1,729 research outputs found

    Sedimentological characterization of Antarctic moraines using UAVs and Structure-from-Motion photogrammetry

    Get PDF
    In glacial environments particle-size analysis of moraines provides insights into clast origin, transport history, depositional mechanism and processes of reworking. Traditional methods for grain-size classification are labour-intensive, physically intrusive and are limited to patch-scale (1m2) observation. We develop emerging, high-resolution ground- and unmanned aerial vehicle-based ‘Structure-from-Motion’ (UAV-SfM) photogrammetry to recover grain-size information across an moraine surface in the Heritage Range, Antarctica. SfM data products were benchmarked against equivalent datasets acquired using terrestrial laser scanning, and were found to be accurate to within 1.7 and 50mm for patch- and site-scale modelling, respectively. Grain-size distributions were obtained through digital grain classification, or ‘photo-sieving’, of patch-scale SfM orthoimagery. Photo-sieved distributions were accurate to <2mm compared to control distributions derived from dry sieving. A relationship between patch-scale median grain size and the standard deviation of local surface elevations was applied to a site-scale UAV-SfM model to facilitate upscaling and the production of a spatially continuous map of the median grain size across a 0.3 km2 area of moraine. This highly automated workflow for site scale sedimentological characterization eliminates much of the subjectivity associated with traditional methods and forms a sound basis for subsequent glaciological process interpretation and analysis

    Using Unmanned Aerial Systems for Deriving Forest Stand Characteristics in Mixed Hardwoods of West Virginia

    Get PDF
    Forest inventory information is a principle driver for forest management decisions. Information gathered through these inventories provides a summary of the condition of forested stands. The method by which remote sensing aids land managers is changing rapidly. Imagery produced from unmanned aerial systems (UAS) offer high temporal and spatial resolutions to small-scale forest management. UAS imagery is less expensive and easier to coordinate to meet project needs compared to traditional manned aerial imagery. This study focused on producing an efficient and approachable work flow for producing forest stand board volume estimates from UAS imagery in mixed hardwood stands of West Virginia. A supplementary aim of this project was to evaluate which season was best to collect imagery for forest inventory. True color imagery was collected with a DJI Phantom 3 Professional UAS and was processed in Agisoft Photoscan Professional. Automated tree crown segmentation was performed with Trimble eCognition Developer’s multi-resolution segmentation function with manual optimization of parameters through an iterative process. Individual tree volume metrics were derived from field data relationships and volume estimates were processed in EZ CRUZ forest inventory software. The software, at best, correctly segmented 43% of the individual tree crowns. No correlation between season of imagery acquisition and quality of segmentation was shown. Volume and other stand characteristics were not accurately estimated and were faulted by poor segmentation. However, the imagery was able to capture gaps consistently and provide a visualization of forest health. Difficulties, successes and time required for these procedures were thoroughly noted

    Technical Challenges for Multi-Temporal and Multi-Sensor Image Processing Surveyed by UAV for Mapping and Monitoring in Precision Agriculture

    Get PDF
    Precision Agriculture (PA) is an approach to maximizing crop productivity in a sustainable manner. PA requires up-to-date, accurate and georeferenced information on crops, which can be collected from different sensors from ground, aerial or satellite platforms. The use of optical and thermal sensors from Unmanned Aerial Vehicle (UAV) platform is an emerging solution for mapping and monitoring in PA, yet many technological challenges are still open. This technical note discusses the choice of UAV type and its scientific payload for surveying a sample area of 5 hectares, as well as the procedures for replicating the study on a larger scale. This case study is an ideal opportunity to test the best practices to combine the requirements of PA surveys with the limitations imposed by local UAV regulations. In the field area, to follow crop development at various stages, nine flights over a period of four months were planned and executed. The usage of ground control points for optimal georeferencing and accurate alignment of maps created by multi-temporal processing is analyzed. Output maps are produced in both visible and thermal bands, after appropriate strip alignment, mosaicking, sensor calibration, and processing with Structure from Motion techniques. The discussion of strategies, checklists, workflow, and processing is backed by data from more than 5000 optical and radiometric thermal images taken during five hours of flight time in nine flights throughout the crop season. The geomatics challenges of a georeferenced survey for PA using UAVs are the key focus of this technical note. Accurate maps derived from these multi-temporal and multi-sensor surveys feed Geographic Information Systems (GIS) and Decision Support Systems (DSS) to benefit PA in a multidisciplinary approach

    The future of Earth observation in hydrology

    Get PDF
    In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles (UAVs), and smartphone technologies that are being embraced by both for-profit companies and individual researchers. Over the previous decades, space agency efforts have brought forth well-known and immensely useful satellites such as the Landsat series and the Gravity Research and Climate Experiment (GRACE) system, with costs typically of the order of 1 billion dollars per satellite and with concept-to-launch timelines of the order of 2 decades (for new missions). More recently, the proliferation of smart-phones has helped to miniaturize sensors and energy requirements, facilitating advances in the use of CubeSats that can be launched by the dozens, while providing ultra-high (3-5 m) resolution sensing of the Earth on a daily basis. Start-up companies that did not exist a decade ago now operate more satellites in orbit than any space agency, and at costs that are a mere fraction of traditional satellite missions. With these advances come new space-borne measurements, such as real-time high-definition video for tracking air pollution, storm-cell development, flood propagation, precipitation monitoring, or even for constructing digital surfaces using structure-from-motion techniques. Closer to the surface, measurements from small unmanned drones and tethered balloons have mapped snow depths, floods, and estimated evaporation at sub-metre resolutions, pushing back on spatio-temporal constraints and delivering new process insights. At ground level, precipitation has been measured using signal attenuation between antennae mounted on cell phone towers, while the proliferation of mobile devices has enabled citizen scientists to catalogue photos of environmental conditions, estimate daily average temperatures from battery state, and sense other hydrologically important variables such as channel depths using commercially available wireless devices. Global internet access is being pursued via high-altitude balloons, solar planes, and hundreds of planned satellite launches, providing a means to exploit the "internet of things" as an entirely new measurement domain. Such global access will enable real-time collection of data from billions of smartphones or from remote research platforms. This future will produce petabytes of data that can only be accessed via cloud storage and will require new analytical approaches to interpret. The extent to which today's hydrologic models can usefully ingest such massive data volumes is unclear. Nor is it clear whether this deluge of data will be usefully exploited, either because the measurements are superfluous, inconsistent, not accurate enough, or simply because we lack the capacity to process and analyse them. What is apparent is that the tools and techniques afforded by this array of novel and game-changing sensing platforms present our community with a unique opportunity to develop new insights that advance fundamental aspects of the hydrological sciences. To accomplish this will require more than just an application of the technology: in some cases, it will demand a radical rethink on how we utilize and exploit these new observing systems

    Opportunities and limitations of crop phenotyping in southern european countries

    Get PDF
    ReviewThe Mediterranean climate is characterized by hot dry summers and frequent droughts. Mediterranean crops are frequently subjected to high evapotranspiration demands, soil water deficits, high temperatures, and photo-oxidative stress. These conditions will become more severe due to global warming which poses major challenges to the sustainability of the agricultural sector in Mediterranean countries. Selection of crop varieties adapted to future climatic conditions and more tolerant to extreme climatic events is urgently required. Plant phenotyping is a crucial approach to address these challenges. High-throughput plant phenotyping (HTPP) helps to monitor the performance of improved genotypes and is one of the most effective strategies to improve the sustainability of agricultural production. In spite of the remarkable progress in basic knowledge and technology of plant phenotyping, there are still several practical, financial, and political constraints to implement HTPP approaches in field and controlled conditions across the Mediterranean. The European panorama of phenotyping is heterogeneous and integration of phenotyping data across different scales and translation of “phytotron research” to the field, and from model species to crops, remain major challenges. Moreover, solutions specifically tailored to Mediterranean agriculture (e.g., crops and environmental stresses) are in high demand, as the region is vulnerable to climate change and to desertification processes. The specific phenotyping requirements of Mediterranean crops have not yet been fully identified. The high cost of HTPP infrastructures is a major limiting factor, though the limited availability of skilled personnel may also impair its implementation in Mediterranean countries. We propose that the lack of suitable phenotyping infrastructures is hindering the development of new Mediterranean agricultural varieties and will negatively affect future competitiveness of the agricultural sector. We provide an overview of the heterogeneous panorama of phenotyping within Mediterranean countries, describing the state of the art of agricultural production, breeding initiatives, and phenotyping capabilities in five countries: Italy, Greece, Portugal, Spain, and Turkey. We characterize some of the main impediments for development of plant phenotyping in those countries and identify strategies to overcome barriers and maximize the benefits of phenotyping and modeling approaches to Mediterranean agriculture and related sustainabilityinfo:eu-repo/semantics/publishedVersio

    On the Use of Unmanned Aerial Systems for Environmental Monitoring

    Get PDF
    Environmental monitoring plays a central role in diagnosing climate and management impacts on natural and agricultural systems; enhancing the understanding of hydrological processes; optimizing the allocation and distribution of water resources; and assessing, forecasting, and even preventing natural disasters. Nowadays, most monitoring and data collection systems are based upon a combination of ground-based measurements, manned airborne sensors, and satellite observations. These data are utilized in describing both small- and large-scale processes, but have spatiotemporal constraints inherent to each respective collection system. Bridging the unique spatial and temporal divides that limit current monitoring platforms is key to improving our understanding of environmental systems. In this context, Unmanned Aerial Systems (UAS) have considerable potential to radically improve environmental monitoring. UAS-mounted sensors offer an extraordinary opportunity to bridge the existing gap between field observations and traditional air- and space-borne remote sensing, by providing high spatial detail over relatively large areas in a cost-effective way and an entirely new capacity for enhanced temporal retrieval. As well as showcasing recent advances in the field, there is also a need to identify and understand the potential limitations of UAS technology. For these platforms to reach their monitoring potential, a wide spectrum of unresolved issues and application-specific challenges require focused community attention. Indeed, to leverage the full potential of UAS-based approaches, sensing technologies, measurement protocols, postprocessing techniques, retrieval algorithms, and evaluation techniques need to be harmonized. The aim of this paper is to provide an overview of the existing research and applications of UAS in natural and agricultural ecosystem monitoring in order to identify future directions, applications, developments, and challengespublishersversionPeer reviewe

    Remote sensing image fusion on 3D scenarios: A review of applications for agriculture and forestry

    Get PDF
    Three-dimensional (3D) image mapping of real-world scenarios has a great potential to provide the user with a more accurate scene understanding. This will enable, among others, unsupervised automatic sampling of meaningful material classes from the target area for adaptive semi-supervised deep learning techniques. This path is already being taken by the recent and fast-developing research in computational fields, however, some issues related to computationally expensive processes in the integration of multi-source sensing data remain. Recent studies focused on Earth observation and characterization are enhanced by the proliferation of Unmanned Aerial Vehicles (UAV) and sensors able to capture massive datasets with a high spatial resolution. In this scope, many approaches have been presented for 3D modeling, remote sensing, image processing and mapping, and multi-source data fusion. This survey aims to present a summary of previous work according to the most relevant contributions for the reconstruction and analysis of 3D models of real scenarios using multispectral, thermal and hyperspectral imagery. Surveyed applications are focused on agriculture and forestry since these fields concentrate most applications and are widely studied. Many challenges are currently being overcome by recent methods based on the reconstruction of multi-sensorial 3D scenarios. In parallel, the processing of large image datasets has recently been accelerated by General-Purpose Graphics Processing Unit (GPGPU) approaches that are also summarized in this work. Finally, as a conclusion, some open issues and future research directions are presented.European Commission 1381202-GEU PYC20-RE-005-UJA IEG-2021Junta de Andalucia 1381202-GEU PYC20-RE-005-UJA IEG-2021Instituto de Estudios GiennesesEuropean CommissionSpanish Government UIDB/04033/2020DATI-Digital Agriculture TechnologiesPortuguese Foundation for Science and Technology 1381202-GEU FPU19/0010

    Ensuring Agricultural Sustainability through Remote Sensing in the Era of Agriculture 5.0

    Get PDF
    This work was supported by the projects: "VIRTUOUS" funded by the European Union's Horizon 2020 Project H2020-MSCA-RISE-2019. Ref. 872181, "SUSTAINABLE" funded by the European Union's Horizon 2020 Project H2020-MSCA-RISE-2020. Ref. 101007702 and the "Project of Excellence" from Junta de Andalucia 2020. Ref. P18-H0-4700. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Timely and reliable information about crop management, production, and yield is considered of great utility by stakeholders (e.g., national and international authorities, farmers, commercial units, etc.) to ensure food safety and security. By 2050, according to Food and Agriculture Organization (FAO) estimates, around 70% more production of agricultural products will be needed to fulfil the demands of the world population. Likewise, to meet the Sustainable Development Goals (SDGs), especially the second goal of “zero hunger”, potential technologies like remote sensing (RS) need to be efficiently integrated into agriculture. The application of RS is indispensable today for a highly productive and sustainable agriculture. Therefore, the present study draws a general overview of RS technology with a special focus on the principal platforms of this technology, i.e., satellites and remotely piloted aircrafts (RPAs), and the sensors used, in relation to the 5th industrial revolution. Nevertheless, since 1957, RS technology has found applications, through the use of satellite imagery, in agriculture, which was later enriched by the incorporation of remotely piloted aircrafts (RPAs), which is further pushing the boundaries of proficiency through the upgrading of sensors capable of higher spectral, spatial, and temporal resolutions. More prominently, wireless sensor technologies (WST) have streamlined real time information acquisition and programming for respective measures. Improved algorithms and sensors can, not only add significant value to crop data acquisition, but can also devise simulations on yield, harvesting and irrigation periods, metrological data, etc., by making use of cloud computing. The RS technology generates huge sets of data that necessitate the incorporation of artificial intelligence (AI) and big data to extract useful products, thereby augmenting the adeptness and efficiency of agriculture to ensure its sustainability. These technologies have made the orientation of current research towards the estimation of plant physiological traits rather than the structural parameters possible. Futuristic approaches for benefiting from these cutting-edge technologies are discussed in this study. This study can be helpful for researchers, academics, and young students aspiring to play a role in the achievement of sustainable agriculture.European Commission 101007702 872181Junta de Andalucia P18-H0-470
    corecore