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Abstract:  
A new method based on the Touchard polynomials (TPs) was presented for the numerical solution of the 

linear Fredholm integro-differential equation (FIDE) of the first order and second kind with condition. The 

derivative and integration of the (TPs) were simply obtained. The convergence analysis of the presented 

method was given and the applicability was proved by some numerical examples. The results obtained in this 

method are compared with other known results.  
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Introduction:  
    Integral and integro-differential equations are 

originated in many scientific and engineering 

applications. In particular Fredholm integral 

equation and (FIDE) can be derived from boundary 

value problem. The (IDE) contains both differential 

and integral signs and the derivative of the unknown 

variable may appear to any order. (FIDE) is an 

equation derived from the boundary value problem 

with given initial boundary condition, where both 

the differential and integral signs appeared together 

in the same equation. In addition, limits of the 

integration are constants. The (FIDE) of the first 

order and second kind contains the unknown 

variable and its derivative inside and outside the 

integral sign respectively. It is noted that initial 

condition should be given for (FIDE) to find the 

particular solution (1(. (FIDEs) often come in 

applications being the mathematical models of 

processes in biological problems, physics, economy 

and chemistry, etc. (2). (FIDEs) are difficult to be 

solved analytically, so it requires effective 

numerical methods (3). For these reasons, many                                                                                       

scientists have been encouraged to study many 

numerical methods to solve (FIDEs). All methods 

have pros or cons but that hasn't stopped scientists 

from developing various methods such as Bernstein 

collocation matrix method (4), the well-posedness 

method (5), reproducing kernel method (6), 

exponential spline method (7), improved 

reproducing kernel method (8), priori Nystrom 

method (9), and Fibonacci polynomials method 

(10). 

 

The general form of the linear (FIDE) of 1st order 

and 2nd kind is given by (1, 11):  

X′(γ) = h(γ) + η ∫ T(γ, u) X(u)du    ,          γ

a2

a1

∈ [a1, a2 ],                                … (1)  
with initial boundary condition  X(a1) =
X0 ,                                                        … (1a) 

where a1, a2  and η are constants, T(γ, u) is a known 

function of the variables γ and u, called the nucleus 

(kernel) of the Integral equation. The unknown 

function X(γ) will be calculated, which exists inside 

and outside the integral sign. h(γ) is a given 

function, X′(γ) =
d

dγ
X(γ) and X(a1) = X0 is a 

constant initial boundary condition.  

 

This paper is ordered as follows: Touchard 

polynomials, approximation function, solution the 

(FIDE), convergence analysis, test examples with 

tables and graphs are presented, brief of conclusions 

and recommendations, and finally, the references 

are listed. 
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Touchard Polynomials:  
 Let’s begin with the definition of the (TPs) that was 

studied by the French mathematician Jacques 

Touchard. The (TPs) consist of a polynomial 

sequence of binomial type, it’s defined on [0, 1] as 

follows (12, 13, 14, and 15):  

In(γ) = ∑ E(n,m)γm =

n

m=0

∑ (
n

m
)γm

n

m=0

   ,   (
n

m
)

=
n!

m! (n − m)!
                             ⋯ (2) 

where n and m are the degree and index of the (TPs) 

respectively. 

The 1st five polynomials of the (TPs) are given 

below:  

I0(γ) = 1 

I1(γ) = 1 + γ  

I2(γ) = 1 + 2γ + γ2   

I3(γ) = 1 + 3γ + 3γ2 + γ3 

I4(γ) = 1 + 4γ + 6γ2 + 4γ3 + γ4 

Approximation Function:  
 
Suppose that the function Xn (γ) is approximated 

using the (TPs) as in the following: 

Xn(γ) = α0I0(γ) + α1I1(γ) + ⋯+ αnIn(γ)  

= ∑ αmIm(γ)

n

m=0

    0 ≤ γ

≤ 1 ,      ⋯ (3)      
for m≥0, the function {Im(γ)}m=0

n  denotes the 

Touchard basis polynomials of nth degree, as 

defined in Eq. (2),  αm (m = 0,1, … , n) are the 

unknown Touchard coefficients that will be 

calculated later.  

Now Eq. (3) can be written as dot product: 

Xn(γ) = [I0(γ)   I1(γ)… In(γ)] .  

[
 
 
 
 
α0

α1
.
.
.

αn]
 
 
 
 

 ,     ⋯ (4) 

Eq. (4) can be converted into: 
Xn(γ)

= [1  γ  γ2 …γn].

[
 
 
 
 

β00      β01        β02     … β0n 
 0         β11       β12      ⋯ β1n  
 0         0            β22     ⋯ β2n  
⋮            ⋮          ⋮  ⋱               ⋮   

     0          0           0         ⋯  βnn    ]
 
 
 
 

.

[
 
 
 
 
α0

α1
.
.
.

αn]
 
 
 
 

 , . . (5) 

where βrr (r =  0,1, 2, … , n)  are the coefficients of 

the power basis that are used to obtain the (TPs) 

coefficients and the matrix is invertible. For 

example n=1, 2, and 3, the operational matrices are 

shown in Eqs. (6), (7), and (8) respectively:   

X1(γ) = [1    γ  ]. [
1 1
0 1

] . [
α0

α1
] ,     … (6) 

X2(γ) = [1  γ  γ2]. [
1 1 1
0 1 2
0 0 1

] . [

α0

α1

α2

],        ⋯ (7) 

 

X3(γ)

= [1  γ  γ2 γ3 ]. [

1 1 1      1
0 1 2      3
0 0 1      3

  0    0     0       1  

] . [

α0

α1

α2
α3

].       ⋯ (8) 

Since the derivative of Eq. (2) is:  

In
′ (γ) =

d

dγ
∑ (

n

m
)γm

n

m=0

= ∑ (
n

m
)m

n

m=1 

γm−1   .    ⋯ (9)   

Then, the derivative of Eqs. (5), (6), (7) and (8) 

respectively is: 
Xn

′ (γ)

= [0  1  2γ…nγn−1].

[
 
 
 
 

β00      β01        β02     … β0n 
 0         β11       β12      ⋯ β1n  
 0         0            β22     ⋯ β2n  
⋮            ⋮          ⋮  ⋱               ⋮   

     0          0           0         ⋯  βnn    ]
 
 
 
 

. 

[
 
 
 
 
α0

α1
.
.
.

αn]
 
 
 
 

 ,⋯ (10) 

X1
′(γ) = [0    1  ]. [

1 1
0 1

] . [
α0

α1
] ,       … (11) 

 

X2
′(γ) = [0  1  2γ]. [

1 1 1
0 1 2
0 0 1

] . [

α0

α1

α2

]  ,    ⋯ (12) 

 

X3
′(γ)

= [0  1  2γ  3γ2 ]. [

1 1 1      1
0 1 2      3
0 0 1      3

  0    0     0      1  

] . [

α0

α1

α2
α3

] .⋯ (13) 

 

Solutions the (FIDE) of 1
st
 order and 2

nd
 Kind:  

 Since Eq. (1) has the following form: 

Χ′(γ) = h(γ) + η ∫ T(γ, u) Χ(u)du    ,      γ

a2

a1

∈ [a1, a2 ] and    X(a1)
= X0 . . . (14) 

By using Eqs. (5) and (10), suppose that:  

 
X(γ) ≅ Xn(γ)

= [1  γ  γ2 …γn].

[
 
 
 
 

β00      β01        β02     … β0n 
 0         β11       β12      ⋯ β1n  
 0         0            β22     ⋯ β2n  
⋮            ⋮          ⋮  ⋱               ⋮   

     0          0           0         ⋯  βnn    ]
 
 
 
 

.

[
 
 
 
 
α0

α1
.
.
.

αn]
 
 
 
 

 ,

… (15) 

https://en.wikipedia.org/wiki/French_people
https://en.wikipedia.org/wiki/Mathematician
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and 
X′(γ) ≅ Xn

′ (γ) =

[0  1  2γ…nγn−1].

[
 
 
 
 

β00      β01        β02     … β0n 
 0         β11       β12      ⋯ β1n  
 0         0            β22     ⋯ β2n  
⋮            ⋮          ⋮  ⋱               ⋮   

     0          0           0         ⋯  βnn    ]
 
 
 
 

.

[
 
 
 
 
α0

α1
.
.
.

αn]
 
 
 
 

 ,     … (16) 

now, by substituting Eqs. (15) and (16) into Eq. (14) 

yields:   

 

[0  1  2γ…n𝛾n−1].

[
 
 
 
 

β00      β01        β02     … β0n 
 0         β11       β12      ⋯ β1n  
 0         0            β22     ⋯ β2n  
⋮            ⋮          ⋮  ⋱               ⋮   

     0          0           0         ⋯  βnn    ]
 
 
 
 

.

[
 
 
 
 
α0

α1
.
.
.

𝛼n]
 
 
 
 

= h(γ) + η ∫ T(γ, u)

a2

a1

[1 u  u2 …un].  

[
 
 
 
 

β00      β01        β02     … β0n 
 0         β11       β12      ⋯ β1n  
 0         0            β22     ⋯ β2n  
⋮            ⋮          ⋮  ⋱               ⋮   

     0          0           0         ⋯  βnn    ]
 
 
 
 

.

[
 
 
 
 
α0

α1
.
.
.

αn]
 
 
 
 

 du.   ⋯ (17) 

Now, in order to determine (α0, α1,…, αn) the 

integrations in Eq. (17) must be computed by 

selecting γr ∈ [0, 1], ( r = 0,1, … , n), and applying 

the given initial condition, to get a system of (n+1) 

linear algebraic equations with the )n+1) of the 

unknown values. Solving this system by using 

Gauss elimination method, the unknown 

coefficients (α0, α1, … , αn) are obtained and have a 

unique solution, hence, by substituting Touchard 

coefficients into Eq. (3) to get the approximate 

numerical solution for Eq. (1) 

 

Convergence Analysis:  
In this section, the convergence for the suggested 

method is proved. 

The unknown Touchard coefficients (α0, α1, … , αn) 

are uniquely determined by Eq. (17). Therefore Eq. 

(1) with the boundary condition has a unique 

solution and this solution is given by truncated 

Touchard series in Eq. (3). Now, when the 

approximate numerical solution Xn(γ) and its 

derivatives are substituted in Eq. (1), the following 

equation should be satisfied approximately, then for 

γ= 𝛾𝜆∈ [0, 1], λ = 0, 1, 2,…, n,   

  ERn(γλ) =  |(∑ αmIm(γλ)
n
m=0 )′ − h(γλ) −

η∫ T(γλ, u)
a2

a1
∑ αmIm(u)n

m=0 du| ≅ 0,  

and ERn(γλ)≤ 10−γλ  .    
 

If max(10−γλ) = 10−γ  is specified,  

then the truncation limit n is increased until the 

difference ER(γλ) between each of the points γλ 

becomes less than or equal 10−γ. In other words, 

the error function ERn(γλ) can be estimated by the 

relation: 

 

 ERn(γ) =  (∑ αmIm(γ)

n

m=0

)

′

− h(γ)

− η ∫ T(γ, u)

a2

a1

∑ αmIm(u)

n

m=0

du,  

then, ERn(γ) → 0 when n is a very large, then the 

error function decreases (3 and 10)  
 

Numerical Examples:  

    This section checks the computational accuracy 

of the (TPs) method, by testing three examples of 

linear (FIDE) and one example of a nonlinear 

(FIDE). The accuracy of the solution method was 

measured by the absolute error for the first three 

examples, while the fourth example was measured 

by the maximum absolute error, convergence rate 

and time of CPU, also all calculations and charts 

were accomplished on my PC using the matlab2018 

program.  

The general formulas of the testes were defined as 

follows: 

Absolute error: 
|ER| = |X(γλ) − Xn(γλ)|,   γλ∈[0,1] and λ =

0, 1, … , n 

Maximum error: ‖ER‖∞ = maxγλ∈[0,1]|X(γλ) −

Xn(γλ)|, where X(γλ), and  Xn(γλ) are the exact 

and approximate numerical solutions with the 

Touchard’s approximation of the (FIDEs), 

respectively.  

Convergence rate: Ratio = 
‖ERn−1‖

∞

‖ERn‖∞
, where ‖ERn‖∞ 

and ‖ERn−1‖∞ are the maximum absolute errors of 

degree n and n−1, respectively. 

 

Example1: Solve the linear (FIDE) given in (1):  

Χ′(γ) = h(γ) + ∫xu Χ(u)

1

0

du ,               0 ≤ γ ≤ 1 

where h(γ)  = 3 + 6γ, η=  1, T(γ, u)  = xu ,
Χ(0) = 0, and the exact solution  X(γ) = 3γ + 4γ2 
Now, by applying the (TPs), the approximate 

solutions of this example for n = 1, 2 and 3 are 

respectively:  

 X1(γ) = ∑ αmIm(γ)

1

m=0

= α0I0(γ) + α1I1(γ) 

                                      = (−3.01)I0(γ) +
(3.0)I1(𝛾). 

X2(γ) = ∑ αmIm(γ)

2

m=0

= α0I0(γ) + α1I1(γ) + α2I2(γ) 

                                     = (0.76) I0(γ) +
(−4.5556)I1(γ) + (3.7778) I2(γ) 
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X3(γ) = ∑ αmIm(γ) =

3

m=0

α0I0(γ) + α1I1(γ)

+ α2I2(γ) + α3I3(γ) 

                                     = (0.8)I0(γ) +
(−4.5556)I1(γ) + (3.7778)I2(γ) + (0)I3(γ). 

The approximate solutions and absolute error were 

compared in Tables 1 and 2, respectively, showing 

that the accuracy of the results increases as n 

increases. In Fig.1, the exact solution was compared 

with Touchard solution for n = 3. 

 

Table 1.Approximate Numerical and Exact Solutions of Example 1. 

γ 
Exact 

Solution 

Approximate Solutions 

n = 1 n = 2 n = 3 

0.0 0.0 −1.0000e−02 −1.7778e−02 2.2222e−02 

0.1 3.4000e−01 2.9000e−01 3.2000e−01 3.6000e−01 

0.2 7.6000e−01 5.9000e−01 7.3333e−01 7.7333e−01 

0.3 1.2600e+00 8.9000e−01 1.2222e+00 1.2622e+00 

0.4 1.8400e+00 1.1900e+00 1.7867e+00 1.8267e+00 

0.5 2.5000e+00 1.4900e+00 2.4267e+00 2.4667e+00 

0.6 3.2400e+00 1.7900e+00 3.1422e+00 3.1822e+00 

0.7 4.0600e+00 2.0900e+00 3.9333e+00 3.9733e+00 

0.8 4.9600e+00 2.3900e+00 4.8000e+00 4.8400e+00 

0.9 5.9400e+00 2.6900e+00 5.7422e+00 5.7822e+00 

1.0 7.0000e+00 2.9900e+00 6.7600e+00 6.8000e+00 

 

Table 2. Comparison of the Absolute Error of Example 1. 

γ 
Absolute Errors   

 n = 1  n = 2  n = 3 

0.0 1.0000e − 02 1.7778e − 02 2.2222e − 02 

0.1 5.0000e − 02 1.9999e − 02 2.0001e − 02 

0.2 1.7000e − 01 2.6666e − 02 1.3334e − 02 

0.3 3.7000e − 01 3.7778e − 02 2.2223e − 03 

0.4 6.5000e − 01 5.3333e − 02 1.3333e − 02 

0.5 1.0100e + 00 7.3333e − 02 3.3333e − 02 

0.6 1.4500e + 00 9.7777e − 02 5.7777e − 02 

0.7 1.9700e + 00 1.2667e − 01 8.6667e − 02 

0.8 2.5700e + 00 1.6000e − 01 1.2000e − 01 

0.9 3.2500e + 00 1.9778e − 01 1.5778e − 01 

1.0 4.0100e + 00 2.4000e − 01 2.0000e − 01 

 

  
Figure 1. Numerical Result and Exact Solution of Example 1 for n = 3. 

 

Example 2: Solve the linear (FIDE) given in (16, 

and 17)  

 
Χ′(γ) = h(γ) + ∫ γ Χ(u)

1

0

du ,          0 ≤ γ ≤ 1   
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where h(γ) = γ eγ + eγ − γ , η = 1,   T(γ, u) =
γ , Χ(0) = 0 and the exact solution is Χ(γ) = γ eγ. 
The approximate numerical results are obtained for 

n = 1, 3 and 4, respectively:  

 

X1(γ) = (−0.97)I0(γ) + (0.9657)I1(γ). 

X3(γ) = (−0.45)I0(γ) + (0.5351)I1(γ)
+ (−0.7436)I2(γ)
+ (0.6523)I3(γ)  

X4(γ) = (−0.15)I0(γ) + (−0.6898)I1(γ) +
(1.0507)I2(γ) + (−0.4411)I3(γ) 

+(0.2278) I4(γ).  
 

Table 3 shows the absolute errors for n=4, and 

compares with methods included in (16 and 17). In 

Fig. 2, the exact solution is compared with 

Touchard solution for n = 4. 

                                 

Table 3. Comparison of the Absolute Error of Example 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Numerical Result and Exact Solution of Example 2 for n = 4. 

 

Example 3: Solve the linear (FIDE) given in (11,    

                   16, and 17)  

Χ′(γ) = h(γ) + ∫ γu Χ(u)

1

0

du ,          0 ≤ γ ≤ 1   

where h(γ) = 1 −
1

3
γ ,   η = 1,   T(γ, u) =

γu , Χ(0) = 0 and the exact solution is Χ(γ) = γ. 
By applying suggested method for this example, for 

n = 5, the Touchard solution is:  

 

 X5(γ) = (−1)I0(γ) + (1)I1(γ) + 0 = X(γ) = γ. 
In Table 4, the absolute error in the current method 

is compared with those in (11, 16 and 17), and it is 

found that the absolute error in the current method 

is the highest accuracy. In Fig. 3, for n = 5, the 

Touchard solution is compared with the exact 

solution. 

 

 

 

 

 

 

 

γ Absolute Errors,  n=4 

Current Method Method in (16) Method in (17) 

0.1 1.5839709e − 03 1.34917637e − 03 1.00118319e − 02 

0.2 1.0428977e − 03 1.15960044e − 03 2.78651355e − 02 

0.3 5.4169991e − 03 5.67152531e − 03 5.08730892e − 02 

0.4 1.1544044e − 02 5.93105650e − 02 7.55356316e − 02 

0.5 1.9394491e − 02 1.32330751e − 02 9.71888592e − 02 

0.6 2.8827524e − 02 4.39287720e − 02 1.09551714e − 01 

0.7 3.9505430e − 02 1.41201624e − 02 1.04133232e − 01 

0.8 5.0796945e − 02 1.34514117e − 02 6.94512700e − 02 

0.9 6.1668672e − 02 1.32045209e − 02 1.00034260e − 02 
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Table 4. Comparison of the Absolute Error of Example 3. 

 
γ 

Absolute Errors 

Current Method n=5 Method in (11) Method in (16) Method in (17) 

0.1 0.0 3.7900e − 06 2.1794e − 04 1.6667e − 03 

0.2 0.0 1.5160e − 05 6.3855e − 04 6.0939e − 03 

0.3 0.0 3.4110e − 05 7.9137e − 04 1.3202e − 02 

0.4 0.0 6.0640e − 05 2.1559e − 02 2.2914e − 02 

0.5 0.0 9.4750e − 05 4.9936e − 03 3.5158e − 02 

0.6 0.0 1.3644e − 04 2.2173e − 02 6.6965e − 02 

0.7 0.0 1.8571e − 04 1.0565e − 04 7.1243e − 02 

0.8 0.0 2.4256e − 04 1.4323e − 03 8.6398e − 02 

0.9 0.0 3.0699e − 04 2.0775e − 02 1.0810e − 01 

 

 
Figure 3. Numerical Result and Exact Solution of Example 3 for n = 5. 

 

Example 4: Finally, solve the nonlinear (FIDE) 

given in (18)  

 

Χ′(γ) = h(γ) + ∫ γ3 (Χ(u))2

1

0

du ,          0 ≤ γ ≤ 1   

where h(γ) = 1 −
1

3
γ3 ,   η = 1,   T(γ, u) =

γ3 , Χ(0) = 0 and the exact solution is Χ(γ) = γ. 
By applying suggested method for n= 1, 2 and 3, the 

Touchard solutions are obtained respectively:  

 

X1(γ) = (−1)I0(γ) + (1)I1(γ) = X(γ) = γ. 

X2(γ) = (−1)I0(γ) + (1)I1(γ)
+ (4.4522e − 16)I2(γ). 

X3(γ) = (−1)I0(γ) + (1)I1(γ) + (−7.1067e −
15)I2(γ) + (1.8000e − 15)I3(γ).  
The comparison of the maximum error, ratio of 

error and CPU times of the current method with 

those in (18) is shown in Table 5, and shows that 

the current method for n = 1, 2 and 3 has a much 

higher accuracy than those in (18) for n = 5, 9 and 

17. In Fig. 4, for n = 2 and 3, the Touchard solutions 

were compared with the exact solution.  

 

Table 5. Comparison of the Maximum Absolute Error, Error Ratio and CPU Time of Example 4. 
Current Method Method in (18) 

n ‖e‖∞ Ratio Time n ‖e‖∞ Ratio Time 

1 1.3989 e−14 − 0.036 5 3.26 e −03 − 0.37 

2 6.2172 e−15 2.25 0.039 9 8.44 e −04 3.87 0.41 

3 3.3307 e−15 1.87 0.092 17 2.16 e −04 3.90 0.56 
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Figure 4. Numerical results and Exact Solution of Example 4 for n = 2 and 3. 

 

Conclusions and Recommendations:  
   In this study, numerical solutions are obtained for 

linear (FIDEs) of the first order and second kind 

under condition, using Touchard polynomials, and 

different degrees for purpose of comparing. This 

method reduces the (FIDEs) into a set of algebraic 

equations. It's worth noting that one of the 

important features of this method is that the 

Touchard coefficients of the solutions are found 

easily by using PC programs. Also, another 

advantage is the obtaining solution is polynomials 

of the degree equal or less than selected n. 

However, the solution converges rapidly to the 

exact solution when n increases. The comparison 

between the absolute errors for four test examples 

and those methods included in (11, 16, 17 and 18), 

shows that the accuracy of the current method is 

almost similar or better than those of the existing 

methods. As a future work, the current method can 

also applied to the system of linear (FIDEs), 

because it is effective and applicable for the linear 

and nonlinear for these kinds of equations and the 

results obtained support this claim. Because the 

solutions obtained here are approximate solutions, it 

is expected in some examples that the absolute error 

increases when γ approaches 1 in the interval [0, 1] 

as in examples 1 and 2. 

    All the methods referred to in the introduction to 

this study are approximate numerical methods that 

have been used to solve the Fredholm integro-

differential equations that are difficult to solve 

analytically. These methods have been used to solve 

them numerically. The pros of these methods are to 

obtain approximate solutions and the possibility of 

writing algorithms for solutions in these methods. 

Programming these algorithms on personal 

computers by writing computer programs to identify 

unknown values and then the possibility of 

comparing the results obtained in these methods by 

graphs. The cons of these methods are the existence 

of errors in the accuracy of the results in reaching 

the approximate solutions.  
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 شارد.تحدود  ةباستخدام متعددالخطية اضلية التكاملية فريدهولم التف لةلمعاد عددي حل

 
 جليل طلب عبدالله

 

 العراق ،واسط ، جامعة واسط،الاحصاء، كلية الادارة والاقتصادقسم 
 

 :الخلاصة
مع  لمعادلات فريدهولم التفاضلية التكاملية من المرتبة الاولى والنوع الثانيللحل العددي  متعددة حدود تشاردتم تقديم طريقة جديدة تستند الى  

واعطيت دقة الطريقة المقدمة وثبتت قابلية تطبيقها ببعض الامثلة  تم الحصول ببساطة على مشتقة متعددة حدود تشارد وتكاملها. الشرط. 

 الاخرى. النتائج المعروفة مع يها التي تم الحصول عل نتائجالم مقارنة تت العددية. 
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