundmarks, spatiality also plays an important role in defining
the soundscape. The present research focused on the front fagade, where one
would have assumed to find the majority of characteristic sounds, but it can
happen that soundmarks can only be observed at the other side of the dwelling,
as occurred in Bu. Participants appear to be capable of taking these spatial
differences into account when judging the acoustic summaries; despite the lack
of typical school sounds participants from Bu scored quite good thanks to
typical sounds from the front fagade. The results from the third experiment
demonstrate that in general participants can identify “their” sounds better than
random guessing. Moreover, there is a link between the results from the first
and the third experiment, showing that the representativeness of an acoustic
summary is a direct consequence of the quality of each sound composing it.
Nevertheless, the number of false negative and false positive cannot be in general



C.4 Discussion 113

S

Finally, could you please name in yaur awn language the fallowing sounds recordedin the
surroundings of your hame?

closing the door
truck

car passing by
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Figure C.12: Snapshot of the fourth experiment. In this experiment the
participants were asked to perform the following task: “Finally, could you please
name in your own language the following sounds recorded in the surroundings
of your home?”

neglected: the sound samples composing an acoustic summary can, most of
the time, be associated to more than one location, if the sound samples are
considered separately from the others. Therefore, results of this experiment
confirm the validity of using an acoustic summary for representing or evoking
a soundscape. Considered as a whole, such a collection of sounds can be
much more representative of the uniqueness of a sonic environment than each
single sound on itself that is part of the acoustic summary. The finding that
most participants were able to answer correctly for the limited number of
played sounds justifies that 32 is a reasonable number of sounds for an acoustic
summary to characterize a location. Thus, selecting such a limited set of
sounds is as crucial as the sound sample retrieval itself: it would make no sense
to continuously retrieve sound samples if the soundmarks and other typical
sounds would not be selected for the acoustic summary afterwards. In this
work, the number of sounds composing the acoustic summary was heuristically
determined and was the same for all locations. However, the richness of a
soundscape depends intrinsically on the considered location. Our model could
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Figure C.13: Snapshot of the fourth experiment. In this experiment the
participants were asked to perform the following task: “Finally, could you please
name in your own language the following sounds recorded in the surroundings
of your home?”

therefore be improved in future, considering acoustic summaries composed by
a variable number of sounds. For example, a measure of the overall similarity
among the SOM reference vectors could be used to determine the richness of the
sonic environment at a given location, and consequently the number of sound
samples that should be selected. The second experiment confirms that frequency
of occurrence is not the best criterion for selecting the sounds composing the
acoustic summary. In many locations the sounds selected based on this criterion
are typically very quiet, especially in residential areas or parks, thus missing the
less often occurring but much more salient sounds. Hence, saliency is a better
criterion for constructing the acoustic summary, but there is still a non-negligible
group of people considering it the least appropriate. Selecting only high salient
sounds typically comes down to selecting loud sounds, and an excessive number
of such fragments is no longer representative of the perceived soundscape in
urban residential areas. Therefore, a combination of occurrence and saliency
was conceived and tested. The second experiment demonstrates that such a
combination is a simple and valid strategy for representing a soundscape as a
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human would do. Based on these results, more advanced processing models could
be tested in the future, for example, adding human-like attention mechanisms
in the model as in (ITI)). In this work, a fixed sound sample duration of 5s was
used; however, every sound event has its own typical duration and it should be
preserved in order to better represent the sound events composing the acoustic
summary. The model presented by Boes et al. (IT1]) could help to solve this
issue.

C.5 Conclusions

This work presents a computational model for constructing a comprehensive
and representative collection of sounds that are present at a given location.
Such a collection, called an acoustic summary, can be a useful tool for quickly
presenting and analysing the soundscape at a given location. The model consists
of two stages: in a first stage, a Self-Organizing Map is tuned to the typical
sounds at the given location, and, in a second stage, an acoustic summary is
constructed by first collecting and then selecting specific sound samples based
on the trained map. The model takes into account aspects of human auditory
perception, such as bottom-up selective attention and learning. A listening
test involving local experts has been performed to evaluate the ability of the
model to produce acoustic summaries representative of the soundscape at a
number of urban locations. The test demonstrated that the model can construct
representative acoustic summaries. In particular, the model produces broad and
satisfactory sound libraries from which the acoustic summary can be extracted.
In general, satisfactory results are obtained from all the three tested criteria used
for selecting representative audio samples from the sound library to compose
the acoustic summary. However, the acoustic summary criterion combining
saliency and frequency of occurrence of the sound events generally produces the
best acoustic summary. The saliency-based criterion produces good acoustic
summaries as well but risks to outweigh highly informative and salient sounds.
In addition, participants judged the acoustic summaries based on frequency of
occurrence alone to be the least representative due to the prevalence of quiet
sound events, which are much less informative of the given soundscape even
though they occur very often in residential areas. Finally, the test demonstrated
that only a few sounds are needed to represent the soundscape of an urban area,
confirming the choice of 32 sounds for each location.
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