54 research outputs found

    Status of the differential transformation method

    Full text link
    Further to a recent controversy on whether the differential transformation method (DTM) for solving a differential equation is purely and solely the traditional Taylor series method, it is emphasized that the DTM is currently used, often only, as a technique for (analytically) calculating the power series of the solution (in terms of the initial value parameters). Sometimes, a piecewise analytic continuation process is implemented either in a numerical routine (e.g., within a shooting method) or in a semi-analytical procedure (e.g., to solve a boundary value problem). Emphasized also is the fact that, at the time of its invention, the currently-used basic ingredients of the DTM (that transform a differential equation into a difference equation of same order that is iteratively solvable) were already known for a long time by the "traditional"-Taylor-method users (notably in the elaboration of software packages --numerical routines-- for automatically solving ordinary differential equations). At now, the defenders of the DTM still ignore the, though much better developed, studies of the "traditional"-Taylor-method users who, in turn, seem to ignore similarly the existence of the DTM. The DTM has been given an apparent strong formalization (set on the same footing as the Fourier, Laplace or Mellin transformations). Though often used trivially, it is easily attainable and easily adaptable to different kinds of differentiation procedures. That has made it very attractive. Hence applications to various problems of the Taylor method, and more generally of the power series method (including noninteger powers) has been sketched. It seems that its potential has not been exploited as it could be. After a discussion on the reasons of the "misunderstandings" which have caused the controversy, the preceding topics are concretely illustrated.Comment: To appear in Applied Mathematics and Computation, 29 pages, references and further considerations adde

    APPLIED MATHEMATICS AND COMPUTATION

    No full text
    In the present paper, a Taylor method is developed to find the approximate solution of high-order linear Volterra-Fredholm integro-differential equations under the mixed conditions in terms of Taylor polynomials about any point, In addition, examples that illustrate the pertinent features of the method are presented, and the results of study are discussed. (C) 2000 Elsevier Science Inc, All rights reserved

    APPLIED MATHEMATICS AND COMPUTATION

    No full text
    In this study, a Legendre collocation matrix method is presented to solve high-order Linear Fredholm integro-differential equations under the mixed conditions in terms of Legendre polynomials. The proposed method converts the equation and conditions to matrix equations, by means of collocation points on the interval [-1,1], which corresponding to systems of linear algebraic equations with Legendre coefficients. Thus, by solving the matrix equation, Legendre coefficients and polynomial approach are obtained. Also examples that illustrate the pertinent features of the method are presented and by using the error analysis, the results are discussed. (c) 2009 Elsevier Inc. All rights reserved

    INTERNATIONAL JOURNAL OF MODERN PHYSICS B

    No full text
    The purpose of this study is to implement a new approximate method for solving system of nonlinear Volterra integral equations. The technique is based on, first, differentiating both sides of integral equations n times and then substituting the Taylor series the unknown functions in the resulting equation and later, transforming to a matrix equation. By merging these results, a new system which corresponds to a system of linear algebraic equations is obtained. The solution of this system yields the Taylor coefficients of the solution function. Some numerical results are also given to illustrate the efficiency of the method

    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS

    No full text
    In this paper, a numerical method based on polynomial approximation, using Hermite polynomial basis, to obtain the approximate solution of generalized pantograph equations with variable coefficients is presented. The technique we have used is an improved collocation method. Some numerical examples, which consist of initial conditions, are given to illustrate the reality and efficiency of the method. In addition, some numerical examples are presented to show the properties of the given method; the present method has been compared with other methods and the results are discussed. (C) 2011 The Franklin Institute. Published by Elsevier Ltd. All rights reserved
    corecore