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Abstract
In this work, we propose a framelet method based on B-spline functions for solving
nonlinear Volterra–Fredholm integro-differential equations and by involving
Atangana–Baleanu fractional derivative, which can provide a reliable numerical
approximation. The framelet systems are generated using the set of B-splines with
high vanishing moments. We provide some numerical and graphical evidences to
show the efficiency of the proposed method. The obtained numerical results of the
proposed method compared with those obtained from CAS wavelets show a great
agreement with the exact solution. We confirm that the method achieves accurate,
efficient, and robust measurement.

Keywords: Framelets; Numerical solution; Fractional calculus; Atangana–Baleanu
fractional derivative; Wavelets; Harmonic numerical analysis; Volterra integral
equations; Oblique extension principle

1 Introduction
Recently, many scientists have applied fractional derivatives with different types of defini-
tions, such as Atangana–Baleanu fractional integral [1], Caputo fractional derivative [2],
and Caputo–Fabrizio fractional derivative [3], to many real-world problems and pointed
out the powerfulness of using such noninteger-order and nonlocal kernels to numerically
solve different types of integral equations and to describe the dynamics and properties of
these problems; see, for example, [4–37].

One of these problems is studying numerical solution of the nonlinear Volterra–
Fredholm integral equations by involving the well-known Atangana–Baleanu fractional
derivative. Note that nonlinear Volterra–Fredholm integral equations appear in many
applications in different disciplines such as neural networks [38], the pulses of sound re-
flections [39], and mathematical physics such as Lane–Emden-type equations [40], and
many more can be found, for example, in [41] and references therein. On the other hand,
finding exact solutions of such equations is usually difficult and sometimes even impossi-
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ble. Therefore developing numerical algorithms to simulate exact solutions with this new
involvement of noninteger order is crucial.

There are many numerical methods for solving Fredholm and Voltera integral equations,
such as the Galerkin method, collocation method, Taylor series, Legendre wavelets, Tay-
lor and recently Chebyshev polynomials, homotopy perturbation method, power series
method, and expansion method [42–48]. Besides these contributions, other authors have
also applied wavelet bases and gained much attention during the last decade. However,
these bases are typically nonredundant, and thus corruption or loss of transform coeffi-
cients can be serious. Motivated by the above, our main goal in this work is to propose a
new efficient method based on framelet systems to numerically solve fractional nonlinear
Volterra and Fredholm integral equations by involving the Atangana–Baleanu fractional
order derivative. Framelet theory is a relatively emerging area in mathematical analysis
and known as redundant systems. The redundancy of the framelet system requires that a
given function would be represented by a different structure as a convergent sum. These
expansions have recently emerged as another effective tool and popular through the use
in numerous applications. One of the major advantages of a redundant system is that it is
implemented by a frame fast transform, which provides us with better recovery and higher
accuracy order. Indeed, one of our main contributions in this work is simulation of the so-
lution of a given fractional nonlinear Volterra and Fredholm integral equation based on
these framelet expansions (redundant setting). This means that the right representation
is critical if we intend to effectively perform our solution.

A framelet system contains a set of functions called generators. We construct them using
some known and effective principles such as the unitary and oblique extension principles
(of course, including their generalizations) and based on nonnegative functions called B-
splines. This provides us with simple and better reconstruction of the coefficients to obtain
the corresponding unknown elements of the space L2(R) and also gives us better accuracy
order and relatively small errors. In practice, framelet-based methods have been applied
to provide accurate and efficient numerical schemes for solving several types of integral
and differential equations; see, for example, [49–59].

We consider the following form of fractional nonlinear Volterra–Fredholm integral
equation (FV-FIE):

Dλu(x) = g(x) + a
∫ x

0
K1(x, t)P1

(
u(t)

)
dt

+ b
∫ 1

0
K1(x, t)P2

(
u(t)

)
dt, x ∈ [0, 1],λ > 0,

(1.1)

with initial conditions (ICs)

u(p)(0) = dp, p = 0, 1, 2, . . . , m – 1, and λ ∈ (n, n + 1], n ∈N, (1.2)

where Dλu is the Atangana–Baleanu fractional-order derivative given by

Dλu(x) =
M(λ)
1 – λ

∫ x

0

du(t)
dt

Eλ

(
–λ(x – t)λ

1 – λ

)
dt,
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where M(λ) is a normalization function satisfying M(0) = M(1) = 1, and Eλ is the Mittag-
Leffler function. The integral operator corresponding to this definition is given by

Iλu(x) =
(1 – λ)u(x)

M(λ)
+

λ

M(λ)�(λ)

∫ x

0

u(t)
(x – t)1–λ

. (1.3)

We refer the reader to [1, 13, 60, 61] for more details and properties of the fractional deriva-
tive.

The paper is organized as follows. In Sect. 2, we provide some preliminaries and ba-
sics of frames with necessary theory needed for the construction of the framelet systems.
In Sect. 3, we establish a matrix formulation of the proposed method based on the con-
structed framelet systems and using the collocation technique. Numerical examples with
numerical comparison and graphical illustration are presented in Sect. 4 to validate our
main expansion technique.

2 Framelet expansion method
The purpose in this section is providing an approximate solution of the FV-FIE given in
Equations (1.1)–(1.2) in the form of truncated expansions of a given framelet system.

A set of functions

{uj, j = 1, . . . ,∞}

is called a frame for L2(R) if there exists positive numbers A, B such that

A‖v‖2 ≤
∞∑
j=1

∣∣〈v, uj〉
∣∣2 ≤ B‖v‖2 (2.1)

for all functions v ∈ L2(R). The set is called tight frame (or framelet) if it is possible to have
A = B.

Note that, according to inequality (2.1), for a function g ∈ L2(R), we obviously obtain
the following associated framelet representation:

g =
∑
j∈Z

〈g, uj〉uj. (2.2)

The framelets are constructed using B-spline functions. The B-splines BM of order M,
where M ∈N, are recursively defined by the equation

BM(x) =
∫ 1

0
BM–1(x – t) dt, M = 1, 2, . . . ,

where B1(x) is the indicator function over the interval [0, 1).
The Fourier transform of an integrable function f , denoted by f̂ , is defined by

f̂ (ω) =
∫
R

f (t)e–2π iωt dω,
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and the discrete Fourier series of a sequence a(k), denoted by â, is given by

â(ω) =
M–1∑
k=0

a(k)e2π ikω/M.

B-splines are nonnegative refinable functions in the sense that

B̂M(ω) = â(ω/2)φ̂(ω/2),

with

â(ω) = 2–n(1 + e–iω)np(ω), (2.3)

where p(ω) is a polynomial of trigonometric functions with p(0) = 1, and â is a 2π-periodic
function in the frequency domain, called the low mask of BM .

The framelet system X(�) is constructed via the oblique extension principle (OEP) [49]
and it has the form

X(�) =
{

u�,j,k = 2j/2u
(
2jx – k

)
: � = 1, . . . , r; j, k ∈ Z

}
(2.4)

and satisfies the following equations:

r∑
�=0

∣∣â�(ω)
∣∣2 = 1 and

r∑
�=0

â�(ω)â�(ω + π ) = 0, (2.5)

where â0, â�, � = 1, . . . , r, are the low and high masks of u = BM , respectively. The OEP
deals with the notion of constructing a framelet system using a refinable function φ where
for some trigonometric function �̂(ω),

• �̂(ω)|φ̂(0)|2 = 1, and
• �̂(ω)â(ω/2 + π i)â(ω/2) +

∑
�∈E â�(ω/2 + π i)â�(ξ /2) = �(·/2)δi, {i : i = 0, 1}.

Then the system X(�) defined in Equation (2.4) forms a framelet system for L2(R). The
representation in Equation (2.2) is truncated by the series Wn such that

Wng =
r∑

�=1

n∑
j=–n

∑
k∈Z

c�,j,ku�,j,k , (2.6)

where c�,j,k = 〈g, u�,j,k〉.
Let us present some examples of framelet systems via the OEP setting.

Example 2.1 Consider the refinable function B2(x). Then, based on the OEP presented in
[49], we are able to explicitly construct the following framelets:

ψ̂1(ω) = –
16e– 1

2 (iω)

ω2 –
16e– 1

2 (3iω)

ω2 +
24e–iω

ω2 +
4e–2iω

ω2 +
4
ω2 +

1√
2π

,
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Figure 1 The graphs of the functions in X(�1) for Examples 2.1 and 2.2, respectively

ψ̂2(ω) =
2
√

2
π

e iω
2

ω2 +
30

√
2
π

e– 1
2 (iω)

ω2 +
30

√
2
π

e– 1
2 (3iω)

ω2 +
2
√

2
π

e– 1
2 (5iω)

ω2 –
40

√
2
π

e–iω

ω2

–
12

√
2
π

e–2iω

ω2 –
12

√
2
π

ω2 .

Then according to the OEP, the set X(�1) where �1 = {ψ1,ψ2} forms a framelet system for
L2(R). The graph of the generators of the corresponding framelet system is given in Fig. 1
(the left subfigure).

Example 2.2 Consider the refinable function B4(x). Then, again based on the OEP, we
have

ψ̂1(ω) =
e–iω

1920ω2

(
4720 cos

(
ω

2

)
– 880 cos

(
3ω

2

)

– 10,178 cos(ω) – 1352 cos(2ω) + 3337 cos(3ω)

– 742 cos(4ω) – 71 cos(5ω) + 5166
)

,

ψ̂2(ω) =
1

960
√

2πω2

(
–1 + e– 1

2 (iω))4

× (
–726e– 1

2 (iω)(1 + eiω)
+ 85

(
e–iω + eiω)

+ 458
(
e–2iω + e2iω)

+ 412e– 1
2 (3iω)(1 + e3iω)

+ 71
(
e–3iω + e3iω)

+ 284e– 1
2 (5iω)(1 + e5iω)

– 1228
)
.

Therefore the set X(�2) where �2 = {ψ1,ψ2} forms a framelet system for ∈ L2(R). The
graph of the generators of the corresponding framelet system is plotted in Fig. 1 (the right
subfigure).

3 Matrix formulation using framelets
In this section, we provide a general framework of the proposed algorithm based on the
collocation division of the domain.
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Consider the FV-FIE defined in Equation (1.1). Based on the truncated expansion ob-
tained in Equation (2.6), we have

M(λ)
1 – λ

∫ x

0

dW(um(t))
dt

Eλ

(
–λ(x – t)λ

1 – λ

)
dt = g(x) + a

∫ x

0
K1(x, t)IλP1

(
Wmu(t)

)
dt

+ b
∫ 1

0
K1(x, t)IλP2

(
Wmu(t)

)
dt, (3.1)

where Iλ is the Riemann–Liouville fractional-integral operator defined by Equation (1.3).
With a few algebra, Equation (3.1) can be simplified to

M(λ)
1 – λ

∫ x

0

dW(um(t))
dt

Eλ

(
–λ(x – t)λ

1 – λ

)
dt

= g(x) + a
∫ x

0
K1(x, t)

(1 – λ)P1(Wmu(x))
M(λ)

dt

+
λ

M(λ)�(λ)

∫ x

0

∫ t

0

P1(Wmu(s))
(x – s)1–λ

ds dt + b
∫ 1

0
K2(x, t)

(1 – λ)P2(Wmu(x))
M(λ)

dt

+
λ

M(λ)�(λ)

∫ 1

0

∫ x

0

P2(Wmu(t))
(x – t)1–λ

ds.

Hence,

M(λ)
1 – λ

∫ x

0

dW(um(t))
dt

Eλ

(
–λ(x – t)λ

1 – λ

)
dt – a

∫ x

0
K1(x, t)

(1 – λ)P1(Wmu(x))
M(λ)

dt

+
λ

M(λ)�(λ)

∫ x

0

∫ t

0

P1(Wmu(s))
(x – s)1–λ

ds dt – b
∫ 1

0
K2(x, t)

(1 – λ)P2(Wmu(x))
M(λ)

dt

–
λ

M(λ)�(λ)

∫ 1

0

∫ x

0

P2(Wmu(t))
(x – t)1–λ

ds = g(x).

Now, based on a dyadic division points of the domain of the framelet system used, say
{ξq, q ∈ �}, plugging these points into this equation, we have

M(λ)
1 – λ

∫ ξq

0

dW(um(t))
dt

Eλ

(
–λ(ξq – t)λ

1 – λ

)
dt – a

∫ ξq

0
K1(x, t)

(1 – λ)P1(Wmu(x))
M(λ)

dt

–
λ

M(λ)�(λ)

∫ ξq

0

∫ t

0

P1(Wmu(s))
(ξq – s)1–λ

ds dt

– b
∫ 1

0
K2(ξq, t)

(1 – λ)P2(Wmu(ξq))
M(λ)

dt

–
λ

M(λ)�(λ)

∫ 1

0

∫ ξq

0

P2(Wmu(t))
(ξq – t)1–λ

ds = g(ξq).

By approximating the integrals in this equation based on the composite trapezoidal rule,
we get a generated system of equations, which can be solved to obtain the unknown coef-
ficients c�,j,k , as in Equation (2.6), in order to have an approximated solution of order m.
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4 Numerical applications
In this section, we consider some examples to test the proposed algorithm. The absolute
errors are given by

Emu =
∣∣u – In(Pmu)

∣∣, λ ≤ n.

For comparison, we provide some numerical results for Example 4.1 based on Cos and
Sin (CAS) wavelets defined by

τa,b(x) = 2a/2 SACp
(
2ax – (b – 1)

)
, 2–a(b – 1) ≤ x ≤ 2–ab,

and based on the collocation method, where the translation parameter is given by

SACp(x) = cos(2pπx) + sin(2pπx), b = 1, . . . , 2a.

The truncated expansion using such bases is given by

Mu(x) =
2k –1∑
n=0

p∗∑
p=–p∗

dnp∗τnp∗ (x).

Example 4.1 Consider the FVIE
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(λ)
1–λ

∫ x
0

dPum(t)
dt Eλ( –λ(x–t)λ

1–λ
) dt –

∫ x
0 e–t(In(Pmu)2(t) dt = 1,

u(0) = 1,

u′(0) = 1,

u′′(0) = 1,

u′′′(0) = 1,

(4.1)

where

M(λ) =
�(λ)(1 – λ) + λ

�(λ)
.

The exact solution solution is u(x) = ex, where λ = 4. Applying the above algorithm yields
the numerical results presented in Tables 1, 2, and 3. Graphical illustrations using different
values of λ to compare the results between the exact and approximate solutions are also
given in Figs. 2, 3, 4, and 5.

Example 4.2 Let us consider the following nonlinear equation, which appears in some
applications of Newtonian gravity:

u′′(x) + 2x–1u′(x) + u5(x) = 0

with ICs u(0) = 1 and u′(0) = 0. The equation can be transferred to the Volterra integral
equation form

⎧⎪⎪⎨
⎪⎪⎩

u(x) – 1
x
∫ x

0 (t2 – tx)u5(t) dt = 1,

u(0) = 1,

u′(0) = 0.

(4.2)
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Table 1 Numerical results of Example 4.1 using the framelet systems X(�1) and X(�2) form = 3 and
λ = 3.25

x Exact Wmu via X(�1) Wmu via X(�2) Mu, a = 3 = p∗ = 3

0.0 1.00000 1.00000 1.00000 1.00004
0.1 1.10527 1.10518 1.10527 1.10520
0.2 1.22140 1.22197 1.22206 1.22213
0.3 1.34986 1.35209 1.35215 1.35231
0.4 1.49182 1.49742 1.49750 1.49776
0.5 1.64872 1.66006 1.66024 1.66340
0.6 1.82212 1.84239 1.84268 1.84379
0.7 2.01375 2.04696 2.04731 2.04738
0.8 2.22554 2.27643 2.27683 2.27759
0.9 2.45960 2.53365 2.53415 2.53649
1.0 2.71828 2.84435 2.84432 2.84543

Table 2 Numerical results of Example 4.1 using the framelet systems X(�1) and X(�2) form = 3 and
λ = 3.5

x Exact Wmu via X(�1) Wmu via X(�2) Mu, a = 3 = p∗ = 3

0.0 1.00000 1.00000 1.00000 1.00000
0.1 1.10527 1.10523 1.10534 1.10520
0.2 1.22140 1.22170 1.22180 1.22189
0.3 1.34986 1.35091 1.35223 1.35298
0.4 1.49182 1.49453 1.49722 1.49707
0.5 1.64872 1.65442 1.65998 1.65999
0.6 1.82212 1.83259 1.84239 1.84337
0.7 2.01375 2.03129 2.04661 2.04934
0.8 2.22554 2.25293 2.27630 2.27766
0.9 2.45960 2.50018 2.53316 2.54492
1.0 2.71828 2.73552 2.74283 2.75209

Table 3 Numerical results of Example 4.1 using the framelet systems X(�1) and X(�2) form = 3 and
λ = 3.75

x Exact Wmu via X(�1) Wmu via X(�2) Mu, a = 3 = p∗ = 3

0.0 1.00000 1.00000 1.00000 1.00000
0.1 1.10527 1.10521 1.10514 1.10518
0.2 1.22140 1.22152 1.22146 1.22159
0.3 1.34986 1.35025 1.35022 1.35027
0.4 1.49182 1.49282 1.49280 1.49354
0.5 1.64872 1.65086 1.65077 1.65217
0.6 1.82212 1.82613 1.82599 1.82669
0.7 2.01375 2.02059 2.02044 2.02240
0.8 2.22554 2.23642 2.23628 2.23719
0.9 2.45960 2.47597 2.47582 2.47665
1.0 2.71828 2.72536 2.71663 2.73001

The exact solution is

u(x) =
√

3√
x2 + 3

.

In Figs. 6 and 7, we present some graphical illustrations to compare the exact and approx-
imate solutions and error bounds.
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Figure 2 Comparison of the exact and approximate solutions of Example 4.1 form = 3 and λ = 3.25

Figure 3 Comparison of the exact and
approximate solutions of Example 4.1 form = 3 and
λ = 3.25 using the framelet systems X(�1) and
X(�2)

Figure 4 Comparison of the exact and approximate solutions of Example 4.1 form = 3 and λ = 3.5
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Figure 5 Comparison of the exact and approximate solutions of Example 4.1 form = 3 and λ = 3.75

Figure 6 Comparison of the exact and approximate solutions of Example 4.2 form = 3

Figure 7 Comparison of the exact and approximate solutions of Example 4.2 form = 3
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Figure 8 Comparison of the exact and approximate solutions of Example 4.3 form = 3 and λ = 0.9

Figure 9 Comparison of the exact and approximate solutions of Example 4.3 form = 3 and λ = 0.95

Example 4.3 We consider the following nonlinear fractional differential equation with
mixed boundary conditions:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dλ+1u(x) –
∫ 1

0 xtu6(t) dt –
∫ x

0 (et – 1)u2(t) dt

= – 1
3 (ex – x – 1)3 – (–2e + e2

4 + 11
3 )x + ex,

u(0) = –u′(0),

u(1) = u′(1) + 2e – 3,

(4.3)

where

Dλ+1u(x) =
M(λ + 1)

2 – λ

∫ x

0

dPum(t)
dt

Eλ+1

(
–λ – 1(x – t)λ+1

2 – λ

)
dt.

The exact solution is u(x) = ex – x – 1. The graphical illustrations are given in Figs. 8
and 9.
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Table 4 Numerical results of Example 4.4 using the framelet systems X(�1) and X(�2) form = 3 and
λ = 6/5

x Exact Wmu via X(�1) Wmu via X(�2)

0.0 0.00 0.0000611 0.000058
0.1 0.01 0.0073854 0.010312
0.2 0.04 0.0381471 0.038145
0.3 0.09 0.0835573 0.083556
0.4 0.16 0.1587530 0.158752
0.5 0.25 0.2578740 0.242248
0.6 0.36 0.3618780 0.361877
0.7 0.49 0.4834600 0.483460
0.8 0.64 0.6475220 0.647520
0.9 0.81 0.8071900 0.807188
1.0 1.00 0.9844360 0.984434

Figure 10 Comparison of the exact and approximate solutions of Example 4.4 form = 3 and λ = 1.2

Example 4.4 Now, we consider the FVIE

⎧⎪⎪⎨
⎪⎪⎩

M(λ)
1–λ

∫ x
0

dPum(t)
dt Eλ( –λ(x–t)λ

1–λ
) dt –

∫ x
0 (x – t)2u3(t) dt = –(x9/252) + 5x4/5

2�[4/5] ,

u(0) = 0,

u(1) = 1.

The exact solution for this equation when λ = 6/5 is u(x) = x2. The numerical results of
this example are presented in Table 4, and the graphical illustrations of the exact, approx-
imate, and error results are depicted in Figs. 10 and 11.

5 Conclusion
In this work, we presented an efficient method based on framelet systems to solve non-
linear Volterra–Fredholm integral and integro-differential equations by involving the
Atangana–Baleanu fractional derivative. We used some constructed framelet systems gen-
erated using the B-spline functions with high vanishing moments to numerically solve
the related equations. We converted the considered problem given in Equation (1.1) to
a matrix system after employing the Atangana–Baleanu fractional derivative definition,
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Figure 11 Error graphs of Example 4.4 form = 3 and λ = 1.2 using framelet systems X(�1) and X(�2),
respectively

where the resulted integrals are approximated using the composite trapezoidal rule. The
obtained results indicate that the method produces high accuracy order and reliable re-
sults with only a few terms of the truncated framelet partial sums with a proper discretiza-
tion. We have also supported our results by some graphical illustrations of the exact and
approximate solutions and provided error bounds of the solved examples.

Acknowledgements
We would like to thank the reviewers for their thoughtful comments and efforts toward improving our manuscript.

Funding
This work was supported by the Research Office, Zayed University, STG Grant number STG064.

Availability of data and materials
Data sharing not applicable to this papere as no datasets were generated or analyzed during the current study.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MM: Conceptualization, Methodology, Visualization, Investigation, Supervision, Validation, Software, Writing (review and
editing). AT: Software and Validation. All authors read and approved the final manuscript.

Author details
1Department of Mathematics, Zayed University, Abu Dhabi, UAE. 2Department of Computer Technology and Systems,
Kuban State Agrarian University, Krasnodar, Russia.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 10 July 2020 Accepted: 8 October 2020

References
1. Abdon, A., Dumitru, B.: New fractional derivatives with non-local and nonsingular kernel, theory and application to

heat transfer model. Therm. Sci. 20(1), 763–769 (2016). https://doi.org/10.2298/TSCI160111018A
2. Caputo, M.: Linear model of dissipation whose Q is almost frequency independent. Geophys. J. Int. 13(5), 529–539

(1967). https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
3. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2(1),

1–13 (2015). https://doi.org/10.12785/pfda/010201
4. Mohammad, M., Trounev, A.: On the dynamical modeling of Covid-19 involving Atangana–Baleanu fractional

derivative and based on Daubechies framelet simulations. Chaos Solitons Fractals 140, 110171 (2020).
https://doi.org/10.1016/j.chaos.2020.110171

5. Mohammad, M., Trounev, A., Cattani, C.: An efficient method based on framelets for solving fractional Volterra
integral equations. Entropy 22(8), 824 (2020). https://doi.org/10.3390/e22080824

6. Mohammad, M., Cattani, C.: Applications of bi-framelet systems for solving fractional order differential equations.
Fractals 28, 2040051 (2020). https://doi.org/10.1142/S0218348X20400514

https://doi.org/10.2298/TSCI160111018A
https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
https://doi.org/10.12785/pfda/010201
https://doi.org/10.1016/j.chaos.2020.110171
https://doi.org/10.3390/e22080824
https://doi.org/10.1142/S0218348X20400514


Mohammad and Trounev Advances in Difference Equations        (2020) 2020:618 Page 14 of 15

7. Mohammad, M., Cattani, C.: A collocation method via the quasi-affine biorthogonal systems for solving weakly
singular type of Volterra–Fredholm integral equations. Alex. Eng. J. 59(4), 2181–2191 (2020).
https://doi.org/10.1016/j.aej.2020.01.046

8. Mohammad, M., Trounev, A., Cattani, C.: The dynamics of COVID-19 in the UAE based on fractional derivative
modeling using Riesz wavelets simulation. Preprint (Version 1) (2020). https://doi.org/10.21203/rs.3.rs-33366/v1

9. Ghanbari, B., Atangana, A.: A new application of fractional Atangana–Baleanu derivatives: designing ABC-fractional
masks in image processing. Phys. A, Stat. Mech. Appl. 542, 123516 (2020).
https://doi.org/10.1016/j.physa.2019.123516

10. Khan, M.A., Atangana, A.: Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative. Alex.
Eng. J. 59(4), 2379–2389 (2020). https://doi.org/10.1016/j.aej.2020.02.033

11. Atangana, A., Bonyah, E., Elsadany, A.: A fractional order optimal 4D chaotic financial model with Mittag-Leffler law.
Chin. J. Phys. 65, 38–53 (2020). https://doi.org/10.1016/j.cjph.2020.02.003

12. Atangana, A., Aguilar, J., Kolade, M., Hristov, J.: Fractional differential and integral operators with non-singular and
non-local kernel with application to nonlinear dynamical systems. Chaos Solitons Fractals 2020, 109493 (2020).
https://doi.org/10.1016/j.chaos.2019.109493

13. Atangana, A., Koca, I.: Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order.
Chaos Solitons Fractals 89, 447–454 (2016)

14. Atangana, A.: On the new fractional derivative and application to nonlinear Fisher’s reaction–diffusion equation.
Appl. Math. Comput. 273, 948–956 (2016)

15. Atangana, A., Aguilar, J.: Decolonisation of fractional calculus rules: breaking commutativity and associativity to
capture more natural phenomena. Eur. Phys. J. Plus 133, 166 (2018)

16. Ghanbari, B., Atangana, A.: Some new edge detecting techniques based on fractional derivatives with non-local and
non-singular kernels. Adv. Differ. Equ. (2020). https://doi.org/10.1186/s13662-020-02890-9

17. Baleanu, D., Jajarmi, A., Mohammad, H., Rezapour, S.: A new study on the mathematical modelling of human liver
with Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 134, 109705 (2020)

18. Baleanu, D., Rezapour, S., Saberpour, Z.: On fractional integro-differential inclusions via the extended fractional
Caputo–Fabrizio derivation. Bound. Value Probl. 2019, 79 (2019)

19. Baleanu, D., Etemad, S., Rezapour, S.: A hybrid Caputo fractional modeling for thermostat with hybrid boundary value
conditions. Bound. Value Probl. 2020, 64 (2020). https://doi.org/10.1186/s13661-020-01361-0

20. Aydogan, M.S., Baleanu, D., Mousalou, A., et al.: On high order fractional integro-differential equations including the
Caputo–Fabrizio derivative. Bound. Value Probl. 2018, 90 (2018). https://doi.org/10.1186/s13661-018-1008-9

21. Baleanu, D., Mousalou, A., Rezapour, S.: On the existence of solutions for some infinite coefficient-symmetric
Caputo–Fabrizio fractional integro-differential equations. Bound. Value Probl. 2017, 145 (2017).
https://doi.org/10.1186/s13661-017-0867-9

22. Ahmad, B., Alsaedi, A., Zahrah Nazemi, S., Rezapour, S.: Some existence theorems for fractional integro-differential
equations and inclusions with initial and non-separated boundary conditions. Bound. Value Probl. 2014, 249 (2014).
https://doi.org/10.1186/s13661-014-0249-5

23. Rezapour, S., Esmael Samei, M.: On the existence of solutions for a multi-singular pointwise defined fractional
q-integro-differential equation. Bound. Value Probl. 2020, 38 (2020). https://doi.org/10.1186/s13661-020-01342-3

24. Baleanu, D., Agarwal, R.P., Mohammadi, H., et al.: Some existence results for a nonlinear fractional differential equation
on partially ordered Banach spaces. Bound. Value Probl. 2013, 112 (2013).
https://doi.org/10.1186/1687-2770-2013-112

25. Samei, M.E., Rezapour, S.: On a system of fractional q-differential inclusions via sum of two multi-term functions on a
time scale. Bound. Value Probl. 2020, 135 (2020). https://doi.org/10.1186/s13661-020-01433-1

26. Hedayati, V., Samei, M.E.: Positive solutions of fractional differential equation with two pieces in chain interval and
simultaneous Dirichlet boundary conditions. Bound. Value Probl. 2019, 141 (2019).
https://doi.org/10.1186/s13661-019-1251

27. Baleanu, D., Rezapour, S., Mohammadi, H.: Some existence results on nonlinear fractional differential equations.
Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 371(1990), 20120144 (2013). https://doi.org/10.1098/rsta.2012.0144

28. Jajarmi, A., Baleanu, D.: A new iterative method for the numerical solution of high-order nonlinear fractional
boundary value problems. Front. Phys. 8, 220 (2020). https://doi.org/10.3389/fphy.2020.00220

29. Sajjadi, S., Baleanu, D., Jajarmi, A., Mohammadi Pirouz, H.: A new adaptive synchronization and hyperchaos control of
a biological snap oscillator. Chaos Solitons Fractals 138, 109919 (2020). https://doi.org/10.1016/j.chaos.2020.109919

30. Baleanu, D., Jajarmi, A., Sajjadi, S., Asad, J.H.: The fractional features of a harmonic oscillator with position-dependent
mass. Commun. Theor. Phys. 72, 055002 (2020)

31. Jajarmi, A., Yusuf, A., Baleanu, D., Inc, M.: New fractional HRSV model and its optimal control: a non-singular operator
approach. Phys. A, Stat. Mech. Appl. 547, 123860 (2020). https://doi.org/10.1016/j.physa.2019.123860

32. Baleanu, D., Jajarmi, A., Mohammadi, H., Rezapour, S.: A new study on the mathematical modelling of human liver
with Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 134, 109705 (2020).
https://doi.org/10.1016/j.chaos.2020.109705

33. Jajarmi, A., Baleanu, D.: On the fractional optimal control problems with a general derivative operator. Asian J. Control
(2019). https://doi.org/10.1002/asjc.2282

34. Veeresha, P., Prakasha, D., Baskonus, H., Yel, G.: An efficient analytical approach for fractional
Lakshmanan–Porsezian–Daniel model. Math. Methods Appl. Sci. 43, 4136–4155 (2020).
https://doi.org/10.1002/mma.6179

35. Veeresha, P., Prakasha, D., Baskonus, H., Gao, W., Yel, G.: Regarding new numerical solution of fractional
Schistosomiasis disease arising in biological phenomena. Chaos Solitons Fractals 133, 109661 (2020).
https://doi.org/10.1016/j.chaos.2020.109661

36. Gao, W., Senel, M., Yel, G., Baskonus, H., Senel, B.: New complex wave patterns to the electrical transmission line model
arising in network system. AIMS Math. 5(3), 1881–1892 (2020). https://doi.org/10.3934/math.2020125

37. Gao, W., Baskonus, H., Shi, L.: New investigation of bats–hosts–reservoir–people coronavirus model and apply to
2019-nCoV system. Adv. Differ. Equ. 2020, 391 (2020). https://doi.org/10.1186/s13662-020-02831-6

https://doi.org/10.1016/j.aej.2020.01.046
https://doi.org/10.21203/rs.3.rs-33366/v1
https://doi.org/10.1016/j.physa.2019.123516
https://doi.org/10.1016/j.aej.2020.02.033
https://doi.org/10.1016/j.cjph.2020.02.003
https://doi.org/10.1016/j.chaos.2019.109493
https://doi.org/10.1186/s13662-020-02890-9
https://doi.org/10.1186/s13661-020-01361-0
https://doi.org/10.1186/s13661-018-1008-9
https://doi.org/10.1186/s13661-017-0867-9
https://doi.org/10.1186/s13661-014-0249-5
https://doi.org/10.1186/s13661-020-01342-3
https://doi.org/10.1186/1687-2770-2013-112
https://doi.org/10.1186/s13661-020-01433-1
https://doi.org/10.1186/s13661-019-1251
https://doi.org/10.1098/rsta.2012.0144
https://doi.org/10.3389/fphy.2020.00220
https://doi.org/10.1016/j.chaos.2020.109919
https://doi.org/10.1016/j.physa.2019.123860
https://doi.org/10.1016/j.chaos.2020.109705
https://doi.org/10.1002/asjc.2282
https://doi.org/10.1002/mma.6179
https://doi.org/10.1016/j.chaos.2020.109661
https://doi.org/10.3934/math.2020125
https://doi.org/10.1186/s13662-020-02831-6


Mohammad and Trounev Advances in Difference Equations        (2020) 2020:618 Page 15 of 15

38. Hairer, E., Lubich, C., Schlichte, M.: Fast numerical solution of weakly singular Volterra integral equations. J. Comput.
Appl. Math. 23(1), 87–98 (1988). https://doi.org/10.1016/0377-0427(88)90332-9

39. Friedlander, F.: The reflexion of sound pulses by convex parabolic reflectors. Math. Proc. Camb. Philos. Soc. 37,
134–149 (1941). https://doi.org/10.1017/S0305004100021630

40. Rismani, A., Monfared, H.: Numerical solution of singular IVPs of Lane–Emden type using a modified
Legendre-spectral method. Appl. Math. Model. 36(10), 4830–4836 (2012). https://doi.org/10.1016/j.apm.2011.12.018

41. Gripenberg, G., Londen, S., Staffans, O.: Volterra Integral and Functional Equations. Cambridge University Press,
Cambridge (1990)

42. Burton, T.: Volterra Integral and Differential Equations. Elsevier, Amsterdam (2005)
43. Brunner, H.: Collocation Method for Volterra Integral and Related Functional Equations. Cambridge University Press,

Cambridge (2004)
44. Delves, L., Mohamed, J.L.: Computational Methods for Integral Equations. Cambridge University Press, Cambridge

(1985)
45. Sezer, M.: Taylor polynomial solution of Volterra integral equations. Int. J. Math. Educ. Sci. Technol. 25(5), 881–887

(1994). https://doi.org/10.1080/00207160512331331110
46. Ghasemi, M., Tavassoli, M., Bobolian, E.: Numerical solutions of the nonlinear Volterra–Fredholm integral equations by

using homotopy perturbation method. Appl. Math. Comput. 188, 446–449 (2007).
https://doi.org/10.1016/j.amc.2006.10.015

47. Biazar, J.: GhazviniHe’s homotopy perturbation method for solving system of Volterra integral equations of the
second kind. Chaos Solitons Fractals 39(2), 770–777 (2009). https://doi.org/10.1016/j.chaos.2007.01.108

48. Tahmasbi, A., Fard, O.: Numerical solution of linear Volterra integral equations system of the second kind. Appl. Math.
Comput. 201, 547–552 (2008). https://doi.org/10.1016/j.amc.2007.12.041

49. Han, B.: Framelets and Wavelets: Algorithms, Analysis, and Applications, Applied and Numerical Harmonic Analysis.
Springer, Cham (2017)

50. Han, B., Michelle, M.: Construction of wavelets and framelets on a bounded interval. Anal. Appl. 16, 807–849 (2018).
https://doi.org/10.1142/S0219530518500045

51. Han, B., Lu, R.: Compactly supported quasi-tight multiframelets with high balancing orders and compact framelet
transforms. arXiv preprint. arXiv:2001.06032 (2020)

52. Mohammad, M., Lin, E.B.: Gibbs phenomenon in tight framelet expansions. Commun. Nonlinear Sci. Numer. Simul.
55, 84–92 (2018). https://doi.org/10.1016/j.cnsns.2017.06.029

53. Mohammad, M., Lin, E.B.: Gibbs effects using Daubechies and Coiflet tight framelet systems. Contemp. Math. 706,
271–282 (2018). https://doi.org/10.1090/conm/706

54. Mohammad, M.: Special B-spline tight framelet and it’s applications. J. Adv. Math. Comput. Sci. 29, 1–18 (2018).
https://doi.org/10.9734/JAMCS/2018/43716

55. Mohammad, M.: On the Gibbs effect based on the quasi-affine dual tight framelets system generated using the
mixed oblique extension principle. Mathematics 7, 952 (2019). https://doi.org/10.3390/math7100952

56. Mohammad, M.: Biorthogonal-wavelet-based method for numerical solution of Volterra integral equations. Entropy
21, 1098 (2019). https://doi.org/10.3390/e21111098

57. Mohammad, M.: A numerical solution of Fredholm integral equations of the second kind based on tight framelets
generated by the oblique extension principle. Symmetry 11, 854 (2019). https://doi.org/10.3390/sym11070854

58. Mohammad, M.: Bi-orthogonal wavelets for investigating Gibbs effects via oblique extension principle. J. Phys. Conf.
Ser. 2020, 1489 (2020). https://doi.org/10.1088/1742-6596/1489/1/012009

59. Mohammad, M., Trounev, A.: Implicit Riesz wavelets based-method for solving singular fractional integro-differential
equations with applications to hematopoietic stem cell modeling. Chaos Solitons Fractals 138, 109991 (2020).
https://doi.org/10.1016/j.chaos.2020.109991

60. Abdeljawad, T., Baleanu, D.: Integration by parts and its applications of a new non-local fractional derivative with
Mittag-Leffler nonsingular kernel. J. Nonlinear Sci. Appl. 10, 1098–1107 (2017).
https://doi.org/10.22436/jnsa.010.03.20

61. Abdeljawad, T., Baleanu, D.: On fractional derivatives with exponential kernel and their discrete versions. Rep. Math.
Phys. 80(1), 11–27 (2017)

https://doi.org/10.1016/0377-0427(88)90332-9
https://doi.org/10.1017/S0305004100021630
https://doi.org/10.1016/j.apm.2011.12.018
https://doi.org/10.1080/00207160512331331110
https://doi.org/10.1016/j.amc.2006.10.015
https://doi.org/10.1016/j.chaos.2007.01.108
https://doi.org/10.1016/j.amc.2007.12.041
https://doi.org/10.1142/S0219530518500045
http://arxiv.org/abs/arXiv:2001.06032
https://doi.org/10.1016/j.cnsns.2017.06.029
https://doi.org/10.1090/conm/706
https://doi.org/10.9734/JAMCS/2018/43716
https://doi.org/10.3390/math7100952
https://doi.org/10.3390/e21111098
https://doi.org/10.3390/sym11070854
https://doi.org/10.1088/1742-6596/1489/1/012009
https://doi.org/10.1016/j.chaos.2020.109991
https://doi.org/10.22436/jnsa.010.03.20

	Fractional nonlinear Volterra–Fredholm integral equations involving Atangana–Baleanu fractional derivative: framelet applications
	Recommended Citation

	Fractional nonlinear Volterra-Fredholm integral equations involving Atangana-Baleanu fractional derivative: framelet applications
	Abstract
	Keywords

	Introduction
	Framelet expansion method
	Matrix formulation using framelets
	Numerical applications
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


