1,028 research outputs found

    Progress in information technology and tourism management: 20 years on and 10 years after the Internet—The state of eTourism research

    Get PDF
    This paper reviews the published articles on eTourism in the past 20 years. Using a wide variety of sources, mainly in the tourism literature, this paper comprehensively reviews and analyzes prior studies in the context of Internet applications to Tourism. The paper also projects future developments in eTourism and demonstrates critical changes that will influence the tourism industry structure. A major contribution of this paper is its overview of the research and development efforts that have been endeavoured in the field, and the challenges that tourism researchers are, and will be, facing

    Research opportunities for argumentation in social networks

    Full text link
    Nowadays, many websites allow social networking between their users in an explicit or implicit way. In this work, we show how argumentation schemes theory can provide a valuable help to formalize and structure on-line discussions and user opinions in decision support and business oriented websites that held social networks between their users. Two real case studies are studied and analysed. Then, guidelines to enhance social decision support and recommendations with argumentation are provided.This work summarises results of the authors joint research, funded by an STMS of the Agreement Technologies COST Action 0801, by the Spanish government grants [CONSOLIDER-INGENIO 2010 CSD2007-00022, and TIN2012-36586-C03-01] and by the GVA project [PROMETEO 2008/051].Heras Barberá, SM.; Atkinson, KM.; Botti Navarro, VJ.; Grasso, F.; Julian Inglada, VJ.; Mcburney, PJ. (2013). Research opportunities for argumentation in social networks. Artificial Intelligence Review. 39(1):39-62. doi:10.1007/s10462-012-9389-0S3962391Amgoud L (2009) Argumentation for decision making. Argumentation in artificial intelligence. Springer, BerlinAnderson P (2007) What is Web 2.0? Ideas, technologies and implications for education. JISC Iechnology and Standards Watch reportBentahar J, Meyer CJJ, Moulin B (2007) Securing agent-oriented systems: an argumentation and reputation-based approach. In: Proceedings of the 4th international conference on information technology: new generations (ITNG 2007), IEEE Computer Society, pp 507–515Buckingham Shum S (2008) Cohere: towards Web 2.0 argumentation. In: Proceedings of the 2nd international conference on computational models of argument, COMMA, pp 28–30Burke R (2002) Hybrid recommender systems: survey and experiments. User Model User-Adapt Interact 12:331–370Cartwright D, Atkinson K (2008) Political engagement through tools for argumentation. In: Proceedings of the second international conference on computational models of argument (COMMA 2008), pp 116–127Chesñevar C, McGinnis J, Modgil S, Rahwan I, Reed C, Simari G, South M, Vreeswijk G, Willmott S (2006) Towards an argument interchange format. Knowl Eng Rev 21(4):293–316Chesñevar CI, Maguitman AG, Gonzàlez MP (2009) Empowering recommendation technologies through argumentation. Argumentation in artificial intelligence. Springer, Berlin, pp 403–422García AJ, Dix J, Simari GR (2009) Argument-based logic programming. Argumentation in artificial intelligence. Springer, BerlinGolbeck J (2006) Generating predictive movie recommendations from trust in social networks. In: Proceedings of the fourth international conference on trust management, LNCS, vol 3986, 93–104Gordon T, Prakken H, Walton D (2007) The Carneades model of argument and burden of proof. Artif Intell 171(10–15):875–896Guha R, Kumar R, Raghavan P, Tomkins A (2004) Propagating trust and distrust. In: Proceedings of the 13th international conference on, World Wide Web, pp 403–412Heras S, Navarro M, Botti V, Julián V (2009) Applying dialogue games to manage recommendation in social networks. In: Proceedings of the 6th international workshop on argumentation in multi-agent aystems, ArgMASHeras S, Atkinson K, Botti V, Grasso F, Julián V, McBurney P (2010a) How argumentation can enhance dialogues in social networks. In: Proceedings of the 3rd international conference on computational models of argument, COMMA, vol 216, pp 267–274Heras S, Atkinson K, Botti V, Grasso F, Julián V, McBurney P (2010b) Applying argumentation to enhance dialogues in social networks. In: ECAI 2010 workshop on computational models of natural argument, CMNA, pp 10–17Karacapilidis N, Tzagarakis M (2007) Web-based collaboration and decision making support: a multi-disciplinary approach. Web-Based Learn Teach Technol 2(4):12–23Kim D, Benbasat I (2003) Trust-related arguments in internet stores: a framework for evaluation. J Electron Commer Res 4(2):49–64Kim D, Benbasat I (2006) The effects of trust-assuring arguments on consumer trust in internet stores: application of Toulmin’s model of argumentation. Inf Syst Rese 17(3):286–300Laera L, Tamma V, Euzenat J, Bench-Capon T, Payne T (2006) Reaching agreement over ontology alignments. In: Proceedings of the 5th international semantic web conference (ISWC 2006)Lange C, Bojãrs U, Groza T, Breslin J, Handschuh S (2008) Expressing argumentative discussions in social media sites. In: Social data on the web (SDoW2008) workshop at the 7th international semantic web conferenceLinden G, Smith B, York J (2003) Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Comput 7(1):76–80Linden G, Hong J, Stonebraker M, Guzdial M (2009) Recommendation algorithms, online privacy and more. Commun ACM, 52(5)Mika P (2007) Ontologies are us: a unified model of social networks and semantics. J Web Semant 5(1):5–15Montaner M, López B, de la Rosa JL (2002) Opinion-based filtering through trust. In: Cooperative information agents VI, LNCS, vol 2446, pp 127–144Ontañón S, Plaza E (2008) Argumentation-based information exchange in prediction markets. In: Proceedings of the 5th international workshop on argumentation in multi-agent systems, ArgMASPazzani MJ, Billsus D (2007) Content-based recommendation systems. In: The adaptive web, LNCS, vol 4321, pp 325–341Rahwan I, Zablith F, Reed C (2007) Laying the foundations for a world wide argument web. Artif Intell 171(10–15):897–921Rahwan I, Banihashemi B (2008) Arguments in OWL: a progress report. In: Proceedings of the 2nd international conference on computational models of argument (COMMA), pp 297–310Reed C, Walton D (2007) Argumentation schemes in dialogue. In: Dissensus and the search for common ground, OSSA-07, volume CD-ROM, pp 1–11Sabater J, Sierra C (2002) Reputation and social network analysis in multi-agent systems. In: Proceedings of the 1st international joint conference on autonomous agents and multiagent systems, vol 1, pp 475–482Schafer JB, Konstan JA, Riedl J (2001) E-commerce recommendation applications. Data Min Knowl Discov 5:115–153Schafer JB, Frankowski D, Herlocker J, Sen S (2007) Collaborative filtering recommender systems. In: The adaptive web, LNCS, vol 4321, pp 291–324Schneider J, Groza T, Passant A (2012) A review of argumentation for the aocial semantic web. Semantic web-interoperability, usability, applicability. IOS Press, Washington, DCTempich C, Pinto HS, Sure Y, Staab S (2005) An argumentation ontology for distributed, loosely-controlled and evolvInG Engineering processes of oNTologies (DILIGENT). In: Proceedings of the 2nd European semantic web conference, ESWC, pp 241–256Toulmin SE (1958) The uses of argument. Cambridge University Press, Cambridge, UKTrojahn C, Quaresma P, Vieira R, Isaac A (2009) Comparing argumentation frameworks for composite ontology matching. in: Proceedings of the 6th international workshop on argumentation in multi-agent systems, ArgMASTruthMapping. http://truthmapping.com/Walter FE, Battiston S, Schweitzer F (2007) A model of a trust-based recommendation system on a social network. J Auton Agents Multi-Agent Syst 16(1):57–74Walton D, Krabbe E (1995) Commitment in dialogue: basic concepts of interpersonal reasoning. State University of New York Press, New York, NYWalton D, Reed C, Macagno F (2008) Argumentation schemes. Cambridge University Press, CambridgeWells S, Gourlay C, Reed C (2009) Argument blogging. Computational models of natural argument, CMNAWyner A, Schneider J (2012) Arguing from a point of view. In: Proceedings of the first international conference on agreement technologie

    Semantic Shopping: A Literature Study

    Get PDF
    The digitalization of the economy and society overall has a significant impact on customers’ shopping behavior. After being conditioned by experiences in entertainment or simple Internet search, customers increasingly expect that a smart shopping assistant understands his/her shopping intentions and transfers these to shopping recommendations. Thus, the emerging opportunity in this context is to facilitate an intention-based shopping experience similar to the way semantic search engines provide responses to enquiries. In order to progress this new area, we differentiate alternative types of shopping intentions to provide the first set of conversation patterns. Grounded in the Speech Act Theory and a structured literature review, semantic shopping is defined and different types of shopping intentions are deduced

    An ontology-based recommender system using scholar's background knowledge

    Get PDF
    Scholar’s recommender systems recommend scientific articles based on the similarity of articles to scholars’ profiles, which are a collection of keywords that scholars are interested in. Recent profiling approaches extract keywords from the scholars’ information such as publications, searching keywords, and homepages, and train a reference ontology, which is often a general-purpose ontology, in order to profile the scholars’ interests. However, such approaches do not consider the scholars’ knowledge because the recommender system only recommends articles which are syntactically similar to articles that scholars have already visited, while scholars are interested in articles which contain comparatively new knowledge. In addition, the systems do not support multi-area property of scholars’ knowledge as researchers usually do research in multiple topics simultaneously and are expected to receive focused-topic articles in each recommendation. To address these problems, this study develops a domain-specific reference ontology by merging six Web taxonomies and exploits Wikipedia as a conflict resolver of ontologies. Then, the knowledge items from the scholars’ information are extracted, transformed by DBpedia, and clustered into relevant topics in order to model the multi-area property of scholars’ knowledge. Finally, the clustered knowledge items are mapped to the reference ontology by using DBpedia to create clustered profiles. In addition a semantic similarity algorithm is adapted to the clustered profiles, which enables recommendation of focused-topic articles that contain new knowledge. To evaluate performance of the proposed approach, three different data sets from scholars’ information in Computer Science domain are created, and the precisions in different cases are measured. The proposed method, in comparison with the baseline methods, improves the average precision by 6% when the new reference ontology along with the full scholars’ knowledge is utilized, by an extra 7.2% when scholars’ knowledge is transformed by DBpedia, and further 8.9% when clustered profile is applied. Experimental results certify that using knowledge items instead of keywords for profiling as well as transforming the knowledge items by DBpedia can significantly improve the recommendation performance. Besides, the domain-specific reference ontology can effectively capture the full scholars’ knowledge which results to more accurate profiling

    Panorama of Recommender Systems to Support Learning

    Get PDF
    This chapter presents an analysis of recommender systems in TechnologyEnhanced Learning along their 15 years existence (2000-2014). All recommender systems considered for the review aim to support educational stakeholders by personalising the learning process. In this meta-review 82 recommender systems from 35 different countries have been investigated and categorised according to a given classification framework. The reviewed systems have been classified into 7 clusters according to their characteristics and analysed for their contribution to the evolution of the RecSysTEL research field. Current challenges have been identified to lead the work of the forthcoming years.Hendrik Drachsler has been partly supported by the FP7 EU Project LACE (619424). Katrien Verbert is a post-doctoral fellow of the Research Foundation Flanders (FWO). Olga C. Santos would like to acknowledge that her contributions to this work have been carried out within the project Multimodal approaches for Affective Modelling in Inclusive Personalized Educational scenarios in intelligent Contexts (MAMIPEC -TIN2011-29221-C03-01). Nikos Manouselis has been partially supported with funding CIP-PSP Open Discovery Space (297229

    A Systematic Literature Review of Linked Data-based Recommender Systems

    Get PDF
    Recommender Systems (RS) are software tools that use analytic technologies to suggest different items of interest to an end user. Linked Data is a set of best practices for publishing and connecting structured data on the Web. This paper presents a systematic literature review to summarize the state of the art in recommender systems that use structured data published as Linked Data for providing recommendations of items from diverse domains. It considers the most relevant research problems addressed and classifies RS according to how Linked Data has been used to provide recommendations. Furthermore, it analyzes contributions, limitations, application domains, evaluation techniques, and directions proposed for future research. We found that there are still many open challenges with regard to RS based on Linked Data in order to be efficient for real applications. The main ones are personalization of recommendations; use of more datasets considering the heterogeneity introduced; creation of new hybrid RS for adding information; definition of more advanced similarity measures that take into account the large amount of data in Linked Data datasets; and implementation of testbeds to study evaluation techniques and to assess the accuracy scalability and computational complexity of RS
    corecore