673 research outputs found

    Status of the differential transformation method

    Full text link
    Further to a recent controversy on whether the differential transformation method (DTM) for solving a differential equation is purely and solely the traditional Taylor series method, it is emphasized that the DTM is currently used, often only, as a technique for (analytically) calculating the power series of the solution (in terms of the initial value parameters). Sometimes, a piecewise analytic continuation process is implemented either in a numerical routine (e.g., within a shooting method) or in a semi-analytical procedure (e.g., to solve a boundary value problem). Emphasized also is the fact that, at the time of its invention, the currently-used basic ingredients of the DTM (that transform a differential equation into a difference equation of same order that is iteratively solvable) were already known for a long time by the "traditional"-Taylor-method users (notably in the elaboration of software packages --numerical routines-- for automatically solving ordinary differential equations). At now, the defenders of the DTM still ignore the, though much better developed, studies of the "traditional"-Taylor-method users who, in turn, seem to ignore similarly the existence of the DTM. The DTM has been given an apparent strong formalization (set on the same footing as the Fourier, Laplace or Mellin transformations). Though often used trivially, it is easily attainable and easily adaptable to different kinds of differentiation procedures. That has made it very attractive. Hence applications to various problems of the Taylor method, and more generally of the power series method (including noninteger powers) has been sketched. It seems that its potential has not been exploited as it could be. After a discussion on the reasons of the "misunderstandings" which have caused the controversy, the preceding topics are concretely illustrated.Comment: To appear in Applied Mathematics and Computation, 29 pages, references and further considerations adde

    Numerical Solution for Linear Fredholm Integro-Differential Equation Using Touchard Polynomials

    Get PDF
     تم تقديم طريقة جديدة تستند الى متعددة حدود تشارد للحل العددي لمعادلات فريدهولم التفاضلية التكاملية من المرتبة الاولى والنوع الثاني مع الشرط.  تم الحصول ببساطة على مشتقة متعددة حدود تشارد وتكاملها. واعطيت دقة الطريقة المقدمة وثبتت قابلية تطبيقها ببعض الامثلة العددية.  تتم مقارنة النتائج التي تم الحصول عليها مع النتائج المعروفة  الاخرى.A new method based on the Touchard polynomials (TPs) was presented for the numerical solution of the linear Fredholm integro-differential equation (FIDE) of the first order and second kind with condition. The derivative and integration of the (TPs) were simply obtained. The convergence analysis of the presented method was given and the applicability was proved by some numerical examples. The results obtained in this method are compared with other known results.

    Numerical solution of the higher-order linear Fredholm integro-differential-difference equation with variable coefficients

    Get PDF
    AbstractThe main aim of this paper is to apply the Legendre polynomials for the solution of the linear Fredholm integro-differential-difference equation of high order. This equation is usually difficult to solve analytically. Our approach consists of reducing the problem to a set of linear equations by expanding the approximate solution in terms of shifted Legendre polynomials with unknown coefficients. The operational matrices of delay and derivative together with the tau method are then utilized to evaluate the unknown coefficients of shifted Legendre polynomials. Illustrative examples are included to demonstrate the validity and applicability of the presented technique and a comparison is made with existing results

    Semi-spectral Chebyshev method in Quantum Mechanics

    Get PDF
    Traditionally, finite differences and finite element methods have been by many regarded as the basic tools for obtaining numerical solutions in a variety of quantum mechanical problems emerging in atomic, nuclear and particle physics, astrophysics, quantum chemistry, etc. In recent years, however, an alternative technique based on the semi-spectral methods has focused considerable attention. The purpose of this work is first to provide the necessary tools and subsequently examine the efficiency of this method in quantum mechanical applications. Restricting our interest to time independent two-body problems, we obtained the continuous and discrete spectrum solutions of the underlying Schroedinger or Lippmann-Schwinger equations in both, the coordinate and momentum space. In all of the numerically studied examples we had no difficulty in achieving the machine accuracy and the semi-spectral method showed exponential convergence combined with excellent numerical stability.Comment: RevTeX, 12 EPS figure

    Multiple Perturbed Collocation Tau Method for Solving Nonlinear Integro-Differential Equations

    Get PDF
    The purpose of the study was to investigate the numerical solution of non-linear Fredholm and Volterra integro-differential equations by the proposed method called Multiple Perturbed Collocation Tau Method (MPCTM). We assumed a perturbed approximate solution in terms of Chebyshev  polynomial basis function and then determined the derivatives of the perturbed approximate solution which are then substituted into the special classes of the problems considered. Thus, resulting into n-folds integration, the resulting equation is then collocated at equally spaced interior points and the unknown constants in the approximate solution are then obtained by Newton’s method which are then substituted back into the approximate solution.Illustrative examples are given to demonstrate the efficiency, computational cost and accuracy of the method. The results obtained with some numerical examples are compared favorable with some existing numerical methods in literature and with the exact solutions where they are known in closed form.Keywords: Nonlinear Problems, Tau Method, Integro-Differential, Newton’s method

    Fractional nonlinear Volterra–Fredholm integral equations involving Atangana–Baleanu fractional derivative: framelet applications

    Get PDF
    © 2020, The Author(s). In this work, we propose a framelet method based on B-spline functions for solving nonlinear Volterra–Fredholm integro-differential equations and by involving Atangana–Baleanu fractional derivative, which can provide a reliable numerical approximation. The framelet systems are generated using the set of B-splines with high vanishing moments. We provide some numerical and graphical evidences to show the efficiency of the proposed method. The obtained numerical results of the proposed method compared with those obtained from CAS wavelets show a great agreement with the exact solution. We confirm that the method achieves accurate, efficient, and robust measurement
    corecore