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Abstract. In this paper we present a novel approach to model perceptual
grouping based on phase and frequency synchronization in a network of
coupled Kuramoto oscillators. Transferring the grouping concept from the
Competitive Layer Model (CLM) to a network of Kuramoto oscillators, we
preserve the excellent grouping capabilities of the CLM, while dramatically
improving the convergence rate, robustness to noise, and computational
performance, which is verified in a series of artificial grouping experiments.

1 Introduction

The ability to robustly group related perceptual items to form higher-order con-
cepts is crucial for many cognitive tasks. Exploiting the recurrent dynamics of
neurons, the Competitive Layer Model (CLM) [3] has proven to solve a broad
spectrum of complex grouping tasks in a very robust fashion — even in the pres-
ence of strong noise. Amongst others, these tasks include segmentation of cell
images [4], grouping of object contours in edge images [5], as well as motion
segmentation [6]. However, a major drawback of the CLM for real-world appli-
cations, is its high demand for computational resources: The network converges
slowly and each update step is costly. Furthermore, the network can only hardly
escape from a reached optimum, when the grouping dynamics is changed.

Hence, inspired by the fast synchronization ability of coupled oscillator net-
works [7, 1, 2], we transfer the grouping principles of the CLM to a network
of Kuramoto oscillators [7] in order to improve the computational performance.
In the new model, each oscillator represents a distinct input feature from an
arbitrary feature domain. The coupling strengths between the oscillators are
based on the compatibility of the corresponding features. Similar features have
a positive compatibility, therefore the corresponding oscillators phase-lock and
form a perceptual group, which repels dissimilar features by means of negative
couplings. The Kuramoto model has been investigated in many variations [8, 9]
and we refer the interested reader to this work.

In the following sections, we shortly outline the principles of the CLM and
introduce our approach to transfer them to a network of coupled Kuramoto
oscillators. In section 4 we evaluate both approaches with regard to the group-
ing quality and convergence speed in the presence of increasing levels of noisy
connections. Finally, the results are discussed.

*This work has been conducted within and funded by the German collaborative research
center “SFB 673: Alignment in Communication” granted by DFG.



2 The CLM for Perceptual Grouping

The CLM consists of N x L neurons which are arranged in L layers. Neurons
are indexed column wise with m = 1,..., N describing the position in each
layer and o = 1,...,L denoting the layer index. A single neuron’s activity
is therefore denoted as x,, . The neurons in each layer are coupled with a
symmetric interaction function f(vsm,,vn) = f(Vn,Vm) = fm,n which describes
the compatibility between two features v,,, and v,,. They are additionally coupled
with a winner takes all (WTA) circuit in each column to assure that only one
neuron in each column becomes active. Combining the lateral interaction and
columnar WTA circuit, the recurrent CLM dynamics can be written as:

n=1

L N
o = —Tma+ 01 =D Tmp)+ Y frmnTna) - (1)
B=1

Here J(1-5_ 5 Tm, 5) represents the WTA competition weighted by the constant
J, and o(-) is a linear threshold function. The lateral interaction is expressed
as . fm,n%n,a, which calculates the support for the feature at position m from
all other features n in a given layer o. For a more comprehensive overview, we
refer to [5].

3 Transfer to Network of Coupled Kuramoto Oscillators

The oscillator model replaces each CLM column — composed from L neurons
representing the grouping result for a given feature v,, — with a single oscillator
of the Kuramoto type [7]. Actually, we employ the extended approach [8] where
the coupling between oscillators is determined by a symmetric matrix M,, ,, =
f(vm,vy,) instead of a constant gain factor K. Hence, the phases 6, of the
oscillators evolve according to the following update rule:

O, = wiy + ;; F(Vm,vn) - sin(0y, — Or,). (2)
The frequency of an oscillator is described with w,,,. The interaction function f is
limited to the interval [—1, 1], where —1 and +1 represent strongest dissimilarity
resp. similarity of features.

To resemble the CLM layer architecture, the oscillator frequencies are limited
to discrete values w, = « - wp, where a € {1,..., L} denotes the group index —
following the CLM notation where « denotes the group/layer index. To achieve
a clustering of similar features to the same discrete frequency w,, the frequency
wm of each oscillator is updated employing the cosine similarity between the
phases of the oscillators which is mapped to the interval [0,1] to preserve the
sign of the coupling strengths f(v,,,v,). Hence, the frequencies are updated
according to:

(cos(0n — b:n) + 1)) , (3)

N —

Wm = Wo - 3rgmax< Z J(Vm,vn) -
neN (a)
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) 0% inverted. (b) 10% inverted. (c) 20% inverted. (d) 30% inverted. (e) 40% inverted.

Fig. 1: Visualization of interaction matrices with different amounts of inverted
interaction values while preserving the symmetry. Each matrix represents ten
groups with positive coupling strength within each group (black) and negative
coupling strength with the other groups (white).

where N (a) denotes the set of oscillators with frequency index «, i.e. forming
the current perceptual group indexed by «. This update ensures that oscillators
representing similar features will both phase-lock and converge to identical fre-
quencies. Eq. (3) also boosts the phase-locking process, because synchronized
phases do not tend to desynchronize anymore. Contrarily, oscillators represent-
ing dissimilar features will spread both in phase and frequency.

With an appropriate interaction function, a network which follows the update
equations (2), (3) produces a stable grouping result already after a few update
steps. The final grouping result is determined by oscillator subsets N'(«) having
common frequency indices «.

The computational complexity of this model is reduced compared to the
CLM. Because each of the N features is represented by L individual neurons in
the CLM model, we yield a complexity of O(N - L - (N + L)). By representing
each feature with a single oscillator only, the oscillator network reduces the
complexity to O(N - (N + L)), which is especially superior for many groups L.

4 Evaluation

In the following evaluation, the proposed oscillator model is compared to the
CLM. First an overview of the simulation settings is given. Subsequently, the
grouping quality and convergence speed of both models are compared w.r.t.
different amounts of noise in the connection strengths.

4.1 Simulation Settings

For the evaluation process, we used a CLM and an oscillator network with simi-
lar topologies. The CLM was created for 10? features and 100 layers, leading to
a total of 10° neurons. Accordingly, the oscillator network was created with 103
oscillators, each representing a single feature and all possible groupings by 100
discrete frequencies. To determine the grouping result with respect to noise, we
employed randomly perturbed, binary interaction matrices F' = f,, ,,. These ma-
trices represent ten groups of features, where each group comprises 100 features.
Noise was introduced by inverting the sign of the coupling strength between two
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Fig. 2: This figure shows the grouping quality of the CLM and the oscillator
network with respect to different amounts of inverted interaction values. Both
methods show good results for up to 35% of inverted interaction values.

features while preserving the symmetry of the matrix. Example matrices for
different levels of perturbations are shown in Fig. 1, where couplings of +1 and
—1 are visualized as black resp. white dots.

For each level of perturbation, ranging from 0% to 49%, we simulated 500
trials with 1000 update steps each. For both networks, the CLM and Kuramoto
model, a single update step comprises an update of all neurons (1) resp. oscilla-
tors (2), (3). Please note, that the CLM has L = 100 neurons for each feature,
which is represented by a single oscillator in the Kuramoto model. Hence, the os-
cillator network is computationally much less demanding. However, we refrained
from measuring the absolute computation time to yield comparable results w.r.t.
convergence speed (measured in update steps here).

Both models are randomly initialized at the beginning of each trial. In case
of the CLM, every neuron got a small positive activity. The oscillators in the
network were uniformly distributed over all possible frequencies and initialized
with random phases in the range [0, 27].

4.2 Grouping Quality

In the first part of the evaluation, the grouping quality of the CLM and the
oscillator network is compared w.r.t. ground truth. To this end, we employ the
quality measure @ used in [5] to evaluate the grouping quality of the CLM. Given
target labels t,,, € {1,...,T} for each feature v,,, these labels are compared to
the grouping result a,, € {1,...,T} of the CLM and the oscillator network,
respectively. The grouping quality @ is then calculated as

1 if tm = t, and a,, = a,

N N
1 .
Q= N2 2 : E dmmn, Gmmn = 1 if tm # tn and ay, # ay, (4)
m n

0 else

which yields a value in the interval [0, 1], with 1 representing a perfect grouping
result. In Fig. 2 the average grouping quality over 500 trials is shown with
respect to the level of noise. The simulation is stopped after 1000 update steps.
For up to 35% of perturbed connections, both methods show more or less similar
performance, but the CLM degrades more slowly for larger levels of noise, that
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Fig. 3: Here the mean number of update steps and standard deviation to achieve
a grouping quality of 95% are shown. Please note that the y-axis differs between
Fig. 3(a) and Fig. 3(b).
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(a) Grouping quality vs. number of target groups. (b) 50 groups.

Fig. 4: This figure shows the grouping quality with respect to the number of
different classes in the interaction matrix. The amount of noise is set to 20% in
all cases. In Fig. 4(a) the quality is shown for 10 to 110 target groups. Fig. 4(b)
shows an interaction matrix with 50 groups.

is for cases with 40% and more noise. The black line in Fig. 2 indicates the pure
chance level.

4.3 Grouping Speed

Another important factor is the number of updates each model takes to find a
correct grouping result. In Fig. 3 the average number of update steps (with stan-
dard deviation) are shown, which are needed to achieve a grouping result of at
least 95% correct assignments. Up to a noise level of 33%, the oscillator network
needs an almost constant amount of updates to achieve a sufficient grouping
result, while the CLM shows a quadratic performance degradation. After this
mark, both methods exhibit an exponential increase of update steps and also the
standard deviation increases in both cases. This may be due to the decreased
sampling size, because trials not achieving the 95% quality threshold within 1000
update steps where discarded from the evaluation. Although the oscillator net-
work has a bigger variance in the number of update steps, it outperforms the
CLM already at a noise rate of 5%.



4.4 Influence of Number of Target Groups

To gain insight into the impact of the number of target groups, we varied the
number of groups from 10 to 110 while keeping a constant amount of 20% noise.
The remaining settings are similar to the previous evaluations. Both methods
show very good results for up to 50 target groups, as shown in Fig. 4. After
that mark, the grouping quality decreases. Except for the case with 110 groups,
one factor could be the limitation to 1000 steps, because the smaller number
of features per group also reduces the attracting characteristic of compatible
features. The oscillator model shows better results with a larger number of
groups, which can be explained due to the overall faster grouping speed which
was found in the previous evaluation.

5 Conclusion and Outlook

We presented a novel approach for perceptual grouping based on synchrony in an
oscillator network and compared it to a well known technique, the Competitive
Layer Model. The evaluation revealed that the proposed approach has the same
perceptual grouping capabilities with respect to noisy input data, but achieves
an adequate grouping result with less update steps while having a smaller com-
putational complexity. The Kuramoto model also offers the possibility of a
dimensionality reduction, where each oscillator is not updated with respect to
each other oscillator but to their mean phase. This property transfered to the
here introduced discrete frequencies offers another possibility to further decrease
the computational complexity and will be subject to an upcoming evaluation.
Additionally, we strive to investigate the behavior of the presented oscillator
model with respect to disturbances in the input data. As a dynamical system,
it should be able to recover from external disturbances. This will also be an
interesting point for further investigations.
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